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Abstract

We develop a new technique of proving lower bounds for the randomized communication complexity
of boolean functions in the multiparty ‘Number on the Forehead’ model. Our method is based on the
notion of voting polynomial degree of functions and extends the Degree-Discrepancy Lemma in the
recent work of Sherstov [24]. Using this we prove that depth three circuits consisting of a MAJORITY
gate at the output, gates computing arbitrary symmetric function at the second layer and arbitrary gates
of bounded fan-in at the base layer i.e. circuits of type MAJ ◦ SYMM ◦ ANYO(1) cannot simulate
the circuit class AC0 in sub-exponential size. Further, even if the fan-in of the bottom ANY gates are
increased to o(log log n), such circuits cannot simulate AC0 in quasi-polynomial size. This is in contrast
to the classical result of Yao and Beigel-Tarui that shows that such circuits, having only MAJORITY
gates, can simulate the class ACC0 in quasi-polynomial size when the bottom fan-in is increased to
poly-logarithmic size.

In the second part, we simplify the arguments in the breakthrough work of Bourgain [7] for obtaining
exponentially small upper bounds on the correlation between the boolean function MODq and functions
represented by polynomials of small degree over Zm, when m, q ≥ 2 are co-prime integers. Our calcu-
lation also shows similarity with techniques used to estimate discrepancy of functions in the multiparty
communication setting. This results in a slight improvement of the estimates of [7, 14]. It is known that
such estimates imply that circuits of type MAJ ◦MODm ◦ ANDε logn cannot compute the MODq func-
tion in sub-exponential size. It remains a major open question to determine if such circuits can simulate
ACC0 in polynomial size when the bottom fan-in is increased to poly-logarithmic size.

1 Introduction
Understanding the computational power of constant depth circuits made of MAJORITY and MOD counting
gates remains a very important and challenging open problem in theoretical computer science. We do not
even completely understand such circuits of depth three. It is however well known that they have surprising
power. A classical result of Allender [1] shows that all functions in AC0 (circuits using AND and OR
gates of constant depth and polynomial size) can be computed by quasi-polynomial sized circuits of type
MAJ ◦MAJ ◦MAJ(log n)O(1) i.e. circuits of depth three having only MAJORITY gates in which the gates at
the base layer are restricted to have polylog fan-in. More surprisingly, the work of Yao [26] and Beigel-Tarui
[6] shows that such circuits are powerful enough to simulate the strictly bigger class ACC0 i.e. functions
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computable by circuits of constant depth and poly-size that use MODq gates in addition to AND and OR
gates, for any fixed q > 1.

Håstad and Goldmann [16] showed that if such depth three circuits were restricted to have sub-logarithmic
fan-in at the bottom layer, then they cannot simulate ACC0 in sub-exponential size. This left open the ques-
tion whether such restricted circuits, even when they have constant fan-in at the bottom, could simulate
AC0 in quasi-polynomial size. In fact until very recently, no super-polynomial lower bounds were known
on the size of depth-two circuits of type MAJ ◦MAJ for simulating AC0. Introducing a powerful Degree-
Discrepancy Lemma to analyze two party communication games, Sherstov [24] has settled the depth two
question. Håstad and Goldman, on the other hand, invoked a result of Babai, Nisan and Szegedy [4] for the
stronger ‘Number on the Forehead’ model of multiparty communication (introduced by [10]) to show their
lower bound on the size of depth three circuits computing the generalized inner product function.

The ‘Number on the Forehead’ model is a fascinating but poorly undertstood model of communication
that is under intensive research (see [20]). Obtaining superpolylogarithmic lower bounds on the number of
bits needed to compute a function f by deterministic protocols for poly-logarithmic number of players is
enough to show that f is not in ACC0. Currently no such function is known. In fact, the communication
complexity of simple functions like Disjointness and Pointer Jumping (see [5, 9]), is unknown even for three
players.

In the first part of this paper, we show for every fixed k ≥ 2, there exists a function that is computable
by AC0 circuits in depth three and almost linear size, but requires nΩ(1) communication by k-players in the
(public-coin) randomized two sided error model as long as the players are required to err with probability
less that 1/2 − ε and ε is quasi-polynomially small. Our construction is based on the notion of the voting
polynomial degree of boolean functions. This notion has ben recently used by Sherstov [24] and in the past
for obtaining circuit lower bounds (see [3, 18, 19]) and in computational learning theory (see [17]). Let f be
any boolean function (called the base function) on inputs of length m having voting polynomial degree d.
Let k ≥ 2 be any integer. We will create a function Fk that takes as input a string x of length somewhat larger
than m, and a set of bits that mask every bit of x except some m bits that are left unmasked. Fk essentially
computes f on the unmasked bits. More precisely, define Fk : X × S1 × · · · × Sk−1 → {0, 1}, where
X ∈ {0, 1}Mk−1

and each Sj is a m-element subset of [M ], in the following way: Fk(x, S1, . . . , Sk−1) =
f(x

i11,...,i
k−1
1

, . . . , x
i1m,...,i

k−1
m

), where Sj = {ij1, . . . , i
j
m}. We partition the inputs of Fk among the k-players

in the following way: Player 1’s forehead is assigned X and each of the other k − 1 foreheads receives a
distinct set Si. Let the k-party randomized communication complexity of a function f with error probabilty
1/2 − ε (in the two-sided error model) be denoted by Rε

k(f). We show the following:

Theorem 1 Let f , defined on inputs of length m, have voting degree d. For any k ≥ 2, define Fk using f as
before on inputs of length n = O(M k−1), where M ≥ 2k(k−1)em2. Then, Rεk

(
Fk
)

= Ω(d1/2k−1
+ log ε).

We prove Theorem 1 by developing a new lower bound technique for the multiparty model that should
be of independent interest. The main ingredient of our technique is the following extension of Sherstov’s
Degree-Discrepancy Lemma:

Lemma 2 (Multiparty Degree-Discrepancy Lemma) Let f : {−1, 1}m → {−1, 1} have voting polyno-
mial degree d. Then for any k ≥ 2, there exists a probability distribution λ such that for M ≥ m,

(
disck,λ

(
Fk
))2k−1

≤
m∑

j=d

(
(k − 1)m

j

)(
22k−1−1m

M

)j
(1)
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Hence, for M ≥ 22k(k − 1)em2 and d > 2,

disck,λ
(
Fk
)
≤ 1

2d/2k−1
(2)

Here disck,λ
(
Fk
)

denotes the discrepancy of Fk over k-cylinder intersections under the input distribution λ.
By considering a simple base function that was used by [24], we show that our k-wise masked function

Fk+1 has (nΩ(1)) k-party complexity whenever k is a constant. On the other hand, it is simple to verify that
Fk+1 is in AC0. It is the first example of a function in AC0 that is hard for randomized mulitparty protocols.
Let ANY represent an arbitrary gate and SYMM represent a gate that computes an arbitrary symmetric
function of its inputs. An established argument of Hastad and Goldmann [16] can then be used to derive the
following circuit consequence:

Corollary 3 Circuits of type MAJ◦SYMM◦ANYk need size 2Ω(n1/6k2k ) to simulate depth-three AC0. Specif-
ically, if k is a constant (o(log log n)) then such circuits cannot simulate AC0 in sub-exponential (quasi-
polynomial) size.

In particular, the above shows that Allender’s classic construction to simulate AC0 is reasonably close to
being optimal. In fact, Allender’s original construction shows that qpoly size circuits of type MAJ◦MODm◦
AND(log n)O(1) can simulate ACC0[pr] (i.e. circuits with MODpr gates in addition to AND/OR gates), for
every prime p that divides m and any fixed r. A long line of research (see for example [8, 12, 13, 2]) seeks
to show that such depth three circuits cannot simulate ACC0 in quasipoly size. The so called ε-discriminator
lemma of Hajnal et al.[15] implies that obtaining an exponentially small upper bound on the correlation
between a function f and and any boolean function that is represented by a polynomial of poly-logarithmic
degree over Zm, is enough to prove that f cannot be computed in sub-exponential size by such depth three
circuits. It is commonly believed that the simple function MODq has small correlation with such low degree
polynomials over Zm, if m and q are co-prime.

In the second part of the paper, we simplify Bourgain’s breakthrough method [7, 14] of estimating the
correlation between polynomials of degree d over Zm and MODq when (m, q) = 1. We argue that the
notion of discrepancy, suitably modified, can be used conveniently to obtain this estimate. This approach
also points out the similarities between the techniques used for estimating cylindrical discrepancy in the
communication setting and the techniques used for obtaining correlation. Interestingly, our estimates for
correlation are slightly better than previous estimates of [7, 14]. For the special case of m = 2, they match
the recent bounds obtained by Viola and Wigderson[25]. It is not known if techniques of [25], based on
Gower’s norm, can be extended to all m.

2 Basic Notions
In the k-party ‘Number on the Forehead’ model of communication, k players wish to collaboratively com-
pute a function f on n input bits. The input bits are partitioned into k sets Y1, . . . , Yk ⊆ [n]. Each player
Pi knows the value of all the input bits except the ones in Yi that are written on his own forehead. In the
deterministic model, players communicate (broadcast) bits according to a fixed protocol by writing them
on a public blackboard. The protocol specifies whose turn it is to speak and what a player communicates
is entirely determined by the communication history until that point and what the player sees written on
others’ forehead. The boolean output of the protocol is just a function of the communication history at its
termination. The cost of a protocol is the number of bits that players communicate for the worst case input.
The deterministic k-party communication complexity of f , denoted by Dk(f) is the cost of the best k-party
protocol for f .

In the (public coin) randomized model, players flip some coins and randomly select a deterministic pro-
tocol. Then they follow the deterministic protocol. Additionally, players are now allowed to err. This means
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that some of the protocols that players choose may not produce the correct output for all input instance. The
cost of a randomized protocol is simply the maximum number of bits communicated by the players over all
possible coin flips and over all possible input instances. The k-party randomized communication complexity
of f with error 1/2 − ε, denoted by Rε

k(f) is the cost of the best protocol P that computes f with error at
most 1/2− ε, i.e. Pr[P(Y1, . . . , Yk) 6= f(Y1, . . . , Yk)] ≤ 1/2 − ε for all input assignments Y1, . . . , Yk.

The key combinatorial object that arises in the study of multiparty communication is a cylinder-intersection.
A k-cylinder in the ith dimension is a subset S of {−1, 1}Y1×···×Yk with the property that membership
in S is independent of the ith co-ordinate. A set S is called a cylinder-intersection if S = ∩ki=1Si,
where Si is a cylinder in the ith dimension. Equivalently, every cylinder-intersection can be viewed as
a function φ : {−1, 1}Y1×···×Yn → {0, 1}, such that it can be factored as φ = φ1 × · · · × φk, where
φi(x1, . . . , xi, . . . , xk) = φi(x1, . . . , x

′
i, . . . , xk) for all x1, . . . , xk and x′i.

An important measure, defined on boolean functions, is its discrepancy. With respect to any probability
distribution µ over {−1, 1}Y1×···×Yk and cylinder intersection φ, define

discφk,µ(f) =
∣∣∣∣Pr
µ

[
f(Y1, . . . , Yk) = 1 ∧ φ(Y1, . . . , Yk) = 1

]
−

Pr
µ

[
f(Y1, . . . , Yk) = −1 ∧ φ(Y1, . . . , Yk) = 1

]∣∣∣∣ (3)

Since f is -1/1 valued, it is not hard to verify that equivalently:

discφk,µ(f) =
∣∣∣∣
∑

Y1,...,Yk

f(Y1, . . . , Yk)φ(Y1, . . . , Yk)µ(Y1, . . . , Yk)

∣∣∣∣ (4)

The discrepancy of f w.r.t µ, denoted by disck,µ(f) is maxφdiscφk,µ(f). For removing notational clutter,
we will often drop µ from the subscript when the distribution is clear from the context. We now state the
well-known connection between discrepancy and the randomized communication complexity of a function:

Theorem 4 (see [4, 20]) Let 0 < ε < 1/2 be any real and k ≥ 2 be any integer. For every boolean function
f and distribution µ on inputs from Y1 × · · · × Yk,

Rεk(f) ≥ log

(
2ε

disck,µ(f)

)
(5)

In the first part, we will assume boolean functions are defined from {−1, 1}n into {−1, 1}. For any S ⊆
[n], let χS represent the multilinear monomial function χS(x) =

∏
i∈S xi. Consider a polynomial P over the

reals i.e. P =
∑

S⊆[n] aSχS , where the coefficients aS are real numbers. Then P is a voting representation
of a boolean function f if f(x) = sign

(
P (x)

)
. For example, polynomials P1(x) = x1 + · · · + xn and

P2(x) =
∏n
i=1 xi voting represent MAJORITY and PARITY respectively. It is not hard to verify that all

boolean functions can be voting represented by some polynomial. The degree of a representation is simply
the degree of the polynomial P involved i.e. the largest integer k ≤ n such that there exists a set S of
size k for which the coefficient aS is non-zero. Thus, in our examples before, MAJORITY has a linear
representation and that of PARITY was n. The voting degree of a function f , denoted by deg(f), is the
minimum degree over all possible voting representations of f . [3, 22] are good sources to read about some
basic properties of voting representations. We state below the key result that we need here:
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Theorem 5 (see [24]) For any boolean function f : {−1, 1}n → {−1, 1}, precisely one of the following
holds:

• deg(f) ≤ d.

• there exists a distribution µ over {−1, 1}n, such that for all |S| ≤ d, Ex∼µf(x)χS(x) = 0.

In particular, this means that if deg(f) ≥ d, then for any function g that depends on at most d− 1 variables,
Ex∼µf(x)g(x) = 0.

A related measure on a pair of boolean functions g and f , called correlation and denoted by Corr(g, f),
was defined by [15]. This measure can be defined w.r.t any distribution over the cube, but we will be
solely interested in the uniform distribution for discussing correlation in this paper. Let A ⊆ f −1(1) and
B ⊆ f−1(0) be two subsets of the cube. Then,

CorrA,B(g, f) =∣∣Pr
x

[g(x) = 1|x ∈ A]− Pr
x

[g(x) = 1|x ∈ B]
∣∣ (6)

In the literature, g is said to ε-discriminate f , w.r.t. sets A,B if CorrA,B(g, f) ≥ ε. The usefulness of
this measure in proving circuit lower bounds comes from the following connection made by [15]:

Lemma 6 (Discriminator Lemma) Consider a circuit C with a MAJORITY gate at its output and s arbi-
trary sub-circuits, C1, . . . , Cs feeding into it. If C computes the function f , then for every A ⊆ f−1(1),
B ⊆ f−1(0), there exists a sub-circuit Ci that 1/s-discriminates f w.r.t A,B.

3 Multiparty Degree-Discrepancy Lemma
For the sake of exposition, we will prove Lemma 2 (stated in Introduction) for the case of three players. The
argument for the general case of k-players proceeds in an identical fashion and is given in the Appendix.

Let boolean function f , defined over m input bits, have voting degree d. Then, let µ be the distribution
guaranteed to exist from Theorem 5 so that Ex∼µf(x)g(x) = 0 for any g that depends on less than d vari-
ables. The function that we form out of our ‘base’ function f is F3 : {−1, 1}M2 ×

({1,...,M}
m

)
×
({1,...,M}

m

)
→

{−1, 1}, with F3(x, S1, S2) = f(xi1,j1 , . . . , xim,jm) where S1 = {i1, . . . , im}, S2 = {j1, . . . , jm} are
each m-element subsets of [M ]. We consider the partition in which Players 1,2 and 3 get respectively x,
S1 and S2 written on their foreheads. The probability distibution λ that we consider on the set of inputs is

derived out of µ as follows: λ(x, S1, S2) =
µS1,S2(x)

(Mm)
2
2M2−m

, where µS1,S2(x) = µ(xi1,j1 , . . . , xim,jm). It is

not hard to see that the denominator in the expression of λ is just the right normalizing factor. Thus, the
discrepancy of any cylinder intersection φ = φ1(x, S1)φ2(x, S2)φ3(S1, S2) w.r.t λ can be represented as
follows (using (4)):

discφ3 (F3) =∣∣∣∣
∑

x,S1,S2

F3(x, S1, S2)φ(x, S1, S2)λ(x, S1, S2)

∣∣∣∣ (7)

Using the definition of λ, we change over to the more convenient expected value notation, with (x, S 1, S2)

uniformly distributed over {−1, 1}M2 ×
([M ]
m

)2
:
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discφ3 (F3) =

2m
∣∣∣∣Ex,S1,S2F3(x, S1, S2)φ(x, S1, S2)µS1,S2(x)

∣∣∣∣ (8)

Clearly, using the fact that φ1 is 0/1 valued we get RHS of (8) ≤ 2mEx,S1Z where,

Z =

∣∣∣∣ES2

[
F3(x, S1, S2)φ2(x, S2)φ3(S1, S2)µS1,S2(x)

]∣∣∣∣ (9)

As in [4], we use Cauchy-Schwartz inequality i.e. (EZ)2 ≤ E(Z)2. Recall that (Ezf(z))2 =
Ez0,z1f(z0)f(z1), where z1, z2 are independent and identical copies of z. Noting that φ2 is 0/1 valued
we get:

(discφ3 (F3))2 ≤ 22mEx,S2
0 ,S

2
1
U (10)

where,

U =

∣∣∣∣ES1

[ ∏

`∈{0,1}
F3(x, S1, S2

` )µS1,S2
`
(x)φ3(S1, S2

` )

]∣∣∣∣ (11)

and S2
0 , S

2
1 are independent and identically distributed as S2. Using another round of Cauchy-Schwartz and

very similar argument, we finally obtain:

(discφ3 (F3))4 ≤ 24mES1
0 ,S

1
1 ,S

2
0 ,S

2
1
V (12)

with,

V =

∣∣∣∣Ex

[ ∏

`,j∈{0,1}
F3(x, S1

j , S
2
` )µS1

j ,S
2
`
(x)

]∣∣∣∣ (13)

Consider any fixed S1
0 , S

1
1 , S

2
0 , S

2
1 . The following claim ties in the voting polynomial degree d of f to

our argument. Let r = max{|S1
0 ∩ S1

1 |, |S2
0 ∩ S2

1 |}. Then,

Claim 7 If r is smaller than the voting degree d of f , the following holds:

Ex

[ ∏

i,j∈{0,1}
F3(x, S1

i , S
2
j )µS1

i ,S
2
j
(x)

]
= 0 (14)

Proof: Wlog, let us assume that r = |S1
0 ∩ S1

1 |, t = |S2
0 ∩ S2

1 |, with t ≤ r. Further, again wlog we assume
S1

0 = S2
0 = {1, . . . ,m}, S1

1 = {1, . . . , r,m + 1, . . . , 2m − r} and S2
1 = {1, . . . , t,m + 1, . . . , 2m −

t}. We will expand the product in the LHS of (14) in a convenient way. First note that F3(x, S1
i , S

2
j )

depends on precisely m of the variables in x for each i, j. We will call this set Zij . We will treat Z00 =
{x1,1, · · · , xm,m} separately for reasons that will become clear shortly.

Z01 = {x1,1, · · · , xt,t, xt+1,m+1, · · · , xm,2m−t}
Y01 = {xt+1,m+1, · · · , xm,2m−t}
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Z10 = {x1,1, · · · , xr,r, xm+1,r+1, · · · , x2m−r,m}
Y10 = {xm+1,r+1, · · · , x2m−r,m}

Z11 = {x1,1, · · · , xt,t, xt+1,m+1, · · · , xr,m+r−t
, xm+1,m+r−t+1, · · · , x2m−r,2m−t}

Y11 = {xr+1,m+r−t+1, · · · , x2m−r,2m−t}

Let, g11 = EY11f(Z11)µ(Z11), g10 = EY10g11f(Z10)µ(Z10), and g01 = EY01g10f(Z01)µ(Z01). Then,
clearly g01 is just a function of the r variables x1,1 . . . , xr,r. It further gets verified easily that

LHS of (14) =

Ex1,1,··· ,xm,m
[
f(x1,1, · · · , xm,m)µ(x1,1, · · · , xm,m)

·g01

(
x1,1, · · · , xr,r

)]

Now invoking the property of µ from Theorem 5, we immediately see that (14) evaluates to zero.

We make another claim whose simple proof, based on the fact that µ is a probability distribution, is
given in the Appendix1:

Claim 8 For all fixed S1
0 , S

1, 1, S2
0 , S

2
1 and r = max{|S1

0 ∩ S1
1 |, |S2

0 ∩ S2
1 |},

∣∣∣∣Ex

[ ∏

i,j∈{0,1}
F3(x, S1

i , S
2
j )µS1

i ,S
2
j
(x)

]∣∣∣∣ ≤
23r

24m
(15)

Claim 7 and Claim 8 shows that the inner expectation in (12) can be upper bounded by a function of two
numbers, namely |Si0 ∩ Si1|, for i = 1, 2. Using the definition for the outer expectation, we obtain:

(discφ3 (F3))4 ≤
m∑

j=d

23j
∑

j1+j2=j

Pr
[
|S1

0 ∩ S1
1 | = j1 ∧ |S2

0 ∩ S2
1 | = j2

]
(16)

Recalling the fact that S1
0 , S

1
1 , S

2
0 , S

2
1 are being chosen independently, we have:

RHS of (16) =

m∑

j=d

23j
∑

j1+j2=j

(
m

j1

)(
m

j2

)(M−m
m−j1

)(M−m
m−j1

)
(M
m

)2 (17)

We recall the following fact about binomial coefficients:

Fact 9 For every M ≥ m,
(
M−m
m−k

)
(M
m

) ≤
(m
M

)k (18)

1in the Appendix, we directly prove Claim 15 that is a generalization of Claim 8 to k-players.
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Using (18) with the combinatorial identity
∑

j1+j2=j

(
m
j1

)(
m
j2

)
=
(

2m
j

)
, (17) yields

RHS of (17) ≤
m∑

j=d

23j

(
2m

j

)(m
M

)j (19)

Using
(2m
j

)
≤ (2em

j )j , one sees that for M ≥ 32em2 and for d > 2, the RHS of (19) is less than 1/2d.

Thus, discφ3 ≤ 1/2d/4, for every cylinder intersection φ proving the Multiparty Degree-Discrepancy Lemma
for three players.

A simple combination of Theorem 4 with the Multiparty Degree-Discrepancy Lemma proves the bound
on randomized communication complexity in Theorem 1.

4 Circuit consequences

Just as in [24], our base function f will be the following function, studied first in [21]: MP(x) = ∨`i=1 ∧4`2
j=1

xi,j . [21] shows that the voting polynomial degree of MP, defined on 4`3 variables, is `. We choose m = 4`3

and our base function f(x) = MP(x). Then for each k ≥ 2, we create our k-wise masked function Fk from
MP according to the masking rules prescribed by the Multiparty Degree-Discrepancy Lemma in Section 1.
We can view the domain of function Fk, for any k ≥ 2 as {−1, 1}Mk−1 ×{−1, 1}(k−1)m logM , by naturally
encoding each of the k − 1 m-element subsets of [M ] in the following way: each element of a subset is
encoded by binary strings having logM bits. Note that several inputs in this encoding may be illegal as in a
legal input we do not allow repetitions of an element in a subset. However, the output of Fk on illegal inputs
is immaterial i.e. we describe a depth-three AC0 circuit C to compute Fk correctly on the legal inputs and
we conveniently define the value of Fk on each illegal input to be the same as the output of C on that input.

Consider the decoding function U : {−1, 1}Mk−1 × {−1, 1}(k−1) logM that on input (x, y) interprets y
to be a set of k−1 positive integers from [M ] and then outputs the bit of x corresponding to this set. It is not
hard to verify that U could be computed by a depth-two AND ◦ OR circuit of size M k−1. Now, on a legal
input Fk(x, y) = MP(U(x, y1), . . . , U(x, ym)), where each yi is the binary string of length (k − 1) logM
encoding the ith element of each set S1, . . . , Sk−1. By definition, the MP function can be computed by
depth-two OR ◦ AND circuits of size m. This directly gives a depth-four circuit to compute Fk on legal
inputs. Collapsing the two middle layers of AND gates finally yields a depth-three circuit of size mM k−1.
Summarizing,

Fact 10 (follows from [24]) The function Fk : {−1, 1}Mk−1 ×{−1, 1}(k−1)m logM → {−1, 1} is in depth-
three AC0.

We recall here an established connection between randomized communication complexity of a function
f and the size of depth-three circuits needed to compute f .

Fact 11 (see [16]) If f is computed by a circuit of type MAJ◦SYMM◦ANYk, of size s, then R1/2−1/2s
k+1 (f) ≤

k log s.

Proof:[Of Corollary 3] The k+ 1-party randomized communication complexity of Fk+1 with error 1/2− ε,
by Theorem 1, is at least d1/2k + log ε. Here d = `, m = 4`3, M = 2k+1kem2 and n = Mk. Combining
this information, we obtain that Rε

k+1(Fk+1) ≥ (1/α)n1/(6k2k) − log
(

1
2ε

)
, where α = (4

√
2k+1ke)1/3·2k .

Let Fk+1 be computed by a circuit of type MAJ ◦ SYMM ◦ ANYk with size s. Then, applying Fact 11 on
the randomized complexity of Fk+1, we get that
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(1/α)n1/6k2k − log s ≤ k. log s (20)

Note that (1/α) → 1, with k quite rapidly. Thus, s = 2Ω(n1/6k2k ). Corollary 3 follows quite easily from
this.

5 Correlation
Let P be any multi-linear polynomial of degree d over Zm in n variables. For any q ≥ 2, the boolean
function MODq is defined to be 1 iff the sum of the input bits is non-zero nodulo q. Let Lq be the linear
polynomial x1 + · · · + xn evaluated over Zq. Let f : {0, 1}n → Zq. Consider a distribution µ such that f
is almost balanced under µ i.e. Prx[f(x) = b] = 1/q + 2−Ω(n). For example, Lq is almost balanced under
the uniform distribution for every q. Let the mod-m polynomial discrepnacy of f w.r.t. polynomial P and
a ∈ Zm under µ, denoted by PdiscP,aµ,m(f), be the following:

PdiscP,aµ,m(f) = maxb∈Zm

∣∣∣∣ Pr
x∼µ

[
f(x) = b ∧ P (x) = a

]

− (1/q) Pr
x∼µ

[
P (x) = a

]∣∣∣∣ (21)

The Mod-m Polynomial Discrepancy of f under µ for degree d, denoted by Pdiscd,µ,m(f) is simply max{PdiscP,aµ,m(f)|deg(P ) =
d, a ∈ Zm}. In this paper, for polynomial discrepancy the default distribution is uniform. Hence we will
drop the subscript denoting the distribution explicitly.

Our main technical lemma, in this section, is the following :

Lemma 12 (Polynomial Discrepancy Lemma) Let m, q > 1 be integers that are co-prime and d ≥ 1.
Then, there exists a constant β = β(m, q) , such that the following holds:

Pdiscd,m(Lq) ≤ exp(− βn

(m2m−1)d
) (22)

In words, (22) shows that P−1(a), for each a, looks uniform to a MODq counter i.e. every L−1
q (b) is

almost equally represented in the set, provided the size of the set is large compared to the size of the cube.
We identify the similarities between the calculation of polynomial discrepancy of the Lq function and the
method used by [4] to estimate the cylindrical discrepancy for the generalized inner product function. In
both estimates, the key technical ingredient is to raise the sum in question to its appropriate power.

This easily leads to an upper bound of exp(−Ω(n/(m2m−1)d)) on correlation between the MODq func-
tion and functions represented by polynomials of degree d over Zm. In particular, this implies the bound
of exp(−Ω(n/4d)) for the special case of m = 2 that was first reported in the recent work of [25]. Let
em(y) denote exp(−2πjy/m), where j is the square root of −1. Recall the elementary identity for roots
of unity:

∑m−1
a=0 em(ay) = 1 if y is a multiple of m and is zero otherwise. We start by estimating, using

complex roots of unity, the quantity Prx[P (x) = a∧Lq(x) = b] for any polynomial P over Zm and for any
a ∈ Zm, b ∈ Zq as follows:

9



Pr
x

[
P (x) = a ∧ Lq(x) = b

]
=

Ex

[(
1

m

m−1∑

α=0

em
(
α(P (x) − a)

))

×
(

1

q

q−1∑

β=0

eq
(
β(x1 + · · ·+ xn − b)

))]
(23)

Expanding the sum inside the second multiplicand and treating the case of β = 0 separately, one gets

(23) =
1

q
Ex

[
1

m

m−1∑

α=0

em
(
α(P (x)− a)

)]

+
1

mq

∑

α∈[m],β∈[q]−{0}
Sm,qn (α, β, P )em(−aα)eq(−bβ) (24)

where,

Sm,qn (α, β, P ) = Ex

[
em(αP (x)) · eq

(
β(x1 + · · ·+ xn)

)]
(25)

Observing that the first term in (24) is simply (1/q) Pr[P (x) = a] and |em(−aα)| = |eq(−bβ)| = 1,
we get :

PdiscP,am (Lq) ≤
1

mq

∑

α∈[m],β∈[q]−{0}
|Sm,qn (α, β, P )| (26)

It is simple to verify that the Polynomial Discrepancy Lemma gets established by the bound on |Sm,qn (α, β, P )|
provided below.

Lemma 13 For each pair of co-prime integers m, q > 1 there exists a constant β = β(q) such that for
every polynomial P of degree d > 0 over Zm and numbers α ∈ [m], β ∈ [q]− {0}, the following holds :

|Sm,qn (α, β, P )| ≤ exp
(
− βn

(m2m−1)d

)
(27)

Before we begin our formal calculations, we remind the reader that a slightly weaker estimate of |Sm,qn (α, β, P )|
was first obtained in [7, 14]. The case when P is a linear polynomial was essentially dealt with in [8].

Observe that the quantity Sm,qn , defined in (25), looks very similar to the sum that was obtained in
Babai, Nisan and Szegedy [4] to calculate the discrepancy of GIP. There, they were interested in bounding
discrepancy of GIP w.r.t k-cylinder intersections. Here, we are interested in bounding the discrepancy of
Lq w.r.t to a set that is the image of a polynomial. The key idea, introduced in [4], is that squaring the sum
is effective in dealing with cylinder intersections. This is something that we adapted to our proof of the
Degree-Discrepancy Lemma in the previous section. Here, the analogue of the BNS trick will be to raise
the sum in (25) to its mth power.
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In order to further explain the intuition behind our proof of Lemma 13, we introduce some definitions
and notations. Let f : {0, 1}n → Zm be any function. Consider any set I ⊆ [n]. Note that each binary
vector v of length |I| can be thought of as a partial assignment to the input variables of f by assigning v to
the variables in I in a natural way. Let f I(v) be the subfunction of f on variables not indexed in I induced
by the partial assignment v to variables indexed in I . For any sequence Y = {y1, . . . , yt} having t boolean
vectors from {0, 1}n, let fY be the function defined by fY (x) = f(x) +

∑t
i=1 f(x⊕ yi), where the sum is

taken in Zm. Let I[Y ] ⊆ [n] be the set of those indices on which every vector in Y is zero and J [Y ] be just
the complement of I[Y ]. Then, the following observation will be very useful in our calculation :

Observation 14 Let P be a polynomial of degree d in n variables over Zm for any m > 1. Then, for each
sequence Y of m − 1 boolean vectors in {0, 1}n, the polynomial P J [Y ](v)

Y is a polynomial of degree d − 1
in variables from I[Y ] for each vector v ∈ {0, 1}|J [Y ]| .

A point worth mentioning is that, PY behaves almost like a discrete derivative of polynomial P . In fact, if
m = 2, then this operation coincides with the notion of discrete derivative as used in the work of [11, 23].

Proof Sketch:[of Lemma 13] We drop the superscript from Sm,qn to avoid clutter in the following discussion.
We shall induce on the degree d of the polynomial. Our IH is that there exists a positive real constant
µd−1 < 1 such that for all polynomials R of degree at most d−1 and for all n ≥ 0 we have |Sn(α, β,R)| ≤
2nµnd−1. The base case of d = 0 is easily verified and is dealt with in earlier works on correlation. Note that
µ0 depends only on q. Our inductive step will yield a relationship between µd−1 and µd that will also give
us our desired explicit bound of (27).

As in [7, 14], we raise Sn to its mth power. Our point of departure from the earlier techniques, is to
write (Sn)m in a different way.

(Sn)m =Ey1,...,ym−1Ex

[
em

(
P (x) +

m−1∑

j=1

P (x⊕ yj)
)

× eq
( n∑

i=1

xi +

m−1∑

k=1

n∑

i=1

(xi ⊕ yki )

)]
(28)

Let Y be the sequence of length m− 1 formed by a given set of vectors y1, . . . , ym−1. We denote by u
and v respectively the projection of x to I[Y ] and J [Y ]. Let nI and nJ be the cardinality of I[Y ] and J [Y ]
(note that nI + nJ = n) . Then, one can verify

(28) =

Ey1,...,ym−1 Ev

[
em
(
Qy

1,...,ym−1
(v)
)
eq(nJ)

· Euem
(
P
I[Y ](v)
Y (u)

)
eq
(
m

nI∑

i=1

ui
)]

(29)

where Qy1,...,ym−1
is some polynomial that is determined by y1, . . . , ym−1 and polynomial P .

The key thing to note is that Observation 14 implies P I[Y ](v)
Y to be a polynomial of degree at most d− 1

over u for every sequence Y = y1, . . . , ym−1 and every vector v. Hence, the inside sum of (29) over the
variable u can be estimated using our inductive hypothesis. Note that raising to the mth power in (28)
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has achieved a degree reduction of the polynomial in a manner that is very reminiscent of how [4] does
dimension reduction of cylinder intersections in the proof of their Lemma 2.5.

The rest of the calulation proceeds exactly as in Green et. al. [14], which again is very similar to the
series of final steps in the proof of Lemma 2.5 in [4]. We repeat them in the Appendix for the sake of
self-containment.

Consider A = L−1
q (1) and B = L−1

q (0). Then using the estimate on the mod-m polynomial discrepancy of
Lq, it gets easily verified that for every circuit C of type MODm ◦ ANDd,

CorrA,B(C,MODq) ≤ exp
(
− βn

(m2m−1)d

)
(30)

Combining the Discriminator Lemma (Lemma 6) with (30) leads to super-polynomial lower bounds on the
fan-in of the output gate in circuits of type MAJ◦MODm◦ANDd for computing MODq, ifm, q are co-prime
and d = ε log n for some constant ε > 0.
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Appendix
k-player Degree Discrepancy Lemma

The argument for 3-players naturally extends to k players in general. We define Fk : {−1, 1}Mk−1 ×([M ]
m

)k−1 → {−1, 1}. The partition of inputs is again the natural extension of the three player case: Player
1 gets a binary string of length M k−1 and each of the other k − 1 players receives a subset of [M ]. The

distribution λ that we choose on our inputs is
µ
S1,...,Sk−1(x)

(Mm)
k−1

2Mk−1−m
. We sketch the argument below.

The starting point is to write the expression for discrepancy w.r.t an arbitrary cylinder intersection φ,
generalizing (7)

discφk(Fk) =∣∣∣∣
∑

x,S1,...,Sk−1

Fk(x, S
1, . . . , Sk−1)φ(x, S1, . . . , Sk)

·λ(x, S1, . . . , Sk−1)

∣∣∣∣ (31)
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where φ is the intersection of k cylinders φ1, . . . , φk , and can be expressed as below:

φ(x, S1, . . . , Sk) =

( k−1∏

i=1

φi(x, S1, . . . , Sk−i−1, Sk−i+1, . . . , Sk−1)
)

× φk(S1, . . . , Sk−1)

This changes to the more convenient expected value notation as follows:

discφk(Fk) = 2m
∣∣∣∣Ex,S1,...,Sk−1Fk(x, S

1, . . . , Sk−1)

×φ(x, S1, . . . , Sk−1)µS1,...,Sk−1

(
x
)∣∣∣∣ (32)

where, as before, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}Mk−1 ×
([M ]
m

)k−1
. Then, we

use very similar argument of combining triangle inequality with Cauchy-Schwarz as was used in the three
player case for going from (8) to (12). Applying this k−1 times to (32), we get the following generalization
of (12):

(discφk(Fk))2k−1 ≤
22k−1mES1

0 ,S
1
1 ,...,S

k−1
0 ,Sk−1

1
Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
(33)

where,

Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)

=

∣∣∣∣Ex∈{0,1}Mk−1

∏

u∈{0,1}k−1

(
Fk(x, S

1
u1
, . . . , Sk−1

uk−1
)

× µS1
u1
,...,Sk−1

uk−1
(x)

)∣∣∣∣ (34)

As before we look at a fixed Si0, S
i
1, for i = 1, . . . , k− 1. Let r = max{|S1

0 ∩ S1
1 |, . . . , |Sk−1

0 ∩Sk−1
1 |}. We

now generalize Claim 8:

Claim 15

Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
≤ 2(2k−1−1)r

22k−1n
(35)

Proof:For any boolean string u, let u[i] denote its ith bit. Since Fk is -1/1 valued, we have

Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)

≤
∣∣∣∣Ex∈{0,1}Mk−1

[ ∏

u∈{0,1}k−1

µS1
u[1]

,...,Sk−1
u[k−1]

(x)

]∣∣∣∣ (36)
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Wlog, assume r1 ≤ r2 ≤ · · · ≤ rk−1 = r. Consider any arbitrary total order on points in {0, 1}k−1 that
implies x < y if the hamming weight of x is less than that of y. Let u0, . . . , u2k−1−1 be the enumeration of
points in the cube according to increasing order. So, u0 = 00 . . . 0 and u2k−1−1 = 11 . . . 1. Denote by ti, the
Hamming weight of ui for 0 ≤ i ≤ 2k−1− 1. Let the set of indices at which ui has a 1 be {j1, . . . , jti}. Let
Ai be the set of size m, consisting of k − 1-tuples in M k−1 indexed by the k − 1 sets S1

ui[1], . . . , S
k−1
ui[k−1]

.
For any k − 1-tuple w, let w[i] denote its ith co-ordinate. Let,

Yi = {xw
∣∣w ∈ Ai;∀1 ≤ ` ≤ ti : w[j`] ∈ Sj`1 − S

j`
0 } (37)

Zi = {xw|w ∈ Ai} (38)

Note that |Zi| = m for all i. For i = 0, t0 = 0 and hence, Y0 = Z0. Thus |Y0| = m. For i > 0,
|Yi| = m− rjti ≥ m− r. Then, for 0 ≤ i < 2k−1 − 1, define recursively

Hui(Zi − Yi, S1
0 , S

1
1 . . . , S

k−1
0 , Sk−1

1 )

= EYi

[
µ(Zi)Hui+1(Zi+1 − Yi+1, S

1
0 , . . . , S

k−1
1 )

]
(39)

and for i = 2k−1 − 1, let

Hui(Zi − Yi, S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1 ) = EYi

[
µ(Zi)

]
(40)

It is not hard to verify (recalling that Z0 = X0),

RHS of (36) = H0(S1
0 , S

1
1 , . . . , S

k−1
0 , Sk−1

1 ) (41)

Let γi be the maximal value of function Hui . Then, recalling that µ is just a probability distribution,
one immediately obtains that γi ≤ 2−|Yi|γi+1, for i < 2k−1 − 1. Since |Y0| = m, γ0 ≤ 2−mγ1. For
1 < i < 2k−1 − 1, recall |Yi| ≥ m− r, whence γi ≤ 2−(m−r)γi+1 . Combining all these with the fact that
γ2k−1−1 ≤ 2−(m−r), we obtain γ0 ≤ 2(2k−1−1)r/22k−1m that proves Claim 15.

Claim 7 generalizes to the following:

Claim 16 Let r < d. Then,

Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
= 0 (42)

Proof: Let us consider the same total order of points in {0, 1}k−1 as in the proof of Claim 15. Let Yi and
Zi be as given by (37) and (38) respectively. Define gi = EYif(Zi)µ(Zi)gi+1, for 1 ≤ i ≤ 2k−1 − 1 and
gi = 1 for i = 2k−1. Then,

Gk
(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)

=

∣∣∣∣EY0

[
f(Z0)µ(Z0) · g1(x)

]∣∣∣∣ (43)

where g1(x) is a function of at most r variables in Z0 = Y0. Thus, recalling that r < d and Ex∼µf(x)g(x) =
0 for any g that depends on less than d variables, we see that (43) evaluates to zero.
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Application of Claim 15 and Claim 16 to (34) leads to following generalization of (16):

(discφk(Fk))
2k−1

≤
m∑

j=d

2(2k−1−1)j

×
∑

j1+···+jk−1=j

Pr
[
N1 = j1 ∧ · · · ∧Nk−1 = jk−1

]
(44)

where, N i = |Si0 ∩ Si1| for 1 ≤ i ≤ k − 1.
This further generalizes (17) to get:

(discφk(Fk))2k−1

≤
m∑

j=d

2(2k−1−1)j

×
∑

j1+···+jk−1=j

(
m

j1

)
· · ·
(
m

jk−1

)(M−m
m−j1

)
· · ·
( M−m
m−jk−1

)

(M
m

)k−1
(45)

Applying simple combinatorial identities as in the last section, (45) leads to (1), proving the Multiparty
Degree-Discrepancy Lemma.

Finishing the proof of Lemma 13

We continue from (29). Noting that the number of sequences Y for which |IY | = k is exactly
(
n
k

)
(2m−1 −

1)n−k and using the triangle inequality with the binomial theorem, we get.

|Sn|m ≤
n∑

k=0

(
n

k

)
(2m−1 − 1)n−k2n−k2kµkd−1

= 2nm
(

1− 1− µd−1

2m−1

)n
(46)

Taking the mth root of both sides of (46), using the inequality (1−x)1/m ≤ 1−x/m if 0 ≤ x < 1 amd
m > 1 after rearranging, we obtain

1− µd ≥
1− µd−1

m2m−1
≥ 1− µ0(

m2m−1
)d (47)

Substituting β = 1− µ0, one gets µd ≤ exp
(
− β

(m2m−1)d

)
. This immediately yields (27) in Lemma 13.
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