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Abstract

Proving superpolylogarithmic lower bounds for dynamic
data structures has remained an open problem despite
years of research. Recently, Pǎtraşcu proposed an
exciting new approach for breaking this barrier via a
two player communication model in which one player
gets private advice at the beginning of the protocol.
He gave reductions from the problem of solving an
asymmetric version of set-disjointness in his model to
a diverse collection of natural dynamic data structure
problems in the cell probe model. He also conjectured
that, for any hard problem in the standard two-party
communication model, the asymmetric version of the
problem is hard in his model, provided not too much
advice is given.

In this paper, we prove several surprising results
about his model. We show that there exist Boolean
functions requiring linear randomized communication
complexity in the two-party model, for which the asym-
metric versions in his model have deterministic proto-
cols with exponentially smaller complexity. For set-
disjointness, which also requires linear randomized com-
munication complexity in the two-party model, we give
a deterministic protocol for the asymmetric version in
his model with a quadratic improvement in complexity.
These results demonstrate that Pǎtraşcu’s conjecture,
as stated, is false. In addition, we show that the ran-
domized and deterministic communication complexities
of problems in his model differ by no more than a loga-
rithmic multiplicative factor.

We also prove lower bounds in some restricted
versions of this model for natural functions such as set-
disjointness and inner product. All of our upper bounds
conform to these restrictions.

1 Introduction

Obtaining lower bounds for dynamic data structures in
the cell probe model has been a challenge. In 1989, Fred-
man and Saks [5] introduced the chronogram method
and used it to prove an Ω(log n/ log log n) lower bound
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on the worst case time per operation for the partial sums
problem. In 1998, Alstrup, Husfeldt and Rauhe [1] got
the same bound for the dynamic marked ancestor prob-
lem. Reductions from these problems to a variety of
other dynamic data structure problems have also been
obtained [1, 6, 7, 8]. In 2004, Pǎtraşcu and Demaine
[17] introduced a beautiful information theoretic tech-
nique to prove Ω(log n) lower bounds for the partial
sums problem and dynamic connectivity in undirected
graphs. More recently, Pǎtraşcu [16] used a reduc-
tion from set disjointness in an asymmetric two-party
communication model to prove an Ω(log n/(log log n)2)
lower bound for the dynamic marked ancestor problem.
Despite these advances, it remains a longstanding open
problem to prove polynomial (or even superpolyloga-
rithmic) lower bounds for any dynamic data structure
problem.

Pǎtraşcu [15] listed a diverse collection of natural
dynamic data structure problems that are conjectured
to require superpolylogarithmic time per operation,
including determining the existence of paths in dynamic
directed graphs and finding the length of shortest paths
in dynamic undirected graphs. He proposed an exciting
new approach for obtaining polynomial lower bounds for
all of these problems using a new communication model

that we call the A
B→ (B ↔ C) model. It augments the

standard two-party communication model between two
players Bob and Charlie, by providing advice (given by
Alice) to one of the players (Bob).

For any Boolean function f : X × Y →
{0, 1}, Pǎtraşcu defined an asymmetric communi-
cation problem SELk×1

f : {1, . . . , k} × Xk × Y →
{0, 1}, where SELk×1

f (i, x1, . . . , xk, y) = f(xi, y). In

the A
B→ (B ↔ C) model, there are two players,

Bob and Charlie, who, with advice from Alice, com-
pute SELk×1

f (i, x1, . . . , xk, y) as follows: Alice receives
x1, . . . , xk and y, Bob receives y and i, and Charlie re-
ceives x1, . . . , xk and i. Alice first sends some advice
privately to Bob and then remains silent. Thereafter,
Bob and Charlie can communicate back and forth, alter-
nating arbitrarily, until they have computed the output
of the function. The last bit that is sent is the output
of the protocol, which is supposed to be the value of the
function.



Pǎtraşcu presented simple reductions from the

problem of computing SELk×1
DISJ in the A

B→ (B ↔ C)
model to many dynamic problems in the cell probe
model. (DISJ denotes the set-disjointness problem,
where DISJ(x, y) = 0 if and only if x and y, when
viewed as subsets of {1, . . . , n}, are disjoint, i.e. for all
i ∈ {1, . . . , n}, x[i] = 0 or y[i] = 0.) These reductions
prove that, if SELk×1

DISJ cannot be solved by a protocol
in which Alice gives o(ntw) bits of advice and Bob and
Charlie communicate a total of o(tw) bits, then the
worst case time per operation of the dynamic problems
is Ω(t) in the cell probe model with w bit words.

He conjectured that there exist positive constants
δ < 1 and γ > 1+δ such that SELk×1

DISJ cannot be solved
for k ∈ Θ(nγ) if Alice gives o(n1+δ) bits of advice and
Bob and Charlie communicate a total of o(nδ) bits. If
his conjecture is true, then all of the dynamic problems
presented in [15] require nΩ(1) time per operation in
the cell probe model with O(log n) bit words. More
generally, he stated the following conjecture, which
does not specify whether the communication protocols
involved are deterministic or randomized.

Conjecture 1.1. (Pǎtraşcu) Let f : {0, 1}n ×
{0, 1}n → {0, 1} be any function. Consider a protocol

π for computing SELk×1
f in the A

B→ (B ↔ C) model.
If Alice sends o(k) bits, then the cost of communication
between Bob and Charlie is Ω(c), where c is the 2-party
communication complexity of f .

The intuition is that, if Alice sends o(k)
bits of advice, then, for many of the instances
f(x1, y), . . . , f(xk, y), she is providing very little infor-
mation. This suggests that, in the worst case, solving
one of the these instances should be essentially as hard
as computing f in the standard two-party model. Fur-
thermore, the generality of this conjecture, namely that
it makes no assumptions about the structure of f , in-
vites the possibility of an information theoretic round
elimination argument.

To our surprise, this intuition is not correct. While
it is true that Alice cannot provide much information
about the xi’s, it turns out that she can provide a
succinct message that will help Charlie learn y. This
is the main intuition behind all of our upper bounds.

For example, it is easy to disprove Pǎtraşcu’s con-
jecture for deterministic protocols by considering the
equality function, EQ, where EQ(x, y) = 1 if and only
if x = y. It has a very simple deterministic protocol
in which Alice sends Bob the minimum j ∈ {1, . . . , k}
such that y = xj . If there is no such j, she sends him
0. Bob forwards this message to Charlie, who can de-
termine that the output should be 1 if and only if he

receives j 6= 0 and xj = xi. Here, Alice teaches y to
Charlie (via Bob) using a very short message.

Our first main result exploits this intuition to prove
a much stronger result, using notions from learning the-
ory and recent results about sign matrices. Specifi-
cally, it shows that, even if a Boolean function f has
large randomized complexity in the two-party model,
SELk×1

f can have small deterministic complexity in the

A
B→ (B ↔ C) model.

Theorem 1.1. There exists a Boolean function f
with two-party randomized communication complexity
Ω(n) such that SELk×1

f has a deterministic protocol in

the A
B→ (B ↔ C) model in which the total number of

bits communicated is O(log2 k).

Note that when k ∈ nO(1), the total amount of commu-
nication is O(log2 n).

Interestingly, we prove the upper bound using the
harder side of Yao’s min-max principle. Although it is
standard to use the min-max principle for proving lower
bounds, we are not aware of its application to prove
upper bounds, especially for communication protocols.

A natural hope would be that Pǎtraşcu’s conjecture
is still true for certain specific Boolean functions with
Ω(n) two-party randomized complexity, such as set
disjointness. Our next result shows that this is not the
case for set disjointness. We directly design a protocol
for set disjointness, in which Alice reveals a carefully
chosen subset of y’s bits so that, on the remaining bits,
determining DISJ(xi, y) is easy, for each i ∈ {1, . . . , k},
because either xi has few 1’s or a large fraction of the
positions of 1’s in xi are also positions of 1’s in y.

Theorem 1.2. There is a deterministic protocol for

SELk×1
DISJ in the A

B→ (B ↔ C) model, in
which the total number of bits communicated is
O
(√

n(log k)(log k + log2 n)/
√
log n

)

.

Note that when k ∈ nO(1), the amount of communi-
cation is O

(√
n log5/2 n

)

. It is worth remarking that
the above theorem does not eliminate the possibility of
proving strong lower bounds for dynamic data structure

problems via the A
B→ (B ↔ C) model. To obtain poly-

nomial lower bounds for the dynamic problems listed
above, it suffices to prove that, for every protocol in
which Alice sends o(k) bits of advice, Bob and Char-
lie must communicate Ω(nδ) bits to compute SELk×1

DISJ ,
for some constant 0 < δ ≤ 1/2. Theorem 1.1 and
Theorem 1.2 show that such a lower bound argument
has to crucially use the structure of the set disjointness
function.



We also show that the randomized and determin-
istic communication complexities of solving asymmet-

ric problems in the A
B→ (B ↔ C) model do not dif-

fer by much. Specifically, for any Boolean function f
with two-party randomized communication complexity
R, we show that SELk×1

f has deterministic communi-
cation complexity O((R + log n + log k) log k) in the

A
B→ (B ↔ C) model. This immediately shows that

problems which, in the 2-party model, have efficient ran-
domized protocols, but are hard deterministically, give

rise to easy asymmetric problems in the A
B→ (B ↔ C)

model.
Finally, we provide lower bounds in the A

B→ (B ↔
C) model for some restricted classes of protocols, which
include those protocols used for our upper bounds in
Theorem 1.1 and Theorem 1.2. In those protocols,
Alice sends far fewer bits of advice than she is allowed
to. Moreover, after Alice’s message is sent, Bob and
Charlie engage in a very limited form of interaction. Our
lower bounds show that each of these restrictions, by
itself, does not allow improvements in our upper bounds.
For analyzing protocols where Alice’s advice is less than√
n bits, we convert the problem into a direct product

problem with
√
n instances. Then we obtain our lower

bounds using recent strong direct product theorems.
For analyzing restricted interactions between Bob and
Charlie, we present an information theoretic argument.
We show that, if there is a limited interaction protocol
in which Bob and Charlie communicate few bits, then
x1, . . . , xk can be compressed to substantially fewer than
kn bits, which is impossible, in general.

These arguments suggest that, for more efficient
protocols, significantly new ideas are needed. Our lower
bound arguments also highlight the difficulty one faces
in analyzing protocols in which Alice sends more than
n bits of advice. This remains the main challenge for
proving stronger lower bounds.

Overview of Paper. In Section 2, we introduce no-
tation and define necessary concepts from communica-
tion complexity. In Section 3, we present a function
f that has Ω(n) randomized 2-party complexity, but
such that SELk×1

f can be solved deterministically with

only logO(1) k communication. We also prove that ran-
domization does not help for solving SELk×1

f in the

A
B→ (B ↔ C) model. In Section 4, we prove our upper

bound for set-disjointness. In Section 5, we prove lower
bounds in restricted settings. We conclude in Section 6
with some open problems.

2 Preliminaries

Communication complexity was first studied for the
two-party model [21], in which the input is partitioned
between two players who compute a Boolean function
of their inputs. For any Boolean function f : X ×
Y → {0, 1}, we use D(f) to denote the deterministic
complexity of f , which is the minimum number of
bits communicated in any deterministic protocol that
computes f correctly on all inputs. If µ : X×Y → [0, 1]
is a probability distribution and ǫ ≥ 0, the ǫ-error
complexity of f for distribution µ, which we denote by
Dǫ

µ(f), is the minimum number of bits communicated
in any deterministic protocol π that computes f and
errs on a set of inputs with total weight at most ǫ. Note
that Dǫ

µ(f) ≤ D(f) ≤ n+ 1 for any f, µ and ǫ.
In a randomized two-party protocol, the two players

are provided with a public (shared) sequence r of
random bits. A protocol π for f has error probability
ǫ if max{Pr[π(x, y, r) does not output f(x, y)] | x ∈
X, y ∈ Y } = ǫ, where the probability is taken over
all choices of r. The ǫ-randomized complexity of f ,
which we denote by Rǫ(f), is the minimum over all
randomized protocols for f with error probability at
most ǫ, of the maximum number of bits communicated
during any execution of the protocol. Yao (see [20])
proved the following relationship between randomized
and distributional communication complexities.

Theorem 2.1. For any Boolean function f , Rǫ(f) =
maxµ

{

Dǫ
µ(f)

}

.

Newman [14] proved that any randomized two-party
communication protocol (with public randomness) can
be simulated by a two-party protocol that uses O(log n)
random bits. Implicit in Newman’s proof is a more gen-
eral result that holds for any nonuniform model of com-
putation, such as communication protocols, boolean cir-
cuits, decision trees and non-uniform Turing machines:

Theorem 2.2. If there is a randomized computation
for a function with domain U and error probability at
most ǫ, then there is a randomized computation for that
function with the same cost and error probability O(ǫ)
that uses only O(log log |U |) random bits.

Proof. A randomized computation of a function can
be expressed as a function of both the input and the
choice of random bit string. Let A be a randomized
computation of a function f with domain U and error
probability at most ǫ. Then for all inputs u ∈ U ,
the probability that A(u, r) outputs f(u) is at least
1 − ǫ, where the probability is taken over all choices
r for the random bit string. We show that there exist
t ∈ O(log |U |) strings r1, . . . , rt such that, for each input



u, if we choose a string r at random from r1, . . . , rt, then
A(u, r) = f(u) with probability at least 1 − δ, where
δ ∈ O(ǫ).

Suppose r1, . . . , rt are chosen independently at ran-
dom from the space of random strings used by A. For
any input u ∈ U , the probability that A(u, ri) = f(u)
is at least 1 − ǫ, for all i = 1, . . . , t. Hence the ex-
pected number of these random strings for which A
outputs f(u) on input u is at least (1 − ǫ)t. By the
Chernoff bound, there exists δ ∈ O(ǫ) such that the
probability that the number of such strings is less than
(1 − δ)t is exponentially small in t. Hence, it is possi-
ble to make this probability less than 1/|U | by choos-
ing t ∈ Θ(log |U |). The union bound implies that, with
probability less than 1, there is an input u ∈ U for which
|
{

j ∈ {1, . . . , t} | A(u, rj) = f(u)
}

| < (1 − δ)t. Hence,
there exist choices of r1, . . . , rt such that, for each input
u ∈ U , |

{

j ∈ {1, . . . , t} | A(u, rj) = f(u)
}

| ≥ (1− δ)t.
On any input u ∈ U , the computation A′ chooses

j ∈ {1, . . . , t} uniformly at random and performs
A(u, rj). Then Pr[A′(u, j) = f(u)] ≥ 1− δ.

For any protocol π in the A
B→ (B ↔ C) model,

we define CCA→B(π) to be the worst case number of
bits sent by Alice and CCB↔C(π) to be the worst case
number of bits communicated between Bob and Charlie.

3 Alice can Derandomize

We begin by showing that every randomized protocol for

SELk×1
f in the A

B→ (B ↔ C) model can be efficiently
derandomized.

Theorem 3.1. Consider any Boolean function f :
{0, 1}n × {0, 1}n → {0, 1} and let π be a randomized

protocol for SELk×1
f in the A

B→ (B ↔ C) model with

CCA→B

(

π
)

= m, CCB↔C

(

π
)

= c, and error proba-
bility at most 1

2 − ǫ, for some constant ǫ > 0. Then,

there exists a deterministic protocol π′ for SELk×1
f such

that CCA→B

(

π′) = O((m+log k+log n)(log k)/ǫ2) and

CCB↔C

(

π′) = O((c+ log k + log n)(log k)/ǫ2).

Proof. By Theorem 2.2, we may assume that π
uses only O(log n + log k) random bits. Choose t ∈
Θ((log k)/ǫ2) strings r1, . . . , rt independently at ran-
dom from the space of random strings used by π.
Let x ∈ {0, 1}nk, y ∈ {0, 1}n, and i ∈ {1, . . . , k}.
Then, for each j ∈ {1, . . . , t}, Pr[π(x, y, i, rj) outputs
f(xi, y)] ≥ 1

2 + ǫ. A simple application of the Cher-
noff bound shows the probability that π(x, y, i, rj) does
not output f(xi, y) for the majority of j ∈ {1, . . . , t}
is less than 1/k. Hence, there is a nonzero probability
that, for all i ∈ {1, . . . , k}, π(x, y, i, rj) outputs f(xi, y)
for the majority of j ∈ {1, . . . , t}. Thus, given x, y,

Alice can find a sequence of t ∈ Θ((log k)/ǫ2) strings
r1, . . . , rt for which this is true. She sends these strings
to Bob, together with the messages a1, . . . , at she sends
in π(x, y, i, rj) for j = 1, . . . , t. Bob forwards the strings
r1, . . . , rt to Charlie. Then, for all j ∈ {1, . . . , t}, Bob
and Charlie run π(x, y, i, rj) with Alice’s message aj and
take the output that is produced most often.

We immediately get the following corollary:

Corollary 3.1. Let f : {0, 1}n × {0, 1}n → {0, 1} be
any Boolean function such that Rǫ(f) = (log n)O(1), for
some constant ǫ < 1/2. If k ∈ nO(1), then there exists a

deterministic protocol for SELk×1
f in the A

B→ (B ↔ C)

model where Alice sends O
(

log2 n
)

bits to Bob and Bob

and Charlie communicate (log n)O(1) bits.

There are well known functions that have very high
deterministic complexity in the 2-party model, but have
efficient 2-party randomized protocols. For example,
the equality function, EQ, has D(EQ) = n + 1, but
has Rǫ(EQ) ∈ O(1) for any constant ǫ > 0. The
greater than function, GT , defined by GT (x, y) = 1
if and only if x ≥ y, also has D(GT ) ∈ Ω(n), but has
Rǫ(GT ) ∈ O(log n) for any constant ǫ > 0. It follows
from Corollary 3.1 that both SELk×1

EQ and SELk×1
GT have

efficient deterministic protocols in the A
B→ (B ↔

C) model. These functions witness the refutation of
Patrascu’s conjecture for deterministic protocols.

3.1 Alice as Teacher Next, we show that there
exists a Boolean function f with very high bounded
error randomized complexity in the two-party model,
for which SELk×1

f has efficient deterministic protocols

in the A
B→ (B ↔ C) model.

We need some definitions from computational learn-
ing theory. For any set S of Boolean functions over
{0, 1}n, we associate a Boolean matrix MS whose rows
are indexed by {0, 1}n and whose columns are indexed
by S, such that MS [x, f ] = f(x). A randomized al-
gorithm L is said to learn S with confidence δ and
accuracy ǫ from m random examples drawn from a
distribution µ on {0, 1}n if, for each f ∈ S and for
x1, . . . , xm ∈ {0, 1}n chosen independently from the dis-
tribution µ, given (x1, f(x1)), . . . , (xm, f(xm)), L out-
puts a Boolean hypothesis function h : {0, 1}n → {0, 1}
that, with probability at least 1− δ, is ǫ-close to f , i.e.
if x is chosen from µ, then Pr

[

h(x) 6= f(x)
]

≤ ǫ. The
Vapnik-Chervonenkis (VC) dimension, vc(M), of a ma-
trix M is the largest number d such that M has a d×2d

sub-matrix all of whose columns are distinct, i.e., each
vector in {0, 1}d appears exactly once as a column in
the sub-matrix. The following result, known as the VC



Theorem [9], shows the relevance of VC dimension to
learning.

Theorem 3.2. Let S be set of Boolean functions over
{0, 1}n and let µ be an arbitrary distribution on {0, 1}n.
Then there exists a randomized algorithm L that learns
S with confidence δ and accuracy ǫ from m random
examples drawn from µ, where

m ∈ O

(

1

ǫ
log

1

δ
+

vc
(

MS
)

ǫ
log

1

ǫ

)

.

Furthermore, the hypothesis that L outputs agrees with
all the examples it is given as input.

For any Boolean function f : {0, 1}n × {0, 1}n →
{0, 1}, let Mf denote the matrix, whose rows and
columns are indexed by {0, 1}n, such that Mf [x, y] =
f(x, y). If, for each y ∈ {0, 1}n, we define the Boolean
function fy : {0, 1}n → {0, 1} such that fy(x) = f(x, y)
and we let S = {fy | y ∈ {0, 1}n}, then MS = Mf .
Using an elegant argument, Kremer, Nisan and Ron [11]
showed that, if Mf has small VC-dimension, then f has
small distributional communication complexity under
product distributions (i.e. under distributions that can
be expressed as the product of two distributions over
{0, 1}n). We exploit this connection to learning theory
to prove the following result.

Theorem 3.3. Let f : {0, 1}n × {0, 1}n → {0, 1} be a
Boolean function and let 0 ≤ ǫ < 1 be a constant. Then,
there exists a randomized protocol π for SELk×1

f in the

A
B→ (B ↔ C) model with error probability at most ǫ

and

CCA→B

(

π
)

,CCB↔C

(

π
)

∈ O

(

1

ǫ
vc
(

Mf

)

log
1

ǫ
log k

)

.

Proof. Using Yao’s min-max principle (Theorem 2.1),
our task reduces to showing that, for every distribution

µ on {1, . . . , k}×
(

{0, 1}n
)k×{0, 1}n, there exists a de-

terministic protocol πµ for SELk×1
f with error probabil-

ity at most ǫ and CCA→B

(

πµ

)

,CCB↔C

(

πµ

)

having the
desired bound. We do this by first constructing a ran-
domized protocol that has the required error probability
over its internal coin tosses and over µ. A standard av-
eraging argument then yields the desired deterministic
protocol.

Let S denote the set of functions {fy | y ∈ {0, 1}n}.
For any inputs x = (x1, . . . , xk) ∈ {0, 1}nk and y ∈
{0, 1}n, Alice can determine the conditional distribution
µx,y induced on {1, . . . , k}. By Theorem 3.2, there
is a randomized algorithm L that learns the function

fy ∈ S with confidence and accuracy ǫ/2 from m
random examples drawn from µx,y, where

m ∈ O

(

2

ǫ
log

2

ǫ
+

2vc(MS)

ǫ
log

2

ǫ

)

.

Alice draws m samples i1, . . . , im from µx,y and
sends Bob a message containing

(

i1, f(xi1 , y)
)

, . . . ,
(

im, f(xim , y)
)

.

This requires communicating at most m(1+ log k) bits.
Bob transmits this message to Charlie. In learning
theoretic terms, Alice, the teacher, is trying to teach
fy to the learning algorithm Charlie. Charlie uses
the randomized algorithm L to compute a hypothesis
h consistent with Alice’s m examples such that the
probability h(xi) 6= f(xi, y) is at most ǫ. Note that
this probability is over the random coin tosses used by
Alice to sample points and over the distribution µx,y for
i. Finally, Charlie completes the protocol by sending
h(xi) to Bob.

By a standard averaging argument, Alice’s coin
tosses can be fixed such that the resulting deterministic
protocol has error probability at most ǫ for distribution
µ.

The above theorem shows that if Mf has at most

polylogarithmic VC-dimension, then SELk×1
f has very

efficient protocols in the A
B→ (B ↔ C) model.

Recently, Sherstov [19], using earlier results of Ben-
David et.al. [4] and Linial and Shraibman [13], showed
that there exists a function f with high randomized
communication complexity in the two-party model such
that Mf has low VC-dimension. This result is implicit
in the proof of Theorem 3.5 of his paper.

Theorem 3.4. For any constant 0 ≤ ǫ < 1, there are
functions f such that Mf has VC-dimension O(1) and
Rǫ(f) ∈ Ω(n).

Now, we have everything in place to prove our first
main result.

Theorem 1.1. There exists a Boolean function f
with two-party randomized communication complexity

Ω(n) such that, for n ≤ k ∈ 2(logn)O(1)

, SELk×1
f has a

deterministic protocol in the A
B→ (B ↔ C) model, in

which Alice sends Bob O
(

log2 k
)

bits and then Bob and

Charlie communicate a total of O
(

log2 k
)

bits.

Proof. By Theorem 3.4, there is a function f such
that Rǫ(f) ∈ Ω(n) and vc

(

Mf

)

= O(1). It follows



from Theorem 3.3 that SELk×1
f has a randomized pro-

tocol π in the A
B→ (B ↔ C) model in which Al-

ice sends O(log k) bits of advice and Bob and Char-
lie communicate O(log k) bits. Finally, applying The-
orem 3.1, we derandomize π to obtain a determinis-
tic protocol π′ such that CCA→B

(

π′) = O
(

log2 k
)

and

CCB↔C

(

π′) = O
(

log2 k
)

.

This disproves Conjecture 1.1, even for randomized
protocols.

4 An Upper Bound for Set Disjointness

In this section, we construct a protocol for SELk×1
DISJ

with o(n) communication complexity in the A
B→ (B ↔

C) model. Throughout the construction, it is helpful
to view the inputs x1, . . . , xk, and y as subsets of
{1, . . . , n}.

We begin by considering some inputs for which
computing DISJ is easy in the standard two-party
model.

Lemma 4.1. Let σ, d ≥ 1. There is a simple random-
ized two-party protocol for computing DISJ(x′, y) with
σ log n + 1 bits of communication and with error prob-
ability at most e−d for all x′, y ⊆ {1, . . . , n} such that
|x′| ≤ σ or |x′ ∩ y| > d|x′|/σ.

Proof. If |x′| ≤ σ, then Charlie sends each element
of x′ to Bob. Otherwise Charlie randomly selects σ
distinct elements of x′ and sends them to Bob. Since
each element of x′ is in {1, . . . , n}, it can be represented
using log n bits. If Bob receives any element that is in
y, he sends 1, to indicate that the sets are not disjoint.
Otherwise, he sends 0.

If |x′| ≤ σ, then this protocol always correctly
computes DISJ(x′, y). If |x′ ∩ y| > d|x′|/σ, then
Pr[u ∈ y | u ∈ x′] > d/σ, so Pr[this protocol incorrectly
computes DISJ(x′, y)] ≤ (1− d/σ)σ ≤ e−d.

The following protocol can be thought of as a
sequence of phases in which Alice sends a carefully
chosen index r ∈ {1, . . . , k} plus some of the elements
of xr ∩ y to Bob, who forwards the information to
Charlie. This allows Charlie, who knows x1, . . . , xk,
to learn information about y, specifically, that certain
elements of {1, . . . , n} are in y and that others are
not. Charlie can also check if any of the elements of
y that it was sent are in xi and, if so, knows that
DISJ(xi, y) = 1. If not, Charlie can compute a set
S such that xi ∩ y ⊆ S ⊆ {1, . . . , n}, which decreases in
size each phase. This continues until each of the possible
problem instancesDISJ(x1∩S, y), . . . , DISJ(xk∩S, y),
including DISJ(xi ∩ S, y) = DISJ(xi, y), can be

computed with error probability at most e−d using
the simple protocol of Lemma 4.1. This motivates
the following definition. For any S ⊆ {1, . . . , n}, let
EASY (S) = {r ∈ {1, . . . , k} | xr ∩ y 6⊆ S or |xr ∩ S| ≤
σ or |xr ∩S∩y| > d|xr ∩S|/σ}. Note that EASY (φ) =
{1, . . . , k}

Suppose that S′ ⊆ S. If r 6∈ EASY (S′), then
xr ∩ y ⊆ S′ ⊆ S, σ < |xr ∩ S′| ≤ |xr ∩ S|, and
|xr ∩ y ∩S| = |xr ∩ y ∩S′| ≤ d|xr ∩S′|/σ ≤ d|xr ∩S|/σ,
so r 6∈ EASY (S). Thus, EASY (S) ⊆ EASY (S′).

Theorem 4.1. Let σ, d ≥ 1. Then SELk×1
DISJ can be

computed by a randomized protocol with error probability

at most e−d in the A
B→ (B ↔ C) model, in which

Alice sends at most n(log k)/σ + dn(log n)/σ bits and
at most n(log k)/σ + dn(log n)/σ + σ log n + 2 bits are
communicated by Bob and Charlie.

Proof. Given x1, . . . , xk, and y, Alice performs the
following algorithm:

S ← {1, . . . , n}
while EASY (S) 6= {1, . . . , k} do

r ← min({1, . . . , k} − EASY (S))
Alice sends r and the elements of xr ∩ S ∩ y to Bob
S ← S − xr

In each iteration, since r 6∈ EASY (S), |xr ∩ S| > σ,
so the size of S decreases by more than σ. Thus, the
number of iterations is less than n/σ and Alice sends
at most n/σ indices in {1, . . . , k}, each of which can be
represented using log k bits.

Furthermore, r 6∈ EASY (S) implies that |xr ∩
S ∩ y| ≤ d|xr ∩ S|/σ}. Hence, in each iteration, the
number of elements of y sent by Alice is less than d/σ
times the number of elements removed from S. Since
S ⊆ {1, . . . , n}, Alice sends fewer than dn/σ elements
of y altogether. Each element of y can be represented
using log n bits. Thus, in total, Alice sends fewer than
n(log k)/σ + dn(log n)/σ bits to Bob.

Then Bob forwards Alice’s message to Charlie.
Charlie, by looking at Alice’s message, learns the final
S that Alice computed. Note that he also learns about
many elements that are not in y. For every index j 6∈ S
that Alice does not refer to in her message, Charlie
correctly infers j 6∈ y. Hence, it suffices for Charlie to
check whether any of the elements in y that Alice sent
are also in xi. If so, Charlie sends 1 and the protocol
terminates. Otherwise, Charlie sends 0, indicating that
xi ∩ y ⊆ S. In this case, Bob and Charlie perform
the simple randomized two-party protocol described in
Lemma 4.1 to compute DISJ(x′, y), where x′ = xi∩S,
using at most σ log n + 1 additional bits. Since i ∈
EASY (S), the error probability is at most e−d.



Note that the protocols in Lemma 4.1 and Theo-
rem 4.1 both have one-sided error: Whenever Charlie
ends by sending 1, saying that the sets xi and y are
not disjoint, he has a witness to their non-disjointness.
In the first of these protocols, all the communication
is from Charlie to Bob, except for the final bit, which
is from Bob to Charlie. In the second protocol, Alice
sends information to Bob, which he simply forwards to
Charlie. Then Charlie either sends information to Bob,
who sends the final bit, unless Charlie sent 1, in which
case Bob does not respond.

Setting d = log n and σ =
√
n log n and applying

Theorem 3.1 gives our upper bound for the set dis-
jointness function.

Theorem 1.2. There is a deterministic proto-

col for SELk×1
DISJ in the A

B→ (B ↔ C) model,
in which the total number of bits communicated is
O
(√

n log k(log k + log2 n)/
√
log n

)

.

5 Lower Bounds in Restricted Models

An interesting fact is that our upper bounds do not use

the full power of the A
B→ (B ↔ C) model. First, Alice

sends far fewer bits than she is allowed to. Second, Bob,
the receiver of Alice’s advice, is merely forwarding it to
Charlie without processing it in anyway. Third, there is
limited interaction between Bob and Charlie. We now
discuss the limitations that these restrictions place on

the power of the A
B→ (B ↔ C) model. In Section 5.1,

we prove our upper bounds cannot be substantially
improved, unless we allow Alice to give more than

√
n

bits of advice, even if players interact arbitrarily. In
Section 5.2, we complement this by showing the upper
bound for set-disjointness cannot be improved if Bob
and Charlie have limited interaction.

5.1 Lower Bounds via Strong Direct Product

Theorems In this subsection, we prove lower bounds

in the A
B→ (B ↔ C) model for SELk×1

f , provided that
the function f has a strong direct product theorem.

For any Boolean function f : {0, 1}n × {0, 1}n →
{0, 1}, let f (k) : {0, 1}nk × {0, 1}nk → {0, 1}k
denote the function such that, for all x1, . . . , xk,
y1, . . . , yk ∈ {0, 1}n, f (k)(x1, . . . , xk, y1, . . . , yk) =
(f(x1, y1), . . . , f(xk, yk)). Suppose that every c-bit com-
munication protocol for f has probability of success
σ < 1. Then a strong direct product theorem for f states
that any ck-bit protocol for f (k) has success probability
that is exponentially small in k.

There is a rich history of both positive and nega-
tive results for strong direct product theorems in com-
plexity theory, including Yao’s famous XOR Lemma.
Shaltiel [18] initiated the study of strong direct prod-

uct theorems in communication complexity, and proved
a strong direct product theorem for functions where
we have lower bounds via the discrepancy method over
product distributions. This includes functions such as
the inner product function. Lee, Shraibman, and Spalek
[12] strengthened Shaltiel’s result by proving a strong di-
rect product theorem for functions where we have lower
bounds via the discrepancy method over any distribu-
tion. There is no known lower bound for set disjointness
via the discrepancy method, although a weaker form
of a strong direct product theorem (with suboptimal
parameters) was obtained by Beame, Pitassi, Segerlind
and Wigderson [3]. Finally, Klauck [10] the following
optimal strong direct product theorem for set disjoint-
ness.

Theorem 5.1. There exist constants 0 < β < 1 and
α > 0 such that every randomized protocol which
computes DISJ(k) : {0, 1}nk×{0, 1}nk → {0, 1} using at
most βkn bits of communication has worst case success
probability less than 2−αk.

Using the above theorem, we obtain the following

lower bound for asymmetric set disjointness in the A
B→

(B ↔ C) model.

Theorem 5.2. There exist constants 0 < β < 1 and
α > 0 such that in any deterministic protocol for

SEL
√
n×1

DISJ
in the A

B→ (B ↔ C) model where Alice sends
at most α

√
n bits, Bob and Charlie must communicate

at least β
√
n bits.

Proof. Let α and β be constants that satisfy Theorem
5.1 and let k =

√
n.

Suppose, for sake of contradiction, that there is a
deterministic protocol for SELk×1

DISJ, where Alice sends
αk bits of advice to Bob, and then Bob and Char-
lie communicate c < βk bits. Using this protocol,
for every distribution µ on {0, 1}k×k × {0, 1}k×k, we

construct a deterministic ck-bit protocol for DISJ(k) :
{0, 1}k×k×{0, 1}k×k → {0, 1}k with large success prob-
ability (w.r.t. µ) at least 2−βk. Using Yao’s min-max
principle [20] with such protocol yields a contradiction
to Theorem 5.1. Hence, all that remains is to build
such protocols for every distribution µ.

Given inputs x′
1, . . . , x

′
k, y

′
1, . . . , y

′
k ∈ {0, 1}k, we

create inputs x1, . . . , xk, y ∈ {0, 1}n for SELk×1
DISJ as

follows: y = y′1 · · · y′k and, for each i ∈ {1, . . . , k},
xi = 0(i−1)kx′

i0
(n−i)k, i.e., it is all 0’s except for

the i’th block of k bits, which is x′
i. Let µ′ be the

distribution generated on {0, 1}nk×{0, 1}n by the above
transformation, given µ on {0, 1}

√
nk × {0, 1}

√
nk.

Alice’s αk-bit message partitions the space
{0, 1}nk × {0, 1}n into 2αk equivalence classes. Let



C be a largest equivalence class, w.r.t distribution µ′.
Since the protocol is deterministic, for every input
((x1, . . . , xk), y) ∈ C and i ∈ {1, . . . , k}, the protocol
answers correctly.

Since Bob and Charlie communicate at most c
bits on each input, then, for any ((x1, . . . , xk), y) ∈
C, we can output the entire vector of answers using
ck < βk

√
n bits of communication. Thus, the protocol

outputs a correct answer for DISJ(k) : {0, 1}k×k ×
{0, 1}k×k → {0, 1}k on all inputs from C. Since C
was chosen to be the largest equivalence class w.r.t
distribution µ′, the protocol is correct with probability
at least 2−αk over distribution µ. This, along with Yao’s
min-max theorem [20], contradicts Theorem 5.1, the
direct product theorem for set disjointness.

This lower bound matches our upper bound to
within factors of log n and log k. A similar lower bound
can also be obtained for any Boolean function that has
a strong direct product theorem.

5.2 Lower Bounds via Compression In all our
upper bounds, there is limited interaction between Bob
and Charlie. We formalize this as follows: First, as
usual, Alice sends m bits A = A(x1, . . . , xk, y) to Bob.
Then, π is a 1.5 round (m, ℓ, q)-protocol if there are
two rounds of communication between Bob and Charlie
that satisfy the following: In the first round, Bob
communicates ℓ bits B = B(y,A) to Charlie that does
not depend on i (equivalently Bob could forward ℓ bits
of Alice’s message to Charlie). In the second round,
Charlie communicates q bits C = C(x1, . . . , xk, i, B)
back to Bob. Finally, Bob, determines the answer
f(xi, y), from his knowledge of y, i, A, and C. Note that
there is no restriction on Alice’s advice, except that she
sends o(k) bits. The crucial restriction, beyond the fact
that there are only two rounds of communication after
Alice’s advice, is that Bob’s communication to Charlie
is independent of i. In that sense, he is engaging in only
half a round of communication.

Interestingly, 1.5 round protocols have non-trivial
power. The proof of Theorem 3.3, that re-
futes Pǎtraşcu’s conjecture in a strong way, em-
ploys just a 1.5 round (O(log2 n), O(log2 n), 1)-
protocol. For set-disjointness, we gave a 1.5 round
(

Õ(
√
n), Õ(

√
n), Õ(

√
n)
)

-protocol, where Õ ignores
polylogarithmic factors. It is fun to verify that func-
tions like equality and greater than can all be solved
cheaply, without even using the 0.5 round communica-
tion from Bob to Charlie, i.e. they both have determin-
istic (O(log n), 0, O(log n))-protocols.

In this section, we show the following limitations of
1.5 round protocols.

Theorem 5.3. For every 1.5 round (m, ℓ, q)-protocol
for computing SELk×1

DISJ
, we have ℓ · q ≥ n

35 provided
k ≥ 300n(n+m).

Theorem 5.3 is tight as it matches the upper bound
provided by Theorem 1.2. The lower bound here is
incomparable to Theorem 5.2 as we do not restrict
Alice’s advice like it does. Our next lower bound is for
the well known inner-product function, denoted by IP,
where IP(x, y) =

∑n
i=1 xiyi mod 2. The inner product

function is one of the hardest functions in the standard
two-party communication model.

Theorem 5.4. Let α > 2 be some constant. For every
1.5 round (m, ℓ, q)-protocol for computing SELk×1

IP
, we

have (ℓ+ q) ≥ n(α−2)
α provided k ≥ α(n+m).

The main idea in proving both of the above theo-
rems is to find an encoding of Charlie’s input x1, . . . , xk

using 1.5 round protocols. If the cost of the protocol
is small, our encoding compresses kn bits of informa-
tion to fewer bits. On the other hand, this is impos-
sible as x1, . . . , xk has entropy kn, yielding a contra-
diction. This idea can be quite cleanly carried out for
the inner-product function and so we begin by proving
Theorem 5.4. Implementing the compression idea for
disjointness is more involved and so we show it later.

Proof. [of Theorem 5.4] We assume for now that we
are given a deterministic protocol π contradicting the
theorem. Our goal is to give a scheme for encoding
x1, . . . , xk, where each xi is a uniformly chosen n bit
vector. Consider any input x1, . . . , xk of Charlie. By
averaging, there exists a message Mfixed that Bob sends
Charlie for at least 2n−ℓ many y’s. Thus, there exists a
set, Y, of n− ℓ many linearly independent vectors such
that Bob sends Mfixed on each of them. Our encoding
of x1, . . . , xk then contains the following.

• The set Y, using (n− ℓ) · n bits.

• Bob’s fixed message Mfixed, using ℓ bits.

• Alice’s message A(x1, . . . , xk, y) for each y ∈ Y
(using (n− ℓ) ·m bits).

• For each index i ∈ [k] and each y ∈ Y, the q bit
message C(x1, . . . , xk,Mfixed, i) sent from Charlie
to Bob (Uses only kq bits, because x1, . . . , xk to be
encoded is fixed and Mfixed is the same for each
y ∈ Y.)

• Extra information E consisting of the inner product
of each xi with a set Y ′ of ℓ more linearly indepen-
dent vectors such that Y ∪ Y ′ forms a basis of the



vector space {0, 1}n. Note that for each partial ba-
sis Y, we choose Y ′ in some pre-determined way.
Encoding E thus takes only k · ℓ bits.

The decoding follows simulating the player Bob in
protocol π for each i and each y ∈ Y. Given any such
encoding of x1, . . . , xk, the decoder can simulate Bob
since he knows y, i, Alice’s message A(x1, . . . , xk, y) and
Charlie’s message C(x1, . . . , xk,Mfixed, i). Hence, he
learns the answer IP (xi, y) because π gives the correct
answer. From this and the inner products in E, the
decoder learns all of x1, . . . , xk by solving a simple
system of linear equations of full rank. Because no
encoding of x1, . . . , xk can use less than its entropy
H(x1, . . . , xk), we have the following: (n − ℓ) · n +
ℓ + (n − ℓ) · m + qk + ℓk ≥ nk. Thus, k(q + ℓ) ≥
k
(

n− (n−ℓ)(n+m)+ℓ
k

)

Recalling that the theorem requires
k ≥ α(n+m), we are done.

The idea above can be used to obtain lower bounds
for set-disjointness as well but requires more work. The
main source of complication is the following: knowing
the inner-product of xi with a non-zero known vector
y provides 1 bit of information about xi. This is not
quite true for set-disjointness. If DISJ(xi, y) = 0,
then not much can be learned about xi. On the other
hand, if DISJ(xi, y) = 1, then we learn that indices at
which y has a 1, are indices where xi has zero. Thus,
in order to encode x1, . . . , xk efficiently, we would like
to choose a convenient set of y’s such that for many
i’s, DISJ(xi, y) = 1. Unfortunately, if we choose a
vector x and y at random, with very high probability
DISJ(x, y) = 0. Hence, we work with a restricted set
of vectors. Let Γx be the set of n bit vectors that have
exactly σx many 1’s. Similarly, let Γy be the set of n
bit vectors with σy many 1’s. It will be convenient for
us to set σx × σy ≤ 0.4n and σy = m/0.2. Our setting
of these parameters, together with the following fact,
ensures that a 0.85 fraction of vectors in Γy intersect
with any given vector in Γx.

Fact 5.1. For each x ∈ Γx, if y is chosen at random
from Γy, then Pry

[

DISJ(x, y) = 1
]

≥ exp
(

− 4σxσy

n

)

, if
σx, σy ≤ 1

4n.

Let Cover(xi, y) ⊆ [k] × [n] denote the indices of
xi that one learns are zero from learning DISJ(xi, y),
namely if DISJ(xi, y) = 1, then Cover(xi, y) =
{(i, j) | yj = 1} and if DISJ(xi, y) = 0, then
Cover(xi, y) = ∅. Similarly, for any Y ⊆ Γy, let
Cover((x1, . . . , xk),Y) = ∪i∈[k] ∪y∈Y Cover(xi, y).

The main lemma that enables efficient encoding of
x1, . . . , xk is the following:

Lemma 5.1. Consider any deterministic 1.5 round
(ℓ, q)-protocol, such that ℓ ≤ .2σy. For each x1, . . . , xk,
there exists a message Bfixed of Bob and a set Y ⊆ Γy

of size at most 30n such that:
1) ∀y ∈ Y, Bob’s message on y is Bfixed.
2) |Cover((x1, . . . , xk),Y)| ≥ 1

2nk.

Proving this lemma needs technical work. Before we
do that, let us see how the lower bound for disjointness
follows from Lemma 5.1 via compression:

Proof. [of Theorem 5.3] Given any x = x1, . . . , xk

and any 1.5 round (ℓ, q)- protocol for SELk×1
DISJ in

which Alice provides m bits of advice, our encoding of
x1, . . . , xk contains the following.

• The set Y from Lemma 5.1 (using 30n · n bits).

• Bob’s fixed message Bfixed (using ℓ = .2σy bits).

• Alice’s messages A(x1, . . . , xk, y) for each y ∈ Y
(using 30n ·m bits).

• For each i ∈ [k] and each y ∈ Y, the q bit
message C(x1, . . . , xk, Bfixed, i) sent from Charlie
to Bob. (Using only kq bits, because x1, . . . , xk to
be encoded is fixed and Bfixed is the same for each
y ∈ Y.)

• The remaining information E about x1, . . . , xk

that is not learned from Cover((x1, . . . , xk),Y).
As |Cover((x1, . . . , xk),Y)| > 0.5nk, there are at
most

(

0.5nk
σxk

)

possibilities left for placing the ones
in x1, . . . , xk. This can be transmitted in e =
log

((

0.5nk
σxk

))

bits.

The decoding follows Bob’s protocol for each i and
each y ∈ Y. Given any such encoding of x1, . . . , xk,
the decoder can simulate Bob as needed he knows y, i,
Alice’s message A(x1, . . . , xk, y) and Charlie’s response.
Hence, he learns the answer DISJ(xi, y) from the pro-
tocol for each y ∈ Y and thus determines the indices in
Cover((x1, . . . , xk),Y) where x1, . . . , xk has zeroes. By
definition, E communicates the remaining information
about x1, . . . , xk and so we correctly decode.

Because no encoding of x1, . . . , xk can use less than
its entropy H(x1, . . . , xk), we have the result

30n · n+ .2σy + 30n ·m+ qk +H(E) ≥ H(x1, . . . , xk).

Note that H(x1, . . . , xk) = k · log
((

n
σx

))

. Thus,

H(x1, . . . , xk)−H(E) = log

((

n

σx

)k

/

(

0.5nk

σxk

))

.

Using Sterling’s approximation for σx < n/4, it is not
hard to verify H(x1, . . . , xk) −H(E) ∼ σxk. Also, the



theorem requires k ≥ 300n(n + m), so that 30n · n +
.2σy + 30n ·m ≤ .1σxk. This leaves, qk ≥ .9σxk, giving
the result q ≥ .9σx = .9 · .16nσy

≥. Now recalling, that we

set σy = m/0.2, we get q ≥ .9 · .16n·.2m ≥ n
35m .

All that remains is to prove that the set
Y(x1, . . . , xk) promised by Lemma 5.1, exists for each
x1, . . . , xk. We will do it using the probabilistic method,
in two stages. First we will construct an intermediate
set Y0(x1, . . . , xk), with some nice properties. This will
allow us to obtain our final desired set by picking ele-
ments from Y0 at random.

Lemma 5.2. For each x1, . . . , xk, there exists a set
Y0(x1, . . . , xk) such that Bob sends the same message
for each y ∈ Y0(x1, . . . , xk) satisfying the following
conditions:

• |Y0(x1, . . . , xk)| ≥ 10 · .8σy · |Γy|.

• Let I(x1, . . . , xk) = {i | Pry∈Y0

[

DISJ(xi, y) =
1] > 0.2}. Then, |I(x1, . . . , xk)| > 0.7k.

Before we prove Lemma 5.2, let us show why such
a Y0 helps us construct Y. We will need one more
fact that formalizes the following natural intuition: if
we take a sufficiently large subset of Γy, then the
distribution of the ones of the elements of this subset
is fairly well spread out among indices in [n]. For any
such set S ⊂ Γy, let C(S) =

{

i | Pry∈S [yi = 1] ≤ 1
2n

}

.

Lemma 5.3. Let |S| > 2·.8σy ·|Γy|. Then,
∣

∣C(S)
∣

∣ ≤ .2n.

Proof. Suppose that .2n < |C(S)| ≤ n. Choose a
random y ∈ C(S). By definition, the probability that y
has a one in some index in C(S) is at most |C(S)| · 1

2n ≤
1
2 . Hence, |S′| ≥ 1

2 |S|, where S′ denotes the set of ys
in S such that yj = 0, for all j ∈ C(S). This leaves at
most n−|C(S)| < .8n locations for the σy ones that are
in each such y. Hence, |S′| ≤

(

.8n
σy

)

≤ (.8)σy ·
(

n
σy

)

giving

the contra-positive of the result.

We now show that Lemma 5.3 and Lemma 5.2
can be combined to get our desired set Y(x1, . . . , xk),
proving Lemma 5.1.

Proof. [of Lemma 5.1] We pick Y0(x1, . . . , xk) accord-
ing to Lemma 5.2. Construct a subset Y by inde-
pendently choosing 30n elements at random from Y0.
We show that ExpY [|Cover((x1, . . . , xk),Y)|] ≥ 1

2nK.
For any i ∈ [k], let Yi be the set of y ∈ Y0 such
that DISJ(xi, y) = 1. Recall, from Lemma 5.2, for
each i ∈ I(x1, . . . , xk), we have |Yi| > 0.2|Y0| ≥
2 · .8σy · |Γy|. Hence, by Lemma 5.3,

∣

∣C(Yi)
∣

∣ ≤ .2n.
Hence, for any i ∈ I(x1, . . . , xk) and j 6∈ C(Yi),

Pr
y∈Y0

[

(i, j) ∈ Cover(xi, y)
]

= Pr
[

y ∈ Yi
]

· Pr
[

yj =

1 | y ∈ Yi
]

≥ 0.2 · 1

2n
=

.1

n
. But we indepen-

dently choose 30n different y to be in Y. Hence,

PrY [(i, j) 6∈ Cover(xi,Y)] ≤
(

1 − .1
n

)30n ≤ 1
e3 .

We conclude that ExpY [|Cover((x1, . . . , xk),Y)|] ≥
∑

i∈I(X)

∑

j 6∈C(Yi PrY [(i, j) ∈ Cover(xi,Y)] ≥ .9 · (1 −
.2)k · (1− .2)n ·

(

1− 1
e3

)

≥ .5nK. Thus, there exists such
a set Y.
All that remains is to establish Lemma 5.2, which we
do below.

Proof. [of Lemma 5.2] Choose a random message Bfixed

sent by Bob by choosing a random y ∈ Γy and letting
Bfixed = B(A(x1, . . . , xk, y), y). Let Y0 denote the set
of y’s leading Bob to send Bfixed when Charlie has
x1, . . . , xk. The first thing to show is the following:

Lemma 5.4. ExpBfixed

[

∣

∣{i ∈ [k] : Pr
y∈Y0

[DISJ(xi, y) =

1] ≤ .2}
∣

∣

]

≤ .2k.

Proof. Consider any i ∈ [k]. Choose a random Bfixed,
where the probability of choosing each message is pro-
portional to the number of y’s for which this message
is sent by Bob, when Charlie gets x1, . . . , xk . Let Y0
be the set of y’s for which Bfixed is sent by Bob. Let
D be the event that Pry∈Y0

[

DISJ(xi, y) = 1
]

≤ .2.
Let Pr[D] = a. We will upper bound a by com-
puting Pry∈Γy

[

DISJ(xi, y) = 1
]

in two ways. First,
note that choosing a y at random from Γy is the same
as first choosing a random Bfixed and then choosing
y ∈ Y0 at random. Hence, Pry∈Y0

[

DISJ(xi, y) =

1
]

= Pr[D] × Pry∈Y0
[DISJ(xi, y) = 1 | D] + Pr[¬D] ×

Pry∈Y0
[DISJ(xi, y) = 1 | ¬D] ≤ a× .2+(1−a)×1. On

the other hand, directly computation using Fact 5.1 and
recalling σx · σy = 0.4n, yields Pry∈Γy

[

DISJ(xi, y) =
1] =≥ 1

e.16 = .85.
Combining these two bounds for the same thing

gives 0.85 ≤ a× .2 + (1− a)× 1 giving that a ≤ .2.
This is true for all i ∈ [k]. The lemma now follows

from the linearity of expectation.

Thus, using Markov’s inequality with the lemma above,
PrBfixed

[

|I(x1, . . . , xk)| < 0.7k
]

< 2/3. We are almost
done now. The total number of Bob’s messages is
at most 2ℓ. Hence, PrBfixed

[

|Y0| < 1
42

−ℓ|Γy|
]

<
1/4. As 2/3 + 1/4 < 1, with non-zero probability
neither Y0 nor I(x1, . . . , xk) have smaller than their
desired sizes respectively. Recall, ℓ = .2σy. Hence,
1
42

−ℓ|Γy| > 1
4 (0.87)

σy |Γy|. Observing that there exists
some constant c, such that for σy > c, 1

4 (0.87)
σy |Γy| >

10 · (0.8)σy |Γy|, we are done.



This completes the proof of the lower bound for set-
disjointness, i.e Theorem 5.3.

6 Open Problems and Conclusions

The A
B→ (B ↔ C) model is a new variant of the

communication complexity model that may be useful
for studying the complexity of many dynamic data
structure problems. Pǎtraşcuconjectured that for any
hard two-player function f , the asymmetric version of

f is hard in the A
B→ (B ↔ C) model. In this paper,

we have obtained surprising counterexamples to this
conjecture: we have exhibited a function with maximal

two-player complexity that is easy in the A
B→ (B ↔ C)

model, and have also shown nontrivial upper bounds for

set disjointness in the A
B→ (B ↔ C) model.

The most important unresolved question is the
exact complexity of asymmetric set disjointness in the

A
B→ (B ↔ C) model. It is still possible that SELk×1

DISJ

requires polynomial complexity (nǫ for some ǫ > 0),
which would yield polynomial lower bounds for a large
collection of dynamic data structure problems. More
generally, no superpolylogarithmic lower bounds for

SELk×1
f in the A

B→ (B ↔ C) model are presently
known for any function, even via a non-constructive
argument.

One intuition that we have relates the complexity of
SELk×1

f to the two-party complexity of f under product
distributions. More specifically, if y is independent of
each xi, then Bob and Charlie can solve f(xi, y) on their
own (without the help of Alice) using the best product
distribution algorithm. On the other hand, if y depends
on some xi then Alice should be able to use xi to teach
Charlie a lot about y by telling him the differences and
similarities between y and xi. This was precisely the
intuition used in our upper bound for SELk×1

DISJ .
Motivated by this intuition, we conjecture that for

any function f , the worst-case instances of SELk×1
f are

obtained by some product distribution, where each xi is
chosen independently of y, to ensure that the xi’s do not
contain information about y that can be exploited by
Alice. We conjecture, further, that any lower bound for
the two-player game for f under product distributions
(xi and y are chosen independently) acts as a lower

bound for SELk×1
f in the A

B→ (B ↔ C) game. Thus, for

asymmetric set disjointness, we conjecture a
√
n lower

bound in the A
B→ (B ↔ C) model, which matches the

tight
√
n lower bound for set disjointness over product

distributions in the 2-party model [2].
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