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As this issue arrives in mailboxes, a new academic year will be starting. I wish each of you
a year of exciting advances.

Guest Column: The Story of Set Disjointness

Arkadev Chattopadhyay and Toniann Pitassi1

1 Introduction

The satisfiability problem has emerged as the queen of the complexity zoo. She is the quintessen-
tial NP-complete hard-to-find but easy-to-recognize search problem in computer science. There
are hundreds if not thousands of problems that are now known to be equivalent to SAT, and
our rich theory of complexity classes is centered around its queen.

In the world of communication complexity, the set disjointness problem has similarly
emerged as the quintessential hard-to-find but easy-to-recognize problem. There is an impres-
sive collection of problems in many diverse areas whose hardness boils down to the hardness
of the set disjointness problem in some model of communication complexity. Moreover, we will
argue that proving lower bounds for the set disjointness function in a particular communication

1Computer Science Department, University of Toronto, Toronto, ON M5S1A4, CANADA.
arkadev@cs.toronto.edu, toni@cs.torontno.edu. Supported by NSERC.



model (as opposed to proving lower bounds for some other function such as the inner product
function), has often required important new insights and/or ideas.

In this article, we will first define the set disjointness function and its relatives. We will
present several lower bounds for the set disjointness function in various communication mod-
els (deterministic, randomized, 2-party, multiparty, etc.), where our main goal will be to ex-
plain/expose the important lower bound techniques that have been developed to date in com-
munication complexity. We will mention a handful of diverse applications, all of which require
a lower bound for set disjointness.

2 Definitions

Two party communication complexity was first introduced in the seminal paper by Yao [57], and
it has since been shown to have many diverse applications in complexity theory. (See [33] for
an excellent exposition of the basic theory of communication complexity including applications.
Two excellent sources for more advanced material are [35, 36].) The “number-on-forehead”
model (NOF), first introduced by Chandra, Furst, and Lipton [15], generalizes the 2-party
model. In this model, the input is partitioned into k parts, so that player i can see all parts
except for the ith part (since it is “written on his forehead”).

Lower bounds for multiparty complexity in the number-on-forehead model are connected
to major open problems in complexity theory: it has been established that (log n)ω(1) commu-
nication complexity lower bounds in the NOF model for any explicit function with polyloga-
rithmically many players would imply explicit lower bounds for ACC

0 [11, 26]. The best lower
bound obtained so far is Ω(n/2k), which breaks down when the number of players is logarithmic
[5, 19, 49, 23]. Lower bounds in the NOF model have many other important applications as well,
including: constructions of pseudorandom generators for space bounded computation, universal
traversal sequences, time-space tradeoffs [5], circuit complexity bounds [26, 44, 39], and proof
complexity [9]. (Note: another generalization of the two-party model is the number-in-hand
model. While this model is also quite interesting, with applications for streaming, we will focus
on the number-on-forehead model in this paper.)

In the NOF multiparty communication complexity model of computation [15] there are k
players, numbered 1 to k, that are trying to collaborate to compute a function fk,n : X1× . . .×
Xk → {0, 1} where each Xi = {0, 1}n. In general, we allow k to be a function of n. The kn
input bits are partitioned into k sets, each of size n. For (x1, . . . , xk) ∈ {0, 1}kn, and for each
i, player i knows the values of all of the inputs except for xi (which conceptually is thought of
as being placed on player i’s forehead).

The players exchange bits according to an agreed-upon protocol, by writing them on a
public blackboard. A protocol specifies, for every possible blackboard contents, whether or not
the communication is over, the output if over and the next player to speak if not. A protocol
also specifies what each player writes as a function of the blackboard contents and of the inputs
seen by that player. The cost of a protocol is the maximum number of bits written on the
blackboard.

In a deterministic protocol, the blackboard is initially empty. A public-coin randomized
protocol of cost c is simply a probability distribution over deterministic protocols of cost c,
which can be viewed as a protocol in which the players have access to a shared random string.
A private-coin randomized protocol is a protocol in which each player has access to a private
random string. A nondeterministic protocol is a randomized private coin protocol with 1-sided
error (only false negatives) and an error probability less than 1.

The deterministic communication complexity of fk,n, written Dk(fk,n), is the minimum
cost of a deterministic protocol for fk,n that always outputs the correct answer. If µ : X1 ×
X2 × . . . Xk → [0, 1] is a probability distribution and ǫ ≥ 0, the ǫ-error complexity of f for
distribution µ, which we denote by Dǫ,µ

k (fk,n), is the minimum number of bits communicated



in any deterministic protocol π that computes f and errs on at most an ǫ fraction of the inputs
with respect to µ. Note that Dǫ,µ

k (fk,n) ≤ Dk(fk,n) ≤ n + 1 for any f, µ, ǫ.

For 0 ≤ ǫ < 1/2, let Rpub
k,ǫ (fk,n) denote the minimum cost of a public-coin randomized

protocol for fk,n which, for every input, makes an error with probability at most ǫ (over the
choice of the deterministic protocols). The public-coin randomized communication complexity

of fk,n is Rpub
k (fk,n) = Rpub

k,1/3(fk,n). Let Rk,ǫ(fk,n) denote the minimum cost of a private-coin
randomized protocol for fk,n which, for every input, makes an error with probability at most
ǫ (over the choice of the private random strings). The private-coin randomized communication
complexity of fk,n is Rk(fk,n) = Rk,1/3(fk,n). For both public-coin and private-coin complexities
we add a superscript 1 if we require that the protocol makes error only on 1-inputs (i.e., false-
negatives), and superscript 0 if we require that the protocol makes error only on 0-inputs

(i.e., false-positives). For example, R0,pub
k,ǫ (fk,n) is the minimum cost of a k-player public-coin

protocol for fk,n which is always correct on 1-inputs and makes error at most ǫ on 0-inputs.
The standard way to prove lower bound on the randomized complexity of a function f

is to prove lower bounds for the distributional complexity of f under a conveniently selected
probability distribution over inputs. This works due to the following characterization by Yao.

Theorem 1 (Yao’s min-max principle)

Rk,ǫ(fk,n) = maxµ{Dǫ,µ
k (fk,n)}.

Thus proving randomized lower bounds is equivalent to finding a distribution µ over the
inputs such that any efficient protocol has large error with respect to µ. A product distribution
on X1×X2 . . .×Xk is a distribution of the form µX1×µX2×. . .×µXk

where µXi is a distribution
over Xi.

The nondeterministic communication complexity of fk,n, written Nk(fk,n), is the minimum
cost of a nondeterministic protocol for fk,n.

For a function k = k(n), for a function family f = (fk(n),n)n∈N, and for any complexity
measure C defined above, we write Ck(f) for the function (Ck(f))(n) = Ck(n)(fk(n),n).

Since any function fk,n can be computed using only n+1 bits of communication, following [4],
for sequences of functions f = (fk,n)n∈N, communication protocols are considered “efficient” or
“polynomial” if only polylogarithmically many bits are exchanged. Accordingly, let Pcc

k denote
the class of function families f for which Dk(f) is (log n)O(1), let NP

cc
k denote the class of

function families f with nondeterministic complexity (log n)O(1), and let RP
cc
k denote the class

of function families f for which R1
k(fn) is (log n)O(1). The classes BPP

cc
k , coRP

cc
k and coNP

cc
k

can be defined similarly to their computational complexity counterparts.
Multiparty communication complexity lower bounds are proven by analyzing properties of

functions on cylinder intersections.

Definition 2 An i-cylinder Ci in X1 × . . . × Xk is a set such that for all x1 ∈ X1, . . . , xk ∈
Xk, x

′
i ∈ Xi we have (x1, . . . , xi, . . . , xk) ∈ Ci if and only if (x1, . . . , x

′
i, . . . , xk) ∈ Ci. A cylinder

intersection is a set of the form
⋂k

i=1 Ci where each Ci is an i-cylinder in X1 × · · · ×Xk.
Note that when k = 2, cylinder intersections become combinatorial rectangles; that is,

F × G, where F ⊆ X1 and G ⊆ X2. Any deterministic two-party b-bit communication pro-
tocol partitions X1 ×X2 into 2b disjoint, monochromatic combinatorial rectangles; An ǫ-error
two-party b-bit protocol over distribution µ partitions X1 × X2 into 2b disjoint combinatorial
rectangles where each rectangle is nearly monochromatic. For simplicity of notation, we will
suppress the subscript k in the case of two-party communication complexity.

Definition 3 (Set Disjointness) The set disjointness function family is DISJ = (DISJk,n)n∈N,
with DISJk,n = 1 if and only if there exists some i ∈ [n] such that x1,i = . . . xk,i = 1.

If we view the vectors xi as sets, the set disjointness function is 1 if and only if the intersection
of the sets is nonempty. It is easy to see that this problem lies in NP

cc
k for all k. For k = 2



it is complete; moreover it is complete in the number-in-hand model for every k. However for
larger k it is unlikely to be NP

cc
k -complete. (NP

cc
k -completeness would imply that the number-

on-forehead and number-in-hand models are equivalent.)
For data structure applications, it is often very useful to look at lopsided versions of the set

disjointness problem (for two players), where Alice receives a small subset of the universe, and
Bob receives an arbitrary subset of the universe.

Definition 4 (Lopsided Set Disjointness) The two-player (N, B) lopsided set disjointness
function is as follows. The input is S, T where S is a set S ⊆ [N ·B], |S| = N , and T ⊂ [N ·B].

3 Lower Bounds for Set Disjointness

3.1 Two Party Deterministic Lower Bounds

We start our story with a very simple deterministic lower bound for two-party set disjointness
using the “fooling set method.”

Lemma 5 Any two party deterministic protocol for solving DISJ requires n+1 bits of commu-
nication.

Proof: Consider the 2n different input pairs (x, y) such that x + y (the bitwise sum of x and
y) is the all 1 vector. Hence, for each such pair, DISJ(x, y) = 0. We will show that no two of
these pairs can be contained in the same rectangle. Suppose (x, y) and (x′, y′) are in the same
rectangle, R. Then (x, y′) and (x′, y) are also contained in R. But this is not possible: since
x 6= x′, there exists an index i such that xi 6= x′i. Suppose that xi = 0 and x′i = 1. Then
x′i = yi = 1 and therefore DISJ(x′, y) = 1, whereas DISJ(x, y) = DISJ(x′, y′) = 0. Similarly,
if xi = 1 and x′i = 0, then DISJ(x, y′) = 1, yielding a contradiction. These shows that we need
at least 2n rectangles to cover these input pairs. We need at least one other rectangle to cover
points at which DISJ outputs 1.

3.2 Two Party Randomized Lower Bounds for Product Distributions

Babai, Frankl, and Simon [4] established the first strong randomized lower bound for Disjoint-
ness.

Theorem 6 (Babai, Frankl, and Simon) Consider the following product distribution µ on
inputs: sample S, T independently and uniformly at random from the set of all subsets of [n]
that have cardinality ⌊√n⌋. Then, Dǫ

µ

(

DISJ
)

= Ω
(√

n
)

, for ǫ < 1/100.

Proof: Our distribution µ is a product distribution, where x is uniformly chosen from X, and
y is uniformly chosen from Y , and where both X and Y consist of all vectors with exactly

√
n

1’s. We will prove the lower bound by showing that there are no large nearly 0-monochromatic
rectangles. Specifically we will prove that for any rectangle F ×G, where at most an ǫ fraction
of the pairs in F × G are intersecting, either |F | or |G| is small (less than |X| · 2−c

√
n+1 ),

implying that the total number of rectangles is exp(
√

n), and thus Dǫ
µ(DISJ) is Ω(

√
n).

We will say that F is large if |F | ≥ |X| · 2−c
√

n+1; otherwise F is small. If F is small, then
we are done. Otherwise, if |F | is large, then there must be a large subset of |F |, where the
union of these sets spans nearly all of [n]. But if F ×G is nearly 0-monochromatic, this means
that any subset y ∈ G must avoid nearly all of [n], and hence |G| must be small. We proceed
now to the details.

It suffices to show that if F is large, then G must be small. First, focus on F1 ⊂ F , where
F1 are those vectors x that intersect with at most a 2ǫ fraction of the y’s in G. Since F ×G is
nearly 0-monochromatic, |F1| ≥ |F |/2 = |X| · 2−c

√
n.



Since |F1| is still large, we claim that there exists
√

n/3 vectors x1, . . . , xk such that each
xl contains

√
n/2 new points relative to x1 . . . xl−1. This can be proven by induction. Let z be

the union of the sets xi, i < l. We infer |z| < l
√

n < n/3. The number of x ∈ X satisfying
|x ∩ z| > √n/2 is less than

n

(

n/3√
n/2

)(

2n/3√
n/2

)

<

(

n√
n

)

2−c
√

n.

Therefore, |xl ∩ z| < √n/2 for some xl ∈ F .
Take these

√
n/3 vectors where the ith one has

√
n/2 new elements (not in the first i − 1

sets. Now we have a set of x’s in F1 whose union is of size at least n/3, and such that each of
them intersects with only a few y’s in G. But this means that G must be small: By a simple
averaging argument, given any k elements in F1, at most |G|/2 of the y’s in G are good in that
they intersect more than 4ǫk of the xi. There are

(

k
4ǫk

)

ways to select the (4ǫk) of the xi which
a good y ∈ G is allowed to intersect. Then the union of the remaining xi’s have size at least
n/9 which must be avoided, so we get

|G| < 2

(

k

4ǫk

)(

8n/9√
n

)

< |Y |2−c
√

n.

It is worth noting that the above lower bound is essentially tight as Babai et al. show that
Dǫ,µ(DISJ) = O(

√
n log n) for every product distribution µ and every constant ǫ < 1.

3.3 Two Party Randomized Lower Bounds For a Non-Product Distribution

We next show that by considering nonproduct distributions, one can improve the lower bound of
Babai et al. to linear lower bounds. This was first achieved by Kalyanasundaram and Schnitger
[27]. Razborov [51] provides a simplified argument for this. It is worthwhile to note that Raz
[48] mentions that some of the ideas for proving his famous and difficult parallel repetition
theorem are based on Razborov’s technique.

Theorem 7 Let n = 4ℓ−1 and consider the following stochastic process: first choose a random
partition P ≡

{

PS , PT , {i}
}

of [n], where PS , PT ⊂ [n] with |PS | = |PT | = 2ℓ − 1 and i ∈ [n].
Then, S (T ) is a random subset of PS ∪ {i} (PT ∪ {i}) with cardinality ℓ.

If µ is the probability distribution on S×T corresponding to the above random process, then
Dǫ

µ

(

DISJ
)

= Ω(n), where ǫ is a small constant.

Before we begin the formal proof, let us note that the distribution µ is supported on two
sets of inputs: the set of inputs, denoted by A, where S and T are disjoint and the set B
where they intersect. Every set pair (S, T ) ∈ B, is barely intersecting, i.e., |S ∩ T | = 1. Hence,
intuitively, it should be hard to distinguish A from B.

Proof: First note that µ(A) is large. This is because of the following: for each partition P , we
generate a pair in B iff i ∈ S and i ∈ T . Each of these happens with probability 1/2. Hence,
µ(B) = 1/4. Thus, µ(A) = 3/4. The argument establishes that every large rectangle R is
corrupted w.r.t. A, i.e., almost a constant fraction of the probability mass of R rests on points
in B. Formally,

Lemma 8 There exists constants α, δ > 0 such that for every combinatorial rectangle R =
C ×D,

µ
(

R ∩B
)

≥ αµ
(

R ∩A
)

− 2−δn.



Roughly speaking, the above is established by analyzing the contribution of each partition
P to R. In order to do so, we define Row(P ) = Pr

[

S ∈ C |P
]

and Col(P ) = Pr
[

T ∈ D |P
]

.
Further, let Row0(P ) = Pr

[

S ∈ C |P, i 6∈ S
]

and Row1(P ) = Pr
[

S ∈ C |P, i ∈ S
]

. Likewise
one defines Col0(P ) and Col1(P ). Then the following is simple to verify:

Row(P ) =
1

2

(

Row0(P ) + Row1(P )
)

,

Col(P ) =
1

2

(

Col0(P ) + Col1(P )
)

. (1)

Intuitively, the above defined quantities measure the contribution of each partition towards
rectangle R. The right notion of contribution emerges from the following:

Fact 9

µ
(

B ∩R
)

=
1

4
EP

[

Row0

(

P
)

Col0
(

P
)

]

,

µ
(

A ∩R
)

=
3

4
EP

[

Row1

(

P
)

Col1
(

P
)

]

.

Proof:
µ
(

A ∩R
)

= µ
(

A
)

µ
(

R|A
)

Recalling µ(A) = 3/4, we get µ
(

A ∩R
)

= 3
4µ(R|A). Now note that by symmetry,

∑

P

Pr[P ] Pr
[

S = x|P, i 6∈ S
]

Pr[T = y|P, i 6∈ T
]

is just another way of writing the uniform distribution on A. Hence,

µ
(

R|A
)

=
∑

P

Pr[P ] Pr
[

S ∈ R|P, i 6∈ S
]

Pr[T ∈ R|P, i 6∈ T
]

.

Thus, combining things, and plugging in the definition of Row0(P ) and Col0(P ), we are done
for proving the claim w.r.t. µ(A ∩R). We leave the argument for µ(B ∩R) to the reader as it
is very similar and slightly simpler.

Having formulated how we are going to track the contribution of each partition P towards
R, let us state when P contributes in a good way (with, of course, the aim of proving our
corruption bound). We say P is S-bad if Row1(P ) < Row0(P )/3− 2−δn. Similarly, P is T -bad
if Col1(P ) < Col0(P )/3− 2−δn. P is bad if it is S-bad or T -bad, otherwise it is good. Indeed,
it is clear why good partitions help us in establishing the sought corruption bound. The next
lemma shows that there are not many bad partitions.

Lemma 10 (1) For every value of PT , PrP

[

P is S − bad |PT

]

≤ 1
5 . (2) Symmetrically, for

every value of PS, PrP

[

P is T − bad |PS

]

≤ 1
5 .

We defer the proof of this until later. Let us point out that we are not quite done. All we
have established at this point is that by far, most partitions are good. It is still possible that
the contribution of the bad partitions is significantly more than the good partitions. The next
lemma rules this out. Let BadS(P ) (BadT (P )) be an indicator random variable for the event
that P is S-bad (T -bad).



Lemma 11

EP

[

Row0

(

P
)

Col0
(

P
)

Bad
(

P
)

]

≤ 4

5
EP

[

Row0

(

P
)

Col0
(

P
)

]

.

Proof: We establish that EP

[

Row0

(

P
)

Col0
(

P
)

BadS

(

P
)

|PT

]

≤ 2
5EP

[

Row0

(

P
)

Col0
(

P
)

|PT

]

and symmetrically, EP

[

Row0

(

P
)

Col0
(

P
)

BadT

(

P
)

|PS

]

≤ 2
5EP

[

Row0

(

P
)

Col0
(

P
)

|PS

]

. Clearly,
adding the two inequalities yields our desired result.

We state some useful and easily verifiable facts:

Fact 12 Col0 and Row are just functions of PT .

Fact 13 Row
(

P
)

= 1
2

(

Row0

(

P
)

+ Row1

(

P
))

.

Fact 14 Row
(

PT

)

= EP

[

Row0

(

P
)

|PT

]

.

We apply these observations as below:

EP

[

Row0

(

P
)

Col0
(

P
)

BadS

(

P
)

|PT

]

=Fact 12 Col0
(

PT

)

EP

[

Row0

(

P
)

BadS

(

P
)

|PT

]

≤Fact 13 Col0
(

PT

)

EP

[

2Row
(

P
)

BadS

(

P
)

|PT

]

=Fact 12 2Col0
(

PT

)

Row
(

PT

)

EP

[

BadS

(

P
)

|PT

]

≤Lemma 10 2

5
Col0

(

PT

)

Row
(

PT

)

=Fact 14 2

5
Col0

(

PT

)

EP

[

Row0

(

P
)

|PT

]

=Fact 12 2

5
EP

[

Row0

(

P
)

Col0
(

P
)

|PT

]

We finally show below how knowing that the contribution of the bad partitions is not large
allows us to establish the corruption bound.

µ
(

B ∩R
)

=Fact 9 1

4
EP

[

Row1

(

P
)

Col1
(

P
)

]

≥ 1

4
EP

[

Row1

(

P
)

Col1
(

P
)(

1− Bad(P )
)

]

≥ 1

4
EP

[(

Row0

(

P
)

− 2−δn

)(

Col0
(

P
)

− 2−δn

)

(

1− Bad(P )
)

]

>
1

4

1

9
EP

[

Row0

(

P
)

Col0
(

P
)(

1− Bad(P )
)

]

− 2−δn

≥Lemma 11 1

4

1

9

1

5
EP

[

Row0

(

P
)

Col0
(

P
)

]

− 2−δn

=Fact 9 1

4

1

9

1

5

4

3
µ
(

A ∩R
)

− 2−δn

Setting α = 1
4

1
9

1
5

4
3 finishes the argument.



All that remains now is to prove Lemma 10. The intuition is simple. Consider partitions of
[n] such that PT is a fixed set. Wlog assume that this fixed set is {1, . . . , 2ℓ−1}. Then, the range
set of S has size

(

2ℓ
ℓ

)

and the conditional distribution of S is just the uniform distribution on
its range. If the set C of rows in the rectangle R is equal to the range of S (i.e., Row

(

PT

)

= 1),
then clearly for every i ≥ 2ℓ, Pr[S ∈ C|i ∈ S] = Pr[S ∈ C|i 6∈ S]. It is natural to expect that
the two probabilities will be close to each other for most i if C is a large subset of the range of
S. This is what we formally show below via a simple entropy argument.

For any i, let CS = {x ∈ C|x ⊆ [n] − PT }. Then, Ci = {x ∈ CS |i ∈ x} and C−i = {x ∈
CS |i 6∈ x}. Further, let

(

2ℓ
ℓ

)

−i
(and

(

2ℓ
ℓ

)

i
) denote the set of those ℓ-subsets of [n]− PT that do

not contain i (and contain i). Note that |
(

2ℓ
ℓ

)

i
| = |

(

2ℓ
ℓ

)

−i
| = 1

2

(

2ℓ
ℓ

)

. Thus,

Row0

(

PT , i
)

=
|C−i|
|
(

2ℓ
ℓ

)

−i
|
= 2
|C−i|
|CS |

|CS |
(

2ℓ
ℓ

)

and

Row1

(

PT , i
)

=
|Ci|
|
(

2ℓ
ℓ

)

i
|
= 2
|Ci|
|CS |

|CS |
(

2ℓ
ℓ

)

Hence if selecting i makes the partition P S-bad, then |Ci|
|CS | < 1

3
|C

−i|
|CS | . In other words, if we

select a set x uniformly at random from CS then with probability less than a 1/4, i is in x. We
show that this cannot be true for more than a fifth of the 2ℓ indices i, if the size of CS is large,
i.e., |CS | ≥ 2−δn

(

2ℓ
ℓ

)

.
Assume the contrary, i.e., at least a fifth of the indices are bad. Wlog, let [n] − PT =

{1, . . . , 2ℓ}. Consider 2ℓ random boolean variables, s1, . . . , s2ℓ, one for each of the 2ℓ elements
of [n]− PT . We pick a subset at random from CS . Variable si takes value 1 iff i is an element
of the random set. By basic properties of entropy,

H
(

s1, . . . , s2ℓ

)

≤ H
(

s1

)

+ · · ·+ H
(

s2ℓ

)

.

By our assumption, for at least a fifth of i’s, H(si) < H(1/4). So,

H(
(

s1, . . . , s2ℓ

)

< 2ℓ
(1

5
H(1/4) +

4

5

)

.

However, by our assumption on the size of CS and the definition of entropy,

H
(

s1, . . . , s2ℓ

)

= log
(

|CS |
)

≥ log

((

2ℓ

ℓ

)

2−δn

)

= Θ
(

2ℓ− δn
)

.

Noting that H(1/4) is a constant strictly less than 1, we observe that the above gives a contra-
diction by choosing a sufficiently small constant δ. This finishes the entire argument.

3.4 Two Party Linear Bounds using Information Complexity

A communication protocol aims to reveal the minimum information about inputs held by players
that still allows them to compute the target function. Thus, one may hope to prove lower bounds
on the communication complexity of a target function by showing that every protocol is forced to
reveal large information about the inputs. Although this sounds like a mere change of language,
this point of view could exploit powerful, yet fairly intuitive, tools from information theory.
Indeed, Bar-Yossef et al. [6] reproved an Ω(n) lower bound on the communication complexity
of set-disjointness using a very elegant information theoretic argument. They formalize the idea
mentioned above through the notion of an information cost of a protocol. This concept was



introduced in the earlier work of Chakrabarti et al. [14] and is implicit in earlier works [2, 52].
We sketch the argument of Bar-Yossef et al. below, starting with basic definitions.

Let Ω be a finite set and let P be a probability distribution over Ω. The entropy of a random
variable X distributed according to P is

H(X) =
∑

x∈Ω

P (x) log

(

1

P (x)

)

.

Entropy quantifies the amount of uncertainty in a distribution. The conditional entropy
H(X|Y ) is equal to Ey[H(X|Y = y)], where H(X|Y = y) =

∑

x P (x|y) log 1
P (x|y) .

Finally the joint entropy of X, Y is H(X, Y ) = H(X) + H(Y |X).
For two random variables Z and Π, the mutual information is defined as

I(Z; Π) = H(Z)−H(Z|Π) = H(Π)−H(Π|Z).

Intuitively, this is the average amount of uncertainty about X given that we know Π, or sym-
metrically2 the amount of uncertainty about Π given that we know X.

In communication complexity, we will be studying the mutual information between (X, Y )
and Π, where (X, Y ) is the distribution over inputs and Π is the communication transcript
generated by a protocol.

Consider a random variable Π((X, Y ), RA, RB) over transcripts. This variable depends on
the distribution of inputs (X, Y ) and Alice’s random bits RA and Bob’s random bits RB. For
the discussion in this section, it will be convenient to assume that each player uses its own
random coin-tosses. Define the information cost of the protocol Π as I((X, Y ); Π), i.e., it is the
information learned about the inputs by an eavesdropper who only has access to the transcript.
The ǫ-error information cost of a function, ICǫ(f), is the minimum information cost over all
randomized protocols for f that err with probability at most ǫ. The first thing to note is that
clearly the information complexity of a function is at most its communication complexity as
the information revealed by a protocol can be at most the total number of bits communicated
in a transcript.

The following fact represents a simple but useful direct sum property of mutual information.

Fact 15 If Z = (Z1, . . . , Zn) are mutually independent then

I(Z; Π) ≥ I(Z1; Π) + . . . + I(Zn; Π).

We define a distribution on inputs where (X1, Y1), . . . , (Xn, Yn) are mutually independent.
In this case, using Fact 15,

I((X, Y ); Π) ≥ I((X1, Y1); Π) + . . . + I((Xn, Yn); Π).

The distribution µ we will use on (Xi, Yi) is P (0, 0) = 1/2, P (1, 0) = 1/4, P (0, 1) = 1/4.
Although µ is not a product distribution, we sample by viewing it as a mixture of product
distributions. First, choose Di to be 0 or 1, each with probability 1/2. Once Di is chosen, then
we have a product distribution on (Xi, Yi) as follows: if Di = 0, then set Xi = 0 and otherwise
select Xi to be 0 or 1 each with probability 1/2; if Di = 1, then set Yi = 0 and otherwise select
Yi to be 0 or 1 each with probability 1/2 again. Let this distribution on (Xi, Yi), Di be denoted
by ν. Given such a mixture of product distributions ν, the conditional information cost of
a protocol Π is defined as I((X, Y ); Π |D). The ǫ-error conditional information complexity of
a function f , denoted by CICǫ(f), is then the minimal conditional information cost over all
ǫ-error protocols for f .

We next outline the proof of the following useful fact.

2the fact that mutual information is a symmetric quantity requires an argument.



Claim: Let Π be any ǫ-error protocol for computing Disjointness and let AND denote the
conjunction of two bits. Then,

I((Xi, Yi); Π | D) ≥ CICǫ(AND).

Proof: Let D−i = D1, . . . , Di−1, Di+1, . . . , Dn. Then, by definition, I((Xi, Yi); Π | D) =
Ed

[

I((Xi, Yi); Π |Di, D−i = d)
]

. We derive a protocol Πd for AND from Π for every d that
errs with probability at most ǫ.

Given two bits, U to Alice and V to Bob, Alice generates X−i = X1, . . . , Xi−1, Xi+1, . . . , Xn

and Bob generates Y−i = Y1, . . . , Yi−1, Yi+1, . . . , Yn conditioned on D−i = d. They do this
by themselves as any pair Xj and Yj are independent given Dj for any j 6= i. They, then
embed Xi = U and Yi = V and run Π on X, Y . The key thing to note is that AND(U, V ) =
DISJ(X, Y ).

The argument gets completed by simply verifying that the joint distribution of (U, V, D,Πd)
is identical to that of (Xi, Yi, Di, Π(X, Y )) conditioned on D−i = d.

Combining Fact 15 and Claim 3.4, one concludes the following:

Theorem 16 ICǫ

(

DISJ
)

≥ n · CICǫ

(

AND
)

.

Thus, it suffices to prove an Ω(1) lower bound on the conditional information complexity
of the AND function on two bits. In the remaining part of this section, we prove such a lower
bound for the mixture ν of product distributions.

Let Γ be any ǫ-error protocol for AND. We want to lower bound I((U, V ); Γ | D) =
1
2I((U, V ); Γ | D = 0) + 1

2I((U, V ); Γ | D = 1). As these are symmetrical, we will focus on
I((U, V ); Γ | D = 1) = I(U ; Γ(U, 0) | D = 1). It is intuitive to expect that the information
above is related to some appropriately defined notion of distance between the two distributions
Γ(1, 0) and Γ(0, 0). Bar-Yossef et al. discovered that the Hellinger distance is a convenient
measure for that. Let Ω = {ω1, . . . , ωt} be a discrete domain. Any probability distribution µ
over Ω can naturally be viewed as a unit vector Ψµ (with the euclidean norm) in R

Ω whose jth

co-ordinate is simply
√

µ
(

ωj

)

. With this transformation, the Hellinger distance between two

vectors Ψ1 and Ψ2, denoted by h(Ψ1, Ψ2), is just 1/
√

2 of the Euclidean distance between Ψ1

and Ψ2, i.e., h(Ψ1, Ψ2) = 1√
2
||Ψ1 − Ψ2||. This immediately implies that Hellinger satisfies the

triangle inequality. We need three following key properties of Hellinger distance:

• Hellinger distance and Information: Let u, v ∈ {0, 1}2 be two inputs to AND, and
U ∈R {u, v}. As before, let Ψ(u) be the unit vector formed by the entrywise square root
of Γ(u).

I(U ; Γ) ≥ 1

2
||Ψ(u)−Ψ(v)||2.

• Soundness: If AND(u) 6= AND(v) and Γ is a protocol with error at most ǫ, then we
expect that the two distributions on transcripts Γ(u) and Γ(v) are far apart. Indeed, one
can easily show,

1

2
||Ψ(u)−Ψ(v)||2 ≥ 1− 2

√
ǫ.

• Cut and Paste: Let u = (x, y), v = (x′, y′), u′ = (x, y′) and v′ = (x′, y). Then, the
rectangular nature of deterministic 2-party protocols is captured by the following simple
fact: if such a protocol generates the same transcript for input instances u and v, then
this transcript is also generated for instances u′ and v′. This property manifests itself on
transcript distributions for randomized protocols in the following natural form:

||Ψ(u)−Ψ(v)|| = ||Ψ(u′)−Ψ(v′)||.



The Theorem follows from an application of Cauchy-Schwartz plus the above three proper-
ties:

I((U, V ); Γ | D) =
1

2
||Ψ(0, 0)−Ψ(1, 0)||2 + ||Ψ(0, 0)−Ψ(0, 1)||2

≥Cauchy-Schwartz 1

4
(||Ψ(0, 0)−Ψ(1, 0)||+ ||Ψ(0, 0)−Ψ(0, 1)||)2

≥Triangle Inequality 1

4
||Ψ(1, 0)−Ψ(0, 1)||2

=Cut-Paste 1

4
||Ψ(0, 0)−Ψ(1, 1)||2

≥Soundness 1

2
(1− 2

√
ǫ).

This immediately yields the desired linear bound.

Theorem 17 The randomized complexity of Disjointness is at least 1
2

(

1− 2
√

ǫ
)

n.

3.5 NOF Lower Bounds and the Generalized Discrepancy Method

Recall that we described three different techniques to prove strong lower bounds on the ran-
domized 2-party communication complexity of Disjointness. It is not known if any of these
techniques can be extended to three or more players in the NOF model. In fact, until recently,
the best known lower bound for Disjointness in the k-player model was Ω(log n), due to Tesson
[56]. This was significantly improved to nΩ(1) for any constant k in the independent works
of Lee and Shraibman [34] and Chattopadhyay and Ada [18]. Both build upon the recent
breakthrough work of Sherstov [54]. In this section, we give an overview of these developments.

The main difficulty one faces in the k-player case is that k-wise cylinder intersections are
frustratingly difficult to analyze. Recall that a k-player protocol partitions the input space into
such cylinder intersections. When k = 2, these intersections correspond to rectangles, a much
simpler object to understand. For instance, we presented a relatively simple argument showing
that at least 2n + 1 rectangles are needed to partition the input space into monochromatic
rectangles w.r.t. Disjointness. No such simple argument is known for proving the same for
3-wise cylinder intersections.

One successful way of handling cylinder intersections was introduced in the seminal work of
Babai, Nisan, and Szegedy [5] that proved the first strong lower bounds in the NOF model. They
employ an analytical trick achieved by using the Cauchy-Schwartz inequality very elegantly
that we briefly review later in this section. However, the only known way to use this trick
is in computing cylinder intersection discrepancy of functions. Using this technique, [5] were
able to prove exponentially small upper bounds on the discrepancy of some functions like the
Generalized Inner Product. Later, [49, 19, 23] have shown the applicability of this technique to
a wider class of functions.

Consequently, this technique could not be made to work for functions that have polynomially
high discrepancy. Disjointness is a cardinal example of such a function. In order to describe
how these recent works overcame the problem, let us quickly review some basic notions.

For a distribution µ over {0, 1}X1×···×Xk the discrepancy of function f over a cylinder in-
tersection C, denoted by discC

µ (f), is given by
∣

∣

∑

(x1,...,xk)∈C f(x1, . . . , xk)µ(x1, . . . , xk)
∣

∣. Here,
wlog, we have assumed f to be 1/-1 valued. Thus, a small upper bound on the discrepancy
implies that all cylinder intersections that have significant probability mass under µ are far
from being monochromatic, i.e., their mass is almost equally distributed between the set of
points where f evaluates to 1 and the set of points where it evaluates to -1. It is not hard to
verify that Dǫ,µ

k (f) ≥ log
(

2ǫ
discµ,k(f)

)

. Thus, proving an exponentially small upper bound on the

discrepancy yields strong lower bounds on the communication complexity.



3.5.1 Dealing With High Discrepancy

We first observe that Disjointness has high discrepancy with respect to every distribution.

Lemma 18 (Folklore) Under every distribution µ over the inputs, disck,µ(DISJk) ≥ 1
2n− 1

2n2 .

Proof: Let X+ and X− be the set of disjoint and nondisjoint inputs respectively. The first thing
to observe is that if |µ(X+) − µ(X−)| ≥ (1/n), then we are done immediately by considering
the discrepancy over the intersection corresponding to the entire set of inputs. Hence, we may
assume |µ(X+)−µ(X−)| < (1/n). Thus, µ(X−) ≥ 1/2− (1/2n). However, X− can be covered
by the following n monochromatic cylinder intersections: let Ci be the set of inputs in which
the ith column is an all-one column. Then X− = ∪n

i=1Ci. By averaging, there exists an i such
that µ(Ci) ≥ 1/2n− (1/2n2). Taking the discrepancy of this Ci, we are done.

It is therefore impossible to obtain better than Ω(log n) bounds on the communication
complexity of Disjointness by a direct application of the discrepancy method. In fact, the
above argument shows that this method fails to give better than polylogarithmic lower bounds
for any function that is in NPcc

k or co-NPcc
k .

Fortunately, there is a simple generalization of the Discrepancy Method that is effective for
dealing with several functions that have large discrepancy. The origins of this idea can be found
in the work of Klauck [29]3. Klauck considered, in the setting of two players, functions of the
form f(x, y) = g(x∧y) where the ∧ operation is naturally applied bitwise to the bits of x and y.
He observed that if g correlates well with a parity function on some large subset S of {1, . . . , n}
under the uniform distribution4, then f correlates well with the inner-product function of the
columns indexed by elements of S, denoted by IPS , under a simple product distribution µ. The
ingenuity in Klauck’s argument is that he shows IPS having small discrepancy under µ implies
that f has large distributional complexity under µ. This, as he correctly adds, follows despite
the possibility that f itself has large discrepancy. Indeed, Klauck proves that IP has very small
rectangular discrepancy under µ. Klauck goes on to show that this “generalized form of the
discrepancy method” can be used to obtain a lower bound of Ω(n/ log n) on the quantum (and
hence classical randomized) communication complexity of MAJ(x ∧ y) despite the fact that it
has large discrepancy.

The main idea in Klauck’s work was abstracted by Sherstov [54] in following terms: A
function f may have high discrepancy and still correlate well under some distribution µ with a
function h that has small discrepancy under µ. Exhibiting such a h, yields lower bounds on the
bounded-error communication complexity of f . We re-express it in a form that appears in [18]
and follows straightforwardly from basic definitions: for functions f, g having range {1,−1}, and
a distribution µ over their common domain, define their correlation, denoted by Corrµ(f, g), to
be Ex∼µ

[

f(x)g(x)
]

. Then,

Lemma 19 (Generalized Discrepancy Method) Denote X = Y1 × ... × Yk. Let f : X →
{−1, 1} and g : X → {−1, 1} be such that under some distribution µ we have Corrµ(f, g) ≥ δ.
Then

Dǫ,µ
k (f) ≥ log

(

δ + 2ǫ− 1

disck,µ(g)

)

. (2)

3.5.2 Dual Polynomials

The main challenge in applying the Generalized Discrepancy Method to a given function like
Disjointness is the following: how do we come up with a function g and distribution µ such that

3The full version of Klauck’s work appears in [30].
4In other words, g has a large high-order Fourier coefficient, i.e., f̂(S) is large.



g correlates well with Disjointness under µ and g has small k-wise discrepancy under µ. This
was achieved in the independent works of Sherstov [54] and Shi and Zhu [55] by a clever use of
dual polynomials. In order to describe that, we have to recall some notions from the theory of
polynomial representations of boolean functions.

We view the boolean cube as Bn ≡ {1,−1}n. Then the space of functions from the cube
to reals is a vector space of dimension 2n. A convenient basis for this is the Fourier basis of
all parities or, equivalently, multilinear monomialsM = {χS =

∏

i∈S xi |S ⊆ [n]}. Thus, every
boolean function f : {1,−1}n → {1,−1} is uniquely represented by a real linear combination of
monomials fromM, i.e., a polynomial with real coefficients. The exact degree of f is the degree
of this polynomial. It is well-known that the degree of the functions OR, AND and Parity is n.

One could naturally relax the notion of representation as follows: a polynomial P that is
always within δ of the function f is a δ-approximation of f , i.e., |f(x) − P (x)| ≤ δ for each
x ∈ {1,−1}n and δ ≥ 0. The δ-approximation degree of f , denoted by degδ(f), is the minimal
degree such that there exists a polynomial of that degree which is a δ-approximation of f . It
follows that deg(f) ≤ degδ(f) for any δ < 1. The following result, due to Nisan and Szegedy,
shows that even this relaxed notion does not decrease the degree for AND substantially.

Theorem 20 (Nisan and Szegedy [43]) Let f be either the AND or the OR function.
Then, deg1/3(f) = Θ

(√
n
)

.

One way to interpret approximation degree is the following: if f has approximation degree
d, then it is at a large distance from the linear space spanned by monomials of degree less than
d. It is natural to expect that the projection of f on the dual space spanned by characters of
degree at least d is large. This intuition works and is formalized below:

Lemma 21 (Approximation-Orthogonality [54, 55]) Let f : {−1, 1}n → R be given with
degδ(f) = d ≥ 1. Then there exists g : {−1, 1}n → {−1, 1} and a distribution µ on {−1, 1}n
such that Corrµ(f, g) > δ and Corrµ(f, χS) = 0 for all |S| < d.

This Approximation-Orthogonality Principle is a classical result in functional analysis.
There are two known ways, closely related to each other, to exploit it for applying the Gen-
eralized Discrepancy Method to the Disjointness function. One is due to Sherstov [54] and
the other due to Shi and Zhu [55]. Both of them were originally used to obtain lower bounds
for Disjointness in the 2-player quantum communication model. Sherstov’s strategy, that he
called the pattern matrix method, yields tight lower bounds of Ω(

√
n) that was first obtained

by Razborov [50] using a different and more involved argument. The strategy of Shi and Zhu,
called the block composition method, yields less than tight, but still nΩ(1) lower bound. The
pattern matrix strategy was extended to the multiparty NOF model by Lee and Shraibman
[34] and Chattopadhyay and Ada [18] independently. Chattopadhyay [17] extended the block-
composition technique to the multiparty setting. Both extensions yield nΩ(1) lower bounds on
the k-party communication complexity if k is a constant, that significantly improves previous
bounds. Due to limitations of space, we describe the pattern matrix extension since it yields
stronger bounds that remain interesting and nontrivial up to k slightly less than log log n.

3.5.3 Pattern Tensors

We lay out the general strategy for proving lower bounds on the k-party communication com-
plexity of a function G: we start with an appropriate function f : {0, 1}n → {−1, 1} with
high approximation degree. By the Approximation-Orthogonality Principle, we obtain g that
highly correlates with f and is orthogonal with low degree polynomials under a distribution µ.
From f and g we construct new masked functions F f

k and F g
k with the property that F f

k is a

promised or restricted version of the target function G, i.e., the set of inputs of F f
k is a subset



of the set of inputs of G and on this subset F f
k behaves exactly like G. Using the property that

g is orthogonal to low degree polynomials (under distribution µ), we deduce that F g
k has low

discrepancy under an appropriate distribution λ that is naturally constructed out of µ. This
calculation of discrepancy uses ideas from the work of Babai, Nisan, and Szegedy [5]. Under

distribution λ, F g
k and F f

k remain highly correlated and therefore applying the Generalized

Discrepancy Method, we conclude that F f
k has high randomized communication complexity.

This completes the argument as this implies that even a restricted form of G, represented as
F f

k , has large communication complexity.
It is worthwhile to note that this strategy involves taking a function f that is mildly hard

(is hard for polynomials to approximate pointwise) and generating a function F f
k that is much

harder (hard for k-party protocols to approximate). Such hardness amplification is a recurring
theme in different areas of complexity. In particular, there is a compelling similarity with the
much earlier work of Krause and Pudlák [32] in which the authors did the following amplifica-
tion: they showed that if f is hard in the sense that it cannot be sign represented by low degree
polynomials, then F f

2 is harder in the sense that it cannot be sign represented by polynomials
with few monomials. Krause and Pudlák give the construction only for k = 2 and for this k
it coincides with the pattern matrix construction that we present here. However, the hard-
ness for f assumed in Krause and Pudlák (high sign-degree) is stronger than the assumption

of high approximation degree considered here. The conclusion about the hardness of F f
k are

incomparable in the two cases.
Our description below is taken from [18]. Let S1, . . . , Sk−1 ∈ [ℓ]m for some positive ℓ and

m. Let x ∈ {0, 1}n where n = ℓk−1m. Here it is convenient to think of x to be divided into m
equal blocks where each block is a k − 1-dimensional array with each dimension having size ℓ.
Each Si is a vector of length m with each co-ordinate being an element from {1, . . . , ℓ}. The
k − 1 vectors S1, . . . , Sk−1 jointly unmask m bits of x, denoted by x← S1, . . . , Sk−1, precisely
one from each block of x, i.e.,

x1

[

S1[1], S2[1], ..., Sk−1[1]
]

, . . . , xm

[

S1[m], S2[m], . . . , Sk−1[m]
]

.

where xi refers to the ith block of x.
For a given base function f : {0, 1}m → {−1, 1}, we define F f

k : {0, 1}n×([ℓ]m)k−1 → {−1, 1}
as F f

k (x, S1, . . . , Sk−1) = f(x← S1, . . . , Sk−1).
Now we prove that if the base function f has a certain nice property, then the masked

function F f
k has small discrepancy. To describe the nice property, let us define the following:

for a distribution µ on the inputs, f is (µ, d)-orthogonal if Ex∼µf(x)χS(x) = 0, for all |S| < d.
Then,

Lemma 22 (Orthogonality-Discrepancy Lemma) Let f : {−1, 1}m → {−1, 1} be any
(µ, d)-orthogonal function for some distribution µ on {−1, 1}m and some integer d > 0. Derive

the probability distribution λ on {−1, 1}n ×
(

[ℓ]m
)k−1

from µ as follows: λ(x, S1, . . . , Sk−1) =
µ(x←S1,...,Sk−1)

ℓm(k−1)2n−m . Then,

(

disck,λ

(

F f
k

)

)2k−1

≤
(k−1)m
∑

j=d

(

(k − 1)m

j

)(

22k−1−1

ℓ− 1

)j

(3)

Hence, for ℓ− 1 ≥ 22k
(k−1)em

d and d > 2,

disck,λ

(

F f
k

)

≤ 1

2d/2k−1 . (4)



Remark The Lemma above appears very similar to the Multiparty Degree-Discrepancy Lemma
in [16] that is an extension of the two party Degree-Discrepancy Theorem of [53]. There, the
magic property on the base function is high voting degree. It is worth noting that (µ, d)-
orthogonality of f is equivalent to voting degree of f being at least d. Indeed the proof of the
above Lemma is almost identical to the proof of the Degree-Discrepancy Lemma save for the
minor details of the difference between the two masking schemes.

Proof: We briefly outline the main steps involved here. The missing details can be easily filled
in from [18]. The starting point is to write the expression for discrepancy w.r.t. an arbitrary
cylinder intersection φ,

discφ
k(F f

k ) = 2m

∣

∣

∣

∣

Ex,S1,...,Sk−1F
f
k (x, S1, . . . , Sk−1)× φ(x, S1, . . . , Sk−1)µ

(

x← S1, . . . , Sk−1
)

∣

∣

∣

∣

(5)

where, (x, S1, . . . , Sk−1) is uniformly distributed over {0, 1}ℓk−1m ×
(

[ℓ]m
)k−1

.
Applying repeatedly Cauchy-Schwartz inequality along with triangle inequality (very similar

to in [16, 49]), one rewrites

(discφ
k(F f

k ))2
k−1 ≤ 22k−1m

ES1
0 ,S1

1 ,...,Sk−1
0 ,Sk−1

1
Hf

k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

(6)

where,

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

E
x∈{0,1}ℓk−1m

∏

u∈{0,1}k−1

(

F f
k (x, S1

u1
, . . . , Sk−1

uk−1
)µ(x← S1

u1
, . . . , Sk−1

uk−1
)

)∣

∣

∣

∣

(7)

We look at a fixed Si
0, S

i
1, for i = 1, . . . , k−1. Let ri =

∣

∣Si
0∩Si

1

∣

∣ and r =
∑

i ri for 1 ≤ i ≤ 2k−1.
We now make two claims:

Claim:

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

≤ 2(2k−1−1)r

22k−1m
. (8)

Claim: Let r < d. Then,

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

= 0. (9)

We leave the proof of these claims with the following remarks. Claim 3.5.3 simply follows from
the fact that µ is a probability distribution and f is 1/-1 valued while Claim 3.5.3 uses the
(µ, d)-orthogonality of f . We now continue with the proof of the Orthogonality-Discrepancy
Lemma assuming these claims. Applying them, we obtain

(discφ
k(F f

k ))2
k−1

≤
(k−1)m
∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

Pr
[

r1 = j1 ∧ · · · ∧ rk−1 = jk−1

]

. (10)

Substituting the value of the probability, we further obtain:

(discφ
k(F f

k ))2
k−1

≤
(k−1)m
∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

(ℓ− 1)m−j1 · · · (ℓ− 1)m−jk−1

ℓ(k−1)m
. (11)



The following simple combinatorial identity is well known:

∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

=

(

(k − 1)m

j

)

.

Plugging this identity into (11) immediately yields (3) of the Orthogonality-Discrepancy

Lemma. Recalling
(

(k−1)m
j

)

≤
( e(k−1)m

j

)j
, and choosing ℓ− 1 ≥ 22k

(k − 1)em/d, we get (4).

We can now combine things to obtain the main theorem about the k-party communication
complexity of Disjointness below.

Theorem 23 ([34, 18])

Rk,ǫ

(

DISJk,n

)

= Ω

(

n
1

k+1

22k(k − 1)2k−1

)

for any constant ǫ > 0.

Proof: Let f = ORm on m variables. The theorem of Nisan and Szegedy gives deg1/3(ORm) =

Θ(
√

m) = d. Consider F f
k . It is simple to verify that this is a restricted version of k-wise

Disjointness, for n = ℓk−1m. Applying Approximation-Orthogonality principle, we obtain a g
and a distribution µ such that g is (µ, d)-orthogonal for d = Θ(

√
m) and Corr(OR, g) ≥ 1/3 = δ.

Orthogonality-Discrepancy Lemma prescribes us to set ℓ = 22k
(k − 1)em/d. This implies

n =
( 22k

(k−1)e
deg1/3(ORm)

)k−1
mk. For, these setting of parameters, we conclude

disck,λ

(

F g
k

)

≤ 1

2d/2k−1 .

Noting that Corrλ

(

FOR
k , F g

k

)

= Corrµ

(

OR, g
)

≥ 1/3 and expressing all parameters in terms
of n, we apply the Generalized Discrepancy Method to get the desired result for any constant
ǫ > 1/6. The bound can be made to work for every constant ǫ by a standard boosting argument.

Remarks: There has been a flurry of recent research combining the Generalized Discrepancy
Method and the Approximation/Orthogonality principle. First, David, Pitassi and Viola [21]
observed that one can consider more general masking schemes than the pattern matrix tech-
nique. In particular, using a random scheme they proved lower bounds for a function that is
in NP

cc
k but has no efficient k-party randomized protocols, for k = O(log n). This yielded the

first explicit separation of NP
cc
k and BPP

cc
k for k > log log n. Later, Beame and Huynh-Ngoc

[7] showed, using a more involved notion than approximate degree, that there are functions
in depth-5 AC0 that have no efficient k-party randomized protocols for k = Θ(log n). As

a consequence, they obtain a lower bound of Ω
(

2
√

( log n/k)−k
)

for the k-party complexity of

Disjointness. This yields interesting lower bounds up to k = Θ(log1/3 n) as opposed to the
bound of Theorem 23 that peters out at k = log log n. On the other hand, observe that for
k = o(log log n), the bounds of Theorem 23 are much better.

4 Applications

There are many beautiful applications of the set disjointness lower bounds to many diverse
areas of computer science. Here we highlight some applications in the areas of: streaming, data
structures, circuit complexity, proof complexity, game theory and quantum computation.



4.1 Streaming

Let S ∈ [n]m be a length m stream, where each item in the stream is an item in [n], and let f(S)
be some function of S. In a streaming model, the algorithm sees S one symbol at a time and the
goal is to compute f using as little memory as possible. We desire low-space approximations
to f(S): an ǫ-approximation is an algorithm that computes a value that is within an ǫ factor
of the correct answer (with high probability).

The seminal paper by Alon, Matias, and Szegedy [3] proves lower bounds for a class of
important statistical functions called frequency moments. Let Mi = |{j ∈ [m] | Sj = i}|. The
kth frequency moment, Fk is equal to

∑n
i=1 Mk

i . Thus F0 equals the number of distinct elements
in the stream, F1 equals the length of the stream, and F∞ equals the number of occurrences of
the most frequent item in the stream.

Our first simple application shows that computing F∞ in the streaming model implies an
efficient two-party communication protocol for set disjointness. Suppose that A is a streaming
algorithm for F∞ using C bits of memory. Given an input (x, y) to DISJ, Alice converts x
into a stream ax = {i | xi = 1} and similarly Bob converts y into a stream by = {i | yi = 1}.
Alice simulates A on ax and then sends C bits of information representing the state of A after
processing ax; Bob then continues the simulation on bx to compute F∞(axbx). Clearly if x and
y are disjoint, then F∞(axbx) = 1, and if x and y are not disjoint, then F∞(axbx) = 2. Thus
the lower bounds for DISJ imply Ω(n) space bounds for streaming algorithms computing F∞.

The reduction can be generalized to obtain lower bounds for other frequency moments as
well. In the number-in-hand model, there are p players; each player has a private input xi,
|xi| = n. The players communicate via a shared blackboard in order to compute a function
f(x1, . . . , xp). The promise version of disjointness, UDISJ(x1, . . . , xp), is equal to 1 if the
intersection size is 1; is equal to 0 if they are pairwise disjoint, and otherwise the output can
be anything. [13, 24] prove that the randomized p-player communication complexity of UDISJ
is Ω(n/p). By a reduction to UDISJ it follows that any streaming algorithm for computing
Fk requires space Ω(n1−2/k. Fix k and let p = n1/k. As before, let A be a C-space streaming
algorithm for computing Fk. Let x1, . . . , xp be an input to UDISJ and let the total number of
one’s in all of the strings be n. On input (x1, . . . , xp) to UDISJ, player i converts his/her input
xi into a stream ai = {j | the jth bit of xi equals 1.}. On the stream S = a1, . . . , ap, player
i will simulate the computation of A on the ai portion of the stream, and then communicate
the state (C bits) to the next player, to obtain an Cn1/k bit protocol. This solves UDISJ
since UDISJ(x1, . . . , xp) = 0 implies Fk(S) = n, and UDISJ(x1, . . . , xp) = 1 implies Fk(S) ≥
n− p + n = 2n− p.

4.2 Data Structures

The cell probe model was introduced over thirty years ago by Yao [58]. In this model, memory
is modelled by an array of cells, each having w bits. The data is allowed to occupy S consecutive
cells, called the space. Certain queries and update operations are to be supported. The runtime
of an operation is the number of cell probes (reads and writes executed). There are two distinct
types of problems in the cell probe literature: Dynamic problems are characterized by a tradeoff
between the update time and the query time, whereas for static problems, the tradeoff is between
the space S used, and the runtime.

The connection to communication complexity and asymmetric set disjointness was made
explicit by [38]. (See [37] for somewhat dated but an excellent survey of the area.) Consider
a communication game where Alice holds a query and Bob holds a database. A cell probe
algorithm implies a communication protocol for computing the query on the database: Alice
sends log S bits (an address), and Bob replies with w bits (value of that memory location). In
the asymmetric version of set disjointness, called Lopsided Set Disjointness (LSD) Alice has a
subset S ⊆ [N ·B] of size N , and Bob has a subset T ⊆ [N ·B]. They want to determine whether



their sets intersect. In a beautiful paper, Patrascu [46] proved that for any δ > 0, any bounded
error protocol for LSD requires that either Alice sends δN log B bits, or that Bob sends at least
NB1−O(δ) bits, and from this lower bound he obtains lower bounds for a wide variety of both
static and dynamic problems in the cell probe model. For example, lower bounds for lopsided
set disjointness imply the first lower bound for reachability oracles, as well as cell probe lower
bounds for high-dimensional problems where the goal is to show large space bounds.

Another version of set disjointness was very recently introduced in [47]. The 3-party set
disjointness problem is defined as follows. Alice has i ∈ [k] on her forehead; Bob has sets
S1, . . . , Sk, Si ⊆ [n] on his forehead; and Charlie has a set T ⊆ [n] on his forehead. In Stage
1, Alice communicates nM bits of information privately to Bob. Then in Stage 2, Bob and
Charlie communicate back and forth, sending M bits in total, and at the end, they announce
whether or not Si intersects T . Proving that M ≥ nǫ for the 3-party set disjointness problem
implies polynomial lower bounds for many dynamic data structure problems, resolving a major
open problem [47].

4.3 Circuit Complexity

There are important applications of communication complexity lower bounds to complexity
theory, most notably the connection between k-player NOF lower bounds (k > log n) for any
explicit function and the circuit class ACC. Here we give two explicit applications of set
disjointness lower bounds to circuit complexity.

Our first result, due to Nisan and Wigderson [44], relates communication complexity lower
bounds for a disjointness function to a circuit lower bound. Let H be a family of 2-universal hash
functions, so h ∈ H is a 2-universal hash function mapping {0, 1}n to itself, where |h| = O(n).
The function F associated with H is to compute the vector h(y) on input h and y. One such
family H is a succinct description of a family of n-by-n matrices M , in which case we think of
the function as matrix multiplication where the allowable matrices are succinctly represented
(by n bits rather than by n2 bits). The obvious circuit for carrying out this computation has
size n2.

The 3-player version of this function is as follows. Alice has j ∈ [n] on her forehead. Bob
has some h ∈ H on his forehead, where |h| = n, and Charlie has a string y, |y| = n, on his
forehead. They want to compute whether the jth bit of h(y) is greater than 0. Notice that if
we are working over the integers, then this problem is a 3-player version of set disjointness.

Theorem 24 [44] If F can be computed by a circuit of fan-in 2, size O(n) and depth O(log n),
then the simultaneous communication complexity of the 3-player version of F is O(n/ log log n).

The proof uses Valiant’s graph theoretic lemma which states that given any depth O(log n),
size O(n) circuit C with n inputs and n outputs, there exists at most O(n/ log log n) wires
in C whose removal leaves a circuit with the property that each output gate j depends only
on a small set Sj of inputs, where |Sj | ≤

√
n. Using this lemma, the protocol is as follows.

Alice, who sees h and y (the entire input to C), sends the values of the O(n/ log log n) wires;
Bob and Charlie, who both see j and half of the input, send the values of the inputs in Sj .
With all of this information, the answer can be computed by a referee. Thus, a lower bound
of ω(n/ log log n) on the simultaneous communication complexity of F is enough to prove a
superlinear lower bound on the number of wires for a log-depth circuit to compute F . Proving
such a lower bound for an explicit function is a major open problem in circuit complexity.

Another application of set disjointness lower bounds are algebraic oracle separations among
complexity classes [1]. For example, using set disjointness lower bounds, Aaronson and Wigder-
son prove that resolving many important complexity separations, such as separating NP from
P and separating NP from BPP , must require nonalgebrizing techniques.



4.4 Proof Complexity

The central problem in proof complexity is to establish superpolynomial lower bounds on the
proof length required to refute hard unsatisfiable formulas in natural proof systems, such as
Resolution, Cutting Planes, or Frege systems. One starts with an unsatisfiable formula, typically
in 3CNF form. The goal is to apply rules from a standard axiomatic propositional proof system
in order to derive the identically false formula “0”. Proving superpolynomial lower bounds for
all proof systems is equivalent to proving NP 6= coNP . While this goal seems beyond reach, a
more reasonable goal is to prove lower bounds for specific proof systems. Most proof systems
can be classified in terms of their representational strength. For example, Resolution proofs
only allow one to derive clauses from previous clauses; thus the representational strength of
Resolution is depth-1 AC0. Cutting Planes proofs allow one to derive linear inequalities from
previously derived linear inequalities, and thus has the representational strength of depth-1 TC0.
Similarly, Th(k) proofs are defined, and their representational strength corresponds to degree k
polynomial inequalities. Th(k) proofs are quite powerful and include as special cases not only
Resolution, but also a wide variety of matrix cut systems such as all of the Lovasz-Schrijver
systems, low rank Sherali-Adams and Lasserre systems. (For more details on propositional
proof complexity, see [10].)

The following theorem gives lower bounds for Th(k) proofs via lower bounds for NOF set
disjointness.

Theorem 25 [9] For every constant k, there exists a family of CNF tautologies Tn, where for
each n, Tn has n variables and has size polynomial in n, such that if Tn has polynomial-size
tree-like Th(k) proofs, then there exists an efficient (polylogarithmic many bits) probabilistic
protocol for set disjointness in the (k + 1)-player NOF model.

While the proof of the above theorem is quite complicated, the high level argument is as
follows. For any unsatisfiable 3CNF formula f , the search problem associated with f , Sf , takes
as input a truth assignment α to the variables of f , and outputs a clause of f that is violated by
α. In order to prove lower bounds for Th(k) refutations via communication complexity lower
bounds, the goal is to find a specific family of hard unsatisfiable formulas and prove that any
small tree-like Th(k) refutation of fn implies an efficient (k+1)-party NOF protocol for Sfn , the
search problem associated with fn. Notice that for any unsatisfiable 3CNF f , Sf has an efficient
nondeterministic protocol in any communication complexity model, as the players can simply
guess and check the clause that is violated. Thus, proof complexity lower bounds obtained via
this method require a function that is hard to solve in a randomized or deterministic model,
but that is easy to solve nondeterministically. In [9], a carefully concocted family of formulas
Tn are constructed, and it is shown that small tree-like Th(k+1) refutations for Tn imply small
k-player NOF protocols for set disjointness.

In a recent paper [8], the concept of hardness escalation is introduced, and a much more
general lower bound for Th(k) proofs was obtained. In hardness amplification, one begins with
a boolean function f , and constructs an amplified function g (based on f) such that: if f cannot
be computed with respect to some circuit or complexity class C, then g cannot be computed
with respect to another circuit or complexity class C ′, where C ′ is stronger than C. An example
of hardness escalation is the dual polynomial method presented earlier. The same idea can also
be applied in proof complexity: now one begins with an unsatisfiable CNF formula f , and
from f , we construct an amplified unsatisfiable CNF formula Lift(f), such that if f requires
superpolynomial size refutations in proof system P , then Lift(f) requires superpolynomial size
refutations with respect to P ′, where P ′ is a more powerful proof system than P . The main
theorem in [8] is the following hardness escalation theorem for proof complexity.

Theorem 26 Let fn be any unsatisfiable family of formulae requiring superpolynomial size tree



Resolution proofs. Then, an amplified function Liftfn(k) requires superpolynomial size tree-like
Th(k) proofs.

The proof of the above theorem applies the dual polynomial method used to obtain NOF
lower bounds for set disjointness (described earlier), but adapted to the proof complexity con-
text.

4.5 Game Theory

There are two primary applications of lower bounds for set disjointness to game theory. The first
are lower bounds for combinatorial auctions and mechanism design, and the second family of
results are lower bounds for finding pure Nash equilibrium. In these applications, understanding
the communication complexity of certain game theoretic tasks is our main goal. This is unlike
applications from previous sections, where communication complexity entered as a useful tool
for attaining other goals.

Combinatorial Auctions and Mechanism Design. A classical problem in algorithmic
game theory is a combinatorial auction. There are some number m of goods that need to be
allocated to n agents. Each agent has a valuation function vi that specifies for each subset S
of the goods, the bidders desire or value vi(S) of obtaining S. The goal is to find a partition
of the goods, S1, . . . , Sn that maximizes social welfare,

∑

i vi(Si). In [42], it is shown that
the communication complexity of determining an optimal allocation is nearly maximal, via
lower bounds for 2-player set disjointness. The result was generalized in [40] to show that even
approximation algorithms require large communication, via set disjointness lower bounds in the
k-player NIH model.

Algorithm mechanism design attempts to design protocols in distributed settings where
the different agents have their own selfish goals, and thus they may attempt to optimize their
own goals rather than to follow the prescribed protocol. A central goal in this area is to de-
velop incentive-compatible mechanisms. These are protocols/algorithms together with payment
schemes that motivate the agents to truthfully follow the protocol.

The famous VCG mechanism achieves incentive compatibility for combinatorial auctions.
However, the problem of finding an optimal partition of the goods is NP-hard, and thus the
VCG mechanism applied to this problem is too inefficient to be useful. On the other hand,
there are polynomial-time approximation schemes for solving the purely computational prob-
lem of finding a good partition of the goods, but the VCG payment rule no longer leads to
incentive compatibility when we move to approximation algorithms. This leads us to a central
question in mechanism design, first posed by Dobzinski and Nisan [22]: “To what extent do the
strategic requirements degrade the quality of the solution beyond the degradation implied by
the purely computational constraints?” Specifically for combinatorial auctions, the question is
whether or not it is possible to design an auction protocol that is both incentive compatible
and computationally efficient, and still achieves a good approximation ratio.

In [22], Dobzinski and Nisan raised this question, and studied a subclass of algorithms for
combinatorial auctions in the communication complexity setting. (In this setting, one measures
the amount of communication between the agents.) They prove a strong lower bound on the
approximation factor that can be achieved by incentive compatible VCG-based mechanisms for
combinatorial auctions via a two part case analysis where one case reduces to lower bounds for
set disjointness.

Recently, Papadimitriou, Shapira, and Singer [45] gave an unconditional negative answer
to Dobzinski and Nisan’s question for a different problem, the combinatorial public projects
problem (CPPP), again in the communication complexity setting. Specifically they prove that
the communication complexity of any constant-factor incentive-compatible algorithm for CPPP
is nearly linear, via a reduction to set disjointness.



Pure Nash Equilibrium. Another central problem in game theory concerns the com-
plexity of reaching an equilibrium in a game. Computational complexity is concerned with the
time required to reach equilibrium; communication complexity is concerned with how much
information must be exchanged between the players in order to reach equilibrium (assuming
honest players).

In [20], Conitzer and Sandholm proved that any deterministic or randomized protocol for
computing a pure Nash equilibrium in a 2-person game requires nearly maximal communication
complexity. In 2007, Hart and Mansour [25] proved a similar result for multi player games. All
of these results are obtained via lower bounds for set disjointness. We give the basic idea behind
these reductions, following Nisan’s presentation [41] For two players, Alice and Bob each hold
their utility function ui : S1 × . . . × Sn → R, where the Si’s are the strategy sets, each of size
m. Thus each player’s input consists of mn real numbers, which we will assume are in some
small integer range. We want to show how a protocol for determining the existence of a pure
Nash equilibrium for games with n players each having m strategies can be used to solve DISJ
on strings of length N = Ω(mn).

Here we will give the idea for n = 2, where we will solve set disjointness on strings of length
N = (m − 2)2. We will view both Alice and Bob’s inputs x and y as a square matrices, xi,j ,
i, j ≤ (m− 2). Alice will interpret x as a utility matrix uA, and similarly Bob will interpret y
as a utility matrix uB. (Entry (i, j) of Alice’s utility matrix describes the payoff for Alice when
Alice plays strategy i and Bob plays strategy j. Similarly, entry (i, j) of Bob’s utility matrix
describes Bob’s payoff in this situation. A Nash equilibrium is a pair of strategies (i∗, j∗) such
that Alice’s strategy i∗ is optimal given that Bob plays strategy j∗ and similarly Bob’s strategy
j∗ is optimal given that Alice plays i∗.) Any cell where xi = yi = 1 will be a Nash equilibrium
since both players get the highest utility possible in this matrix. We just need to make sure
that no other cell is a Nash equilibrium. One easy way to do this is to add two extra rows and
two extra columns to uA, as follows.

x1,1 x1,2 x1,3 x1,4 0 0
x2,1 x2,2 x2,3 x2,4 0 0
x3,1 x3,2 x3,3 x3,4 0 0
x4,1 x4,2 x4,3 x4,4 0 0
1 1 1 1 1 0
1 1 1 1 0 1

The matrix uB is defined similarly, with yi,j replacing xi,j , and 0 interchanged with 1. With
the addition of these rows and columns, each player’s best reply always obtains a value of 1,
and thus only an entry where both uA and uB are 1 will be a Nash equilibrium.

This idea can be generalized for any n by adding n − 2 dummy players (in addition to
Alice and Bob) that have utilities that are identically 0. Thus a pure Nash equilibrium will be
determined solely by Alice and Bob. In this more general setting, we will interpret Alice (and
Bob’s) input as n-dimensional matrices of size mn, and thus after adding the extra rows and
columns, we will answer set disjointness on vectors of length N = (m− 2)2mn−2.

4.6 Quantum Computation

As discussed earlier, any probabilistic protocol for set disjointness requires Ω(n) bits. How-
ever for quantum communication, Buhrman, Cleve, and Wigderson gave an O(

√
n log n) qubit

algorithm for set disjointness, based on Grover’s quantum search algorithm [12]. There is a
nearly matching Ω(

√
n) lower bound due to Razborov [50]. Thus the quantum communication

complexity lower bound for set disjointness shows that quantum communication is of limited
help for solving this problem: it does not generate exponential savings in communication as
compared to the classical randomized model in this case. This question in general is still open.



There are several applications of the quantum set disjointness lower bound in quantum
computation. One application is the result by Aaronson and Wigderson [1] showing that any
polynomial-time quantum algorithm for solving an NP-complete problem must be nonalge-
brizing. A second application is a strong direct product theorem for quantum communication
complexity [31], which makes essential use of the quantum communication complexity lower
bound for disjointness.

5 Discussion

There are many other notable results for set disjointness that are beyond the scope of this
survey. For example, Klauck [28] has recently proven a strong direct product theorem for set
disjointness, showing that if we want to compute k independent instances of set disjointness
using less than k times the resources needed for one instance, then the overall success probability
will be exponentially small in k.

There are many important open problems still to be solved. We mention just a few here.
First, is there a complete problem for nondeterministic NOF communication for k ≥ 3? Sec-
ondly, the current lower bounds for multiparty complexity of set disjointness are not known
to be tight. In particular, for constant k, the bounds are of the form n1/k+1, whereas the
best known upper bound is O(n). The current best bounds of Beame and Huynh-Ngoc stop
giving anything nontrivial beyond k = Θ(log1/3 n). The best upper bounds are of the form
O(n/4k + k log n). This upper bound is essentially due to a very general protocol by Grolmusz
that in particular, also works for the Generalized Inner Product (GIP) function. However, for
GIP we know that these bounds are tight. Are they tight for Disjointess? Thirdly, the infor-
mation complexity lower bound for two players has not been generalized to the NOF setting.
An important open problem is to prove lower bounds via the information complexity approach
in the multiparty NOF setting.
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