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ABSTRACTIn this thesis, we prove unonditional lower bounds on resoures needed to om-pute expliit funtions in the following three models of omputation: onstant-depthboolean iruits, multivariate polynomials over ommutative rings and the `Numberon the Forehead' model of multiparty ommuniation. Apart from using tools fromdiverse areas, we exploit the rih interplay between these models to make progresson questions arising in the study of eah of them.Boolean iruits are natural omputing devies and are ubiquitous in the mod-ern eletroni age. We study the limitation of this model when the depth of iruitsis �xed, independent of the length of the input. The power of suh onstant-depthiruits using gates omputing modular ounting funtions remains undetermined,despite intensive e�orts for nearly twenty years. We make progress on two fronts:let m be a number having r distint prime fators none of whih divides ℓ. We�rst show that onstant depth iruits employing AND/OR/MODm gates annotompute e�iently the MAJORITY and MODℓ funtion on n bits if `few' MODmgates are allowed, i.e. they need size nΩ( 1
s
(log n)1/(r−1)) if s MODm gates are allowed inthe iruit. Seond, we analyze iruits that omprise only MODm gates. We showthat in sub-linear size (and arbitrary depth), they annot ompute AND of n bits.Further, we establish that in that size they an only very poorly approximate MODℓ.Our �rst result on iruits is derived by introduing a novel notion of ompu-tation of boolean funtions by polynomials. The study of degree as a resoure inpolynomial representation of boolean funtions is of muh independent interest. Ourv



notion, alled the weak generalized representation, generalizes all previously stud-ied notions of omputation by polynomials over �nite ommutative rings. We provethat over the ring Zm, polynomials need Ω(log n)1/(r−1) degree to represent, in oursense, simple funtions like MAJORITY and MODℓ. Using ideas from argumentsin ommuniation omplexity, we simplify and strengthen the breakthrough work ofBourgain showing that funtions omputed by o(logn)-degree polynomials over Zmdo not even orrelate well with MODℓ.Finally, we study the `Number on the Forehead' model of multiparty ommuni-ation that was introdued by Chandra, Furst and Lipton [CFL83℄. We obtain freshinsight into this model by studying the lass CCk of languages that have onstant
k-party deterministi ommuniation omplexity under every possible partition ofinput bits among parties. This study is motivated by Szegedy's [Sze93℄ surprisingresult that languages in CC2 an all be extremely e�iently reognized by very shal-low boolean iruits. In ontrast, we show that even CC3 ontains languages ofarbitrarily large iruit omplexity. On the other hand, we show that the advan-tage of multiple players over two players is signi�antly urtailed for omputing twosimple lasses of languages: languages that have a neutral letter and those that aresymmetri.Extending the reent breakthrough works of Sherstov [She07, She08b℄ for two-party ommuniation, we prove strong lower bounds on multiparty ommuniationomplexity of funtions. First, we obtain a bound of nΩ(1) on the k-party random-ized ommuniation omplexity of a funtion that is omputable by onstant-depthiruits using AND/OR gates, when k is a onstant. The bound holds as long asvi



protools are required to have better than inverse exponential (i.e. 2−no(1)) advantageover random guessing. This is strong enough to yield lower bounds on the size ofan important lass of depth-three iruits: iruits having a MAJORITY gate at itsoutput, a middle layer of gates omputing arbitrary symmetri funtions and a baselayer of arbitrary gates of restrited fan-in.Seond, we obtain nΩ(1) lower bounds on the k-party randomized (bounded er-ror) ommuniation omplexity of the Disjointness funtion. This resolves a majoropen question in multiparty ommuniation omplexity with appliations to proofomplexity. Our tehniques in obtaining the last two bounds, exploit onnetionsbetween representation by polynomials over reals of a boolean funtion and ommu-niation omplexity of a losely related funtion.
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ABRÉGÉNous herhons dans ette thèse à établir des bornes inférieures sur la quantitéde ressoures de alul néessaires au alul de ertaines fontions expliites. Cetteétude est entrée sur trois modèles importants: les iruits booléens de profondeurbornée, les polyn�mes multivariés dans des anneaux ommutatifs et le modèle deomplexité de ommuniation à plusieurs joueurs appelé �modèle de données sur lefront�. Pour avaner sur es questions, nous utilisons une variété d'outils mathéma-tiques mais exploitons aussi les rihes interations entre l'étude de es trois modèles.Les iruits booléens sont des engins de alul très naturels et sont omniprésentsdans l'ère tehnologique. Nous étudions les limites de tels iruits lorsque leur pro-fondeur est bornée par une onstante ne dépendant pas de la longueur des données.Malgré vingt ans de reherhe sur le sujet, leur puissane dans e as est enore trèsmal omprise lorsque les portes omposant les iruits alulent des sommes mod-ulo un entier. Nous progressons sur deux fronts. Nous onsidérons d'abord que lesiruits de profondeur bornée employant des portes et/ou/modm. Nous montronsqu'ils ne peuvent aluler e�aement les fontions majorité et modℓ (pour ℓ et mo-premiers) lorsque le nombre de portes modm est limité. D'autre part, nous on-sidérons les iruits ne ontenant que des portes modm et prouvons qu'un tel iruitne peut aluler la fontion et sur n bits lorsque sa taille est o(n) et e, peut-importesa profondeur. Nous montrons même que es iruits ne peuvent aluler que desapproximations très pauvres de la fontion modℓ.Notre premier résultat sur les iruits est basé sur une nouvelle notion de alulviii



d'une fontion par des polyn�mes. Dans e type d'étude, le degré des polyn�mes estvu omme une ressoure de alul à minimiser. Notre notion de représentation faiblegénéralisée étend toutes les notions préédentes de représentations par des polyn�messur l'anneau ommutatif Zm. Nous montrons que, dans e nouveau adre, les fon-tions majorité et modℓ ne peuvent être représentées par des polyn�mes de petitdegré. Par ailleurs, nous utilisons des idées venant de la omplexité de ommu-niation pour simpli�er et renforer les perées de Bourgain qui a montré que lespolyn�mes de Zm de degré o(log n) n'ont qu'une faible orrélation ave la fontionmodℓ.Finalement, nous étudions le modèle de ommuniation multipartie �donnéessur le front� proposé par Chandra, Furst et Lipton [CFL83℄. Nous tentons de mieuxomprendre la nature du modèle en onsidérant la lasse CCk des langages de om-plexité bornée dans le modèle déterministe et �pire partition� pour k joueurs. Cestravaux sont motivés par les résultats surprenants de Szegedy [Sze93℄ qui montrenten partiulier que les langages de CC2 peuvent tous être reonnus e�aement pardes iruits booléens de très petite profondeur. Nous montrons qu'à l'opposé, il existedes langages de CC3 qui ont une omplexité de iruit arbitraire. Cependant, nousprouvons aussi que l'avantage des joueurs multiples est grandement limité lorsque lelangage à reonnaître est symmétriques ou muni d'une lettre neutre.En généralisant les résultats réents et novateurs de Shershtov [She07, She08b℄sur le modèle à deux joueurs, nous obtenons de fortes bornes inférieures sur la om-plexité de ommuniation pour k joueurs de fontions expliites. Pour toute on-stante k, nous établissons d'abord une borne de nΩ(1) sur la omplexité de protoolesix



randomisés pour k joueurs, alulant une fontion alulé par des iruits et/oude taille polynomiale et de profondeur onstante. Cette borne reste valide pourtout protoole dont l'avantage par rapport à une réponse aléatoire est supérieure àl'inverse d'une fontion exponentielle (i.e. 2−no(1)). Le résultat est su�samment fortpour obtenir des bornes inférieures sur la taille d'une lasse importante de iruits,soit eux formés d'une porte majorité en sortie, d'un niveau intermédiaire forméde portes alulant une fontion symmétrique arbitraire et d'un niveau de base oùl'entrane des portes utilisées est bornée.De plus, nous obtenons une borne inférieure de nΩ(1) sur la omplexité à k joueursdes protooles randomisés (ave erreur bornée) pour la fontion disjointness. Cetteborne résoud une question très importante qui a des appliations nombreuses, en-tre autre dans le domaine de la omplexité des preuves. Nos résulats exploitent lesliens entre les représentations de fontions booléennes par des polyn�mes réels et laomplexité de ommuniation de fontions qui leur sont intimement liées.
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CHAPTER 1Introdution1.1 Origins of the Theory of ComputationEvery reasonable urriulum in elementary shool is replete with triks to �om-pute�. Starting with skills to perform arithmeti operations like addition, multipli-ation, division in primary shool, through taking square-roots of numbers (up to arequired preision) and solving quadrati equations in middle shool, kids move on tolearn performing muh more sophistiated omputational tasks like di�erentiating orintegrating whole funtions. Indeed, many people like to measure a hild's progressin shool by testing how quikly he/she an perform suh tasks. In light of this, itmay seem surprising that it took until the beginning of the last entury for someoneto ask the right question that made people realize that, something as fundamentalas omputation had gone unformalized!In 1900, David Hilbert posed the following problem1 to the leading �gures ofthe period in mathematis : Is there a �nitary proedure to determine if a givenmultivariate polynomial with integral oe�ients has an integral solution? Hilbert,as the legend goes, was expeting a positive answer. In retrospet now, one maywell say that `fortunately' the answer was `no'. Had the answer been `yes' and1 It featured as the tenth problem in Hilbert's list of twenty three problems.1



had someone disovered suh a proedure, arguably that would have delayed thebeginning of the inevitable `Theory of Computation'.Hilbert's question led Turing, more than thirty �ve years later, to provide asatisfatory model of omputation now known as the Turing mahine. The Turingmahine remains the universal model of omputation as we understand today. Ev-erything that an be done by a real omputer or any other known devies2 an be`reasonably e�iently' performed on a Turing mahine. A proedure running on aTuring mahine is alled an algorithm. On the other hand, Turing's work led tosuh remarkable onlusions as that not every task has an algorithm that halts onall inputs. Using this result about Turing mahines, in 1972, Matiassevih resolvedHilbert's tenth problem in the negative, building upon the earlier breakthrough workof Davis, Putnam and Robinson.While Turing's work and Hilbert's problem were motivated from foundationalquestions of mathematial logi, the notion of `e�ient omputation' is easily moti-vated from more mundane a�airs. Many salesmen have wondered how to halk outan itinerary suh that they touh upon every ity preisely one and return to theirstarting point. Modern network designers are routinely onfronted with the problemof determining an optimal ost network with a given redundany. Seretaries havea hard time sheduling a time table meeting everyone's demands. Indeed, life wouldhave been muh more pleasant if several suh tasks from di�erent spheres of ativity2 Stritly speaking, devies whose operations are limited by the lassial laws ofphysis. 2



had e�ient algorithms. Unfortunately, all these tasks seem intratably di�ult inthe sense that every known algorithm for them runs for very long before they outputa solution. In partiular, the number of steps that the algorithm exeutes beforegiving the orret answer tends to grow exponentially with the size of the input,measured in any reasonable sense.One of the basi goals of omputer siene and the guiding theme of Com-putational Complexity is to lassify algorithmi problems into omplexity lassesaording to the amount of minimum resoures needed to solve them in a given om-putational model. The most powerful model or devie that is onsidered for suhtask is the Turing mahine. The two resoures that have lassially been lookedat, orresponding to the running time and memory requirements respetively of amodern omputer, are time and spae measured with respet to the size of the in-put. The usage of resoures is de�ned by the behavior of the algorithm on theworst-ase input (as opposed to let us say its behavior on the average3 input). Theuniversally aepted mathematial onept of e�ient (and feasible) omputation isthe notion of algorithms running in polynomial time. This gives rise to the widelyknown lass P that ontains those deision problems that admit polynomial timealgorithms. None of the problems mentioned in the last paragraph, when de�nedformally as deision problems in a reasonable way, seem to be in P. However, there3 Average-ase omplexity is an interesting growing sub-�eld of ComputationalComplexity, surveyed by Bogdanov and Trevisan [BT06℄ reently.
3



are no known arguments that show there does not exist polynomial time algorithmsfor these problems.On the other hand, these problems share the property that every guessed solu-tion an be e�iently veri�ed. For instane, given an itinerary a salesman an quiteeasily verify if it satis�es the need of touhing every ity preisely one. Computa-tion where guessing is allowed gives rise to the important notion of non-determinism.The lass of problems whose guessed solution an be veri�ed in polynomial time bya Turing mahine is the elebrated lass NP. The Holy Grail of omputational om-plexity theory, and an outstanding problem in modern mathematis, is to separate(or ollapse) these two lasses.1.2 The Theory of Lower BoundsProving impossibility results about omputation is a formidable hallenge. Muhof omputer siene is �lled with various triks on how to perform ertain thingsrather than to show the impossibility of the existene of triks to ahieve a task.Indeed, powerful algorithms exist drawing upon entirely ounter-intuitive ideas fromvarious branhes of lassial mathematis. The tremendous rate of growth of suhtriks (see for example [LU97, AKS04, Rei05, CKSU05, AHT07℄) strongly suggeststhat we have barely srathed the surfae of algorithmi tehniques. In this light,Turing's theorem about the existene of non-omputable tasks does seem quite im-pressive. It is surprising that his result follows simply by employing the tehniqueinvented by Cantor to prove the non-existene of a bijetion from the set of realsto the set of natural numbers. This powerful method is alled diagonalization in
4



logi. Interesting and fundamental separation results like the time and spae hier-arhy theorems have been disovered, also employing the method of diagonalization.These results roughly say that the lass of funtions omputable by a Turing mahinestritly grows if either more time or more spae is allowed.Unfortunately, diagonalization has strong limitations. In partiular, diagonal-ization proofs relativize i.e. if two omplexity lasses A and B are separated usingdiagonalization, then for every language C, A with aess to C for free (denoted by
AC) is di�erent from B with similar aess to C (denoted by BC). A very interestingresult of [BGS75℄ establishes that there exists languages C,D suh that PC = NPCand PD 6= NPD. This result proves that P annot be separated from NP usinga pure diagonalization argument. This made researhers look for non-relativizingtehniques.One way of developing new methods is to onsider expliit funtions and provelower bounds against them in other natural (and simpler) models of omputation.Interesting natural models bring out new faets of omputation. The e�ort of under-standing their limitations often forges links with other disiplines of mathematis.More surprisingly, and perhaps a little disomfortingly, it highlights how little weunderstand omputation when we are unable to determine the omplexity of a fun-tion in a simple model. Arguably, this goes on to show that although the P vs. NPquestion de�ned our �eld, it is by no means the only question. While proving lowerbounds for expliit funtions in natural models of omputation is of fundamentalimportane, the theory of lower bounds is just in its infany.

5



We ontribute to the further development of this theory by exploring three well-known and important models of omputation: boolean iruits of onstant depth,low degree multivariate, multilinear polynomials over rings and the `Number on theForehead' (NOF) model of multiparty ommuniation.An important feature of the Turing mahine is its uniformity, i.e. for everytask, one algorithm handles inputs of every possible length. This is an extremedegree of uniformity. One ould enfore a milder notion of uniformity by havinga family of algorithms, one for every input length and then have a relationshipbetween eah suh algorithm in the family. Vollmer [Vol99℄ provides an exposition ofthis approah to iruit omplexity. On the other hand, our approah with all threemodels is that we onsider non-uniform versions as opposed to the Turing mahinemodel. In other words, we onsider a family of algorithms (i.e a iruit or a protoolor a polynomial as the ase may be), one for eah input length n and there doesnot exist any a priori relationship among algorithms in the family. Disregardinguniformity allows one to fous on the ombinatorial weakness of a model. We believesuh investigations bring out deep ombinatorial questions that are interesting intheir own right. Suh questions then allow fruitful exhange with other areas ofmathematis, making available a wider tool-set to make progress.1.3 Boolean CiruitsAlthough the Turing mahine is the model employed by theoretiians to argueabout omputation in general, it is fair to say that it is not used in pratie as adevie. In ontrast, iruits indeed are implemented by engineers and are ubiquitousin modern life. The integrated iruit, abbreviated as IC, has revolutionized our6



eletroni age. They are the building bloks of not just modern omputers, butevery sophistiated devie. We desribe this natural model of omputation moreformally below.A iruit is a direted ayli graph whose nodes are gates and edges are wires,where eah gate omputes a boolean funtion of the wires feeding into it. In general,iruits have multiple outputs. In this work, we fous on iruits omputing a booleanfuntion. Hene, our iruits have a speial node with out-degree 1 alled the outputgate. The value it outputs on a partiular input instane is the output of the iruiton that input. As stated before, a iruit operates on inputs of a �xed length n. Morepreisely, we onsider a family of iruits {. . . , Cn, . . .}, one for eah input length.Similarly, when we de�ne a boolean funtion, we do so by de�ning one for eah inputlength. To keep our notation simple, we do not expliitly mention the input lengthas in most ases it an be easily understood from the ontext. For example, we de�nethe THRESHOLD funtion as THRk(x) = 1 i� ∑n
i=1 xi ≥ k, where k is a positiveinteger. Here, k need not be �xed. In fat, THR⌈n/2⌉ is alled the MAJORITYfuntion. Similarly, MODq(x) = 0 i� ∑n

i=1 xi ≡ 0 (mod q), for any positive integer
q. The following �gure shows a iruit having only AND and OR gates omputingthe MOD2 funtion (also known as PARITY) for the input length n = 3. It worksby exhaustively verifying if the input instane orresponds to any one of strings withodd parity.The size of a iruit is the number of non-input gates used. The depth of airuit is the maximum of all input node to output node distanes. The fan-in of a
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Figure 1�1: A iruit of size 5 and depth 2 omputing PARITY of 3 bits
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gate is its in-degree. The �gure above, depits a family of iruits whose size growsexponentially in the input length n and whose depth remains a onstant.Size in iruits roughly orresponds to time in Turing mahines. Indeed, itis not hard to verify that any problem that an be solved in time T (n) with aTuring mahine an be solved by iruits omprising AND/OR gates of size (T (n))2,whih follows from the proof of the famous Cook's Theorem. In fat, iruits ofjust size O(T (n) logT (n)), as shown by [PF77℄, an simulate an algorithm runningon the Turing mahine for time T (n). Proving strong lower bounds on the sizeof iruits thus yields strong lower bounds on the running time of algorithms ona Turing mahine. Several researhers in the eighties felt that iruits provide alean ombinatorial handle on omputation as one an avoid dealing with messyfeatures of Turing mahines like moving heads and hanging states. This feelingreeived a big impetus from the elebrated work of Razborov [Raz86℄. Using abeautiful ombinatorial argument, he showed that monotone iruits, i.e. iruitshaving AND/OR gates that do not aess negated input variables, annot omputethe CLIQUE funtion in polynomial size.The restrition to monotone iruits does not appear serious beause the targetfuntion is itself monotone, i.e. if we add edges to our graph it does not destroy anylique that was present in the original graph. Intuitively, one expets that mono-tone funtions have near-optimal iruits that are monotone. However, Razborovshowed that MATCHING does not have polynomial size monotone iruits. A fa-mous algorithm due to Edmonds shows that MATCHING has a polynomial time
9



algorithm and hene poly-size non-monotone iruits4 . This destroyed the intuitionabout omputing monotone funtions. Indeed, the progress on general iruits hasbeen abysmally low. The best known lower bound on the size of unrestrited iruitsomputing an expliit funtion is less than 4.5n [LR01℄.1.3.1 Ciruits of Constant DepthDepth in iruits orresponds to the notion of `parallel time'. Indeed, the delayin propagating signal in digital devies is roughly proportional to the depth of theunderlying iruit (assuming that all gates involved have same lateny). Investigatingdepth needed for omputing funtions is thus a natural researh diretion. Thisdiretion was quite fruitfully pursued in the eighties. It has yielded some of the mostbeautiful results in the theory of lower bounds.An obvious starting point here is to onsider iruits of onstant depth. It isnot hard to see that if gates of suh iruits have bounded fan-in, then the funtionomputed an only depend on a onstant number of input variables. On the otherhand, allowing AND/OR gates of unbounded fan-in with onstant-depth results innon-trivial omputational power. Proving lower bounds against suh iruits requireeven more non-trivial insight into omputation. A series of dramati work by Ajtai[Ajt83℄, Furst, Saxe and Sipser [FSS84℄, Yao [Yao85℄ and Håstad [Hås86℄ establishedthe fundamental result that suh iruits in sub-exponential size (i.e. 2no(1) size)4 Muh more reently, there are indiations that MATCHING may be doable e�-iently in parallel (see [AHT07℄)
10



annot ompute the parity of n boolean variables. More generally, the result showsthat modular ounting using AND/OR gates is inherently di�ult.On the other hand, modular ounters are very muh part of the basi buildingbloks in modern digital hardware design. A natural next step is to preisely deter-mine what advantage is gained by allowing modular ounting gates into our iruits.For any integer m ≥ 2, de�ne a MODm gate to be a boolean gate that outputs 1 ifthe number of its input bits that are set to one is not divisible by m. Unfortunately,the powerful tehniques introdued in [Ajt83, FSS84, Yao85, Hås86℄ fail to work wellin the presene of MODm gates. The best that one ould say using this method wasworked out in [Hås86℄ where it was essentially shown that few PARITY gates (fewerthan Ω((log n)3/2)) does not help in signi�antly reduing (below 2Ω(log n)3/2) the sizeof a onstant-depth iruit omputing the MAJORITY funtion.MAJORITY has two ruial properties. It is a robust funtion whose value doesnot get determined by revealing the assignment to any sublinear number of its inputbits. This is quite di�erent from the AND and OR funtions whose value gets �xedif any of its input bit is �xed to 0 and 1 respetively. The ruial tehnial ingredientof the works of [Ajt83, FSS84, Yao85, Hås86℄ showed that this weakness of AND andOR gates are propagated in some sense to the whole iruit if it is of onstant depthand is entirely omposed of these gates. The seond property of the MAJORITYfuntion is that it is severely aperiodi. MODm gates are of ourse periodi with asmall period of m for any onstant m. This makes MAJORITY a tempting target onwhih to prove lower bounds for size of iruits omprising AND/OR/MODm gates.
11



Developing a powerful mahinery for approximating boolean funtions by mul-tivariate, multilinear polynomials of low degree over �nite �elds, Razborov [Raz87℄proved exponential size lower bounds on the size of iruits having AND/OR/PARITYgates for omputing MAJORITY. Building on this breakthrough work, Smolensky[Smo87℄ generalized the argument by replaing the PARITY with MODpk gates,where p is any arbitrary �xed prime and k is a �xed positive integer. A speial aseof Smolensky's argument yields (with a slight degradation of parameters) a new proofof the earlier exponential lower bounds on the size of onstant depth iruits omput-ing PARITY. After more than twenty years of its disovery, the Razborov-Smolenskyargument remains a true gem of theoretial omputer siene.Yet, the seemingly innouous extension to omposite modular ounting has re-sisted attaks from a long list of several researhers (for example, see [BS95, BS99,BST90, Gre04, Gro94b, Gro98, GT00, KW91, HM04, MPT91, Smo90, ST06℄). Nonon-trivial lower bounds are known for general onstant depth iruits that employMODm gates when m has two distint prime fators. While three generations ofalgorithm designers have in frustration alled NP-omplete problems intratable, itremains onsistent with our urrent knowledge that iruits omprising only MOD6gates in depth three and linear size an ompute these problems. Separating suhdepth-three iruits from NP is indeed one of the urrent frontiers in the theory oflower bounds.Another diretion, also very natural, is to onsider onstant depth iruits aug-mented with gates omputing MAJORITY. We all them MAJ gates. The in�uentialwork of Minsky and Papert [MP88℄ onsidered a speial ase of suh iruits alled12



pereptrons. These are boolean gates that generalize a MAJ gate: every input to apereptron is weighted by some real number and the gate outputs one i� the weightedsum of its inputs is positive and otherwise outputs -1. Arti�ial neural networks, us-ing the pereptron as a building blok, have been widely studied in the Arti�ialIntelligene and Mahine-Learning ommunities as a reasonable model of neural a-tivity in the human brain. It is known that suh onstant depth neural networks anbe e�iently simulated by iruits omprising ordinary unweighted MAJ gates.A series of results [ABFR94, BRS91b, Bei94, BS94℄ in the early nineties es-tablished strong lower bounds on onstant-depth iruits augmented with few MAJgates. Spei�ally, these series of results showed that iruits omprising AND,ORand MAJ gates annot ompute5 in sub-exponential size the MODm funtion as longas the number of MAJ gates is restrited to no(1). On the other hand, it is knownthat allowing more MAJ gates inreases signi�antly the omputational power ofsuh iruits. In linear size and depth-two, iruits omprising only MAJ gatesompute the MODm funtion, for every m. More surprisingly, in depth-three andquasi-polynomial size (i.e. nO((log n)d) for some onstant d), iruits with only MAJgates ompute every funtion that an be omputed by iruits of quasi-polynomialsize and onstant depth having AND/OR/MODm gates [Yao90, BT94℄.This brings us to another frontier in the theory of lower bounds. Currently, weannot prove a superlinear lower bound on the size of depth-three iruits omprising5 In fat, Barrington and Straubing [BS94℄ show that suh iruits annot evenapproximate well the MODm funtion. 13



only MAJ gates omputing any funtion in NP. In other words, for every intratableproblem, there may exist a shallow depth and small size neural network that solvesthe problem.1.4 Polynomials over RingsMultivariate polynomials over rings are lassial objets in mathematis thathave been studied in a wide variety of ontexts sine long. More reently, theyhave aroused major interest in the omputing ommunity after a string of impressiveresults in iruit omplexity [Raz87, Smo87, ABFR94℄, interative proofs [LFKN92℄,ommuniation omplexity [She07℄, learning theory [LMN93, Kli02℄ and quantumomputing [AS04, BCW98, Raz03, She08b℄ have been obtained with polynomialsplaying a entral role.Many of these results use polynomials as a tool to analyze a given problem.A little di�erently, the Razborov-Smolensky argument for showing limitations ofonstant-depth iruits having AND/OR/MODp gates, impliitly views polynomialsas non-uniform models of omputation. The work of Barrington, Beigel and Rudih[BBR94℄ and Nisan and Szegedy [NS94℄ initiated a systemati study of the power ofpolynomials in representing/omputing boolean funtions.More preisely, let a polynomial P over Zm with n variables x1, . . . , xn representthe boolean funtion f : {0, 1}n → {0, 1} if there exists an aepting set A ⊆ Zm suhthat f(x) = 1 i� P (x) ∈ A, for eah x ∈ {0, 1}n. It is worth noting that sine ourinterest is on the behavior of P over the boolean hyperube where x2
i = xi for eahvariable xi, we onveniently heneforth assume w.l.o.g that P is multilinear. Theresoure that is of interest in this model is the degree of P . The basi question of14



the subjet is �How muh degree is needed by a polynomial to represent the booleanfuntion f over Zm?� when m is �xed. This quantity is alled the MODm-degree of
f . The work of Razborov-Smolensky provides answers to suh questions, when mis a prime power. For instane, one an show that the OR funtion has Ω(n) degreeif m is a prime power. But the method fails, as explained in detail by Barrington[Bar92℄, as soon as m ontains two distint prime fators. Quite surprisingly, themodel of polynomials reveals a non-trivial omputational advantage of ompositenumbers over their primal ounterparts. Barrington et.al. [BBR94℄ show that thereexists a polynomial of degree O(n1/r) over Zm omputing the OR funtion when mhas r distint prime fators. Similar advantages to represent the MODq funtion,for some speial q that are o-prime with m, have been subsequently disovered byHansen [Han06b℄.Our lak of understanding of the omputational power of modular ounting isbest exempli�ed in the setting of low degree polynomials. Indeed, it is perplexing thatno funtion f ∈ NP is known suh that the MOD6-degree of f is super-logarithmii.e. ω(logn). A simple ounting argument, on the other hand, reveals that mostfuntions have linear degree.1.5 `Number on the Forehead' Model of CommuniationA beautiful theory of ommuniating proesses has been developed starting withthe seminal paper of Yao [Yao79℄. In the model proposed by Yao, there are twoplayers, Alie and Bob, who wish to ollaboratively ompute a boolean funtion f .The problem is that the set of input bits of the funtion is partitioned into two sets15



XA and XB. Alie has only aess to the bits of XA and Bob to those in XB. Theydeide, a priori, upon a protool for ommuniating with eah other with the goalthat both of them an determine the value of f on any assignment to its input bits.Further, they want to minimize the amount of bits they need to exhange with eahother for ahieving this goal. In order to entirely fous on bits ommuniated as aresoure, Alie and Bob are endowed with unlimited omputational power in termsof time and spae. The simple question that is of intrinsi interest is �How many bitsdo Alie and Bob need to ommuniate to ompute f with the best protool?�. Theamount of ommuniation taking plae is measured with respet to the size of theset of input bits assigned to eah player. Assuming that eah player holds n-bits ofinformation, every funtion an be omputed trivially by ommuniating n+ 1 bits.Exploration around this theme has unovered a rih underlying struture of themodel. A thorough exposition of this theory, now known as Communiation Com-plexity, is given in the exellent book by Kushilevitz and Nisan [KN97℄. Surprisingly,an ever expansive set of diverse appliations of this theory to other �elds in theo-retial omputer siene is being disovered. For instane, a powerful tehnique toprove lower bounds on the depth of monotone boolean iruits was developed usinga variant of this model by Karhmer and Wigderson [KW88℄ that was further de-veloped in the work of [KRW95, RW92, RM97℄. Very interesting trade-o� resultsbetween the resoures of time and spae have been derived using ommuniationomplexity in the work of [BSSV00, BV02℄. Connetions with randomness extra-tion from imperfet random soures was established in the work of Vazirani [Vaz85℄,
16



Chor and Goldreih [CG85℄. Indeed, the list of appliations goes on and on and Com-muniation Complexity has been fondly alled the `Swiss-army Knife' of omplexitytheorists.The two-party model of Yao extends to the multiparty model in more than oneway. The �rst one is alled the `Number in the Hand' model where the set of inputbits is partitioned into k sets X1, . . . , Xk. Player i gets Xi. In this model, the moreplayers there are, the less information is diretly aessible to eah player (assumingeah player gets aess to equal number of bits). This is known to weaken the powerof the two-player model, although it has been studied for appliations in areas likedata-streams [CKS03, CCM08℄. Our onern here is with the other extension tomultiparty introdued by Chandra, Furst and Lipton [CFL83℄ alled the `Number onthe Forehead' (NOF) model. In this model, input bits of Xi are held on the foreheadof Player i. In other words, eah player has aess to all input bits (written on theforeheads of other players) exept those that are held on his own forehead.There are several features that make the model quite powerful. In partiular,there is an overlap of information aessible to players whih an be used to save om-muniation signi�antly even with three players. Grolmusz [Gro94a℄ devised a leverprotool exhibiting the surprising power of log n players, where n is the number ofbits written on the forehead of eah player. Other non-obvious k-party protools havebeen disovered (see, for example, [Amb96, CFL83℄). Proving both lower bounds andupper bounds for this model is very hallenging. On the other hand, many rewardingappliations of strong lower bounds on the multiparty ommuniation omplexity ofa funtion exist. They an be used to prove lower bounds on resoures needed in17



various other important models like branhing programs [CFL83℄, onstant-depthiruits [HG91℄ and proof systems [BPS05℄. In fat, many other suh appliationsare known, while proving the lower bounds themselves in the model have evadede�orts [KN97℄.One suh appliation is of great interest for the researh desribed in this the-sis. Reall that no superlinear lower bounds exist on the size of depth-three iruitsomprising only MOD6 gates. It is however known from the work of Yao [Yao90℄and Beigel-Tarui [BT94℄, that super-polylogarithmi (i.e. (logn)ω(1)) lower boundson the k-party ommuniation omplexity of a funtion f for some very restritedprotools is enough to show that onstant-depth iruits having AND/OR/MODmgates annot ompute f in quasipolynomial size, provided k = (log n)O(1). The sem-inal work of Babai, Nisan and Szegedy [BNS92℄ introdued6 a powerful method,alled the Disrepany Method, to obtain the �rst strong lower bounds on the mul-tiparty ommuniation omplexity of funtions. However, the tehnique in [BNS92℄stopped short of proving non-trivial bounds for log n players. It is now believed thatfundamentally new ideas are needed to sail past the log n players barrier.On the other hand, there is evidene that we do not quite understand the modeleven when fewer players are involved. There are several simple and natural funtionswhose three-party ommuniation omplexity is not known. In fat, until reently,6 The Disrepany Method existed in mathematis before the work of [BNS92℄.Here we mean that it was introdued to multiparty ommuniation omplexity by[BNS92℄. 18



no superlogarithmi (i.e. ω(logn)) lower bound was known for three players for thesefuntions. A systemati study of the di�erent aspets of this model is ompelling inits own right.1.6 Our ContributionsConstant-depth iruits. In Chapter 3, we make progress towards under-standing the omputational power of iruits of onstant depth omprising AND,ORand MODm gates, when m is an arbitrary �xed positive integer. We approah thisfrom two diretions. In the �rst part of the hapter, we probe the limitations of suhiruits when the number of MODm gates allowed in the iruit is restrited. Weshow that indeed omputing MAJORITY and MODℓ by suh iruits requires super-polynomial size when ℓ ontains a prime fator that does not divide m. This resultis expressed formally in Theorem 3.1. The result �rst appeared in joint work withKristo�er Arnsfelt Hansen [CH05℄ and at the time represented the best known lowerbounds on the size of suh iruits (with few MODm gates) omputing MODℓ. It stillremains the best known lower bound for omputing MAJORITY. The main tehnialnovelty introdued in this part is a onnetion with a new notion of omputation ofboolean funtions by polynomials that we desribe in the next setion.In the seond part of Chapter 3, we shed light on the limitations of modularounting by allowing only MODm gates in our iruits. We show that (non-onstant)funtions omputed by suh iruits of sublinear size (and arbitrary depth) shouldhave a large support set (see Theorem 3.4). Consequently they annot ompute ANDin sublinear size, as AND has a support set of size one. Suh a result was �rst provedby Thérien [Thé94℄, but our bounds are sharper and our tehniques are di�erent.19



The main tehnial ingredient used is a result about linear maps that is stated inTheorem 3.19. We further show that suh iruits in sublinear size annot omputeMODℓ when m and ℓ are o-prime. This result is a signi�ant improvement over theprevious best lower bound of log n due to Smolensky [Smo90℄. Smolensky's resultsaid nothing about the approximability of MODℓ by suh iruits. On the other hand,Theorem 3.5 shows that suh iruits of sublinear size do not even approximate MODℓwell: a MAJORITY gate needs to seek votes from exponentially many suh iruitsto orretly ompute MODℓ. We derive this result by proving a Uniformity Lemma(see Lemma 3.20) for every system of linear polynomials. Uniformity Lemmas areinteresting in their own right and we prove ours using an exponential sum argument.We believe that exponential sums will play a ruial role in developing new tehniquesfor iruit omplexity. Results in this part are based on a joint work with NavinGoyal, Pavel Pudlák and Denis Thérien [CGPT06℄.In Chapter 7, we prove lower bounds on the size of some depth-three iruitsthat follow as a onsequene of our work on Communiation Complexity in Chap-ter 6. Reall that we do not know if depth-three iruits omprising only MAJ gatesan ompute every funtion in NP. On the other hand, Yao [Yao90℄ has shown thatsuh depth-three iruits in quasipolynomial size an simulate every funtion om-putable by onstant-depth iruits of quasipolynomial size and omprising AND,ORand MODm gates, even when the fan-in of the bottom gates are restrited to poly-logarithmi. In ontrast, we show that if the bottom fan-in is further restritedto o(log log n) then suh iruits annot ompute muh simpler funtions e�iently.
20



In partiular, in quasipolynomial size they annot ompute a funtion that is om-puted by a linear size depth-three iruit omprising only AND and OR gates (seeTheorem 7.1). This result �rst appeared in [Cha07b℄.Polynomials over rings. In Chapter 3, we relax the notion of omputationby a polynomial over Zm of a boolean funtion to a weak omputation that allowsfor errors. The polynomial is allowed to give false negative answers but no falsepositives and it must output a positive answer on at least one input. This modelgeneralizes all models of omputation by polynomials over �nite rings onsidered sofar in the literature. We prove lower bounds on the degree needed by any polynomialover Zm to represent the MAJORITY (Theorem 3.10) and MODℓ (Theorem 3.11,
m, ℓ are o-prime) funtion in this generalized sense. Our argument for establishingTheorem 3.11 makes a novel ombination of a ombinatorial argument due to Tardosand Barrington [TB98℄ and a Fourier theoreti argument due to Green [Gre00℄. Aswe show, our bounds are strong enough to yield lower bounds on the size of iruitswith MODm gates omputing the same funtions. These bounds are not known tofollow diretly from either the work of [TB98℄ or [Gre00℄.In Chapter 7, we simplify the breakthrough work of Bourgain [Bou05℄ that set-tled a long line of researh [CGT96, Gre99, AB01, Gre04℄ on the orrelation of lowdegree polynomials over Zm and MODℓ funtion. In this model, polynomials areallowed to err on both positive (true) and negative (false) inputs of the booleanfuntion that they represent. However, unlike the previous model, we ount thenumber of errors that the polynomial makes. Bourgain's work proves exponentiallysmall upper bounds on the orrelation between funtions omputed by low degree21



polynomials over Zm and MODℓ. We sharpen this result (see Lemma 7.7). Moreover,we show a lose orrespondene between the proof tehnique of the seminal resultof Babai, Nisan and Szegedy [BNS92℄ for obtaining upper bounds on disrepany inthe ontext of ommuniation omplexity and our argument to upper bound the or-relation of polynomials over Zm with MODℓ. In retrospet, the result on orrelationshould have been obtained muh earlier.Communiation omplexity. One an naturally de�ne the notion of proto-ols deterministially, non-deterministially and randomly omputing funtions. Ourwork onerns all three models and their relationship to eah other.In Chapter 5, we obtain new insight into the multiparty model by onsideringthe lass of funtions that an be omputed deterministially by k players in onstantost (denoted by CCk), for some �xed k. A priori, there is no reason to suspet thatthis lass is related in some way to iruit omplexity lasses. Yet, Szegedy [Sze93℄obtained several beautiful algebrai and ombinatorial haraterizations for the lassCC2. Consequently, he was able to show that every funtion in CC2 an be om-puted by linear size shallow iruits omprising AND/OR/MODm gates. In ontrast,Corollary 5.6 shows, making use of speially rafted odes, that even three playersin onstant ost an ompute funtions with exponentially large iruit omplexity,ruling out any simple haraterization for CCk with k ≥ 3. Our proof of this resultexploits the following two features of the model: a) Overlap of information, i.e. everyinput bit is visible to two other players. b) Eah player knows the preise positionof every input bit that it sees. While it was already known that removal of the �rstfeature renders the model weaker than the two player ase, the signi�ane of the22



seond feature had never been investigated before. We onsider two simple lassesof funtions in whih intuitively one expets that the seond feature does not a�ordany advantage. Using Ramsey theoreti arguments we prove the following: a) Everyfuntion f having a neutral letter that is in CCk, for some �xed k, is regular7 (seeTheorem 5.7). b) A symmetri funtion is in CCk, for some �xed k, i� it is in CC2(Theorem 5.8). These results �rst appeared in a joint work with Andreas Krebs,Mihal Kouky, Mario Szegedy, Pasal Tesson and Denis Thérien [CKK+07℄.In the �rst part of Chapter 6, we prove strong lower bounds for the multipartyommuniation omplexity of some simple funtions that had resisted attaks fromseveral researhers in the past. In partiular, there was no known funtion omputede�iently in onstant depth by iruits omprising AND/OR gates that requiredlarge three party ommuniation. Extending the work of Sherstov [She07℄, we ex-hibit suh a simple funtion that requires large ommuniation by even randomizedprotools that are required to perform better than random guessing by a very thinmargin (see Theorem 6.1). The main tehnial omponent of this work, alled theOrthogonality-Disrepany Lemma, is a new relationship between the property of aboolean funtion being orthogonal to low degree polynomials and the disrepany ofa losely related funtion (see Lemma 6.8). This allows passage from a well-known7 Funtion f has neutral letter e, if inserting or deleting e at any plae in eahinput word does not hange the value of f on the word. Note that a boolean funtion
f indues a language Lf in an obvious way i.e. x ∈ Lf i� f(x) = 1. Funtion f isalled regular preisely if Lf is regular.
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algebrai measure of omplexity of boolean funtions, alled voting degree, to om-muniation omplexity (see Corollary 6.12). Suh a passage was �rst devised, in theontext of two-player ommuniation protools, by Sherstov [She07℄. Our result �rstappeared in [Cha07b℄.In the seond part of Chapter 6, we exhibit a funtion whose non-deterministiommuniation omplexity is small (log n) but requires large (nΩ(1)) ommuniationby k-party randomized protools ahieving a bounded advantage over random guess-ing (see Theorem 6.2). This settles a major open question in multiparty ommuni-ation omplexity (see [BPS, BPSW06, BDPW07, Cha07a, VW07b℄). Determiningthe relative power of determinism, non-determinism and randomization is a entraltheme of theoretial omputer siene. The elebrated P vs. NP question is an ex-ploration of this theme in the Turing mahine model. Our result answers a questionon the same theme in the model of multiparty ommuniation. Further, it provessuperpolynomial lower bounds on the length of proofs in an important lass of proofsystems, alled Lovász-Shrijver proofs (see [BPS℄ for details). Our result appearedas a joint work with Anil Ada [CA08℄. A similar result has been independently ob-tained by Lee and Shraibman [LS08℄. Finally, in Setion 6.6, we extend the reentwork of Shi and Zhu [SZ07℄ to the multiparty model. It was not known if suh an ex-tension existed and was suggested as a diretion of investigation in the reent surveyby Sherstov [She08a℄. We, on the other hand, show that our extension is powerfulenough to also yield nΩ(1) lower bounds on the k-party ommuniation omplexityof Disjointness. This provides a seond proof of an important result.
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CHAPTER 2Bakground for Boolean CiruitsIn this hapter, we formally de�ne the omplexity lasses for boolean iruits.We also reall some of the known arguments for proving lower bounds for onstantdepth iruits that serve as the starting point of our investigation. We further high-light the di�ulties that are faed when one tries to employ similar arguments formore powerful iruits. In the proess, we develop the Razborov-Smolensky theoryof polynomial representation of boolean funtions.We point out that while our review of omplexity lasses is brief and targetedtowards plaing our work in the larger ontext, an interested reader an onsult anyexellent textbook on Computational Complexity (for example [AB09, Pap94℄) toget a more thorough treatment of issues.2.1 Boolean CiruitsWe reall from Chapter 1 that the �rst key resoure of the model of booleaniruits is its size i.e. the total number of gates used in the iruit. Size, quite losely,orresponds to running time in Turing mahines. The lass of boolean funtions thatan be omputed by boolean iruits of polynomial size is denoted by P/poly. Thisorresponds to the non-uniform version of the lass P de�ned for the Turing mahine.Most proponents of the onjeture P 6= NP, in fat, have the stronger belief that thelass NP is not ontained in even P/poly. This stronger statement is a more naturaltarget to aim for in the ontext of boolean iruits.25



As we said earlier, Razborov's result [Raz86℄, showing that monotone iruitsof polynomial size annot deide if an input graph has a lique of presribed size, isthe losest that we have ome to proving this onjeture.Unfortunately, Razborov himself [Raz89℄ showed that the method of approxima-tions that he employed to obtain his results annot yield super-linear lower boundson the size of non-monotone iruits. Subsequently, other obstales in the form of�natural proofs� [RR97℄ were identi�ed. Reently, Aaronson and Wigderson [AW08℄pointed out an additional barrier alled `algebrization'. The idea of these papers is toshow that most known lower bound proofs naturalize [RR97℄ and algebrize [AW08℄.Further, they show that, widely believed ryptographi assumptions get violated ifone �nds suh proofs (that algebrize or naturalize) showing that a funtion in NP isnot ontained in P/poly. However, fresh hope emerges from the very reent work ofChow [Cho08℄ that shows there are no known barriers to obtaining suh a results by`slightly tweaking' natural proofs. In any ase, most of the the omplexity lassesthat we study in this work are not known to present any great barrier. Yet, progresson them has been limited.Our interest is to onsider iruits of restrited depth. Besides being a nat-ural restrition, suh iruits also intuitively apture the notion of highly parallelomputation. For every integer i ≥ 0, let NCi denote the lass of iruits thathave polynomial size, O(log n)i depth and use binary AND and OR gates. De�ne
26



NC = ∪iNCi. The following sums up the known relationship (among non-uniformlasses)1 : NC0 ( NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P/poly (2.1)A fairly straightforward ounting argument shows that a random funtion, withprobability asymptotially tending to one, needs exponential size iruits to be om-puted (even when depth is unrestrited). It however is a reurring theme of thesubjet, that �nding an expliit funtion that annot be omputed using limited re-soures is very hallenging even though one knows that most funtions are hard forthe model. No expliit funtion in NP is known to be not in NC1. In fat, as weshall see below, we annot prove any suh expliit funtion to be not ontained ineven some sublasses of NC1 where iruits are further restrited to have onstantdepth.A word about our `abuse' of notation for iruit omplexity lasses is in order.Assume A is a iruit lass. We use A with two di�erent onnotations. The �rstrefers to the lass of funtions that have polynomial size omputations over iruitsof a ertain type over whih the omplexity lass A is de�ned. In the seond use,
A means the underlying iruit model (as opposed to a lass of funtions). This1 NC stands for �Nik's lass� as oined by Steve Cook to honor Nik Pippenger.Pippenger reiproated the gesture by oining �Steve's lass� (SC). We will not havethe oasion to onsider the lass SC in this work.27



is illustrated by the following two simple examples that respetively invoke theseonnotations: The funtion MAJORITY is in NC1. The funtion PARITY an beomputed by linear size NC1 iruits. The partiular sense in whih we are referringto a iruit omplexity lass is lear from the ontext.2.1.1 Ciruits of Constant DepthBefore we move on, let us �x some more terminology. Conventionally, theoretialomputer sientists have visualized the �ow of information in a iruit upwards i.e.the input variables are at the bottom and the output gate is at the top2. Heneforth,we further assume that our iruits are layered in the following sense: Layer 0 onsistsof input variables and their negations. Eah gate in Layer i reeives its inputs onlyfrom gates in Layer i − 1, for i ≥ 1. Eah gate in Layer 1 is alled a bottom gate.The maximum fan-in of a bottom gate is alled the bottom fan-in of the iruit.The fan-in of the output gate is alled the top fan-in of the iruit. Let gates ofa iruit of depth k have gates of type Gi at Layer i. We denote suh a iruit by
Gk ◦Gk−1 ◦ · · · ◦G1.Note that NC0 is the lass of funtions omputable by iruits with onstantdepth, polynomial size and binary fan-in AND/OR gates. Thus, suh funtions donot even depend on all of the input bits. Consequently, this lass is quite weak3 :2 It seems to us that depiting the �ow of information from top to bottom is morereasonable. To save onfusion, we however follow onvention.3 Note that this lass is interesting in other ontexts. For instane, there is evidenenow that many ryptographi primitives an be omputed in NC0 [AIK04℄.28



for instane, they do not ontain the simple boolean AND and OR funtions. Thismotivates the introdution of the lass AC0 : funtions omputable by iruits havingunbounded fan-in AND/OR gates and onstant depth. It is worthwhile to note thatsuh iruits in depth-2 and exponential size an ompute every boolean funtion.More interestingly, they an add two n-bit integers in depth �ve and ubi size.In depth two and polynomial size, they an ompute THRk for any onstant k byan exhaustive veri�ation. Muh more surprisingly, in polynomial size they anompute THR(logn)c , for any onstant c (see [FKPS85, WWY90, RW91℄). There areother quite non-trivial algorithms that an be exeuted by suh iruits. One maywell expet4 that proving lower bounds on resoures in a model that allows suhsubtle omputations to take plae, will be a hallenge!A natural question to probe, is if the weakness of a bounded depth iruit islosely related to the weakness of its onstituent gates. The weakness of an AND(OR) gate is that �xing any one of its input to 0 (1) �xes its output. This gives thehope that if an AC0 iruit has not too many gates, then it should be possible to�x the output of the iruit by just �xing a few input variables to zero and one. Ifthat were true, suh iruits in small size would not ompute a `robust' funtion likePARITY, whih does not get �xed even when all but one variable gets �xed. Thisintuition �rst got formalized and veri�ed by the work of Ajtai [Ajt83℄ followed by4 It is worth noting that most of these positive results with AC0 were obtainedafter strong lower bounds had been shown.
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that of Furst, Saxe and Sipser [FSS84℄. Furst, Saxe and Sipser deliver a beautifulprobabilisti argument by introduing the powerful notion of a random restrition.We sketh below the essene of the argument in [FSS84℄. Let ρ = {0, 1, ∗}nde�ne a restrition of the input variables, where an assignment of ∗ to a variablesigni�es that the restrition leaves it free (i.e. does not set it). De�ne a probabilitydistribution µ on restritions in the following way: Independently assign eah variableto ∗ with probability 1/
√
n and with equal probability, i.e. (1− 1/

√
n)/2, assign itto 1 and to 0. De�ne a gate wide if it has fan-in at least c lnn and otherwise all itnarrow. It is not hard to verify then the following key observation:Observation 2.1 A restrition ρ hosen randomly aording to µ satis�es the fol-lowing:

• A wide AND/OR gate is not fored to 0/1 with probability o(n−c/4).
• Eah narrow gate has more than c inputs assigned to ∗ with probability at most
o(n−c/4).Additionally, we expet a random ρ to leave √n input variables of the iruitassigned to ∗. Thus, with c = 8k, a iruit of size nk when hit by a random restrition,results in a iruit with at least √n/2 variables left free and all of whose base gateshave fan-in at most c. As a �nal step, Furst, Saxe and Sipser analyze depth-2 iruitswhose base gates have small (onstant) fan-in. With a more involved argument, theyshow the following:Lemma 2.2 For �xed integers c, k > 0, there exists a onstant bc = 4k + 24kbc−1satisfying the following: Every depth-2 iruit of size nk, all of whose base iruits ofdepth 1 have fan-in at most c, when hit with a restrition hosen randomly aording30



to µ omputes a funtion of at most bc input variables with probability at least 1 −

o(n−k).The power of the lemma above beomes evident by applying it repeatedly toobtain a swithing e�et as following: applying Observation 2.1, we �rst �nd arestrition that leaves enough (at least√n/2) variables free and dereases the bottomfan-in to a onstant c. Applying a seond round of random restrition on the erstwhilefree variables, Lemma 2.2 ensures that eah depth-2 iruit omputes a funtion ofa onstant (i.e. bc) number of variables. Every suh funtion an be written as botha AND ◦OR and a OR ◦AND iruit of size at most 2bc (whih is a onstant). Thisallows us to swith from a iruit of type AND ◦OR to a iruit of type OR ◦ANDor vie-versa. One the depth-2 iruits are appropriately swithed, the seond andthird layers an be merged dereasing the depth of our original iruit by one, i.e.we move from depth d to d − 1. Meanwhile our bottom fan-in has hanged from cto bc (a double exponential blow-up in k). The bootstrapping proess is ompleteand we go on applying suessive random restritions, eah of whih dereases thedepth of our iruit by one, inreases its size by a onstant fator and inreases thebottom fan-in (that still remains a onstant). At eah step, we also derease the sizeof the set of free variables by about a quadrati fator. We do this a onstant (d−2)number of times to reah a state where our restrited iruit is omputing a funtionof onstant number of variables despite the fat that there are about Ω(n1/2d−1
)variables remaining free. The robustness of a funtion like PARITY �nishes theargument by supplying a ontradition. The restrited iruit has to ompute either
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PARITY or its omplement on the remaining variables whih ontradits the fatthat it is omputing a funtion of merely a onstant number of variables.Traing the various blow-ups arefully as one applied Lemma 2.2 to suessiverestritions, one onludes a lower bound of nΩ(log n) on the size of AC0 iruitsomputing PARITY. The key ingredient in the argument is the ability to swithfrom a DNF to a CNF with small blow-up. A lemma like Lemma 2.2 that allowsone to do so is alled a Swithing Lemma in the literature. Swithing Lemmas haveplayed a major role in obtaining lower bounds in various other models. In the ontextof onstant-depth iruits, after improvements made by Yao [Yao85℄, work on themin the mid-eighties ulminated in the powerful work of Håstad [Hås86℄. Håstad'sSwithing Lemma also yields optimal (exponential) lower bounds on the size of AC0iruits omputing PARITY.We state a version of the Swithing Lemma that is due to Beame [Bea94℄ and isonvenient to use in our work. In order to do so, let us reall the well-known notionof a deision tree. A deision tree is a rooted binary tree, eah of whose internalnodes are labeled by one of the n input variables. For every node, one of its outgoingar is labeled 0 and the other 1. The leaves of a deision tree are labeled 0 and 1and along eah path from the root to a leaf no label on a node is repeated. Given anassignment of input variables, omputation by a tree proeeds along a path in thefollowing way: starting from the root, eah node queries the variable used to label itand then follows the ar labeled with the answer to reah the next node. The proessis repeated with the next node until we hit a leaf at whih point the tree outputsthe label of the leaf. It is easy to verify that the set of inputs that orrespond to32



a omputation along a given path in the tree is disjoint from the set of inputs thatorrespond to omputation along a di�erent path. This simple feature of a deisiontree makes it very handy for our appliations.As with any other tree, the height of a deision tree is the length of the longestpath and it size is the number of internal nodes. It is straightforward to verify thatevery boolean funtion has a deision tree of at most linear height and exponentialsize. The resoures in this model are the height and size of the tree. They are, ofourse, not unrelated as for instane a tree of logarithmi depth an have at mostpolynomial size.Remark 2.3 A boolean funtion omputed by a deision tree of height h has a DNF(and a CNF) formula with eah term of size at most h.Armed with these notions, we are ready to express the powerful e�et of randomrestritions on onstant depth iruits. Let Rℓ
n be the set of all restritions thatleave preisely ℓ of n variables free.Lemma 2.4 (Beame's Swithing Lemma) Let f be a DNF (or CNF) formulain n variables with terms of length at most r. Let ℓ = pn and pik ρ uniformly atrandom from Rℓ

n. Then the probability that fρ annot be omputed by a deision treeof height at most d is less than (7pr)d.Beame's version of the Swithing Lemma readily yields an exponential lowerbound on size of onstant-depth iruits omputing PARITY.Corollary 2.5 A iruit of depth d, using unbounded fan-in AND/OR gates annotompute PARITY if it has size less than 2Ω(n1/d−1).
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Proof:[adapted from Beame [Bea94℄℄ Let the size of the iruit omputing PARITYbe S. We suessively apply random restritions, one for eah layer of the iruit.Let p1 = 1/14 and pi = 1/(14 logS) for i = 2, . . . , d − 1. W.l.o.g. assume that thebase layer is of OR gates. Eah OR gate an be thought of as a DNF with termsize 1. We apply the Swithing Lemma with p = p1 = 1/14 and d = log S and
r = 1 to eah OR gate in the �rst layer. Under a random restrition from R

n/14
n ,eah restrited gate fails to be omputed by a deision tree of height at most logSwith probability less than 2− log S = S. Sine there are at most S gates in the �rstlayer, there exists a restrition ρ1 ∈ Rn/14

n that sueeds in restriting the height ofdeision tree to log S for eah OR gate at the base layer.We show by indution of depth that there exists (d − 1) suessive restritions
ρ1, ρ2,. . .,ρd−1 with ρi ∈ Rni

ni−1
where ni = pini−1 and n0 = n, suh that after applying

ρi the output of eah gate at the ith layer is omputed by a deision tree of height atmost logS. The base ase of this indution has been established above for the baselayer, i.e. i = 1. If the i + 1th layer is that of AND (OR) gates, we ompute theorresponding CNF (DNF) formula for eah restrited gate in the ith layer from itsdeision tree as per Remark 2.3. Thus, the output of eah gate in the i+1th layer ofthe restrited iruit an be again expressed as a CNF (DNF) formula. Then applythe Swithing Lemma to eah suh formula by hoosing a random restrition from
R

ni+1
ni . Again, eah formula fails to be restrited to a deision tree of height logSwith probability less than (1/2pi+1 logS)log S = S. So, there exists a restrition thatdoes not fail for any formula. This ompletes the indution.
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Thus, after applying d− 1 restritions, we have nd−1 variables free and a depth-2 iruit with bottom fan-in logS either omputing PARITY or its omplement onthese free variables. Hene, log S ≥ nd−1 = n/(14(14 logS)d−2), yielding the requiredbound on S.The above bound is not only an exponential lower bound for onstant d but isquite lose to being optimal as the following fat shows:Fat 2.6 Let d > 0 be an even number. There is an AC0 iruit of size 2O(n2/d) anddepth d that omputes PARITY.Proof: The iruit is built using a simple divide and onquer strategy. The iruithas d/2 setions and the outputs of Setion i are fed into the inputs of Setion
i + 1. Eah setion has depth 2 and the total number of inputs in Setion i is
ni = n/(n2(i−1)/d). Further, ni is split into equal bloks of size n2/d. In Setion i,we ompute in parallel the parity of eah blok. This is aomplished by using theobvious depth-2 exponential size iruit for eah blok. Thus, the total number ofgates in a setion is 2n2/d × (ni/n

2/d) < n2n2/d . As there are d/2 setions, we get atotal depth of d and total size less than nd2n2/d.2.1.2 Modular and Threshold Counting gatesThe previous iruit for PARITY an be easily modi�ed to show that in log ndepth, one an ompute PARITY in linear size using binary fan-in AND/OR gates5 .5 In fat, using the same divide and onquer strategy, every regular language anbe omputed in linear size and logarithmi depth using bounded fan-in AND/ORgates. The non-boolean letters of the alphabet may be enoded as boolean stringsin any reasonable way. 35



Thus, Parity witnesses a lean separation of AC0 from NC1. This is one of therare unonditional expliit separations of omplexity lasses. Several other naturalfuntions are also not in AC0 (as �rst observed in [FSS84℄) beause PARITY reduesto them.The notion of a redution is a very standard one in omplexity theory to expressthe relative hardness of two problems. This is the notion that gives rise to the ideaof ompleteness of a problem in a omplexity lass (for instane NP-ompleteness).In the ontext of iruits, we say a boolean funtion f AC0 redues to funtion g,denoted by f ≤AC0
g, if one an ompute f in onstant depth and polynomial sizeusing AND/OR gates and gates omputing the funtion g.Observation 2.7 Thrt ≤AC0 MAJORITY.Proof: If t ≤ n/2 (t > n/2), then by feeding (n

2
−1) onstant ones (zeroes) to a MAJgate, we make it ompute Thrt.Observation 2.8 (Furst, Saxe and Sipser [FSS84℄) PARITY ≤AC0 MAJORITY.Proof: The basi intuition is that MAJORITY allows you to ount preisely thenumber of ones ourring in a boolean string. This is beause the number of ones ina n-bit string x is t i� Thrt(x) = 1 and Thrt+1(x) = 0. Thus,PARITY(x) = ∨0≤2i≤n

(Thr2i(x) ∧ ¬Thr2i+1(x)
)Observing that ¬Thrk(x1, . . . , xn) = Thrn−k+1(¬x1,¬x2, . . . ,¬xn) and using Obser-vation 2.7, we are done.The argument above shows something slightly stronger. A boolean funtion isalled a symmetri funtion if its value depends just on the number of input bits set36



to 1. PARITY, MAJORITY, Thrt are all symmetri funtions. The argument aboveshows the following:Fat 2.9 Let SYMM be an arbitrary symmetri funtion. Then, SYMM ≤AC0 MA-JORITY.In the light of these observations, a series of natural questions emerge fromthe separation of AC0 from NC1: How does the omputational power of the modelget hanged, if we allow PARITY or other modular ounting gates in addition toAND/OR gates in our iruit? How is it altered, if we allow gates omputing MA-JORITY (denoted by MAJ) in our iruits? De�ne ACC0[m] to be the lass offuntions omputed by onstant depth polynomial size iruits onsisting of un-bounded fan-in AND, OR and MODm gates. Barrington [Bar86℄ de�ned ACC0 as
∪m≥2ACC0[m]. De�ne TC0 to be the lass of funtions that an be omputed byiruits using only MAJ gates in onstant depth and polynomial size. Note thatby our previous observations, augmenting TC0 iruits with AND/OR/SYMM gatesdoes not give us additional power, where a SYMM gate omputes an arbitrary sym-metri funtion. In fat, Hajnal et.al. [HMP+93℄ observe that slightly modifying theproof of Observation 2.8 shows that every symmetri funtion an be omputed byTC0 iruits in depth-2 and linear size. Thus, the lass of funtions omputable byonstant-depth iruits of polynomial size using gates omputing arbitrary symmet-ri funtions is preisely TC0. A non-trivial fat is that MAJORITY of n bits anbe omputed by a iruit of polynomial size and O(logn) depth that has only binaryfan-in AND/OR gates. To sum up, we have the following re�ned view:
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NC0 ( AC0 ( ACC0 ⊆ TC0 ⊆ NC1 ⊆ L/poly ⊆ NL/poly ⊆ P/polyACC0 is the smallest naturally arising omplexity lass whih annot be sepa-rated from NP. Yet, no funtion in ACC0 is known whose omputation makes `lever'use of modular ounting gates. In ontrast, several interesting omputations existwith TC0. Modifying the argument of Observation 2.8, one an show that everysymmetri funtion an be omputed in linear size by depth-2 MAJ ◦MAJ iruits.With more are, one an sort n integers, eah n-bit long in TC0. One even an multi-ply n integers (n-bits long) and divide6 two suh integers [BCH86, Rei87℄. Althoughmost researhers believe that ACC0 is a strit sublass of NC1 (and even of TC0), asubstantial number of researhers believe that TC0 and NC1 are the same (see, forexample, [AW93℄). An interesting onsequene of suh a ollapse is that TC0 in thatase an be simulated by polynomial size threshold iruits of some �xed depth k.2.1.3 Polynomials and the Case of Prime ModulusAlthough we do not know the power of ACC0[m] in general, a beautiful argumentdue to Smolensky [Smo87℄, generalizing the earlier breakthrough work of Razborov[Raz87℄, pins down the weakness of suh iruits when m ontains only one primefator, i.e. m = pk for some prime p. It shows that ACC0[pk] iruits annot omputethe MODq funtion in sub-exponential size if p, q are two distint primes.6 More reently, in a breakthrough work [HAB02℄, it has been shown that divisionan be done by an `extremely uniform' version of TC0.38



Theorem 2.10 (Razborov-Smolensky) ACC0[pk] iruits of depth d annot om-pute the MODq funtion using 2no(1/2d) AND and OR gates.The work in [Raz87, Smo87℄ introdued the powerful notion of approximatingboolean funtions by polynomials over �nite �elds for proving Theorem 2.10. In thisthesis, the study of suh polynomials plays an important role. We introdue thismahinery below. Although [Smo87℄ worked with polynomials over a �nite �eld Zpfor a prime p, we work with the more general setting of polynomials over the ring Zmas in Barrington et.al.[BBR94℄, where m is an arbitrary but �xed positive ompositeinteger.Consider the spae Vm of funtions from {0, 1}n → Zm. For eah w ∈ {0, 1}n,de�ne the funtion δw : {0, 1}n → Zm as δw(x) = 1 if w = x and otherwise δw(x) = 0.Consider the set of funtions ∆ = {δw |w ∈ {0, 1}n}. It is easy to see that everyfuntion f ∈ Vm an be uniquely expressed as a Zm linear ombination of suhfuntions. Indeed if m is a prime, then ∆ forms a basis of the assoiated vetorspae.Another useful set that spans Vm is the setM of all n-variate multilinear mono-mials, i.e. M = {χS =
∏

i∈S xi |S ⊆ [n]}, where [n] = {1, . . . , n}. To see that
M spans Vm, it is enough to show that eah element of ∆ an be expressed as a
Zm-linear ombination of the monomials. Indeed, this gets veri�ed by observing that

δw(x) =
( ∏

i:wi=1

xi

)( ∏

i:wi=0

(1− xi)
)and then expanding out the produt as a sum over Zm. On the other hand, thereare preisely m2n possible linear ombinations of suh monomials. This is exatly39



the number of funtions in Vm. Thus, every f ∈ Vm an be uniquely expressed asa sum of monomials. Any suh linear ombination of monomials is formally alleda multilinear polynomial over Zm. Sine in this thesis we exlusively deal withmultilinear polynomials, the term `multilinear' is heneforth omitted but is alwaysimplied. The degree of a polynomial is the ardinality of the largest subset S of [n]suh that the oe�ient of χS is non-zero in the polynomial. The exat or strongMODm-degree of a boolean funtion is the degree of the unique polynomial over Zmexpressing it. For example,
AND(x) = x1x2 · · ·xn

OR(x) = 1−
n∏

i=1

(1− xi)showing that the strong MODm-degree of OR and AND is n, for eah integer m ≥ 2.In order to express MODp funtion, when p is prime we reall the following simplebut very useful fat:Fat 2.11 (Fermat's Little Theorem) For any prime p and any integer a 6≡

0 mod p, ap−1 ≡ 1 mod p.Using this fat, we get for a prime pMODp(x) ≡ (x1 + · · ·+ xn)p−1 (mod p)establishing that the strong MODp-degree of the boolean funtion MODp is a on-stant, i.e. p− 1. It is interesting to verify the following identity:MODpk(x) ≡
∑

S⊂[n]:|S|≤pk−1

(−1)|S|−1
∏

i∈S

xi (mod p).40



This implies that the strong MODp-degree of MODpk is pk − 1, for any k. A slightlystronger statement is true. With eah symmetri boolean funtion f , one naturallyassoiates its spetrum funtion f : {0, . . . , n} → {0, 1}, suh that f(x) = f(x1 +

· · ·+xn) for eah x ∈ {0, 1}n. A symmetri f is alled periodi with period a preiselyif f(t) = f(t + a), for eah 0 ≤ t ≤ n − a. Then, the following useful fat appearsimpliitly in the work of Barrington et.al. [BBR94℄.Lemma 2.12 For any prime p and any integer k ≥ 1, every symmetri booleanfuntion f with period pk has strong MODp-degree at most pk − 1.The exat/strong degree of a boolean funtion is a natural algebrai omplexitymeasure of a boolean funtion.Based on the fat that OR and AND have very high degree (read ompliated),it is reasonable to guess that modular ounting with prime modulus alone shouldnot help ompute these high-degree funtions. This notion gets veri�ed by an ele-gant argument below. Before we state the argument, we reall a useful property ofomposition of polynomials.Observation 2.13 Let P (y1, . . . , ym) be a polynomial over Zm of degree r and eah
yi = Pi(x1, . . . , xn) be a polynomial of degree at most s. Then the omposed poly-nomial P (P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)) is a polynomial of degree at most rs in
xi's.Theorem 2.14 (impliit in [Smo87℄) Constant-depth iruits using only MODpkounting gates annot ompute the AND and OR funtion if p is a �xed prime and
k is a �xed positive integer.
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Proof: The basi idea is to show that the funtion omputed by a iruit of onstantdepth having only MODp gates has onstant MODp-degree. The theorem then followsimmediately. We show by indution of depth that the funtion output by suh a depth
d iruit has MODp-degree at most (pk− 1)d. The base ase of d = 0 is obvious. Let
y1, . . . , ys be the inputs of the output MODpk gate in a iruit of depth d. Treating
y1, . . . , ys as our input variables, we know that the output of the iruit is representedby a polynomial P (y1, . . . , ys) of degree at most pk − 1. Sine eah yi is the outputof a depth d − 1 iruit, the indutive hypothesis yields that yi is represented by apolynomial Pi over Zp of degree at most (p−1)d−1 in the input variables x1, . . . , xn ofthe iruit. Thus, using Observation 2.13, polynomial P has degree at most (p− 1)din x1, . . . , xn.Theorem 2.14 is a nie dual to the fat that AND/OR gates annot ompute theMODp funtion in sub-exponential size and onstant depth. The dual we have provenhappens to be muh stronger as it is independent of the size of iruits. Ciruits ofonstant depth omposed of prime mod-ounting gates are not even universal, i.e.they annot ompute all funtions even when no restrition is imposed on their size.The key ingredient in the above argument was the fat that MODp funtion hasonstant MODp-degree when p is prime. We note this below:Fat 2.15 The MODp-degree of a funtion omputed by a onstant-depth iruithaving only MODpk gates is onstant.This fat is indeed very sensitive to the primality of p (or it being a primepower). As soon as m has two distint prime fators, the MODm-degree of the
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MODm funtion shoots up to linear. As we see later, one annot even approximatethe MODm funtion well anymore by low degree polynomials.Let us relax the notion of exat representation of boolean funtions to approxi-mation of them by polynomials. A polynomial P over Zm approximates a funtion fwith error ǫ if Prx[P (x) 6= f(x)] ≤ ǫ where x is hosen at random, aording to a givendistribution. Note that under the uniform distribution over inputs, the onstant zeropolynomial is a good approximation of the OR funtion. On the other hand, tremen-dous savings is made in terms of degree when one moves from exat to approximaterepresentations for any distribution over inputs as the following sequene of resultsfrom [Raz87, Smo87℄ show:Proposition 2.16 For every x ∈ {0, 1}n, if we pik a random linear polynomial Pover Zp, then (P (x)
)p−1 is equal to OR(x) with probability at least a half.Proof: Piking a random linear polynomial is the same as piking eah of its noe�ients c1, . . . , cn independently at random from Zp and then letting P (x) =

c1x1 + · · ·+ cnxn. If x is the all zero input, then P (x) = 0 with probability one andthere is no error. Otherwise, there is some i for whih xi = 1. For every hoie of allother oe�ients, there is exatly one hoie of ci that is bad, i.e. makes P (x) = 0.Thus with probability (1 − 1/p), polynomial (P (x))p−1 evaluates to 1 and we aredone.Lemma 2.17 For eah 0 < ǫ < 1 and for every iruit C in ACC0[pk] of depth dand size s, there exists a distribution UC over polynomials over Zp of degree at most
(
(pk − 1)(log(s/ǫ))

)d , suh that for eah input x to C, PrP∼UC
[P (x) 6= C(x)] ≤ ǫ.Proof: For eah gate G in the iruit, we do the following:43



If G is an OR gate, pik t = log(s/ǫ) random linear polynomials P1, . . . , Ptindependently. Let yi = (Pi(x))
p−1. Let PG be the polynomial that exatly omputesOR(y1, . . . , yt). Note that PG is a random polynomial of degree at most (p − 1)t =

(p − 1) log(ǫ/s). If G outputs zero, then PG outputs zero with probability one. If
G outputs one, using Proposition 2.16, PG outputs zero with probability at most
1/(2t) = ǫ/s. Thus PG disagrees with G with probability at most ǫ/S.If G is an AND gate we think of it as the omplement of an OR gate using deMorgan's law. We hoose a random polynomial P ′G for this OR gate as presribedbefore and then set PG = 1 − P ′G. The same onlusions on the degree and errorprobability as before for a polynomial orresponding to an OR gate holds for PG.If G is a MODpk gate we replae it by the unique polynomial of degree at most
pk − 1 that exatly omputes it.We ombine polynomials for all gates by omposing them, layer by layer, toobtain the polynomial PC orresponding to iruit C. Using Observation 2.13, PC hasdegree at most (pk−1)d(log(s/ǫ))d. Using the union bound, PC errs with probabilityat most ǫ and we are done.Corollary 2.18 Let C be an ACC0[pk] iruit of depth d and size s. For eahdistribution µ on {0, 1}n and 0 < ǫ < 1, there exists a polynomial P of degree atmost ((pk − 1)(log(s/ǫ))

)d suh that Prx∼µ[P (x) 6= C(x)] ≤ ǫ.Proof: Follows diretly from Lemma 2.17 using an obvious ounting argument.Corollary 2.18 shows the remarkable savings in degree that approximations anbring in.
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Remark 2.19 Even though the exat degree of an AND/OR gate is as high as itan get, funtions omputed by ACC0[pk] iruits of quasi-polynomial size an beapproximated with inverse-quasipolynomial error by polynomials over Zp that havemerely poly-logarithmi degree, if p is prime.However, there are some natural funtions that are even hard to approximate.Based on the fat that modular ounting over two di�erent prime moduli are verydi�erent from eah other, it is tempting to guess that low degree polynomials over
Zp do not approximate well the MODq funtion when p, q are two distint primes.This was formally veri�ed by Smolensky [Smo87℄. We reall his neat argument.We assume that p, q are two primes suh that the �eld Zp has a non-trivial q-throot of unity g i.e. g ∈ Zp, g 6= 1 and gq = 1 mod p (for instane p = 3 and q = 2form suh a pair of primes as a = 2 is a square-root of unity in Z3). The ase whenthis is not satis�ed an be handled like this ase by using a simple algebrai trikthat we desribe later.Consider the linear transformation yi = (g − 1)xi + 1 for 1 ≤ i ≤ n. Thismaps 0, 1 to 1, g respetively. Using this map, we naturally identify the spae Vpof funtions from {0, 1}n → Zp with the spae Wp of funtions from {1, g}n → Zp.Note that

xi =
yi − 1

g − 1is well de�ned as g 6= 1 by assumption. Also, for xi ∈ {0, 1},
y−1

i = (g−1 − 1)xi + 1 =
g−1 − 1

g − 1
(yi − 1) + 1. (2.2)45



Using these identities, one an go bak and forth between every polynomial Px in thevariables xi's representing a funtion f in Vp and a polynomial Py in yi's representingthe funtion orresponding to f inWp. Further, it is simple to verify that the degreesof Px and Py are idential. Let R ∈Wp be the funtion given by ∏n
i=1 yi.Lemma 2.20 Every polynomial Pf in variables y1, . . . , yn an be written as Pf =

Pg · R + Ph, suh that eah polynomial Pg, Ph has degree at most n/2.Proof: Ph is the sum of all monomial terms of Pf that have degree at most n/2.The Lemma follows by showing that eah monomial of degree more than n/2 anbe written as P · R, where P is a polynomial of degree at most n/2. Consider anymonomial M =
∏

i∈S yi, where S ⊆ [n] and |S| > n/2. Then, using the de�nition of
R and (2.2), we see that

M = R
(∏

i/∈S

y−1
i

)
= R

[∏

i/∈S

(
g−1 − 1

g − 1
(yi − 1) + 1

)]
= R · Pand learly P has degree less than n/2.For any 0 ≤ s ≤ q − 1, (abusing notation) de�ne MODs

q to be the funtion in Vp(Wp) that outputs 1 if the number of input bits set to 1 (g) is ongruent to s modulo
q and otherwise outputs zero. Then the following is obvious:Observation 2.21

R =

q−1∑

i=0

giMODi
qWe are ready to prove the main result of this setion.
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Lemma 2.22 (Main Lemma, [Smo87℄) Every polynomial over Zp of degree d dis-agrees with one of the boolean funtions in {MODi
q|0 ≤ i ≤ q − 1} in at least

2n (1/2q − d/Ω(q
√
n)) input points.Proof: Reall that every polynomial in Vp of degree d has a polynomial P of degree

d in Wp. Thus, using Observation 2.21, it will be su�ient to show every suh Pdi�ers with R on at least 2n(1/2− d/Ω(
√
n)) points.Let A ⊆ {1, g}n be the set of points on whih P and R agree. ApplyingLemma 2.20, every funtion (Zp)

A is spanned by the set of monomials of degreeat most n/2+d. The total number of suh funtions should therefore be at most thetotal number of polynomials of degree at most n/2 + d. Hene,
p|A| ≤ p

Pn/2+d
i=0 (n

i)yielding (using Stirling's approximation)
|A| ≤ 2n−1 +

2n

√
n
d.Our result follows readily.Summarizing what we have seen so far will immediately yield Theorem 2.10that laims an exponential lower bound on the size of ACC0[pk] iruits omputingMODq, if p, q are distint primes.Proof:[of Theorem 2.10℄ Reall that Corollary 2.18 showed us that every funtionomputed by suh a iruit of size s and depth d an be approximated by a polynomialof degree O(log(s/ǫ))d that errs at only ǫ fration of inputs. Thus, if log s = o(n1/2d),then this says that the approximating polynomial has degree o(√n) and makes o(1)47



errors. Combining this with Lemma 2.22, we see that one of the MODi
q funtionsannot be approximated this well and therefore needs iruits of size 2Ω(n1/2d). Onthe other hand, observing that if iruits of size s and depth d an ompute MODq,then in (almost) that size and depth they an ompute MODi

q for all i gives us ourtheorem.The proof of Theorem 2.14 shows that MODpk gates for a �xed prime p, arenot universal. On the other hand, MODm gates are universal, if m has two distintprime fators. In fat in depth-two, iruits omprising only suh MODm gates anompute every funtion. However, it appears implausible that MODm gates, with
m having two or more distint prime fators, should give us signi�ant advantageover the ase when m has only a single prime fator in omputing MODℓ if m, ℓ areo-prime numbers. This motivated Smolensky to make the following outstandingonjeture:Conjeture 2.23 (Smolensky's Conjeture [Smo87℄) ACC0[m] iruits annotompute the MODℓ funtion in size 2no(1), if m, ℓ are relatively prime numbers.This beautiful onjeture drives our work on onstant-depth iruits having mod-ular gates. Realling MODℓ ≤AC0 MAJORITY for any �xed ℓ, it is simple to verifythat Smolensky's onjeture implies that MAJORITY /∈ ACC0.2.1.4 The Weakness of a Single MAJ GateAlthough we do not understand the omputational power of even depth-threeTC0 iruits, we desribe one weakness of MAJ gates that does provide tration insome interesting ases. Consider a iruit with a MAJ gate at the output omputing
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a funtion f . Intuition suggests that at least one of the sub-iruits Ci must `approx-imate' the funtion f well if the fan-in of the MAJ gate is small. The simple reasonto expet this is that a MAJ gate deides what the majority of its sub-iruits deideon a given input.We make this formal as follows: Let A and B be subsets of inputs on whih
f evaluates to 1 and 0 respetively i.e. A ⊆ f−1(1) and B ⊆ f−1(0). Let µ bea probability distribution with support A ∪ B. Then, a funtion g is said to ǫ-disriminate f if the following holds:

∣∣∣∣ Pr
x∼µ

[
g(x) = 1

∣∣x ∈ A
]
− Pr

x∼µ

[
g(x) = 1

∣∣ x ∈ B
]∣∣∣∣ ≥ ǫ. This notion then highlights the weakness of a MAJ gate through the followinglemma of Hajnal et.al. [HMP+93℄Lemma 2.24 (Disriminator Lemma) Let f be a funtion omputed by a MAJgate that gets its inputs from t sub-iruits C1, . . . , Ct. Then, for every pair of subsets

A ⊆ f−1(1) and B ⊆ f−1(0) and distribution µ on inputs, there exists a sub-iruit
Ci that 1/t-disriminates f .Proof: Let µA (µB) be the distribution indued on A (B) by µ onditioned on event
x ∈ A (x ∈ B). Then, from the de�nition of a MAJ gate,

Ex∼µA

[ t∑

i=1

Ci(x)
]
≥
⌈ t
2

⌉and
Ex∼µB

[ t∑

i=1

Ci(x)
]
≤
⌊ t
2

⌋
.49



Subtrating the seond inequality from the �rst, and using the triangle inequal-ity, along with the linearity of expetation, we have
1 ≤

t∑

i=1

∣∣∣∣Ex∼µA

[
Ci(x)

]
− Ex∼µB

[
Ci(x)

]∣∣∣∣

=
t∑

i=1

∣∣∣∣ Pr
x∼µ

[
Ci(x) = 1

∣∣x ∈ A
]
− Pr

x∼µ

[
Ci(x) = 1

∣∣x ∈ B
]∣∣∣∣.Applying an averaging argument to the above yields the lemma.To illustrate the usefulness of the Disriminator Lemma, we show the followingsimple fat:Fat 2.25 Depth-two iruits with a MAJ gate at the output that is fed by ANDgates of fan-in at most n− 1 i.e. MAJ ◦ANDn−1 annot ompute the PARITY of nbits.Proof: Let A and B be set of inputs that have odd and even parity respetively. Let

µ be simply the uniform distribution. It is not hard to verify that the probability ofa given AND gate �ring a 1 is una�eted by events x ∈ A or x ∈ B. Consequently,eah AND gate does not ǫ-disriminate PARITY for any non-zero ǫ.A ombination of the Disriminator Lemma with Håstad's Swithing Lemmaresults in a muh more interesting fat that was �rst proved by Green [Gre91℄:Theorem 2.26 Consider a iruit having a single MAJ gate at the output that isbeing fed by AC0 sub-iruits of depth d, i.e. MAJ◦AC0
d. Any suh iruit needs size

2Ω(n1/d) to ompute PARITY.Proof: The idea of the proof is the following. We hit all AC0 sub-iruits withrandom restritions simultaneously just as we did to prove that PARITY requires50



exponential size AC0 iruits to ompute (Corollary 2.5). We show the following: ifthe size of the iruit is 2o(n1/d), then with non-zero probability, eah restrited AC0sub-iruit an be replaed by a few AND gates of fan-in less than the number of freevariables. We hoose one restrition that satis�es the above. Under this restrition,the restrited iruit still omputes PARITY (or ¬PARITY) of the remaining freevariables. Fat 2.25 provides a ontradition �nishing the proof.This idea is arried out by omposing d random restritions exatly like in theproof of Corollary 2.5. Hene, if S is the sum of the sizes of all the AC0 iruits,there exists a restrition with the following property: the output of eah restritedsub-iruit Ci has a deision tree Ti of depth at most logS. The restrition leaves
nd = n/(14(14 logS)d−1) variables free.We do the following surgery on eah Ti. For eah path P that leads Ti to output1, we reate an AND gate whose input variables are exatly the ones that Ti queriesalong P . Let there be ki suh paths in Ti whih then results in ki AND gates beingreated, eah of fan-in at most log S. The key observation is that, for a given inputassignment, at most one of these ki AND gates outputs 1. Thus, if we feed (ki − 1)onstant 1's in addition to the ki AND gates diretly to the output MAJ gate, thenwe ompute the same funtion as the restrited iruit. As argued before, Fat 2.25implies that the fan-in of one of these AND gates is the number of free variables.Hene,

logS ≥ nd = n/(14(14 logS)d−1)whih provides the required bound on S, the size of the iruit.
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It remains a very interesting open question to determine whether super-polynomiallower bounds an be proven on the size of suh iruits when the sub-iruits feedinginto the MAJ gate are augmented with MODm gates for any odd m. This remainsopen even for prime m. In Chapter 3 and Chapter 7, we onsider restrited iruitswith MODm gates feeding into a MAJ gate and prove strong lower bounds for them.
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CHAPTER 3Lower Bounds for Ciruits with Modular GatesIn the last hapter, we saw that random restritions provide a powerful ombina-torial tool for proving (optimal) lower bounds for AC0 iruits. Unfortunately, theredoes not seem to be any way to apply restritions to �x a modular ounting gatewithout �xing almost all of its inputs. This renders the tehnique ine�etive to dealeven with iruits that ontain only modular gates. This di�ulty was overome bythe ingenious arguments of Razborov and Smolensky using the �polynomial method�.The seond part of Smolensky's argument shows that low degree polynomials over
Zp annot even approximate well the MODq funtion, if p, q are distint primes.Ironially, this result itself spells doom for the Razborov-Smolensky approah whenmodular gates involved have a modulus m that ontains two suh primes p, q. In-deed, it shows that the MODm funtion annot be well approximated by a low degreepolynomial over the ring Zm when m = pq. This fails the �rst part of the Razborov-Smolensky approah to approximate funtions omputed by ACC0[m] by low degreepolynomials.No satisfatory method is yet known for general onstant-depth iruits withmodular gates of omposite modulus. In this hapter, we make progress, ontinuing along line of intensive researh ( see for example [BS95, BS99, BST90, Gre04, Gro94b,Gro98, GT00, HM04, KW91, MPT91, Smo90, ST06, Thé94℄). Our strategy is two-pronged. First we view ACC0 iruits as AC0 iruits augmented with modular53



gates. Besides being a natural point of view, this is inspired by a similar point ofview on TC0 being AC0 iruits augmented with MAJ gates. This led to a series ofinteresting results [ABFR94, BRS91b, Bei94, BS94℄. A natural question, with thispoint of view, then is the following: Can lower bounds be proved if we limit theamount of MODm gates used? We pursue this theme in Setion 3.1 and prove thatfew MODm gates do not aid an AC0 iruit signi�antly in omputing MAJORITYand MODℓ. More preisely, we show the following:Theorem 3.1 Let m be a positive integer with r ≥ 2 distint prime fators. AnyAC0 iruit augmented with s MODm gates requires size nΩ( 1
s
log

1
r−1 n) to ompute MAJor MODℓ, if ℓ has a prime fator not dividing m.To get a feel for the meaning of this theorem, note that it implies that AC0 ir-uits augmented with o(logn) MOD6 gates, annot ompute MOD5 or MAJORITYin polynomial size. It is interesting to note that our Theorem 3.1 omplements theresult obtained by [BS94℄ whih shows that AC0 augmented with polylogarithminumber of MAJ gates annot ompute MODℓ e�iently. They deal with polylog-arithmi number of MAJ gates using the result of Beigel [Bei94℄ whih shows thatevery iruit with polylogarithmi number of MAJ gates an be simulated by onewith a single MAJ gate, inreasing the size of the original iruit by at most aquasipolynomial fator. No analogous simulation of iruits with a few MODm gatesby a iruit with a single MODm gate is known.We extend the mahinery of polynomials over rings, introduing a new notionof polynomial representation of boolean funtions. Our lower bounds on degrees ofsuh representations in Setion 3.1.1 are of independent interest. These bounds are54



then ombined with random restritions on AND/OR gates to yield Theorem 3.1.Results ontained in this part appeared in joint work with K. A. Hansen in [CH05℄.In the seond part, we aim to understand the lass of funtions omputable byiruits of polynomial size, omprising only MODm gates and having onstant depth.We denote this lass by CC0[m]. De�ne CC0 = ∪m≥2CC0[m]. While developingtehniques to prove lower bounds on the size of CC0 iruits is a signi�ant steptowards understanding ACC0, Caussinus [Cau96℄ points out that it is not even knownif in depth-two and linear size CC0 iruits an ompute SATISFIABILITY whenthe modular gates are allowed to be generalized. A generalized MODm gate, denotedby MODS
m, has an assoiated aepting set S ⊂ Zm and outputs 1 i� the sum of theinput bits modulo m is an element of S.Let the support set of a boolean funtion f be the set of inputs at whih f isnon-zero. Slightly abusing terminology, we all the size of the support set of f assupport. One weakness of a MODm gate is that the size of its support set is large i.e.roughly 2n/m. It is tempting to postulate that onstant-depth iruits of small sizeannot quite overome the weakness of its onstituent gates. This intuition leads tothe following onjeture:Conjeture 3.2 (MKenzie, Peladeau and Thérien [MPT91℄) The AND of nbits annot be omputed in onstant depth and polynomial size by iruits omprisingonly MODm gates , for any �xed modulus m, i.e. AND /∈ CC0.Observe that this onjeture is the dual of the lassial result that MODm annotbe omputed e�iently in onstant depth using only AND and OR gates. The ANDfuntion has the smallest support that any non-onstant funtion an have. On the55



other hand, it is not even known if a funtion with a sub-exponential size support isin CC0. We dare onjeture the following:Conjeture 3.3 (Small Support Set) There exists a funtion h : N → N, suhthat any non-onstant funtion omputed by a CC0 iruit of size s and depth d hasa support set of size at least 2n

2Ω(log s)h(d) .Reall that Fat 2.15 in Chapter 2 states that the MODp-degree of funtionsomputed by CC0[pk] iruits of arbitrary size is a onstant. It an be shown thatfuntions represented by onstant degree polynomials over Zp have a support set1 ofexponential size. Thus, the Small Support Set Conjeture holds in a very strongsense for CC0[pk].In Setion 3.2, we make small but non-trivial progress on this onjeture. Speif-ially, we prove the following: let CC[m] denote the lass of funtions omputableby polynomial size iruits having only MODm gates but arbitrary depth. Then,Theorem 3.4 For every positive integer m, there exists a positive onstant c suhthat every non-onstant boolean funtion with support size less than 2n/cs annot beomputed by any CC[m] iruit whose Layer 1 has size less than s.Thérien [Thé94℄ gives a similar but weaker result that funtions with supportset of size less than ( α(m)
α(m)−1

)n 1
α(m)s require CC[m] iruits of size s, where α(m) isa growing funtion of m. In partiular, suh results imply that AND annot beomputed by sublinear size CC[m] iruits. In ontrast to Thérien's tehnique of1 The result of Péladeau and Thérien [PT88℄ shows that this ontinues to holdeven for polynomials over Zm when m is an arbitrary omposite number.56



using Fourier Analysis over �nite �elds, we ombine analysis over omplex numberswith notions from additive number theory. As Smolensky [Smo87℄ remarked, analysisover harateristi zero may lead to further tehniques being developed by makinguse of metri inequalities.In the �rst part of this hapter, Theorem 3.1 makes progress towards Smolen-sky's Conjeture. In Setion 3.2, we make progress on it from a di�erent diretion.Smolensky's onjeture implies that CC0[m] iruits require exponential size to om-pute MODℓ when m, ℓ are o-prime. Proving this will onstitute signi�ant advane-ment in our understanding of the limitations of modular ounting. We report thefollowing progress on this front: let CCo(n)[m] denote the lass of iruits, omprisingonly MODm gates, having sublinear size and arbitrary depth.Theorem 3.5 Any iruit of type MAJ ◦ CCo(n)[m] omputing MODℓ requires theoutput gate to have fan-in 2Ω(n) if m, ℓ are o-prime.This result onsiderably improves the previous best lower bound due to Smolen-sky [Smo90℄ who showed an Ω(log n) lower bound on the number of gates neededby CC0[m] iruits to ompute the MODℓ funtion. We obtain Theorem 3.5, on theother hand, by showing that funtions in CCo(n)[m] have exponentially small orre-lation with MODℓ. Results in this setion appeared in the joint work with N. Goyal,P. Pudlák and D. Thérien [CGPT06℄.3.1 Ciruits with Few Modular Gates3.1.1 Preliminaries of Polynomial RepresentationReall that Razborov and Smolensky [Raz87, Smo87℄ introdued polynomialsover �nite �elds mainly as a tool to analyze iruits with modular gates. Their57



work was losely followed up by a number of other works (see for example [All89,Yao90, BRS91a, ABFR94, BT94℄), where polynomials (over �nite �elds, �nite ringsand �elds of harateristi zero) played a key role in obtaining strong lower boundson various iruits. There is a nie (though somewhat outdated) survey of theseworks by Beigel [Bei93℄. While these early works looked at polynomials mainly as atool for obtaining lower bounds, the work of Barrington, Beigel and Rudih [BBR94℄and that of Nisan and Szegedy [NS94℄ treat polynomials as an independent modelof omputation with degree being the most important resoure. In this hapter, wefous on polynomials over the �nite ommutative ring Zm, for a �xed integer m.Interestingly, polynomials over reals show up as an invaluable tool in Chapter 6 toanalyze the ommuniation omplexity of boolean funtions.A polynomial P over a ring is a strong representation of a boolean funtion fif f(x) = P (x) for all x ∈ {0, 1}n. Note that this makes sense beause rings, byde�nition, have 0 and 1 elements. Razborov and Smolensky, for instane, use thestrong representation by polynomials over the speial �eld Zp, where p is prime. Aswe saw in the last hapter, eah boolean funtion has a unique strong representationby a polynomial over Zm for any integer m ≥ 2. In order to make use of the fullpower of the underlying ring Zm, this notion an be naturally relaxed in more thanone way:
• P is a one-sided representation of f if f(x) = 0⇔ P (x) ≡ 0 (mod m) for all
x ∈ {0, 1}n.
• P is a weak representation of f if P (x) 6≡ 0 (mod m) for some x ∈ {0, 1}n, and
P (x) 6≡ 0 (mod m)⇒ f(x) = 1 for all x ∈ {0, 1}n.58



• P is a generalized2 representation of f if there is an aepting set S ⊂ Zm suhthat f(x) = 1⇔ P (x) ∈ S.The minimal degree of a polynomial satisfying the above properties is alled thestrong, one-sided, weak and generalized MODm-degree, respetively. Note that astrong representation is also a one-sided representation. A one-sided representationis also a weak representation as well as a generalized representation (with aeptingset Zm − {0}).Tardos and Barrington [TB98℄ obtained the following lower bound on the gen-eralized degree of the OR funtion.Theorem 3.6 ([TB98℄) Let m be a positive integer with r ≥ 2 distint prime fa-tors, and let q be the smallest maximal prime power divisor of m. The generalizedMODm-degree of the OR funtion on n variables is at least (( 1
q−1
− o(1)

)
logn

) 1
r−1 .Inidentally, this is the best lower bound on the generalized MODm-degree ofthe OR funtion for a omposite m. The best upper bound is due to Barrington,Beigel and Rudih [BBR94℄. They showed that there is a symmetri polynomial over

Zm of degree O(n1/r) that one-sidedly represents the OR funtion, when m has rdistint prime fators. This is one of a few results that shows that omposites havenon-trivial advantage over primes in a reasonable model of omputation. It is notknown if the advantage in this ase is exponential, but that is ertainly not expeted.2 This notion was atually alled weak representation in [TB98℄, but we prefer toreserve this name for the representation introdued by Green [Gre00℄, whih is anal-ogous to the weak degree of a voting polynomial de�ned by Aspnes et al [ABFR94℄.59



Improving the lower bound of Tardos and Barrington remains an outstanding openproblem in the �eld of polynomial representation of boolean funtions.Although proving strong lower bounds on the generalized MODm-degree of ex-pliit boolean funtions has been hard, the situation is muh better when one dealswith one-sided and weak degree. Linear lower bounds on one-sided MODm-degree ofthe MODℓ funtion is known when m, ℓ are relatively prime. This was �rst proved byBarrington et.al.[BBR94℄ and Tsai [Tsa96℄. Finally these results were subsumed bythe stronger result of Green [Gre00℄ on the weak MODm-degree of MODℓ. Green'sbound does not even require m to be �xed or a slowly growing number as needed by[BBR94, Tsa96℄. We point out to the interested reader that Green's proof-methodis also of independent interest as it uses novel algebrai arguments that ould be offurther use for proving degree lower bounds.Theorem 3.7 (Green [Gre00℄) Let m and ℓ be positive relatively prime integers.The weak MODm-degree of the MODℓ and ¬MODℓ funtions on n variables is atleast ⌊ n
2(ℓ−1)

⌋.Finally, we need a tehnial Lemma that allows us to move from a polynomialover Zpk to a polynomial over Zp with a small blow-up of degree, provided p is prime.This Lemma is derived from Lemma 2.12 in the last hapter that said that everyperiodi symmetri funtion of period pk has strong MODp-degree at most pk − 1. .Lemma 3.8 (Tardos and Barrington [TB98℄) Let P be a polynomial of degree
d in n variables over Zpk and let S ⊆ Zpk be any set. Then there exists anotherpolynomial P ′ of degree at most (pk − 1)d in n variables over Zp suh that P (x) ∈

S ⇒ P ′(x) = 1 and P (x) 6∈ S ⇒ P ′(x) = 0 for all x ∈ {0, 1}n.60



We inlude a proof for ompleteness, using ideas from [BBR94℄.Proof: Let P have t monomials enumerated in some way. Let yi be a boolean variablethat takes the same value as the ith monomial of P . Despite the fat that the yi'sare not independent of eah other, the boolean funtion represented by P naturallyde�nes a partial funtion on {0, 1}t that is symmetri and periodi3 with period pk.Applying Lemma 2.12, there exists a polynomial P ′ in variables y1, . . . , yt over Zp ofdegree at most pk − 1 that strongly represents the funtion represented by P withaepting set S. As eah yi is of degree at most d, omposing P ′ with the monomialsrepresenting yi results in degree at most (pk − 1)d.Remark 3.9 For a prime p, the strong MODp-degree of a boolean funtion f is atmost (pk − 1) times the generalized MODpk-degree of f .3.1.2 Weak Generalized RepresentationWe introdue a new representation of boolean funtions over polynomials thatis neessary to obtain our lower bounds on the size of iruits. We say P is a weakgeneralized representation of f if there is an aepting set S ⊂ Zm and an x̄ ∈ {0, 1}nsuh that P (x̄) ∈ S and that for all x ∈ {0, 1}n we have P (x) ∈ S ⇒ f(x) = 1. Theminimal degree of a polynomial satisfying the above property w.r.t. a funtion f , isalled the weak generalized MODm-degree of f .3 Symmetriity in this ontext simply means that if x and y are two inputs of iden-tial Hamming weight on whih the funtion is de�ned, then the funtion evaluatesidentially on them. The notion of periodiity an be likewise extended to partialfuntions.
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Observe that all three representations that we disussed in the last setion arespeial ases of this new notion. Further, for a weak generalized representation wean assume that |S| = 1. In fat, if P is a weak generalized representation thereexists a ∈ Zm suh that P − a is a weak generalized representation with aeptingset {0} of the same boolean funtion.We �rst show a simple onsequene of the lower bound on the generalized degreeof the OR funtion for the weak generalized degree of the MAJ and ¬MAJ funtions.Theorem 3.10 Let m be a positive integer with r ≥ 2 distint prime fators, andlet q be the smallest maximal prime power divisor of m. The weak generalized MODm-degree of the MAJ and ¬MAJ funtions on n variables is at least (( 1
q−1
− o(1)

)
log n

) 1
r−1 .Proof: We �rst observe that MAJ and ¬MAJ have almost the same degree. This isobvious from the following fat: if n is odd, MAJ(x) = ¬MAJ(1−x1, 1−x2, . . . , 1−xn)and otherwise MAJ(x1, . . . , xn−1) = ¬MAJ(1− x1, . . . , 1− xn−1, 0).We now prove the lower bound on the degree of ¬MAJ by deriving a generalizedrepresentation of the OR funtion from a weak generalized representation of ¬MAJ.Let P be a polynomial over Zm of degree d that is a weak generalized representationof ¬MAJ with aepting set S. Let y ∈ {0, 1}n be an input with maximal Hammingweight suh that P (y) ∈ S. Let J ⊂ [n] be the set of indies where y has a 1. Clearly,

|J | < n/2. For every i ∈ J set xi = 1 in P . Let P ′ be the resulting polynomialon variables having indies in [n] − J . Then, it is simple to verify that P ′ w.r.taepting set Zm−S is a generalized representation of the OR funtion over at least
n/2 variables. The lower bound on d follows from Theorem 3.6.
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We ombine tehniques introdued in [TB98℄ and Green's lower bound on theweak MODm-degree of MODℓ. This new ombination proves the following result onthe weak generalized MODm-degree of MODp.Theorem 3.11 Let m be a positive integer with r ≥ 2 distint prime fators, let
pk be the smallest maximal prime power fator of m. Let q be a prime not dividing
m. For all a ∈ Zq, the weak generalized MODm-degree of the MODa

q and ¬MODa
qfuntions on n variables is at least (( 1

2(q−1)2(pk−1)
− o(1)

)
logn

) 1
r−1 .The general idea of proving this theorem is to suessively onvert a given rep-resentation over modulus m to another representation of a similar funtion of fewervariables over a new modulus m′, where m′ has one less prime fator than m. Ap-plying this proedure a onstant number of times, we are left with a representationover a modulus that has just one prime fator. At this point, we apply the followingfat that follows from Theorem 3.7 and Lemma 3.8.Fat 3.12 The weak generalized MODpk-degree of the MODq and ¬MODq funtionson n variables is at least 1

(pk−1)
⌊ n

2(q−1)
⌋, if p is a prime that does not divide q.The sheme to move down from a given modulus to another simpler one withoutlosing too many variables was �rst designed in [TB98℄ with respet to the OR fun-tion. We suitably modify this to work in our ontext. The main trik is the following:let m = pkm′ for some prime p. Then any polynomial over Zm an be deomposed,using Chinese Remaindering, into a polynomial over Zpk and a polynomial over Zm′ .We swith o� the ontribution of the �rst polynomial towards the representation ofthe MODℓ funtion in the following way: identify disjoint sets of variables S1, . . . , St63



suh that the polynomial over Zpk is redued to a onstant polynomial if variablesin a given set Si are restrited to take the same value. In this ase, ollapsing vari-ables in eah set Si to a single variable yi, fores the other polynomial over Zm′ torepresent the MODℓ funtion of the new auxiliary variables y1, . . . , yt. This allowsthe indution step of our proedure to be arried out.With the general idea of the argument desribed, let us state formally our resultthat allows us to swith o� a polynomial over a modulus that is a prime power. For asubset S ⊆ {1, . . . , n}, let χ(S) ∈ {0, 1}n denote its harateristi vetor. Converselyfor x ∈ {0, 1}n, let σ(x) ⊆ {1, . . . , n} be the set of indies where xi = 1.Lemma 3.13 Let P be a polynomial of degree d in n variables over Zpk for aprime p, and let ℓ be a positive integer not divisible by p. Let t satisfy the on-dition n ≥ 2(ℓ − 1)
(
t+ (pk − 1)

∑d
i=1(d+ 1− i)

(
t
i

)). Then, there exists pairwisedisjoint non-empty sets S1, . . . , St ⊆ {1, . . . , n} suh that for every y ∈ {0, 1}t wehave P (
∑t

i=1 yiχ(Si)) ≡ P (0) (mod pk) and furthermore we have |Si| 6≡ 0 (mod ℓ)for all i.Proof: Assume without loss of generality that P (0) = 0. We will �nd sets Si re-ursively with |Si| ≤ si, where si = 2(ℓ− 1)
(
1 + (pk − 1)

∑d−1
j=0

(
i−1
j

)
(d− j)

). Firstpik a set S of s1 = 2(l − 1)(d(pk − 1) + 1) variables. Consider the polynomialobtained from P by substituting 0 for all variables not in S. Sine the degree ofthis new polynomial is at most d, Fat 3.12 implies that it is not a weak generalizedrepresentation of ¬MODℓ with respet to the set {0}. Thus there is a subset S1 ⊆ Ssuh that P (χ(S1)) = 0 = P (0) and ¬MODℓ(χ(S1)) = 0. Hene, |S1| 6≡ 0 (mod ℓ).
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In the general ase, assume that for i < t we have found sets S1, . . . , Si, where
|Sj| ≤ sj and |Sj| 6≡ 0 (mod ℓ) for all j ≤ i, suh that P (

∑i
j=1 yjχ(Sj)) = 0 = P (0)for all y ∈ {0, 1}i. Pik a set S of size si+1 from the remaining variables. For any

y ∈ {0, 1}i, let Py be the polynomial obtained from P by substituting yj for allvariables in Sj for all j, and further substituting 0 for all remaining variables not in
S. We show below that there exists a subset S ′ of S suh that Py(χ(S ′)) ≡ 0

(mod pk) for all y and |S ′| 6≡ 0 (mod ℓ). This �nishes the argument as we set
Si+1 = S ′.Let P ′y be the polynomial over Zp, obtained using Lemma 3.8, that is a strongrepresentation of the boolean funtion of whih Py is a generalized representation withrespet to {0}. That is P ′y(x) ≡ 0 (mod p) ⇔ Py(x) 6≡ 0 (mod pk) and P ′y(x) ≡ 1

(mod p)⇔ Py(x) ≡ 0 (mod pk).Let R =
∏

y∈{0,1}i P
′
y. Note that R only takes values in {0, 1}modulo p, and that

R(x) ≡ 1 (mod p) i� P ′y(x) ≡ 1 (mod p) for all y, that is, i� Py(x) ≡ 0 (mod pk)for all y. Further, by onstrution R(0n) ≡ 1 (mod p). Hene, showing that R isnot a weak representation of ¬MODℓ for variables in S is su�ient for �nding ourdesired set S ′ ⊂ S suh that R(S ′) = R(0n) = 1 (mod p). However, the degree of Ris 2i(pk − 1)d. This is unfortunately too big (when i >> d) ompared to the size of
S (that needs to be at most si+1, whih grows roughly at the rate of id, to ompleteour indution). We overome this problem below by using an idea of Tardos andBarrington [TB98℄.
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We use inlusion-exlusion sums of Py's to onstrut a set of new polynomialswhose degrees are slightly less than that of Py's, but have idential ommon zeroesas the Py's. More preisely, for z, y ∈ {0, 1}i say z ≤ y if zj ≤ yj for eah 1 ≤ j ≤ i.For any y ∈ {0, 1}i, de�ne polynomial Qy with variables in S over Zpk as follows:
Qy ≡

∑

z≤y

(−1)|z|Pz.The following laim is simple to verify.Claim 3.14 Any x ∈ {0, 1}si+1, is a ommon zero of polynomials Qy's (over Zpk)i� it is a ommon zero of polynomials Py's (over Zpk).We prove that the high-degree monomial terms of P vanish in Qy.Claim 3.15 The degree of Qy is at most d− |y|.Proof:[adapted from [TB98℄℄ Consider any monomialM in P . Let yj be 1 and assumethat M does not depend on any variable in Sj. Consider z1, z2 ∈ {0, 1}i suh thatthey di�er only in their jth bit. Clearly, the ontribution of M to Qy for z1 and z2anel eah other out. Pairing up points below y in this fashion, it is not di�ultto see that the total ontribution of M to Qy zeroes out. Thus, a monomial M hasnon-zero ontribution to Qy only if it ontains a variable from eah Sj suh that
yj = 1. Hene, every monomial term of degree d in P is restrited to a polynomialof degree at most d− |y| in Qy.As before, using Lemma 3.8, we replae Qy over Zpk by Q′y over Zp suh that
Qy(z) ≡ 0 (mod pk) i� Q′y(z) ≡ 1 (mod p) and Q′y is 0/1 valued over Zp. Weonstrut R as before replaing P ′y by Q′y i.e. R ≡ ∏y∈{0,1}i Q

′
y. Claim 3.15 yields
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the following bound on the degree of R:deg(R) ≤ (pk − 1)

d−1∑

j=0

(
i

j

)
(d− j).From Fat 3.12 and the hoie of si+1 we have that R is not a weak representationof ¬MODℓ. We an thus �nd Sj+1 ⊆ S suh that R(χ(Si+1)) 6≡ 0 (mod p) and

¬MODℓ(χ(Sj+1)) = 0. It follows that Py(χ(Si+1)) = 0 for all y and |Si+1| 6≡ 0

(mod ℓ). To allow the indution to go through, we need that n ≥∑t
i=1 si. Using theombinatorial identity∑t−1

i=0

(
i
j

)
=
(

t
j+1

), we see that the relationship between n and
t is preisely what we need.We are ready to prove our bound of Ω((log n)

1
r−1 ) on the weak generalized MODm-degree of MODq, where m is a number having r distint prime fators none of whihis the prime q.Proof:[of Theorem 3.11℄ Let us reall the idea of the proof: suessively use Lemma 3.13to onvert a given representation into another representation on fewer (auxiliary)variables over a modulus that ontains less prime fators. Finally use Fat 3.12when there is just one prime fator left in the modulus.Let n = n(m, d) denote the maximal number of variables, for whih there isa weak generalized representation over Zm of degree d, for any of the MOD{a}q and

¬MOD{a}q funtions. We need to prove that
logn(m, d) ≤ (2(q − 1)2(pk − 1) + o(1))dr−1.Let m = pk1

1 m1 where pk1
1 is a maximal prime power divisor of m di�erent from pk.
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Assume that P is a polynomial in n variables of degree d over Zm whih is aweak generalized representation of f with respet to {0}, where f is either MOD{a}qor ¬MOD{a}q for some a ∈ Zq. In order to apply Lemma 3.13, we need to have
P (0) ≡ 0 whih may not be the ase. But this is simple to deal with. By de�nitionthere exists x̄ ∈ {0, 1}n suh that P (x̄) ≡ 0 (mod m) and f(x̄) = 1. If |σ(x̄)| < n

2let P ′ be the polynomial obtained from P by setting the variables indexed by σ(x̄)to 1. Otherwise, if |σ(x̄)| ≥ n
2
we an let P ′ be the polynomial where variable xi issubstituted with 1− xi if i ∈ σ(x̄) and otherwise set to 0.In either ase, the number

n′ of unset variables in P ′ is at least n
2
and P ′(0) ≡ 0 (mod m).For a given integer t, let t′ = (p− 1)t and assume that the following holds:

n′ ≥ 2(q − 1)

(
t′ + (pk1

1 − 1)
d∑

i=1

(d+ 1− i)
(
t′

i

))
.Then using Lemma 3.13 we an �nd pairwise disjoint nonempty sets S ′1, . . . , S ′t′ ⊆

{1, . . . , n′} suh that for every y ∈ {0, 1}t′ we have P ′(Σt′

i=1yiχ(S ′i)) ≡ P ′(0) ≡ 0

(mod pk1
1 ) and furthermore we have |S ′i| 6≡ 0 (mod q) for all i. Choosing the mostourring residue b ∈ Zq \ {0} among |S ′i| modulo q and extending the sets to

{1, . . . , n}, we have pairwise disjoint nonempty sets S1, . . . , St ⊆ {1, . . . , n} suhthat P (x̄ + Σt
i=1yiχ(Si)) ≡ P (x̄) ≡ 0 (mod pk1

1 ) for every y ∈ {0, 1}t, and |Si| ≡ b

(mod q) for all i.If f is ¬MOD{a}q , then P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m) implies that |σ(x̄)| +

∑t
i=1 yi|Si| 6≡ a (mod q). This further implies ∑t

i=1 yi 6≡ b−1(a − |σ(x̄)|) (mod q).On the other hand, if f is MOD{a}q , then P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m) impliesthat |σ(x̄)|+∑t

i=1 yi|Si| ≡ a (mod q). In this ase, |σ(x̄)| ≡ a (mod q) by de�nition.68



Hene,∑t
i=1 yi ≡ 0 (mod q). By our hoie of sets S1, . . . , St, P (x̄+Σt

i=1yiχ(Si)) ≡ 0

(mod m1) i� P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m). Let Q be the polynomial obtainedfrom P by setting variables in σ(x̄) to 1 and replaing every ourrene of a variablein the set Si by the auxiliary variable yi. Combining our observations, we onludethat Q is a weak generalized representation over Zm1 of either MOD{b−1(a−|σ(x̄)|)}

q or
¬MOD{0}q on the auxiliary variables, w.r.t. the aepting set {0}.Thus, setting t = n(m1, d) + 1 (and reall t′ = (q − 1)t) we have the followingreursion:

n(m, d)/2 ≤ n′ < 2(q − 1)

(
t′ + (pk1

1 − 1)
d∑

i=1

(d+ 1− i)
(
t′

i

))
. (3.1)If r = 2, then m1 = pk and from Fat 3.12 we have that

n(m1, d) ≤ 2(q − 1)
(
(pk − 1)d+ 1

)
.But (3.1) implies that n(m, d) ≤ O

(
d2(q−1)n(m1,d)

). Hene,
log n(m, d) ≤ O(log d) + (q − 1)n(m1, d) ≤

(
2(q − 1)2(pk − 1) + o(1)

)
d,proving our result for r = 2.If r > 2, we have by indution that

log (n(m1, d)) ≤ (2(q − 1)2(pk − 1) + o(1))dr−2.On the other hand, (3.1) yields that n(m, d) ≤ O
(
(q − 1)dn(m1, d)

d
). Taking loga-rithms on both sides,

logn(m, d) ≤ O(1) + d (log(q − 1) + log(n(m1, d)) .69



Plugging in our indutive estimate of log(n(m1, d)) from above, we get
log (n(m, d)) ≤ (2(q − 1)2(pk − 1) + o(1))dr−1,ompleting the indution.As said before, weak generalized representations are interesting in their own right.We show that lower bounds on the degree of suh representations have interestingappliations for boolean iruits. For ease in desribing suh appliations, we onsiderthe representation of a boolean funtion by more than one polynomial. Let f be asbefore and let P1, . . . , Ps be polynomials in n variables over Zm. We say P1, . . . , Psis a simultaneous weak MODm-representation of f if there exits a y ∈ {0, 1}n suhthat for eah i, Pi(y) 6≡ 0 (mod m) and if it holds that whenever Pi(x) 6≡ 0 (mod m)for all i, we have that f(x) = 1. The degree of a simultaneous weak representationis simply the maximal degree of P1, . . . , Ps. The s-simultaneous weak MODm-degreeof f is the degree of the simultaneous weak representation of f that has minimaldegree.The following lemma shows, that s-simultaneous weak degree and weak gener-alized degree are essentially the same, when s is a onstant.Lemma 3.16 Let m be a positive integer and let m = q1 · · · qt be the fatorizationinto prime powers with qi = pki

i . Further, let m′ = p1 · · · pt and let f be a booleanfuntion. The weak generalized MODm′-degree of f is at most s(q − 1) times the
s-simultaneous weak MODm-degree of f , where q is the largest prime power fator of
m.
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On the other hand, the (m−1)-simultaneous weak MODm-degree of f is at mostas large as the weak generalized MODm degree of f .Proof: Let the s-simultaneous weak degree of f be d. Then, there exists a simultane-ous weak representation of f by polynomials P1, . . . , Ps over Zm, where deg(Pi) ≤ dfor eah i. Let y ∈ {0, 1}n be suh that Pi(y) 6≡ 0 (mod m) for all i.Using Chinese Remaindering, eah Pi splits into t omponents P 1
i , . . . , P

t
i where

P j
i is over Zqj

and deg(P j
i ) ≤ deg(Pi) ≤ d. From the de�nition of simultaneousrepresentation, for eah i, there exists an ij suh that P ij

i (y) 6≡ 0 (mod qij ). ApplyingLemma 3.8, let Qij be the polynomial over Zpij
of degree at most (qij − 1)d suhthat P ij

i (x) 6≡ 0 (mod qij ) i� Qij 6≡ 0 (mod pij). For eah 1 ≤ k ≤ t, onsider thefollowing polynomial over Zpk

Qk ≡def ∏
i:ij=k

QijLet P ′ denote the polynomial over m′ = p1 · · · pt that is obtained by ombining, viaChinese Remaindering, the polynomials Q1, . . . , Qt. Clearly, the degree of P ′ is atmost s(q−1)d. Viewing eah element of Zm′ to be a t-tuple with the ith o-ordinatebeing an element of Zpi
, de�ne S ≡ {(a1, . . . , at) : ai ∈ Zpi

, ai 6= 0} ⊂ Zm′ . Reallingthat eah pi is prime, it is not hard to verify that P ′ w.r.t. aepting set S is a weakgeneralized representation of f .3.1.3 Appliation to CiruitsIn this setion, we ombine mahinery from the previous setion with the Swith-ing Lemma to derive lower bounds on AC0 iruits augmented with few MODm gates.
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To illustrate how they may be ombined, we onsider the ase of an AC0 iruit feed-ing into a single MODm gate at the output.Theorem 3.17 (Hansen and Miltersen [HM04℄) An AC0 iruit of depth d aug-mented with a single MODm gate at the output, i.e. a iruit of type MODm ◦ AC0
dneeds size 2

1
14

(cn)1/d to ompute MODℓ, for some onstant c = c(m, ℓ) provided m, ℓare relatively prime.Proof: The idea is to hit the AC0 part with random restritions just as we did inChapter 2 to prove that AC0 iruits annot ompute Parity. Let the size of the AC0part be S. As in the proof of Corollary 2.5, we hoose a random restrition ρ that isa omposition of d random restritions ρ1, . . . , ρd. Eah ρi is hosen randomly fromthe spae of all restritions, denoted by Rni
ni−1

, on ni−1 variables that leave exatly
ni free. Here, ni = pini−1, where pi is the probability with whih eah variable isleft free and n0 = n. Setting p1 = 1/14, pi = 1/(14 logS) for i = 2, . . . , d, andusing Beame's Swithing Lemma, one observes that after applying ρ1 ◦ ρ2 ◦ · · · ρithe output of eah gate at the ith layer is omputed by a deision tree of height atmost log S. Thus, the output of eah sub-iruit feeding into the MODm gate anbe omputed by a deision tree of height log S under the e�et of ρ. At this point,Hansen and Miltersen [HM04℄ make the following ruial observation, showing theutility of deision trees in this ontext:Observation 3.18 A funtion omputed by a deision tree of height at most h hasan exat/strong representation over Zm of degree at most h, for every integer m ≥ 2.Proof: The idea is quite simple. Consider a path in the tree that leads to a leaflabeled one. Let S be the set of indies of the variables queried along the path. Let72



i ∈ S. If the path follows the edge labeled 0 oming out of node labeled xi thenset yi = 1 − xi, otherwise set yi = xi. Then, the polynomial ∏i∈S yi evaluates to 1(0) preisely if this path is followed (not followed) by the deision tree on a givenassignment. Taking the sum of suh terms over all paths in the deision tree thatlead to a leaf labeled one, yields the desired polynomial of degree at most h.Applying Observation 3.18, with positive probability the restrited iruit hasthe following property: one an express exatly the output of eah gate feeding intothe single MODm gate by a 0/1 valued polynomial of degree at most log S over Zm.Summing up these polynomials yields a one-sided representation (of degree at most
log S) over Zm of the restrited funtion on the remaining n/(14(14 logS)d−1) freevariables. Setting at most an additional (ℓ−1) variables to 1, the restrited funtionbeomes the MODℓ funtion. Finally, applying Green's bound (Theorem 3.7) on theweak MODm-degree of MODℓ, we get

logS ≥
⌊

1

2(ℓ− 1)

(
n

14(14 logS)d−1
− ℓ+ 1

)⌋whene the desired bound on S follows.The reader may have notied that using Green's lower bound on the weakMODm-degree is not stritly needed for the above argument. Indeed, it is su�ientto use lower bounds of [BBR94, Tsa96℄ on the one-sided MODm-degree of MODℓ.However, Green's bound has its own advantage. Using it, Hansen and Miltersen[HM04℄ showed exponential lower bounds on the size of suh iruits with a singleMODm gate that is allowed to appear anywhere in the iruit. Our Theorem 3.1,signi�antly extends their result. For instane, it follows from Theorem 3.1 that73



super-polynomial size is still needed to ompute the MODℓ funtion even if we allow
o(logn)1/r−1 many MODm gates, when m is a �xed omposite number having atmost r distint prime fators. The key to this improvement is the use of our notionof weak generalized representation of boolean funtions.Proof:[of Theorem 3.1℄ We �rst assume that ℓ is a prime. The ase of a omposite ℓis handled easily at the end by invoking the ase of a prime ℓ.Let C be a depth d AC0 iruit of size n ǫ

s
log

1
r−1 n ontaining s MODm gates

g1, . . . , gs omputing a funtion f . Assume there is no path from the output of gj to
gi if i < j. For eah α ∈ {0, 1}s let Cα

i be the MODm ◦ AC0 subiruit of C with
gi as output, where every gj for j < i is replaed by the onstant αj . Similarly, let
Cα be the AC0 iruit obtained from C by replaing every gi with αi. We hoose arandom restrition ρ ∈ R√n

n . We show that for every δ > 0, there exists an ǫ > 0su�iently small suh that with high probability, for every α there are polynomials
pα

i and qα, of degree at most δ
s
log

1
r−1 n, suh that Cα

i,ρ(x) = 1 i� pα
i (x) 6≡ 0 (mod m)and Cα

ρ (x) = qα(x), for all x and for eah 1 ≤ i ≤ s.Pik suh a restrition ρ. We onstrut a simultaneous weak representation,using s + 1 polynomials, of either fρ or ¬fρ as shown next: Pik a maximal set
G of the MODm gates that are 1 at the same time for some assignment x to thefree variables of the restrition. De�ne α suh that αi = 1 i� gi ∈ G. If thereexists x ∈ {0, 1}√n suh that all gates in G evaluate to 1 on x and Cρ(x) = 1,then {pα

i | gi ∈ G} ∪ {qα} is a simultaneous weak representation of fρ. Otherwise,
{pα

i | gi ∈ G} is a simultaneous weak representation of ¬fρ.
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Note that if f is MODℓ, then fρ is MODZm−{a}
ℓ for some a ∈ {0, . . . , ℓ− 1}. If fis MAJ and the number of 0 and 1 assigned by ρ di�er by at most 1 (whih happenswith probability Ω(n−

1
2 )), we �x at most one extra variable suh that fρ omputesMAJ. In both ases, we pik δ su�iently small and obtain a ontradition to thedegree lower bounds in Theorem 3.10 and Theorem 3.11, using Lemma 3.16.It only remains to show that under the e�et of ρ, with high probability, for eah

α one an �nd the polynomials pα
i for every i ≤ s and qα. To show this, we analyzethe e�et of ρ simultaneously on at most 2s(s+ 1) di�erent AC0 iruits of depth dand size S ′ = n

ǫ
s

log
1

r−1 n obtained by varying α and i. This analysis is arried out likein the proof of Theorem 3.17. We apply a series of random restritions ρ1, . . . , ρd,where ρi ∈ Rni
ni−1

, ni = pini−1 and n0 = n. Set pi = n−1/2d. Let us say that ρ fails ifthere is a MODm gate g suh that the funtion omputed by one of the subiruitsfeeding into g does not have a deision tree of height δ
s
(logn)1/(r−1) under ρ. Then,using Beame's Swithing Lemma, as in the proof of Theorem 3.17, one onludes thefollowing:

Pr[ρ fails] ≤ 2s(s+ 1)n
ǫ
s
(log n)

1
r−1 ×

(
7n−

1
2d
δ

s
(logn)

1
r−1

) δ
s
(log n)

1
r−1

.This further simpli�es, under the assumption s = o(logn)
r

r−1 , to the following:
Pr[ρ fails] ≤ exp(− ln 2(logn)

r
r−1

1

s

[
δ

2d
− ǫ− s+ log s+O(log logn)

(logn)
r

r−1

])

= exp(− ln 2(logn)
r

r−1
1

s

[
δ

2d
− ǫ− o(1)

])
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Piking ǫ < δ
2d

and realling s = o(log n)
1

r−1 , the probability above vanishes to zero,as δ is a onstant. We �x the onstant δ by ombining Lemma 3.16 with eitherTheorem 3.10 or Theorem 3.11 depending on whether f is MAJ or MODℓ.Finally, we handle the ase of a non-prime ℓ. Let p be a prime dividing ℓ. Itis su�ient to show that a iruit C omputing MODℓ of n variables diretly yieldsa iruit omputing MODp of ⌊np/ℓ⌋ variables. This is done as follows: �x at most
ℓ
p
− 1 variables to zero so that the number of remaining variables is a multiple of

ℓ
p
. Form disjoint lusters of the un�xed variables, eah of size ℓ/p. Consider onlyassignments in whih every variable in a luster is assigned the same way. Ciruit Cating over suh lustered assignments is preisely the iruit we need.3.2 Ciruits with Only Modular GatesIn Setion 3.1.1, we noted a onnetion between s-simultaneous weak represen-tations and weak generalized representations of boolean funtions via Lemma 3.16.Coupling this with our lower bounds of Ω(log n)1/(r−1) on the weak generalizedMODm-degree of MODℓ, one onludes that Ω(log n)1/(r−1) polynomials of on-stant degree d over Zm are needed to form a simultaneous weak representation ofMODℓ. A similar argument, ombining the lower bound for the weak generalizeddegree4 of NOR and Lemma 3.16, yields idential onlusion about the simultaneousweak representability of NOR. These onlusions do not rule out the possibility of4 Tardos and Barrington prove a lower bound on the generalized degree ofOR/AND (Theorem 3.6). The lower bounds translate to the NOR funtion as well.Note that for NOR/AND, the generalized degree and the weak generalized degreeare idential. 76



AND/OR/MODℓ having (logn)1/(r−1)-simultaneous weak degree of one. Our �rsttehnial result, in this setion, rules this out for the ase of AND/OR by showingthat o(n)-simultaneous weak degree of OR/AND is more than one.More preisely, let L = {θ1, . . . , θs} be a set of s n-variate linear forms over Zm.Suh a set forms a linear map L : Zn
m → Zs

m. Conversely, given suh a linear map,there exists a orresponding set of linear forms. For v ∈ Zs
m, let KL(v) represent theset of points in {0, 1}n, that satisfy θi = vi for all 1 ≤ i ≤ s. Then, we show thefollowing:Theorem 3.19 For every positive integer m, there exists a positive onstant c suhthat the following holds. Let L : Zn

m → Zs
m be a linear map. For any v ∈ Zs

m, if
KL(v) is non-empty, then

|KL(v)| ≥ 2n

cs
. (3.2)A simple averaging argument shows that for every L : Zn

m → Zs
m, there existsa v ∈ Zs

m suh that KL(v) has size at least 2n/ms. Theorem 3.19 is a kind ofonentration result in the sense that it shows that every KL(v) is of size lose to theaverage size if it is non-empty. We note that the results in [Thé94℄, based on methodsintrodued in [BST90℄, imply a lower bound of ( α
α−1

)n · 1
αs on the size of KL(v) whenit is non-empty, and α is an inreasing funtion of m. This is still exponentiallysmaller than the average size.We next rule out the possibility that o(n)-many linear polynomials over Zm forma weak simultaneous representation of MODℓ. For any b ∈ {0, . . . , q − 1}, de�ne the
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bth MODℓ-residue lass of {0, 1}n by
Mn,ℓ(b) = {x = (x1, . . . , xn) ∈ {0, 1}n |

n∑

i=1

xi = b (mod ℓ)}Lemma 3.20 (Linear Uniformity Lemma) For all positive o-prime integersm, ℓ,there exists a positive onstant γ = γ(m, ℓ) < 1 suh that for all n and linear map-pings L : Zn
m → Zs

m,
∣∣∣∣
∣∣KL(v) ∩Mn,ℓ(b)

∣∣−
∣∣KL(v)

∣∣/ℓ
∣∣∣∣ ≤ (2γ)n (3.3)for eah b ∈ {0, . . . , ℓ− 1} and v ∈ Zs

m.The Linear Uniformity Lemma shows that if |KL(v)| is large ompared to (2γ)n,then every MODℓ residue lass ours with roughly the same frequeny in KL(v).In other words, intuitively speaking, KL(v) looks random5 to a MODℓ ounter. Aombination of the Linear Uniformity Lemma and Theorem 3.19 yields the following:Corollary 3.21 There does not exist a set of linear polynomials over Zm of size
o(n) that forms a simultaneous weak representation of the MODℓ funtion over nvariables, if m, ℓ are relatively prime to eah other.5 It is worthwhile to note that a set `looking random' to a mahine is an importantnotion in omputational omplexity. The mahine onsidered here is weak: just aMODℓ ounter. However it is onjetured that `e�ient onstrution' of sets `lookingrandom' to polynomial size iruits, is possible. If true, suh a onjeture has farreahing impliations on derandomization of algorithms.

78



Proof: Assume that suh a set L = {θ1, . . . , θs} exists, with s = o(n). By thede�nition of weak simultaneous representation, there exists x ∈ {0, 1}n suh that
L(x) = v ∈ Zs

m and v 6= 0s. Applying Theorem 3.19, |KL(v)| is at least 2n/cs for someonstant c. The Linear Uniformity Lemma then implies that at least 2n

ℓcs (1 − o(1))elements of Mn,ℓ(b) are in KL(v), for eah b. As s is sublinear, hoosing b = 0 yieldsa ontradition to the fat that L is a simultaneous weak representation of MODℓ.3.2.1 Fourier Analysis over Abelian GroupsLet G be a �nite abelian group. We analyze the vetor spae of funtions from Gto the set of omplex numbers C, denoted by CG. As the boolean ube is the n-folddiret produt of the two-element yli group Z2, analysis of boolean funtions is aspeial ase of this analysis. Of ourse, it is not neessary to view boolean funtionssitting inside a vetor spae with an underlying �eld of harateristi zero. One anthink of them sitting inside a spae with the underlying �eld being �nite (as done byRazborov-Smolensky and several authors later, for instane [BST90, ST06℄) or evensitting inside a module, with �elds replaed by ommutative rings, as initiated by[BBR94℄ and further worked on in the �rst part of this hapter. In this setion, weuse omplex numbers as it failitates the powerful use of metri inequalities. Withthe seminal work of Kahn, Kalai and Linial [KKL88℄, omplex Fourier analysis overthe boolean ube has found numerous appliations in omputer siene and disretemathematis. An important di�erene between these works and what we do here isthat our G in general will not be the boolean ube, but an m-ary ube i.e. Zn
m.
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We equip CG with the following inner produt: let z denote the omplex onju-gate of z ∈ C. For every f, g ∈ CG, de�ne
〈f, g〉 =

1

|G|
∑

x∈G

f(x)g(x).Below, we �nd an interesting orthonormal basis for CG, alled the Fourier basis.Let C∗ represent the multipliative group of omplex numbers, i.e. C − {0}. As
G is abelian, we denote the group operation in G additively. A harater χ of Gis a homomorphism χ : G → C∗, i.e. χ(a + b) = χ(a)χ(b), for every a, b ∈ G.Then, it is easy to verify that χ maps the identity of G, denoted by 0, to theidentity of C∗, denoted by 1. Further, if G has order m, then for any a ∈ G,
χ(a)m = χ(ma) = χ(0) = 1. Thus, χ(a) is an mth root of unity, for eah a ∈ G.This immediately shows that the set of haraters of G, denoted by Ĝ, is a �nite setas G is �nite.De�ne the produt of two haraters χ1, χ2 ∈ G as the following: χ1 ◦ χ2(x) =

χ1(x)χ2(x). It is easy to verify that χ1 ◦ χ2 is indeed a harater. The trivialharater, denoted by χ0, that maps every element of G to 1 is alled the prinipalharater of G. Further, for eah χ ∈ Ĝ, de�ne the homomorphism χ−1 by imposing
χ−1(x) = χ(x)−1. Then, learly χ ◦ χ−1 = χ0. Thus, Ĝ with the operation ◦ formsa �nite abelian group with χ0 serving as the identity. We state two basi propertiesof haraters:Proposition 3.22 The following is true for any abelian group G:1. ∑x∈G χ(x) is equal to zero if χ 6= χ0, otherwise is equal to |G|.
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2. Dually, if x is a non-zero element of G, then ∑χ∈Ĝ χ(x) is zero, otherwise itis |G|.Proof: We prove the seond property and the �rst an be proved analogously. Forany x 6= 0, we laim that there exists a χ′ ∈ Ĝ suh that χ′(x) 6= 1. Modulo thislaim, we establish our property. Let S =
∑

χ∈Ĝ χ(x). Then,
χ′(x)S =

∑

χ∈Ĝ

(
χ′ ◦ χ

)
(x) = S.The last identity holds beause the ation of χ′ is just a permutation of Ĝ. Thus,

S(1− χ′(x)) = 0. This implies S = 0 as χ′(x) 6= 0. It remains to prove that indeedsuh a χ′ exists.Let the order of x in G be ℓ. De�ne χ′(x) to be any primitive ℓth root of unity.This naturally de�nes a homomorphism from the yli subgroup generated by x,denoted by Gx, to C∗. This is extended to whole of G as follows. Let Gxai for
i = 1, . . . , k = |G|/ℓ be the osets of Gx. Set χ′(ai) = 1 for all i. This extends χ′naturally to all of G.For any x ∈ G, let δx be the funtion that maps x to 1 and every other elementof G to 0. Clearly, ∆ = {δx|x ∈ G} forms a basis for CG. Using the seond propertyin Proposition 3.22, one veri�es that the following holds:

δx ≡
1

|G|
∑

χ∈Ĝ

χ
(
− x
)
χThis immediately yields the following essential fat:
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Fat 3.23 The set of haraters of a �nite abelian group G spans the vetor spae
CG. Further,Lemma 3.24 The set of haraters forms an orthonormal basis for the vetor spae
CG, i.e. the following holds:1. Any two distint haraters χ1, χ2 are orthogonal to eah other, i.e. 〈χ1, χ2〉 =

0.2. 〈χ, χ〉 = 1 for all χ ∈ Ĝ.Proof:
〈χ1, χ2〉 ≡

1

|G|
∑

x∈G

χ1(x)χ2(x).Observe that χ1(x) lies on the unit irle. Hene, χ1(x) = χ−1
1 (x). Thus,

〈χ1, χ2〉 =
1

|G|
∑

x∈G

(
χ−1

1 ◦ χ2

)
(x).Observe that χ1 6= χ2 i� χ−1

1 ◦χ2 is non-prinipal. Hene, applying the �rst propertyof Proposition 3.22, we are done.Combining Fat 3.23 and Lemma 3.24, we obtain the following fat that formsthe basis of Fourier analysis:Theorem 3.25 If G is a �nite abelian group, then every funtion f ∈ CG an beuniquely expressed as a linear ombination of the haraters i.e. for every x ∈ G,
f(x) =

∑

χ∈Ĝ

f̂
(
χ
)
χ(x) (3.4)

82



where, for every χ ∈ Ĝ the following holds:
f̂
(
χ
)

= 〈f, χ〉 =
1

|G|
∑

x∈G

f(x)χ(x). (3.5)In partiular, this means that G and Ĝ have the same order. A more arefulanalysis shows that G and Ĝ are isomorphi to eah other. Hene, (3.5) de�nesa linear invertible operator on CG, alled the Fourier transform. The values f̂(χ)are alled Fourier oe�ients. Interesting information about a funtion is revealedby inspeting its Fourier oe�ients. The following very useful fat shows that theEulidean norm of a funtion an be easily evaluated from its Fourier oe�ients:Theorem 3.26 (Parseval's Identity) If G is an abelian group, the following holdsfor any f ∈ CG:
Ex

∣∣f(x)
∣∣2 =

∑

χ∈Ĝ

∣∣f̂(χ)
∣∣2. (3.6)Proof: Using (3.4), one writes

Ex

∣∣f(x)
∣∣2 = Ex

[( ∑

χ1∈Ĝ

f̂
(
χ1

)
χ1(x)

)( ∑

χ2∈Ĝ

f̂
(
χ1

)
χ1(x)

)]
.This simpli�es to the following:

Ex

∣∣f(x)
∣∣2 =

∑

χ1,χ2∈Ĝ

f̂
(
χ1

)
f̂
(
χ1

)
〈χ1, χ2〉.Finally, (3.6) is established from the above by making use of the orthonormality ofthe set of haraters as stated in Lemma 3.24.
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We reall below a beautiful and well-known trade-o�, ommonly referred to asthe Unertainty Priniple, between the size of support set of a funtion and the size ofthe support set of its Fourier transform. Let the support set of a funtion f , denotedby supp(f), be the set of points at whih the funtion evaluates to a non-zero value.Theorem 3.27 (Unertainty Priniple) For any f ∈ CG that is not identiallyzero, the following holds:
|supp(f)| · |supp(f̂)| ≥ |G|.Proof: Let ||f ||∞ ≡ max{|f(x)| : x ∈ G}. Then,

Ex

∣∣f(x)
∣∣2 ≤

∣∣supp(f)
∣∣

|G| ||f ||2∞.Using the Fourier expansion of f given by (3.4), realling that ∣∣χ(x)
∣∣ ≤ 1 forany χ ∈ Ĝ, x ∈ G and using the triangle inequality gives us the following:

||f ||2∞ ≤
(∑

χ∈Ĝ

∣∣f̂(χ)
∣∣
)2

≡
∣∣∣∣f̂
∣∣∣∣2

1where ||f̂ ||1 is the ℓ1 norm of f̂ . Combining things we get
Ex

∣∣f(x)
∣∣2 ≤

∣∣supp(f)
∣∣

|G|
∣∣∣∣f̂
∣∣∣∣2

1
. (3.7)
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On the other hand, applying suessively Parseval's identity and the Cauhy-Shwartzinequality yields the following:
Ex

∣∣f(x)
∣∣2 =

∑

χ∈Ĝ

∣∣f̂(χ)
∣∣2 ≥ 1∣∣supp(f̂)∣∣∣∣∣∣f̂ ∣∣∣∣21. (3.8)A ombination of (3.7) and (3.8) easily proves the unertainty priniple..3.2.2 Davenport onstantWe draw on a notion from ombinatorial group theory. Consider a �xed �niteabelian group G. The Davenport onstant of G, denoted by s(G), is the smallestinteger k suh that every sequene of elements of G of length at least k, has a non-empty subsequene that sums to zero. The pigeon-hole-priniple shows that s(G) is�nite if G is �nite. This is beause if we have a sequene of length larger than |G|2,then some element a of G is repeated at least |G| times. The sub-sequene formedby the �rst |G| instanes of a indeed sums to zero as the order of every elementin G divides |G|. Thus, s(G) ≤ |G|2, whih gives a quadrati upper bound on theDavenport onstant w.r.t. the size of the group.For spei� groups, one an show muh better bounds. For instane, if thegroup is Zp, then one an show, using the polynomial method, that s(Zp) is p.Clearly, the lower bound follows by onsidering the sequene of (p− 1) ourrenesof the identity element. Suh a sequene has no non-empty subsequene summing tozero. The upper bound an be established as follows: Let a1, . . . , ap be a sequeneof elements from Zp. Assume that no zero-sum subsequene of it exists. In otherwords, the polynomial a1x1 + · · ·+apxp over Zp evaluates to zero only at one point inthe boolean ube {0, 1}p, whih is the all zero point. Thus, applying Fermat's Little85



Theorem, the polynomial P ≡ 1 − (a1x1 + · · · + apxp)
p−1, strongly represents theOR funtion of p boolean variables over Zp. However, reall that in the last hapterwe showed that the strong MODm-degree of OR is p. Hene, P of degree p− 1 is aontradition of the above and we are done.Olson [Ols69a℄ showed a more general statement: Let G be an abelian p-groupof the form Zpk1 ⊕ Zpk2 ⊕ · · · ⊕ Zpkr , where ⊕ denotes diret sum. Olson showsthat s(G) = 1 +

∑r
i=1

(
pki − 1

) in this ase. We show below that s(Zr
m) is at most

c(m)r, where c(m) is a onstant that just depends on m. Before doing that, we reallanother result by Olson [Ols69b℄ that onnets s(G) with the set of boolean solutionsto the equation g1x1 + . . .+ gnxn = 0, denoted by K(G, n), where eah gi ∈ G.Theorem 3.28 (Olson's Theorem) |K(G, n)| ≥ max{1, 2n+1−s(G)}.Proof:[adapted from [Ols69b℄℄ We prove this by indution of n. For n ≤ s(G) − 1,the theorem is vauously true. Assuming it is true for n, we prove it for n + 1.Let the equation be g1x1 + · · · + gn+1xn+1 = 0. By the de�nition of s(G), there isa subsequene of g1, . . . , gs(G) that has a subsequene that sums to zero. W.l.o.g.,assume this subsequene to be g1, . . . , gt. Then onsider the equation (−g2)x2 + · · ·+

(−gt)xt + gt+1xt+1 + · · · + gn+1xn+1 = 0. By our hypothesis, this equation on nvariables has at least 2n+1−s(G) solutions. For eah suh solution point u, we obtaina solution to the original equation over n + 1 variables in whih the value of x1 isset to 1 in the following way: x1 = 1, for 2 ≤ i ≤ t, xi is set to the value that is theomplement of its value in u, and for t < i ≤ n + 1, xi is set to its orrespondingvalue in u. Finally, extend the solutions of g2x2 + · · ·+ gn+1xn+1 = 0 to our original
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equation by simply �xing x1 = 0 to obtain at least another 2n+1−s(G) solutions. Thus,we have at least 2n+2−s(G) solutions in total, proving the theorem.3.2.3 Towards large supportThe usefulness of Olson's Theorem for our purpose is evident from its followingimmediate orollary6:Corollary 3.29 Let L : Zn
m → Zs

m be a linear map. Then, for all v ∈ Zs
m suh that

KL(v) is non-empty, we have |KL(v)| ≥ 2n+1−s(Zs
m).Proof: Let L ≡ {θ1, . . . , θs} be the underlying linear forms, where θi = ai,1x1 + · · ·+

ai,nxn. As KL(v) is non-empty, there exists b ∈ {0, 1}n suh that θi(b) = vi. Consider
θ′i = a′i,1x1 + · · · + a′i,nxn, where a′i,j = −ai,j if bj = 1 and otherwise a′i,j = ai,j, foreah 1 ≤ j ≤ n and 1 ≤ i ≤ s. De�ne L′ ≡ {θ′1, . . . , θ′s}. Then, it is straight-forwardto verify that sets KL(v) and KL

′
(0s) are in one-to-one orrespondene with eahother. The result follows by observing that Olson's Theorem impliesKL′

(0s) has sizeat least 2n+1−s(Zs
m).In view of Corollary 3.29, it is su�ient to establish an O(r) upper bound on

s(Zr
m) for proving Theorem 3.19. This is where Fourier analysis over groups of theform Zs

m omes into play. Let em(t) denote the tth primitive m-th root of unity, i.e.
em(t) ≡ exp(2πit

m

)

6 We have overloaded the symbol s in the statement of Corollary 3.29, but itsmeaning is lear from the ontext. 87



where i is the pure imaginary number, i.e. omplex square-root of −1. Then, notethat for eah s-variate linear form7 θ(x) ≡ a1x1 + · · ·+asxs (with onstants ai ∈ Zmand variable xi taking value in Zm), em(θ(x)) : Zs
m → C∗ is a harater of Zs

m. Hene,using the seond property of haraters from Proposition 3.22, we get8Fat 3.30 Let S(y) = 1
m

∑m−1
j=0 em(jy). Then, S(y) = 0 if y 6≡ 0 (mod m) and

S(y) = 1 otherwise.We are prepared to establish an upper bound on the Davenport onstant of Zr
mthat is linear in r.Theorem 3.31 If m is even, s(Zr

m) ≤ cr, where c = log m
log m−log(m−1)

is a onstant.Proof: Let L ≡ {θ1, . . . , θr} be a linear map from Zs
m to Zr

m, suh that KL(0r) isa singleton set, i.e. ontains only the point 0s. Let λS : Zs
m → {0, 1} denote theharateristi funtion for any set S ⊆ Zs

m. Then, using Fat 3.30, one writes
λ{0,1}s(x) ≡

1

ms

s∏

j=1

[m−1∑

a=0

em

(
axj

)
+

m−1∑

a=0

em

(
a(xj−1)

)]
=

1

ms

s∏

j=1

[m−1∑

a=0

(
1+em(−a)

)
em

(
axj

)]
.Let m = 2ℓ. Then learly for a = ℓ, we have (1 + em(a)) = 1 + em(π) = 0 usinga basi trigonometri identity. Thus, noting that |supp(f̂ g)| ≤ |supp(f̂)| · |supp(ĝ)|,we see that |supp(λ̂{0,1}s)| ≤ (m− 1)s. Further,

λKL(0r)(x) ≡
[ r∏

j=1

(
1

m

m−1∑

a=0

em

(
aθj(x)

))]
λ{0,1}s

(
x
)
.

7 There are preisely ms suh linear forms whih is also the size of the group Zs
m.8 This has a diret proof using identities for summing geometri progressions.88



Thus, one onludes
∣∣∣∣supp(λ̂KL(0r)

)∣∣∣∣ ≤ mr

∣∣∣∣supp(λ̂{0,1}s
)∣∣∣∣ ≤ mr(m− 1)s.Applying the Unertainty Priniple, we get

mr(m− 1)s ≥ |Zs
m| = mswhene the result follows.The ase of an odd m an be dealt with by the following simple trik. Multiplyeah linear form θi by 2. Viewing eah modi�ed linear form to be over Z2m (insteadof over Zm), we obtain a new map L′ : Zs

2m → Zr
2m. It is easily veri�ed thatsets KL(0r) and KL′

(0r) are in one-to-one orrespondene with eah other. Hene,applying Theorem 3.31 to KL′
(0r) yields bounds on KL(0r) as well, though with avery slight worsening of the onstant c.Corollary 3.32 For every m, s(Zr

m) ≤ cr, where c = log(2m)
log(2m)−log(2m−1)

is a onstantthat just depends on m.Combining Corollary 3.29 with bounds on s(Zr
m) as given above, we immediatelyderive Theorem 3.19 whih states that the size of eah non-empty KL(v) is at least

2n

cs .3.2.4 UniformityOur proof of the Uniformity Lemma uses an exponential sum argument. Use ofexponential sums in iruit omplexity was, as far as we know, introdued by Cai,Green and Thierauf [CGT96℄ and further pursued by Green [Gre99, Gre04℄. Green'sestimates were improved in a breakthrough work by Bourgain [Bou05℄ and further89



re�ned by Green, Roy and Straubing [GRS05℄. The fous of these works is to showthat the output of a restrited iruit with a single MODm gate at its output, ispoorly orrelated with the funtion MODℓ, when m, ℓ are o-prime. The idea ofusing exponential sums to analyze the output of a iruit omprising several MODmgates is novel to our work.Proof:[of the Linear Uniformity Lemma℄ We �rst write |KL(v)∩Mn,ℓ(b)| as an expo-nential sum and then estimate this exponential sum by grouping the terms appro-priately. The key to writing this out is the use of the basi identity from Fat 3.30,that we ruially used also while estimating the Davenport onstant of Zr
m in theproof of Theorem 3.31.

|KL(v) ∩Mn,ℓ(b)| =
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

c=0

eℓ(c(

n∑

k=1

xk − b))
][ s∏

i=1

( 1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

)))]
.(3.9)Separating out the c = 0 ase, we rewrite the right hand side (RHS) of (3.9) as

∑

x∈{0,1}n

1

ℓ

s∏

i=1

( 1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

)))

+
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

a=1

eℓ(a(
n∑

k=1

xk − b))
][ s∏

i=1

1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

))]
.The �rst term in the RHS is easily identi�ed to be |KL(v)|/ℓ. Hene we get
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∣∣|KL(v) ∩Mn,ℓ(b)| − |KL(v)|/ℓ
∣∣

=

∣∣∣∣∣
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

a=1

eℓ(a(
n∑

k=1

xk − b))
][ s∏

i=1

1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

))]
∣∣∣∣∣. (3.10)We now estimate the RHS of (3.10). To do this, let us multiply out the terms in thesummand inside the absolute value and then sum the resulting terms. We obtain

ms(ℓ−1) terms after multiplying out the terms in the summand, eah of whih givesrise to a sum of the form
eℓ(−cb)em(j)

msℓ

∑

x∈{0,1}n

[
em(j1θ1(x) + . . .+ jsθs(x))eℓ(c

n∑

k=1

xk)

] (3.11)where (j1, . . . , js) ∈ {0, . . . , m− 1}s, j = j1v1 + · · ·+ jsvs and c ∈ {1, . . . , ℓ− 1}.Bounding the absolute value of the expression in the previous equation is stan-dard. We inlude it here for making our proof self-ontained. Let the sum j1θ1(x) +

. . .+ jsθs(x) give rise to a linear form that is denoted by a1x1 + . . .+anxn. Using thetrigonometri identity 1+ exp(i2ρ) = 2exp(iρ) cos(ρ), and taking absolute values, wehave
|(3.11)| = ∣∣∣∣ 1

msℓ

n∏

i=1

(1 + em(ai)eℓ(c))

∣∣∣∣ =
∣∣∣∣

2n

msℓ

n∏

i=1

cos
(
π(
ai

m
+
c

ℓ
)
)∣∣∣∣. (3.12)Let γ = maxai∈Zm; c∈Zℓ

| cos
(
π(ai

m
+ c

ℓ
)|. Sine, m and ℓ are o-prime and c 6= 0, it anbe veri�ed that γ < 1. Hene,
|(3.12)| ≤ 2nγn

msℓ
. (3.13)
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Using the triangle inequality in the RHS of (3.10) and plugging in the bound of(3.13), we get
∣∣|KL(v) ∩Mn,ℓ(b)| − |KL(v)|/ℓ

∣∣ ≤ ms(ℓ− 1)
(2γ)n

msℓ
. (3.14)

3.2.5 Lower Bounds for CC0In this setion, we show that our results on linear forms diretly translate intolower bounds on the number of MODm gates in a CC[m] iruit omputing the AND(or MODℓ) funtion.Consider a CC[m] iruit C having s MODm gates g1, . . . , gs. For eah gate
gi, we de�ne the linear form θi =

∑n
j=1 ci,jxj , where ci,j is the number (modulo m)of opies of input bit xj feeding into gi. We thus get at most s non-trivial linearforms that give rise to the linear map θ : {0, 1}n → Zs

m. One an easily verify thatif θ(x) = θ(y) for x, y ∈ {0, 1}n, then eah gate of C outputs the same value on xand y. Consequently, C annot distinguish x and y. Let V ⊆ Zs
m be the set of thosevetors whih orrespond to C outputting 1, i.e. for every y in V , θ(x) = y impliesthat C(x) = 1. If C is omputing a non-onstant funtion, then indeed there is a

y ∈ V suh that Kθ(y) is non-empty. Applying Theorem 3.19, we immediately get
|Kθ(y)| ≥ 2n/cs.Theorem 3.33 (restatement of Theorem 3.4) The support of a non-onstantfuntion omputed by a CC[m] iruit of size s has size at least 2n/cs, where c isa onstant for �xed m.
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Combining Theorem 3.4 with the Uniformity Lemma allows us to onlude thatthe support of C is almost equidistributed among the various residue lasses of aMODℓ ounter. More preisely, one gets that for eah b ∈ {0, . . . , ℓ− 1},
∣∣C−1(1) ∩Mn,ℓ(b)

∣∣ ≥ 2n

cs
(1− γncs) =

2n

cs
(1− o(1)).This already shows that C annot be omputing the MODℓ funtion. In fat,we show that C is very far from omputing MODℓ in a sense that is made preisebelow.The �rst step in that diretion is the following:Lemma 3.34 Consider any positive integers ℓ,m that are o-prime to eah otherand numbers a, b ∈ {0, . . . , ℓ− 1}. Then, for every CC[m] iruit C of size o(n), wehave

∣∣∣∣Pr
x

[C(x) = 1|x ∈ Mn,ℓ(a)]− Pr
x

[C(x) = 1|x ∈Mn,ℓ(b)]

∣∣∣∣ ≤ 2−Ω(n). (3.15)Proof: Let C have s gates. As before, we obtain a linear map θ : {0, 1}n → Zs
m from

C. Reall that V is the set of points in Zs
m suh that C outputs 1 on input x i�

θ(x) ∈ V . Thus, we obtain the following:
∣∣Pr

x
[C(x) = 1 ∧ x ∈Mn,ℓ(a)] − Pr

x
[C(x) = 1 ∧ x ∈Mn,ℓ(b)]

∣∣

=

∣∣∣∣
∑

y∈V

[
Pr
x

[θ(x) = y ∧ x ∈Mn,ℓ(a)] − Pr
x

[θ(x) = y ∧ x ∈Mn,ℓ(b)]
]∣∣∣∣. (3.16)
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Using (3.3) from the Linear Uniformity Lemma and the triangle inequality, onean easily show that the summand in the RHS of (3.16), for every y ∈ V is at most
2γn, where the onstant γ is de�ned in the Uniformity Lemma. Combining this withthe fat that |V | ≤ ms and s = o(n), we obtain

(3.16) ≤ |V | · 2γn ≤ ms · 2γn = 2−Ω(n). (3.17)Sine MODℓ is an almost balaned funtion, i.e.
|Pr

x
[x ∈Mn,ℓ(a)]− Pr

x
[x ∈Mn,ℓ(b)]| ≤ 2−Ω(n),(3.17) implies Lemma 3.34.Reall, from Setion 2.1.4 in Chapter 2, that Disriminator lemma of Haj-nal et. al. states that if a iruit with a MAJ gate at the output omputes a funtion fand the fan-in of the output MAJ gate is s, then for every A ⊆ f−1(1) andB ⊆ f−1(0)at least one of the sub-iruits feeding into the output gate (1/s)-disriminates f .Lemma 3.34 above implies that CC[m] iruits of sublinear size do not disrimi-nate well the MODℓ funtion. In partiular, hoose A = Mn,ℓ(1) ⊂ MOD−1

q (1) and
B = Mn,q(0) ⊂ MOD−1

q (0). Then it is easy to verify that Lemma 3.34 along withthe Disriminator Lemma yields the following:Theorem 3.35 (restatement of Theorem 3.5) Any iruit of type MAJ◦CCo(n)[m]omputing MODℓ requires the output gate to have fan-in 2Ω(n) if (m, ℓ) = 1.Thus, unless we take the majority vote of exponentially many CCo(n)[m] iruits, weannot ompute MODℓ. This is the sense in whih CCo(n)[m] iruits are far fromomputing MODℓ. 94



3.3 ConlusionIn the �rst part of this hapter, we have demonstrated a new onnetion betweenthe degree-omplexity of a boolean funtion in a natural notion of representationby polynomials and its size-omplexity in onstant-depth boolean iruits with fewMODm gates. Moreover, we have proved new lower bounds on the degree-omplexityof MAJORITY and MODℓ. These lower bounds on the degree-omplexity are of in-dependent interest, in addition to making progress on Smolensky's Conjeture viaTheorem 3.1. Improving the lower bounds on the degree-omplexity of OR is longoverdue. Our work makes it an even more ompelling researh diretion. For in-stane, a polylogarithmi lower-bound on the generalized MODm-degree of OR willresult in a superpolynomial lower bound on the weak-generalized MODm-degree ofMAJORITY (reall proof of Theorem 3.10). This will show that AC0 iruits aug-mented with a polylogarithmi number of MODm gates, require superpolynomialsize for omputing MAJORITY (proof of Theorem 3.1). No suh lower bounds areknown.In the seond part of the hapter, we made progress towards Smolensky's Con-jeture from another diretion by onsidering iruits omprising only MODm gates.We proved that in sublinear size they annot ompute the AND and MODℓ fun-tion if m and ℓ are o-prime. This involved the development of new tehniques bynovel ombinations of Fourier analysis over omplex numbers, exponential sums andadditive number theory. We believe that these ingredients will be useful in makingfurther progress. In partiular, it is interesting to �nd out if these tehniques an be
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ombined to yield superlinear lower bounds on the size of depth-two iruits om-prising only MODm gates. No suh bound is known for any expliit funtion in NPif the output gate is a generalized gate.Finally, we point out the following: subsequent to our work, Hansen [Han06a℄has reently improved Theorem 3.1 w.r.t. omputing MODℓ. Hansen uses the break-through work of Bourgain [Bou05℄ on estimating the orrelation between funtionsomputed by low-degree polynomials over Zm and MODℓ. We remark that in theseond part of Chapter 7, we simplify and improve Bourgain's work.
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CHAPTER 4Multiparty Communiation with Input on the ForeheadHere, we formally de�ne the model of omputation that will oupy us in thenext two hapters. Yao [Yao79℄ introdued the two party model of ommuniationto investigate the mathematial struture and inherent omplexity theoreti issues ofdistributed omputing. He endowed his players with unlimited omputational powerin terms of time and spae, in order to entirely fous on the ommuniation neededamong players as a resoure. This model has inspired great researh and too manybeautiful results to ite. Indeed, the book by Kushilevitz and Nisan [KN97℄ providesan exellent exposition of this subjet now known as Communiation Complexityand surveys some of the diverse appliations of this theory.Our objet of interest lies in a generalization of Yao's two player game to multipleplayers that was �rst de�ned by Chandra, Furst and Lipton in [CFL83℄. In orderto appreiate the subtleties of the multiparty model and its key di�erenes from thetwo player version, we begin with the latter.4.1 Two Player GamesIn the basi model, there are two players often alled Alie and Bob with unlim-ited omputational power, who want to ompute a ertain funtion f : Σn → {0, 1}.The n input letters are partitioned into two sets XA and XB that are respetively
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assigned to Alie and Bob. The objetive is that players devise a proedure before-hand so that given an arbitrary assignment to input letters, eah player ollabora-tively determines the output of the funtion on the given assignment. They do soby ommuniating with eah other aording to a mutually agreed upon protool.The protool proeeds by players taking turns, as spei�ed by the protool, in om-muniating with eah other. We assume that the players ommuniate with eahother using the binary alphabet {0, 1}1 . The ost of a protool is the number ofbits that the players ommuniate on the worst assignment of input letters. Theommuniation omplexity of a funtion f with respet to the above partition is theost of the best protool for omputing it.Notions of determinism, randomization and non-determinism manifest naturallyin this setting. In a deterministi protool Π, what Alie (Bob) ommuniates getsuniquely determined by the assignment to letters in XA (XB) and what has beenommuniated thus far by both players, alled the ommuniation history. Theoutput of Π on any assignment is ompletely determined by the ommuniationhistory at termination of Π. We say Π omputes f preisely if f(x, y) = Π(x, y) foreah x ∈ ΣXA and y ∈ ΣXB .1 This is w.l.o.g. as a protool utilizing a �xed �nite alphabet an be easily simu-lated by one with a binary alphabet with the ost blowing up by at most a onstantfator.
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In a randomized protool, players are allowed to toss oins. In other words,players jointly selet a random string r at the beginning and then follow a determin-isti protool that proeeds assuming Alie has input (x, r) and Bob has (y, r), where
x, y are the original input assignments of Alie and Bob respetively. A randomizedprotool is further allowed to err. Suh a protool Π omputes f with advantage ǫ if
Pr[f(x, y) = Π(x, y)] ≥ 1/2+ ǫ for every x, y, where the probability is taken over therandom oin tosses r of Π. This is alled the publi oin model as the random stringis aessible to eah player without ommuniation. In the private oin model, eahplayer selets a random string that is not shared with the other player. As shown byNewman [New91℄, any protool with publi oin tosses an be simulated by a privateoin protool where the ost blows up by essentially an additive fator of at most
O(logn). In this work, unless otherwise mentioned, protools are assumed to tossoins publily.In a non-deterministi protool, the prover, alled `God', furnishes a proof string
s laiming that f(x, y) = 1. There is a deterministi veri�ation protool, denotedby Π, that players then use to verify the proof. More preisely, a non-deterministiprotool omputes f if for every x, y suh that f(x, y) = 1, there exists a proof string
s suh that Π(x, y, s) = 1. Further, if f(x, y) = 0, then Π(x, y, s) = 0 for all s .The ost of the protool now inludes the length of the proof string and the bitsommuniated by players to verify the proof.Let D(f), Rǫ(f) and N(f) denote respetively the deterministi, randomizedwith advantage ǫ and non-deterministi ommuniation omplexity of the funtion
f . Then, trivially for every f : ΣXA × ΣXB , its deterministi, non-deterministi and99



randomized ommuniation omplexity is at most min{|XA|, |XB|} log(Σ) + 1 as theplayer with the minimum number of input letters ommuniates his/her input tothe other, who just outputs the value of the funtion. Further, from the de�nitionsabove, we see that N(f) ≤ D(f) and Rǫ(f) ≤ D(f) for any f and ǫ. The examplebelow shows that both non-determinism and randomization an o�er huge savingsin the ost of a protool for omputing some funtions when ompared with theirdeterministi ounterparts.Example. De�ne the Equality funtion EQ : {0, 1}n × {0, 1}n → {0, 1} as
EQ(x, y) = 1 i� x = y. The omplement2 of the equality funtion, alled non-equality, is denoted by NEQ. It is not hard to verify that the best determinis-ti protool essentially fores one player to ommuniate all its bits to the otheri.e. D(EQ) = D(NEQ) ≥ n + 1. On the other hand, the following simple non-deterministi protool to ompute NEQ provides exponential advantage in terms ofost: Let `God' provide a logn bit string indiating an index i suh that xi 6= yi.Alie just ommuniates the value of the bit xi to Bob who an now verify if xi and
yi are di�erent. The ost inurred is logn + 2, whene N(NEQ) = O(logn).Randomization o�ers more dramati ost savings for NEQ. Alie and Bobjointly hoose a random n bit string r. Alie sends the bit representing the innerprodut modulo 2 of her input and the random string, i.e. 〈x, r〉2, and Bob simplyveri�es if 〈x, r〉2 6= 〈y, r〉2. The ost of this protool is just two bits. Its orretness2 It is trivial to verify that the deterministi and randomized ommuniation om-plexity of a funtion and its omplement are the same.100



follows from the fat that if x and y are di�erent, then with probability exatlya half Alie and Bob detet it, i.e. Prr[〈x, r〉2 6= 〈y, r〉2] = 1/2 for eah x 6= y.Note that this protool errs only on one side, i.e. if x = y, then Alie and Bobgive the right answer with probability one. Further, the protool an be repeateda onstant number of times to redue the error to any desired onstant. Thus,
Rǫ(NEQ) = Rǫ(EQ) = O(1) for any �xed ǫ.Before we move on further, let us make formal the last step of repeating aprotool enough number of times to boost its probability of suess.Observation 4.1 Let Π be a randomized protool that ahieves advantage ǫ to om-pute a boolean funtion f . Then, the protool Π′ that runs cǫ log(2/δ) independentinstanes of Π and outputs the majority answer, ahieves an advantage of at least δto ompute f .This implies that the ost of ahieving any �xed advantage for omputing afuntion is within a onstant fator of the ost of ahieving any other �xed advantagefor omputing the same funtion.4.1.1 Lower Bound Tehniques for Deterministi ProtoolsA very onvenient objet for understanding the omplexity of a funtion f isits ommuniation matrix Mf . This is a boolean matrix that has |Σ||XA| manyrows, one for eah possible assignment to letters in XA (the input letters of Alie),and |Σ||XB| many olumns, one for eah possible assignment to Bob's assignment.
Mf [x, y] = f(x, y).For a deterministi protool Π, we say that an input pair (x1, y1) is indistinguish-able from the input pair (x2, y2) if Π generates the same ommuniation history for101



both pairs. The basi weakness of deterministi protools stems from the followingsimple observation on indistinguishability of input pairs.Observation 4.2 If a deterministi protool Π does not distinguish (x1, y1) from
(x2, y2), then in fat it �nds the following four pairs indistinguishable from eahother: (x1, y1), (x2, y2), (x1, y2) and (x2, y1).This motivates the following de�nition: a set R ⊆ ΣXA×ΣXB is alled a retangleif for any two pairs (x1, y1), (x2, y2) ∈ R we have that eah of the four pairs (xi, yj)is in R for i, j ∈ {1, 2}. Further, a retangle R is alled monohromati (w.r.t. afuntion f) if f evaluates to the same value at eah element of R. Noting that aprotool of ost c an generate at most 2c ommuniation histories, Observation 4.2immediately yields the following nie ombinatorial fat:Fat 4.3 A deterministi protool Π for f of ost c partitions the ommuniationmatrix Mf into at most 2c many monohromati retangles.One onvenient way of utilizing the above fat to prove lower bounds lies in thefollowing idea: For obtaining a lower bound of c on the deterministi ommuniationomplexity of a target funtion f , we exhibit a set of input pairs of ardinality 2csuh that no two element from the set an lie in the same monohromati retangle.If they do, the protool gets fooled to output a wrong answer on some input. Suh aset is alled a fooling set. The above method is alled the fooling set method to provelower bounds on the deterministi ommuniation omplexity of a funtion. Themethod is best illustrated by two text-book examples from [KN97℄. For simpliity,let us assume that we have the binary alphabet i.e. Σ = {0, 1}.
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Example 1. We show that the equality funtion EQ is hard for deterministiprotools by an appliation of the Fooling Set Method. Choose the set of pairs ofequal strings along the diagonal of the matrix MEQ. In any partition of MEQ intomonohromati retangles, no two suh pairs an lie in the same retangle. Thus, weneed at least 2n retangles to partition MEQ, one for eah element of its diagonal.Additionally, we need at least one more retangle to over the zeroes ofMEQ, whene
D(EQ) = n+ 1.Example 2. De�ne the funtion DISJ by saying DISJ(x, y) = 1 i� there isno o-ordinate i suh that both x, y have their ith bit set to 1. This is alled theDisjointness funtion as one may view x, y to be harateristi vetors of subsets of
{1, . . . , n}. DISJ then evaluates to 1 preisely if the two subsets are disjoint. Itis a simple exerise to show that the set of pairs of the form (x, xc) form a foolingset, where xc is the harateristi vetor orresponding the omplement of the setrepresented by x. As the size of this set is 2n and we additionally need at least oneretangle to over the zeroes of MDISJ , the Fooling Set Method yields D(DISJ) =

n+ 1.4.1.2 Lower Bounds for Randomized ProtoolsSo far we have assumed that deterministi protools are fored to give alwaysthe orret answer in ontrast to their randomized ounterparts that are allowed toerr. Introduing errors of a di�erent nature, this ondition an be relaxed to allowerror in deterministi protools giving rise to the important notion of distributionalommuniation omplexity of a funtion. Given a probability distribution µ on theset of inputs ΣXA × ΣXB , a deterministi protool Π omputes f with advantage ǫ103



with respet to µ if Pr(x,y)∼µ[f(x, y) = Π(x, y)] ≥ 1/2 + ǫ. The (ǫ, µ)-distributionalomplexity of f , denoted by Dǫ,µ, is then the ost of the best deterministi protoolomputing f with advantage ǫ under distribution µ.It turns out that the two notions of randomized and distributional ommunia-tion omplexity are not unrelated.Fat 4.4 For every distribution µ on ΣXA × ΣXB , and for every ǫ > 0, we have
Dǫ,µ(f) ≤ Rǫ(f).Proof: Consider a randomized protool Π of ost c omputing f with advantage
ǫ. Notie that for eah possible hoie of its internal random string r, Π indues adeterministi protool Πr, where Πr(x, y) = Π(x, y, r). Now by the de�nition of Π,

∑

r

Pr[r] · Pr
(x,y)∼µ

[Πr(x, y) = f(x, y)] ≥ 1/2 + ǫ.This immediately yields that there exists at least one r for whih Πr has advantageat least ǫ and we are done.In fat, the relationship between randomized and distributional omplexity of afuntion is more tight, as shown by Yao3 [Yao83℄:
Rǫ(f) = max{Dǫ,µ(f) | µ is a distribution}.3 Yao shows that suh a relationship between the randomized and distributionalomplexity of a funtion holds muh more generally and is not spei� to the modelof omputation onsidered here. In partiular, it is easy to verify that the proof ofFat 4.4 is a simple ounting argument, not using any spei�s of the model.104



Fat 4.4 turns out to be quite helpful for proving lower bounds. The basi idea is thatwe �nd a onvenient distribution µ and argue that all deterministi protools withlow ost will fail to attain the required advantage against our target funtion. Sinewe have to argue against deterministi protools that are allowed to err, we de�nethe following measure alled disrepany : given a retangle R ⊆ ΣXA×XB , de�ne itsdisrepany under µ w.r.t. a funtion f , denoted by disR
µ (f), to be the absolutevalue of the di�erene between the probability mass of inputs in R where f evaluatesto 1 and the probability mass of inputs in R where f evaluates to 0. We reall thefamiliar algebrai trik4 of mapping the boolean set {0, 1} to the set {1,−1}. Underthis mapping, disrepany has the following nie expression:disR

µ (f) =

∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣. (4.1)Hene, 0 ≤ disR
µ (f) ≤ µ(R). Disrepany thus measures how far a retangleis from being monohromati in the following sense: It attains the value of theprobability mass µ(R) of the retangle itself when R is monohromati or ompletelyunbalaned and is zero when the retangle is perfetly mixed or balaned. Thedisrepany of f under µ is simply the maximum over disrepanies of all retangles,i.e. max{disR

µ (f) |R is a retangle}. The reason we are interested in this quantity4 A more general form of this trik was used in the Razborov-Smolensky polyno-mial method desribed in Setion 2.1.3.
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is the following probabilisti variant of the fooling set method, widely known as theDisrepany Method.Lemma 4.5 (The Disrepany Method) For every distribution µ and any fun-tion f ,
Rǫ(f) ≥ Dǫ,µ(f) ≥ log

(
2ǫdisµ(f)

)
. (4.2)Proof: Consider any deterministi protool Π that omputes f with advantage atleast ǫ and ost c. Let R be the set of retangles into whih Π partitions Mf .Clearly |R| ≤ 2c. Assume, w.l.o.g, f and Π evaluate to 1/-1.

2ǫ ≤
∣∣∣∣
∑

(x,y)

f(x, y)Π(x, y)µ(x, y)

∣∣∣∣ ≤
∑

R∈R

∣∣∣∣
∑

(x,y)∈R

f(x, y)Π(x, y)µ(x, y)

∣∣∣∣.Noting that Π is onstant-valued over every R ∈ R and realling the de�nition ofdisrepany in (4.1), we are done by the following:
2ǫ ≤

∑

R∈R
disR

µ (f) ≤ 2cdisµ(f). (4.3)
The Disrepany Method thus boils down to �nding a onvenient distribution

µ suh that that the disrepany of the target funtion f is indeed very small. Thisyields good lower bounds on the ommuniation omplexity of f , using (4.2). Chorand Goldreih [CG85℄ used this method to obtain optimal lower bounds on theInner Produt (IP ) funtion that is de�ned on the boolean alphabet as follows:106



IP (x, y) =
∑n

i=1 xiyi (mod 2). They showed that the disrepany of IP was atmost 1/2n under the uniform distribution. This estimate along with (4.2) yieldsthe following strong bound: any randomized protool omputing IP must have ost
Ω(n) even if the advantage ǫ is an inverse sub-exponential funtion i.e. ǫ = 1/2o(n).However, the disrepany method does not yield strong lower bounds (betterthan poly-logarithmi) for several natural funtions inluding Disjointness. Razborov[Raz90℄, simplifying the earlier work of Kalyanasundaram and Shnitzer [KS92℄, de-veloped a method proving linear lower bounds on the ommuniation ost of protoolsomputing the Disjointness funtion with a onstant advantage. Razborov's subtlealulations roughly show that under an appropriate distribution µ, every retanglethat assigns large weight to its set of disjoint points must also assign large weight toits set of non-disjoint points. As µ assigns onstant weight to the set of all disjointpoints, an averaging argument yields the desired bound.Another interesting method based on tools from information theory was de-veloped in Bar-Yossef et.al.[BYJKS04℄ that re�ned the earlier work of Chakrabartiet.al.[CSWY01℄. This tehnique introdues a new measure alled the informationost of a protool. The idea is to measure the information that the ommunia-tion history of a protool reveals about inputs given to the player. Variants of thismethod have found more appliations in both lassial and quantum ommuniationomplexity (see for example [JKS03, JRS03℄). We, however, do not delve more intoRazborov's method or the information theoreti method as no generalization of them
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are yet known5 that extend to the multiparty NOF model of ommuniation whihis our hief interest here. Extending either of these tehniques to the NOF modelremains an exiting hallenge.4.2 Number/Input in the Forehead modelOne natural extension of Yao's two player model to k players is to partitionthe set of input letters into k sets and assoiate eah suh set with a player withevery player having preisely one set. This results in the weakening of the model as
k grows. For instane, in a partition where the size of eah suh set is equal, everyplayer has no information about (k−1)/k fration of the input. However, this model,alled the `Number in the Hand' model, has important appliations to other areaslike data streams (see for example [CCM08, CKS03℄).On the other hand, we onsider a model, introdued by Chandra, Furst andLipton [CFL83℄, that is a signi�ant strengthening of the two-player model. This isahieved by assigning inputs to the foreheads of players instead of assigning them totheir hands. More preisely, let the sets X1, . . . , Xk form a k-wise partition of the in-put letters as before. Player i's forehead is assignedXi and i sees every other foreheadexept his own. Just as in the last setion on two players, k-player ommuniationprotools an be de�ned for omputing funtions f : ΣX1 × · · · ×ΣXk → {0, 1}. Theost of a protool, as before, is the worst ase ost. Generalizing the notions from thelast setion, we denote by Dk(f), Nk(f), Rǫ

k(f), and Dµ,ǫ
k (f) respetively the k-party5 Information theoreti tehniques have had some suess for restrited multipartyprotools (see for example [Cha07a, GP08℄).108



deterministi, non-deterministi, randomized and distributional (with advantage ǫ)ommuniation omplexity of f .In order to illustrate the power of the new model, we onsider the following:Example. Reall the Equality funtion EQ from the last setion. We gen-eralize it: Let EQk(x1, . . . , xk) = 1 preisely if all the k strings are equal i.e.
x1 = x2 = · · · = xk. While EQ2 was shown to be hard for two players, it iseasy for k players to ompute EQk i.e. Dk(EQk) = 2 for any k ≥ 3. To see this,note that if two strings xi and xj di�er, then Player k, for eah k 6= i, j, spots thisdi�erene without ommuniating with others. Thus, the protool simply boils downto the following: Player 1 announes if he/she spots any di�erene followed by Player2 doing the same.Remark 4.6 The key feature of the `Input on the Forehead' model that gets used inthe protool for k-wise Equality is that every (k − 1)-tuple of input bits is aessibleto some player.The multiparty model di�ers from the two party one in another key feature: theinformation available to two players overlap a lot. The following example illustratesthe fat that this feature provides substantial omputational power to multipartyprotools as opposed to two-player ones where there is no overlap of information.Example. Generalize the Disjointness funtion de�ned earlier to k-wise Dis-jointness, denoted by DISJk :

(
{0, 1}n

)k → {0, 1}, in the following way: onsiderthe k × n boolean matrix A formed from the k input strings x1, . . . , xk in the argu-ment of DISJk by plaing xi in the ith row of A. Thus, A[i, j] = xi[j] for 1 ≤ i ≤ kand 1 ≤ j ≤ n. Then DISJk(x1, . . . , xk) ≡def 1 i� there does not exist a j suh109



that A[i, j] = 1 for all 1 ≤ i ≤ k i.e. A does not ontain an all-one olumn. Reallthat we showed, by a simple appliation of the Fooling Set Method, DISJ2 requires
Ω(n) bits to be ommuniated by two players employing the best deterministi pro-tool. Grolmusz [Gro94a℄ found a surprisingly powerful protool for k-players thatimplies the omplexity of DISJk dereases exponentially with k. We desribe thisremarkable phenomenon using an elegant protool due to Pudlák [Pud06℄.Eah boolean string that an appear in a olumn of A is alled a pattern. Hene,the set of all patterns is the boolean ube {0, 1}k. Given an instane of A, we assignweights to the verties (patterns) and edges of the ube in the following way: apattern's weight is the number of times it ours in the olumns of A. The weightof an edge e onneting patterns u, v is the sum of the weights of u and v. Edge eis in the ith diretion if patterns u, v di�er only in their ith bit. Hene, the value ofthe bit held by the ith player of a olumn is irrelevant for determining if the olumnontributes to the weight of an edge in the ith diretion. Thus, the following holds.Observation 4.7 The weight of eah edge in the ith diretion an be determinedpreisely by the ith player without any ommuniation.Lemma 4.8 Given the weight of pattern u, there is a deterministi k-player protool,denoted by Πu,v, of ost O(k log n) that outputs the weight of pattern v.Proof: Fix a path P = e1e2 · · · et of length t ≤ k in the ube from u to v. Let thesequene of patterns visited along this path be v0v1 · · · vt with u = v0 and v = vt. Theplayers ompute the weight of v by suessively omputing weights of v1, v2, . . . , vtalong P in the following way: assume the weight of vi is known. Let the edge e goingout of vi be along the jth diretion in the ube. Then, by Observation 4.7, Player j110



knows the weight of e and thus an ompute the following: weight(vi+1) = weight(e)−weight(vi). As weight(vi+1) ≤ n, he an announe this weight by ommuniating log nbits. Repeating this step t times, one for every vertex in the path P , we determinethe weight of pattern v.Note that protool Πu,v exploits one of the key features of the k-party model:every (k−1)-tuple of inputs is aessible to some player. Reall that the same featurewas used by the onstant ost protool for EQk.Lemma 4.8 shows that if players an somehow determine the weight of somepattern in low ost, then they an �nd the weight of the all-one pattern with littleadditional ost yielding a protool to ompute Disjointness e�iently. In order to doso, let us note the following:Observation 4.9 For any assignment of inputs, there is always one pattern whoseweight is at most n/2k.Observation 4.9 is utilized to yield a protool that �nds a pattern and its weight.Lemma 4.10 There is a deterministi protool, denoted by Πstart, of ost at most
O(n/2k + k + log n), involving just the �rst two players, that for every assignmentoutputs a pattern and its weight.Proof: Both Player 1 and Player 2 see foreheads of other players that make up thesub-matrix of A, obtained by deleting the two rows oupied by the foreheads ofPlayer 1 and 2, of size (k − 2) × n. Denote this sub-matrix by A′. Players 1 and
2 hoose (without ommuniating among themselves) the pattern in A′ with least
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weight6 . Denote this pattern by u. Applying Observation 4.9 to A′, we onludethat weight(u) ≤ n/2k−2. Player 1 ommuniates the bits held on the forehead ofPlayer 2 at positions that orrespond to the olumns at whih pattern u ours in A′.This requires weight(u) many bits of ommuniation. Player 2, reading the foreheadof Player 1, then determines the weight of the four patterns 00u, 01u, 10u and 11u.He hooses one of these patterns and ommuniates both his hoie and its weightusing at most (log n+ k) bits.Remark 4.11 The overlap in information aessible to Player 1 and Player 2 isplaying a key role in the protool Πstart.The protool for omputing DISJk is easily derived by running Πstart followedby Πu,1n , where u is the pattern whose weight is determined by Πstart. This yields
Dk(DISJk) = O(n/2k + k logn). Thus, log n players an ompute Disjointnessommuniating only O(log2 n) bits!In fat, noting that the above protool is easily modi�ed to ount the numberof ourrenes of any pattern in the input matrix A, one onludes the followingslightly more general fat: Any funtion that just depends on the number of our-renes of a ertain pattern in its input an be omputed e�iently by log n players.More formally, let D : {0, · · · , n} → {0, 1} be any prediate. For any pattern u oflength k, de�ne GD,u

k : ({0, 1}n)k → {0, 1} by insisting GD,u
k (x1, . . . , xk) be equal to

D(weight(u)), where weight(u) is the number of olumns ontaining the pattern u6 In ase of a tie, they resolve it aording to a predetermined, mutually agreed-upon preferene rule. 112



in the matrix A of size k × n indued from the k binary strings x1, . . . , xk as before.Then, Dk(G
D,u
k ) = O(n/2k + k log n).The Generalized Inner Produt funtion, whih is the k-party analogue of InnerProdut, is obtained by setting D as the parity prediate. The result of Babai, Nisanand Szegedy [BNS92℄ shows that the above upper bound on GD,u

k is nearly tight forthe Generalized Inner Produt (more generally for any mod-ounting prediate D asshown by Grolmusz [Gro92℄) by providing almost mathing lower bounds of Ω(n/4k).Tehniques introdued in Chapter 6, provide alternative proofs of suh lower boundsin addition to deriving lower bounds for prediates D for whih earlier methods didnot work.The lower bounds ited above degrade exponentially fast with the number ofplayers k. It is of signi�ant interest to �nd bounds that do not degrade that fast.This is wide open and no expliit funtion is known for whih we an prove non-triviallower bounds for more than log n players. The di�ulty of obtaining suh boundsmay be partly explained by the following surprising onnetion with ACC0. Buildingupon the work of Yao [Yao90℄, Beigel and Tarui [BT94℄ showed the following strongresult:Theorem 4.12 ([BT94℄) For every funtion f omputable by ACC0 iruits ofquasipolynomial size, there exists a multivariate polynomial P of degree at most poly-logarithmi in n, over the ring of integers, that satis�es the following:
• There exists a onstant c suh that the absolute value of the oe�ient of everymonomial of P is at most 2(log n)c .
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• There exists a symmetri funtion SYMM, suh that for every x ∈ {0, 1}n,
f(x) = SYMM (P (x)).The relevane of the above haraterization of ACC0 for multiparty ommuni-ation omplexity is evident from its following onsequene:Theorem 4.13 For eah funtion f in ACC0, there exists a onstant c suh that fan be omputed in polylogarithmi ost by (logn)c players, under every partition ofinput bits, using a deterministi protool.Proof: Consider the polynomial P over integers that omputes f in the sense de-sribed in Theorem 4.12. Let d be the degree of P . Assume there are d+ 1 players.Then, for any partition of input bits, every monomial of P an be omputed by someplayer without ommuniating with others. The players aordingly divide the mono-mials into d+1 lasses so that Player i an ompute every monomial in Class i. Eahplayer announes the sum of the ontribution made by monomials in his/her lass,weighted by their oe�ients in P . Observe that there at most 2d+1 many monomialsin a lass and reall that eah oe�ient in P has absolute value at most 2(log n)c .Thus, eah player ommuniates at most log(2d+12(log n)c

) = (d + 1) + (log n)c bits.Hene, in total, d (d+ 1 + (logn)c) bits of ommuniation su�e. As d = (log n)c′and both c′, c are onstants independent of n, the ost of the protool is merelypolylogarithmi.4.3 Stars and Cylinders IntersetionsThe �rst thing to note is that the notion of a two-dimensional ommuniationmatrix from the two-party model naturally generalizes to a k dimensional array ortensor in the k-player model. More preisely, given f : ΣX1×· · ·×ΣXk → {0, 1},Mf114



is the boolean ommuniation tensor, where Mf [x1, . . . , xk] is simply f(x1, . . . , xk),where xi ∈ ΣXi .We say that a set of k elements of ΣX1×...×Xk forms a star if it is of the form:
(x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)where the xi are values for the input letters in Xi for eah i with xi 6= x′i. In thatase, we all (x1, x2, . . . , xk) the enter of this star. Further a set S is alled star-losed if for every star in S, the enter of the star is also in S. Then, the followingobservation, �rst made in [CFL83℄, explains the importane of star-losed sets formultiparty ommuniation omplexity.Observation 4.14 For any deterministi protool Π, the set of inputs that lead Πto follow a given ommuniation history is star-losed.Proof: Observe the following fat about deterministi ommuniation protool Π: atany point in the protool, player i annot distinguish between inputs (x1, . . . , xi, . . . , xk)and (x1, . . . , x

′

i, . . . , xk) onditioned on the fat that the ommuniation history gen-erated by both inputs until that point in the protool is the same. Thus, if the kinputs (x
′

1, x2, . . . , xk), . . . , (x1, . . . , x
′

i, . . . , xk), . . . , (x1, . . . , xk−1, x
′

k) share the sameommuniation history τ , then Π ommuniates τ on the input (x1, . . . , xk) as well.An immediate but useful orollary of the above is the following generalizationof Fat 4.3:
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Corollary 4.15 A deterministi k-party protool Π omputing a funtion f parti-tions the ommuniation tensor Mf into at most 2c f -monohromati star-losedsets.However, unlike Fat 4.3 of two party protools, Corollary 4.15 is muh harderto use in pratie. In partiular, there are no known super-polylogarithmi bound(i.e. bounds of the form (log n)ω(1)) for any expliit funtion using Corollary 4.15diretly, even for three players. Chandra et.al.[CFL83℄, introduing the method,used it in onjuntion with Ramsey7 Theory, to obtain a super-onstant bound onthe `exatly-N ' funtion, denoted by Ek
N . Let Ek

N (x1, . . . , xk) be 1 i� ∑k
i=1 xi = N ,where eah xi is a n-bit integer from the set {1, . . . , N}. Chandra et.al. har-aterized the deterministi k-party ommuniation omplexity of Ek

N in terms ofa ombinatorial number χk (N) de�ned as follows: χk (N) is the smallest num-ber of olours needed to olour the set {1, . . . , N}k−1 suh that for eah point
(x1, . . . , xk) and eah integer λ 6= 0 the following property holds: the k points
(x1, . . . , xk−1), (x1 + λ, x2, . . . , xk−1), (x1, x2 + λ, . . . , xk−1), . . . , (x1, x2, . . . , xk−1 + λ)do not reeive the same olour if they all lie in {1, . . . , N}k−1. While [CFL83℄ showedthat Dk

(
Ek

N

)
= Θ (logχk(N)), determining good upper and lower bounds for χk (N)remain open problems. However, one knows that χk (N) = ω(1), whene the super-onstant lower bound on Ek

N follows.7 See the book by Graham et.al. [GRS90℄ for an exellent introdution to RamseyTheory.
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Before moving on, we note that we make further use of Ramsey Theory andCorollary 4.15 in the next hapter.In the following disussion, we view star-losed sets in a di�erent way. This pointof view was introdued in the seminal work of Babai, Nisan and Szegedy [BNS92℄ andvery e�etively used along with the disrepany method to obtain the �rst stronglower bounds on multiparty ommuniation omplexity of an expliit funtion.A subset Si of ΣX1×...×Xk is a ylinder in the ith dimension if membership in
Si is independent of the ith oordinate, i.e. if for all x1, x2, . . . , xk and any x′i wehave (x1, . . . , xi, . . . , xk) ∈ Si i� (x1, . . . , x

′
i, . . . , xk) ∈ Si. We say that S is a ylinderintersetion if S =

⋂
1≤i≤k

Si where Si is a ylinder in the ith dimension. A ylinder in-tersetion is alled f -monohromati if the funtion f evaluates to the same value onevery input instane in the intersetion. The following lemma shows the equivaleneof ylinder intersetions and star-losed sets:Lemma 4.16 A set S ⊂ ΣX1×...×Xk is a ylinder intersetion i� it is star-losed.Proof: It is not hard to verify that every ylinder intersetion is star-losed. Let usestablish the other diretion. Given a star-losed set S, de�ne
φi

S ≡
{
(x1, . . . , xi, . . . , xk) ∈ ΣX1×···Xk | ∃x′

i : (x1, . . . , x
′

i, . . . , xk) ∈ S
}
.Then, one veri�es that φi

S is a ylinder in the ith diretion. Further, every element in
S is in φi

S for eah 1 ≤ i ≤ k. Consider any (x1, . . . , xk) that lies in the intersetionof all these ylinders. For eah i, the de�nition of φi
S gives a point (x1, . . . , x

′

i, . . . , xk)in S. The enter of k suh points is preisely (x1, . . . , xk) that must be in S as it isstar-losed. Thus, we have established S = ∩k
i=1φ

i
S.117



Remark 4.17 We an restate Corollary 4.15 in terms of ylinder intersetions inthe following manner: Let f : ΣX1×...×Xk → {0, 1} be a funtion of k-inputs. Any
k-party ommuniation protool of ost c omputing f partitions the input spae intoat most 2c f -monohromati ylinder intersetions.4.3.1 Disrepany of Cylinder IntersetionsThe notion of disrepany over retangles generalizes to disrepany over ylin-der intersetions in an obvious way: for a distribution µ over ΣX1×···×Xk the disrep-any of funtion f over a ylinder intersetion C, denoted by disC

µ (f), as before isgiven by ∣∣∑(x1,...,xk)∈C f(x1, . . . , xk)µ(x1, . . . , xk)
∣∣. Here, we have assumed f to be1/-1 valued. If φ is the 0-1 valued harateristi funtion of C then we an fatorize itas∏k

i=1 φ
i, where φi is the harateristi funtion of the ylinder in the ith diretion.It is straightforward to verify that one an rewrite things as follows:disC

µ,k(f) =

∣∣∣∣Ex∼µf(x)φ1(x) · · ·φk(x)

∣∣∣∣, (4.4)where x is a random k-tuple hosen aording to µ from ΣX1×···×Xk . This way ofexpressing the disrepany of a ylinder intersetion is very onvenient for the ma-nipulations done to estimate disrepany of onrete funtions in Chapter 6.Maximizing disC
µ,k(f) over all ylinder intersetions C yields the disrepany of

f over the distribution µ. An argument, idential to the two player ase, immediatelygives rise to the Disrepany Method for multiple players:
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Lemma 4.18 (The Multiparty Disrepany Method) For every funtion f andevery distribution µ and every integer k ≥ 2,
Rǫ

k(f) ≥ Dǫ,µ
k (f) ≥ log

(
2ǫdisµ,k(f)

)
. (4.5)4.4 Communiation Complexity ClassesCommuniation omplexity is like a mini-world, existing independently insidethe bigger world of omputational omplexity. Indeed, for eah major omplexitylass, one an de�ne its orresponding ommuniation omplexity analogue. Thiswas �rst done by Babai, Frankl and Simon [BFS86℄ for the two-player model. Thisan be naturally extended to the k-player model. We de�ne diretly the multipartyomplexity lasses below.The �rst thing to do is to �x our notion of �e�ient� protools. Noting thatevery funtion has ommuniation omplexity at most n, onventionally protools ofpoly-logarithmi ost have been viewed as e�ient. This naturally gives rise to thelasses Pcc

k , NPcc
k and BPPcc

k as the lass of those boolean funtions that have e�-ient k-party deterministi, non-deterministi and randomized (bounded advantage)protools respetively. The lass oNPcc
k is the lass of funtions whose omplementhave e�ient non-deterministi protools. While other omplexity lasses an bede�ned in the same spirit, we fous on these lasses in this work.We summarize some of the results stated earlier in terms of these omplexitylasses. The ommuniation omplexity of the funtion non-equality shows that Pcc

2is stritly ontained in NPcc
2 . The same funtion also witnesses the separation of Pcc

2119



from BPPcc
2 . Further, Equality separates BPPcc

2 from NPcc
2 by showing that the for-mer is not a subset of the latter. On the other hand, the ommuniation omplexityof non-Disjointness (through the results of [BFS86, KS92, Raz90℄) omplements thisby showing that NPcc

2 is not a subset of BPPcc
2 .While for two players we have nie expliit separations of omplexity lasses, suhseparations, until reently, were not known for three or more players. In Chapter 6,we obtain expliit separation between BPPcc

k and NPcc
k , for every k = o(log log n).
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CHAPTER 5Languages with Bounded Symmetri Multiparty CommuniationComplexity5.1 IntrodutionIn the previous hapter, we disussed the ommuniation omplexity of a fun-tion with respet to a �xed partition of its input letters. In this hapter, we look atvariable partitions of the input and restrit ourselves to deterministi protools1 . The
k-party symmetri ommuniation omplexity of a funtion f , denoted by Dsym

k (f),is de�ned to be the deterministi ommuniation omplexity of f with respet to theworst partition of its input. Variable partition models are mainly motivated fromtheir appliability in proving lower bounds in other models of omputation with noexpliit mention of ommuniation. Typially, suh appliations proeed by derivingan e�ient ommuniation protool for f , with respet to every partition of its inputletters, from the e�ient algorithm for omputing f in the given model. E�ient al-gorithms for f in the model are then ruled out by showing that f has large symmetriommuniation omplexity.We obtain new insight into the multiparty model by fousing on funtions thathave bounded k-party symmetri omplexity, where k ≥ 3 is an arbitrary onstant.1 In this hapter, every protool is deterministi unless stated expliitly otherwise.121



A priori, there is no reason to guess that the ommuniation omplexity of a fun-tion has any bearing on its time-spae omplexity. Yet Szegedy [Sze93℄ shows thatlanguages with two party bounded symmetri ommuniation omplexity an beomputed eonomially by very shallow ACC0 iruits. This surprising result is aonsequene of the many beautiful haraterizations of the lass of suh funtionsobtained in [Sze93℄. A natural diretion to pursue is to generalize these harater-izations to the k-party model. Suh an e�ort was initiated in the work of Tesson[Tes03℄.We however show in Setion 5.2 that there are languages with arbitrarily largeuniform iruit omplexity whose three-party ommuniation omplexity is boundedby a onstant even for the worst-ase partition of the input instanes among theplayers. An analogous result for non-uniform iruit omplexity is also derived. Theselanguages are onstruted using speially rafted error-orreting odes. Beause ofthese results, we annot expet to obtain haraterizations of languages of boundedsymmetri multiparty omplexity that are as nie as those for the two-player ase.As remarked and exempli�ed in the previous hapter, the following key featuresof the multiparty model an be used to devise lever protools: �rst, every input bitis seen by several players, seond, every (k− 1)-tuple of input positions is seen by atleast one of the k players, and third, all players know the partitioning of the input,i.e., they know whih positions they atually see. In the next setion we show thatthis ombination of features gives three-party protools enough power to omputefuntions of arbitrarily high iruit-omplexity in onstant ommuniation for everypossible partition. If we remove the �rst two properties then we obtain essentially122



the multiparty �input in the hand� model whih is omputationally even weaker thanthe two-party ommuniation model. To understand how ruial the last propertyis, we onsider two restrited lasses of languages/funtions in whih this advantageis in some sense taken away.First, we onsider in Setion 5.3.3 languages with a neutral letter [BS95, BIL+05℄,i.e. a letter whih an be inserted or deleted at will in an input word without a�etingits membership in the language. We show that every suh language having bounded
k-party ommuniation omplexity for some �xed k is regular. On the other hand,it is worth noting that the lass of regular languages with a neutral letter that haveonstant k-party ommuniation omplexity has been niely haraterized by Tesson[Tes03℄ in terms of algebrai properties of their minimal automaton. Our resultsindiate that the presene of a neutral letter is a severe handiap in the multipartygame and suggests that it might be easier to prove ommuniation omplexity lowerbounds under this assumption.Finally, in Setion 6.5.2, we use the Generalized Van der Warden Theorem toprove that for any �xed k ≥ 3 the symmetri funtions that an be omputed inbounded k-party ommuniation omplexity by k-players are exatly the symmetrifuntions that have bounded 2-party omplexity.5.2 Funtions with bounded multiparty omplexity but high time/spaeomplexityIn this setion, we exhibit languages of arbitrarily large iruit omplexity butwith bounded multiparty ommuniation omplexity. For a language L and an en-oding C : {0, 1}∗ → {0, 1}∗, we denote by C(L) the set {C(x); x ∈ L}. We provethat for a suitably hosen error-orreting ode C, any language L is suh that its123



enoding C(L) has bounded multiparty ommuniation omplexity. We will hoose
C suh that the orresponding enoding and deoding funtion are e�iently om-putable and hene the time/spae/iruit omplexities of L and C(L) will be loselyrelated.As a warm-up, we start with the unary enoding CU de�ned as follows: for
x ∈ {0, 1}∗, CU(x) = 0x102n−x−1, where n is the length of x and x is interpretedas an integer between 0 and 2n − 1. Hene, CU enodes bit strings of length n intostrings of length 2n having a single 1 in a one-to-one way.Lemma 5.1 For any language L and integer k ≥ 3, Dsym

k (CU(L)) ≤ 3.Proof: Without loss of generality k = 3. On an input w that is split among thethree parties, the players need to verify two things: 1) whether w is a valid enodingof some string x, and 2) whether the orresponding string x is in L. To verify the�rst property, the players only need to hek whether at least one of them sees a
1 and whether none of them sees two or more 1s. They an ommuniate theirobservations regarding this using six bits in total. Next, one of the players who seesthe one, determines the unique string x with CU(x) = w. He an do this solely basedon the position of the one sine he knows how w is partitioned. This player an alsodetermine whether x ∈ L and hene w ∈ CU(L). He ommuniates his onlusion tothe other parties by sending one more bit. Hene in total players exhange at mostseven bits. The protool an be optimized so that eah player simultaneously sendsone bit of information for the total of three bits.The disadvantage of the unary enoding is its ine�ieny: beause odewordsare exponentially longer than the words they enode, we annot provide e�ient124



redutions between L and C(L). A better enoding an be obtained by onatenatingReed-Solomon odes with the unary enoding. In the 3-party senario at least oneof the parties has on its forehead at least a (1/3)-fration of the input. Hene, ifthe hosen enoding has the property that from an arbitrary (1/3)-fration of theinput the whole word an be reonstruted (assuming the input is an enoding ofsome word, i.e., assuming that the input is a odeword) the other two parties anreonstrut the whole input and verify whether the parts on remaining foreheads areonsistent with suh an input. With the proper hoie of parameters Reed-Solomonodes have this property.Let n be a large enough integer, m = ⌈log2 3n⌉ and d = n/m. Any string
x ∈ {0, 1}n an be interpreted as a sequene of d elements from GF [2m]. De�ne
px to be the degree d − 1 polynomial over GF [2m] whose oe�ients are given by
x. De�ne the Reed-Solomon enoding by CRS(x) = px(g0)px(g1) · · · px(g3d−1), where
GF [2m] = {g0, g1, . . . , g2m−1}, and we will enode eah gi as a binary string in {0, 1}m.Furthermore, de�ne the onatenation of the Reed-Solomon enoding with the unaryenoding by CRS◦U(x) = CU(px(g0)) · · ·CU(px(g3d−1)). Codewords thus onsist of 3dbloks of 2m bits (orresponding to the 3d symbols of the Reed-Solomon enoding)with eah blok ontaining exatly one 1. Thus, CRS◦U enodes strings of length ninto strings of length O(n2). Furthermore, CRS◦U an be enoded and deoded inpolynomial time and so the languages L and CRS◦U(L) are polynomial-time equiv-alent. Note that the deoding task at hand does not require us to perform errororretion in the usual sense: we simply want to identify if an input is a odeword
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(sine we rejet all words that are not odewords) and we only are about deodingtrue odewords.Lemma 5.2 For any language L and any k ≥ 3, Dsym
k (CRS◦U(L)) ≤ 6.Proof: Without loss of generality k = 3 as all but the �rst two players an pretendthey are the same party. Let m = ⌈log2 3n⌉ and d = n/m. To hek if an inputis a odeword, the players an easily hek that there are never two 1s in a singleblok of input bits. They annot, however, verify at onstant ost that eah of the 3dbloks ontains at least one 1 sine this task is essentially the partition problem whoseomplexity we lower bound as superonstant through Lemma 5.11 in Setion 5.3.2.We proeed di�erently: an input w of length 3d · 2m an only be a odeword if atleast one player (say Player 1) has on its forehead at least d 1's and this player anbe identi�ed with three bits of ommuniation. These d 1's determine d elements of

GF [2m] hene players 2 and 3 an eah privately reonstrut from them the uniquedegree d − 1 polynomial p that oinides with these elements. Players 2 and 3 nowknow that if the input is a odeword then it must be the one orresponding to
p and player 2 an hek that the bits on player 3's forehead are onsistent withthat hypothesis while player 3 an similarly ross-hek the input bits on player 2'sforehead. If this ross-heking proedure is suessful, player 2 an determine theunique x suh that px = p, verify x ∈ L and send the result to all parties. Overall,only six bits of ommuniation su�e to deide if the input is from CRS◦U(L).As an immediate orollary to this lemma and the fat that the omplexity of
CRS◦U(L) is polynomially related to the omplexity of L we obtain:

126



Corollary 5.3 The lass of languages with bounded multi-party ommuniation om-plexity ontains languages with arbitrarily large uniform time and spae omplexity.In order to obtain also languages with essentially the largest possible non-uniform iruit omplexity we need odes that map n bits into O(n) bits. We anobtain suh odes by onatenating odes provided by the following lemma with theunary ode CU .Lemma 5.4 For any integer n ≥ 1, there exists a linear map C8 : {0, 1}n →

GF [8]39n suh that every w ∈ C8({0, 1}n) is uniquely determined by any one-third ofits oordinates.Proof:To prove the existene of our ode we only need to prove the following laim.Claim 5.5 For c ≥ 37, with high probability a random matrix over GF [8] of dimen-sion n × cn has the property that eah sub-matrix of dimension n × cn/3 has rank
n. For any n′ < n, n′ vetors over GF [8] of length cn/3 span less than 8n di�erentvetors. Thus the probability that a new random vetor of length cn/3 falls intothe spae spanned by these vetors is at most 8n−cn/3. Hene, the probability that arandom matrix over GF [8] of dimension n by cn/3 is of rank less than n is at most
n·8n−cn/3. (We pik the vetors step by step and at eah step we fail to pik a linearlyindependent vetor with probability at most 8n−cn/3.) Thus the expeted number ofsingular n by cn/3 sub-matries of a random matrix of dimension n by cn is at most
n · 8n−cn/3 ·

(
cn

cn/3

). Sine ( cn
cn/3

)
≤ 2H(1/3)cn, if c ≥ 37 then 3− c+H(1/3)c < 0 and the
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expeted number of singular sub-matries is 2−ǫn for some ǫ > 0. The laim follows.Consider the onatenation of the ode C8 and the unary ode and denote itby C8◦U. Reall the argument that showed that the three-party ommuniationomplexity of the language CRS◦U(L) is onstant, for every language L. ReplaingReed-Solomon odes in this argument by C8 shows that C8◦U(L) has onstant three-party ommuniation omplexity for any L. Further, notie that C8 is over the �xedalphabet GF [8]. Thus, C8◦U(L) maps n bits to O(n) bits. As a onsequene, weobtain the following:Corollary 5.6 For any k ≥ 3, the lass of languages with bounded k-party ommu-niation omplexity ontains languages with 2Ω(n) iruit omplexity.5.3 Two Speial Classes of LanguagesWe onsider two natural lasses of funtions for whih the oding trik of theprevious setion fails. A letter e ∈ Σ is said to be neutral with respet to a language
L if for eah word the addition or deletion of the letter e does not a�et its mem-bership in L i.e. for all u, v ∈ Σ∗ we have uv ∈ L i� uev ∈ L. The neutral letterhypothesis was helpful in obtaining length lower bounds on bounded-width branh-ing programs [BS95℄, was entral to the Crane-Beah Conjeture [BIL+05, LTT06℄,and the reent work of Roy and Straubing [RS07℄.

L is alled a symmetri language if for eah word w permuting its letters does nota�et its membership in L i.e. the membership of w in L is ompletely determinedby the ount of the ourrenes of eah letter of the alphabet in w.
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If a language is symmetri or has a neutral letter, then membership in L annotdepend, as in Lemma 5.1, on having spei� value on a spei� input position.Intuitively, the feature of the model 2 that eah player knows the exat position inthe input word of every letter that he sees, should not help deiding languages havinga neutral letter and symmetri languages.The rest of this setion is devoted to proving the following two theorems thatorroborate the above intuition:Theorem 5.7 If f is a funtion with a neutral letter suh that Dsym
k (f) = O(1) forsome �xed k, then f is regular.Theorem 5.8 If f : Σn → {0, 1} is symmetri and has bounded k-party symmetriommuniation omplexity for some �xed k, then in fat f has bounded two-partysymmetri ommuniation omplexity.Both proofs use notions from Ramsey theory that we quikly review.5.3.1 A Primer on Ramsey Theory�In any olletion of six people, either three of them mutually know eah otheror three of them mutually do not know eah other�.These are the opening lines of the exellent book by Graham, Rothshild andSpener [GRS90℄ on Ramsey theory whih is a lassial branh of extremal ombina-toris. These lines highlight the fat that there annot be perfet haos. Whenevera system is large enough, interesting struture emerges. Perhaps a little surpris-ingly, this oneptually simple priniple has found powerful appliations in diverse2 This feature is also present in the two-party model.129



areas of mathematis like number theory, algebra and geometry and of ourse, om-putational omplexity. The �rst appliation of Ramsey theory to ommuniationomplexity was made in the work of Chandra et. al. [CFL83℄ that introdued thevery model of `Number in the Forehead'.Let Cn
t denote the n-dimensional ube over t elements, i.e.

Cn
t ≡def {(x1, . . . , xt) | xi ∈ {0, . . . , t− 1}

}
.Suh ubes are fundamental objets appearing in many di�erent ontexts. We how-ever want to view ubes purely ombinatorially. The t points v1, . . . , vt ∈ [t]n aresaid to form a ombinatorial line in Cn

t if the vj's are distint and for eah 1 ≤ i ≤ neither all the vj agree on o-ordinate i (i.e. vj
i = vj′

i for all 1 ≤ j ≤ j′ ≤ t) or wehave vj
i = j for all 1 ≤ j ≤ t. As an example, points 00, 01, 02 form a line in C2

3 andpoints 020, 121, 222 form a line in C3
3 . Every funtion χ : Cn

t → {1, . . . , c} is alled a
c-olouring of Cn

t as eah point of the ube reeives one of c olours. A set of points
P is rendered monohromati by χ if every point in P is oloured the same by χ.The following result shows that any olouring of a su�iently large dimensional ubehas an interesting monohromati set of points.Theorem 5.9 (Hales-Jewett [GRS90℄) For any integers c, t there exists an in-teger n = HJ(c, t) suh that every c-olouring of Cn′

t generates a monohromatiombinatorial line whenever n′ ≥ n.The Hales-Jewett Theorem is a entral result of Ramsey theory from whihseveral other results in the subjet follow. It is not too di�ult to derive from it
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the famous Van der Waerden's theorem3 that says every �nite olouring of the setof positive integers generates monohromati arithmeti progressions of arbitrarilylarge length. Let t, r > 0 be any number suh that we want to �nd a monohromatiarithmeti progression of length t when the positive integers are r-oloured. Mapthe �rst tn integers bijetively into Cn
t where n = HJ(r, t) by writing eah integerin base t. Any r-olouring of the �rst tn numbers thus indues a r-olouring of Cn

t .By the Hales-Jewett theorem there exists a monohromati line. Van der Wareden'stheorem follows by merely observing that any line in Cn
t , in our mapping, orrespondsto an arithmeti progression of length t.What we need is the following generalization of Van der Waerden's theorem tohigher dimensions, whose short proof also follows from the Hales-Jewett theorem.Theorem 5.10 (Generalized Van der Warden) For any integers c, k,m > 0,there is an integer R = GVW (c, k,m) suh that for eah c-oloring of {0, . . . , R}k,there exist x0

1, . . . , x
0
k < R and 1 ≤ d < R suh that all points of the set P =

{(x1, . . . , xk) : xi = x0
i + dyi, 0 ≤ yi ≤ m} have the same olor and P ⊆

{0, . . . , R}k.Proof: Let V ≡ [m]k ≡ {(y1, . . . , yk) | 0 ≤ yi < m}. Order the elements of V in somearbitrary way so that V = v1, v2, . . . , vt with t = mk. Let N = HJ(c, t) and let
R = mN . Consider the map ψ : CN

t → [R]k given by ψ(x1, . . . , xN ) =
∑N

i=1m
N−ixiwhere xi is viewed as a vetor in V . Note that ψ is bijetive. Thus a c-olouring3 Note that Van der Waerden's theorem is the starting point of suh deep theoremsas Szemeredi's theorem that has stimulated strong researh reently.131



of [R]k indues a c-olouring of CN
t . Applying the Hales-Jewett Theorem 5.9, wesee that a monohromati line exists in the c-olouring of CN

t . It is not di�ult toverify that the image of this line under ψ is the monohromati set P that we needto establish Theorem 5.10.5.3.2 Communiation Complexity of PartitionWe de�ne the k-wise partition problem, denoted by Partk. It takes as input a
k × n Boolean matrix A and we think of the ith row of A as representing a subset
xi of [n] = {1, . . . n}. We de�ne Partk(A) = 1 i� eah olumn of A ontains exatlyone 1 (i.e. the xi form a partition of [n]). It is lear that for the k-party game theworst input partition for Partk is the one where player Pi holds the bits of row i onhis forehead.Below, we reall a super-onstant lower bound, obtained by Pudlák and Tesson[Tes03℄, on the k-party ommuniation omplexity of Partk using the Hales-JewettTheorem. This is interesting in its own right and useful for our analysis. We reallthe argument below, that is reminisent of the argument employed by Chandra et.al.to obtain super-onstant lower bounds on the `exatly-N ' funtion (see Setion 4.3of Chapter 4).Lemma 5.11 ([Tes03℄) For all k, Dk(Partk) = ω(1).Proof: We identify a set of k-wise partitions of [n] that form a star. Additionally,the ommuniation history is the same on eah of these partitions. Observation 4.14from Chapter 4 then implies that the protool generates the same ommuniationhistory on the enter of this star. The argument is �nished by observing that theenter point is not a partition of [n]. 132



For identifying the star, we use the Hales-Jewett Theorem. More preisely,onsider the set of valid k-wise partitions of [n]. This set is in one-to-one orrespon-dene with the ube Cn
k in the following way: we map a partition {S1, . . . , Sk} to

(x1, . . . , xn), where xi = j if i ∈ Sj for eah 1 ≤ i ≤ n. This is a orret map beauseeah i ∈ [n] lies preisely in one Sj as the sets form a partition. Hene, a protool ofost c for Partnk indues a 2c olouring of Cn
k , where eah point of the ube is olouredby the ommuniation history of the protool on the orresponding partition. Set

n ≥ HJ(2c, k). Then, Theorem 5.9 guarantees the existene of a monohromati linein Cn
k .It is not hard to verify that a line in Cn

k orresponds to a set of k partitions of thefollowing type: {S1 ∪ T, S2, . . . , Sk}, {S1, S2 ∪ T, . . . , Sk}, . . . , {S1, S2, . . . , Sk ∪ T} forsome non-empty T ⊆ [n]. This forms a star. The fat that the line is monohromatifurther means that the protool generates the same ommuniation history on eahof these partitions. So it generates the same history on the enter {S1, . . . , Sk} whihis not a star as T is non-empty. Hene, the protool is inorret.The proof of Lemma 5.11 only onsiders those instanes of Partk in whih anytwo subsets held by the k players are disjoint. Further, it is easily veri�ed thatthe input instane (the enter of the star) on whih the players are fored to makean error, also has this disjointness property. These observations yield the followingslightly stronger result : de�ne the problem RPartnk to be Partk with the restritionthat the k sets given to players are pairwise disjoint and are subsets of [n].Corollary 5.12 For eah k, RPartnk annot be solved using c bits of ommuniationwhenever n ≥ HJ(2c, k). 133



Note that a k×n matrix A belongs to Partk i� none of its olumns ontains two
1 and the total number of 1 entries in A is n. If k ≥ 3 then k players an hek the�rst ondition using k bits of ommuniation sine any pair of input bits is aessibleto at least one player. They are then left with verifying that the sum of the inputbits is n whih an, surprisingly, be ahieved with a ommuniation ost muh lessthan the trivial O(logn) [CFL83, GGK08℄.5.3.3 Languages with a Neutral LetterIn this setion, we show that languages with a neutral letter that have bounded
k-party omplexity for some �xed k are all regular. In order to prove this, weintrodue a onvenient notion of redution among problems for the 'Number on theForehead' model.A k-retangular redution r from L ⊆ {0, 1}n×k to K ⊆ {0, 1}l(n)×k is a k-tupleof funtions (r1, . . . , rk) with eah ri : {0, 1}n → {0, 1}l(n) suh that (x1, . . . , xk) ∈ Li� (r1(x1), . . . , rk(xk)) ∈ K. We all l the length of the redution. The fat that in a
k-player game, eah ri an be omputed by every player individually exept the ith,gives rise to the following useful observation:Observation 5.13 Let L ⊆ {0, 1}n×k and K ⊆ {0, 1}l(n)×k be languages suh thatthere exists a retangular redution from L to K of length l. Then, Dk(L)(n) ≤

Dk(K)(l(n)).Let C ≥ 0 be an integer and let G be a family of funtions over Σ∗ with �niterange R. We say that inputs with weight at most C determine the funtions of G ifevery funtion g : Σ≤C → R has at most one extension to Σ∗ in G. Now, let Ck,c bethe family of funtions with a neutral letter and k-party ommuniation omplexity134



at most c. In order to show that every funtion f in Ck,c is regular, we �rst provethe following strong property of f :Lemma 5.14 Funtions of Ck,c are determined by inputs of weight at most C =

HJ(k, 22c), a onstant.We obtain the above lemma as a onsequene of the following one:Lemma 5.15 For any C > 0, if the funtions of Ck,c are not determined by inputsof size C then there exists a n > C suh that RPartnk an be solved by k partiesommuniating at most 2c bits.Observe that Lemma 5.15 and Corollary 5.12 together imply Lemma 5.14 immedi-ately.Proof:(Lemma 5.15) For any word w ∈ Σ∗, we shall denote by we the word obtainedfrom w by deleting all ourrenes of e in w. The ith letter of w will be denoted by
wi. Also, for k words w1, . . . , wk, eah of length ℓ, let w = w1♦ . . .♦wk denote theword obtained by interleaving the k words in the following way : |w| = ℓk and forall 1 ≤ i ≤ ℓk, wi = wm

j if i = (m − 1)k + j with 0 < j < k + 1. Let us assumethat f and g are in Ck,c, suh that they are not idential, but the minimal string
v ∈ {Σ− e}∗ suh that f(v) 6= g(v) has length at least C. We show below a k partyprotool that solves RPart|v|k by ommuniating at most 2c bits.Our protool will work using a k-retangular redution r to languageH ⊂ Σ|v|×k,where (y1, . . . , yk) ∈ H i� v = (y1♦ · · ·♦yk)e. Consider an instane of RPart|v|k inwhih player i's forehead holds a |v| bit vetor representing set Ii. Then, Ii ∩ Ij = ∅if i 6= j. We de�ne ri as follows : let yi = ri(Ii). Then, yj

i = vj if j ∈ Ii, otherwise
yj

i = e. Let u = (y1♦ · · ·♦yk)e. The simple observation that is key to our argument,135



is that u is v if ∪k
i=1Ii = [|v|] and otherwise |u| < |v|. This shows that r is indeed aredution from RPart

|v|
k to H .The observation above and the property of v (i.e. f(u) = g(u), whenever |u| <

|v|) imply the following : y = y1♦ . . .♦yk is in H i� f(y) 6= g(y). The ondition
f(y) 6= g(y) an be heked with 2c bits of ommuniation by running the c-bitprotool on f and g separately. Thus, 2c bits of ommuniation are enough to solve
H and hene RPart|v|k .Remark 5.16 It follows immediately that the number of languages in Ck,c over any�xed alphabet Σ is �nite for a �xed k, c i.e. there are at most 2(|Σ|−1)C suh languageswhere C = HJ(k, 22c).The �rst main theorem of the setion is easily established below.Proof: (Theorem 5.7) Let f : Σ∗ → {0, 1} be a funtion in Ck,c: For a word w ∈ Σ∗,we de�ne the funtion fw : Σ∗ → {0, 1} by fw(z) = f(wz). It is easy to verify that foreah w, fw is also in Ck,c. De�ne the equivalene relation∼f on Σ∗ by insisting u ∼f vi� f(uz) = f(vz) for all z ∈ Σ∗ i.e. fu and fv are idential. Remark 5.16 ensures that
∼f has �nite index. The lassial Myhill-Nerode Theorem (see for example [HU79℄)guarantees that if ∼f has �nite index then f is regular and we are done.5.3.4 Symmetri FuntionsFor w ∈ Σ∗, we denote as |w|a the number of ourrenes of a in w. The valueof a symmetri funtion f : Σ∗ → {0, 1} on w thus is entirely determined by thevalues |w|a for eah a ∈ Σ. We remind the reader of the intuition that k ≥ 3 partiesomputing a symmetri funtion only get limited bene�ts from the features of themultiparty model sine their protool annot signi�antly rely on the preise set of136



input positions aessible to eah player or on the fat that any (k− 1)-tuple of bitsis seen by one party. This intuition is formalized by Theorem 5.8 and in this setionwe prove this theorem.For simpliity, we �rst deal with funtions with boolean inputs. To any symmet-ri funtion f : {0, 1}n → {0, 1}, we naturally assoiate the funtion f : {0, . . . , n} →

{0, 1} suh that f(x) = f(|x|1) for every x ∈ {0, 1}n. We say that f is (ℓ, r, p)−periodiif f(a) = f(a+ p) for ℓ ≤ a ≤ n− r.We �rst observe that one an assume the protool to be non-interative in thefollowing sense: a protool is alled simultaneous if eah player sends a single mes-sage to an extra party, usually alled the referee, who then omputes the answersolely based on the messages he reeived. In partiular, the message sent by a partydoes not depend on messages sent by other parties. It is easy to verify that a k-party protool of ommuniation ost c an be simulated by a k-party simultaneousprotool with ost at most ck2c. This is done by making eah player ommuniateall the eventualities (that he foresees) to the referee. Thus funtions of boundedomplexity in the simultaneous model are preisely those with bounded omplexityin the standard model. This point of view turns out to be useful for the analysis.Lemma 5.17 For any onstants k, c with k ≥ 1 there exists an integer Nk+1 =

N(k + 1, c) suh that every symmetri boolean funtion f : {0, 1}n → {0, 1} that hasa k + 1-party simultaneous protool of omplexity c for the input partition in whihplayers X1, . . . , Xk eah get Nk+1 bits and player Xk+1 gets the remaining n−kNk+1bits is (ℓ, r, p)-periodi for some ℓ, r ≤ kNk+1 and some p ≤ Nk+1.
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Theorem 5.8 then follows by observing that an (ℓ, r, p)-periodi funtion has 2-party simultaneous ommuniation omplexity roughly 2 · ⌈log(ℓ+r+p)⌉. The proofof Lemma 5.17 proeeds by indution on k. Our indution step uses a non-trivial�player elimination� tehnique. More preisely, we use the generalization of Van-derWaerden's theorem as given by Theorem 5.10 to show that if f has a (k + 1)-partyprotool of bounded ost then there exists a large set of inputs P for the foreheads ofthe �rst k players on whih player Pk+1 always sends the same ommuniation. Thisrenders the (k+ 1)st player irrelevant if the input lies in P. The speial struture of
P allows the use of the indution hypothesis.We de�ne N(k, c) indutively. The base ase of two players was �rst provedby Szegedy [Sze93℄. We inlude the proof of this ase below for the sake of self-ontainment.Claim 5.18 N(2, c) = 2c.Proof: Consider the partition where the �rst player's forehead gets the �rst 2c bitsand the seond player reeives the remaining n − 2c bits. Consider the following
2c + 1 possible assignments: Player 1's forehead is assigned the string 1i02c−i for
0 ≤ i ≤ 2c. As Player 2 sends out at most 2c di�erent messages, there are at leasttwo suh assignments to Player 1's forehead, for whih Player 2 sends out the samemessage. Let these two assignments orrespond to i being i1 and i2 respetively, with
i1 < i2. We prove the laim by showing that f(j) = f(j + i2 − i1), whenever i1 ≤
j ≤ n− 2c + i1 i.e. f is (ℓ, r, p)-periodi with ℓ = i1 ≤ 2c = N(2, c), r = N(2, c)− i1and p = i2 − i1 ≤ N(2, c).
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Let j be in the required range. Fix the assignment 1j−i10n−2c−j+i1 to the foreheadof Player 2. The laim gets established by observing that the protool outputs thesame value for f when Player 1's forehead is assigned 1i102c−i1 or 1i202c−i2 .Using the above as the base ase, we prove our main lemma.Proof: (Lemma 5.17) We show that N(k + 1, c) = GVW (2c, k, N(k, c)! + (k −

1)N(k, c)) for k ≥ 2, where GVW is the Generalized Van der Waerden number.The main idea is the following: given a onstant ost (k + 1)-party protool for thesymmetri funtion f , we use the Generalized Van-der-Waerden's Theorem to `elim-inate' the (k + 1)st player by restriting f to a set of inputs on whih that player'smessage is always the same. This enables us to onstrut a bounded ost k-partysymmetri funtion f ′ losely related to f . Our indutive hypothesis applies to f ′and we show that the periodiity of f ′ implies the periodiity of f .Let Π be a simultaneous (k+1)-player protool of ost c that omputes f undera partition of the following form. Players 1, . . . , k eah have Nk+1 bits assignedon his/her forehead, and Player k + 1 gets the remaining n − kNk+1 bits. Coloureah point (x1, . . . , xk) ∈ {0, . . . , Nk+1}k by the message ommuniated by Player
k + 1 when 1xi0Nk+1−xi is on the forehead of Player i for i ≤ k. By GeneralizedVan der Waerden's Theorem, there is a set P of points in {0, . . . , Nk+1}k, suh thatPlayer k + 1 sends the same message for every assignment to the �rst k−1 foreheadsthat orresponds to a point in P = {(x1, . . . , xk) : xi = x0

i + dyi, 0 ≤ yi ≤

Nk! + (k − 1)Nk}, for some d < Nk+1.
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Let ℓ = d(k − 1)Nk +
∑k

i=1 x
0
i , r = kNk+1 − ℓ, and p = d · Nk!. Clearly, theysatisfy required bounds required by Lemma 5.17. We prove below the laim that fis (ℓ, r, p)-periodi.For any positive integer α, de�ne the spetrum funtion f

′
α : {0, . . . , Nk! +

2(k − 1)Nk} → {0, 1} by f ′α(u) = f(α +
∑

i x
0
i + du). This spetrum orrespondsto a symmetri boolean funtion f ′α on Nk! + 2(k − 1)Nk bits. We verify that thefuntion f ′α has a c bit k-party ommuniation protool for the partition where the�rst k − 1 players get Nk bits on their foreheads and the remaining Nk! + (k − 1)Nkbits are on Player k's forehead. The reason is that when players 1 through k haveon their foreheads strings of weights y1 through yk, they an simulate Π by doingthe following: For 1 ≤ i ≤ k, Player i's forehead is replaed by any string of weight

x0
i + dyi, and eah of these k players assume that Player k+ 1 has a string of weight
α on its forehead. They then ommuniate aording to Π and the referee, knowingthe onstant message sent out by Player k + 1, omputes the orret answer.The indution hypothesis implies the following Observation:Observation 5.19 For eah α ≤ n − kNk+1, there exists ℓ′, r′ ≤ (k − 1)Nk and
p′ ≤ Nk suh that f ′α is (ℓ′, r′, p′)-periodi i.e. f

′
α(u) = f

′
α(u + p′) for ℓ′ ≤ u ≤

Nk! + 2(k − 1)Nk − r′.Let x ≥ ℓ. Note that f(x) = f
′
α(u) with α = x − ℓ and u = (k − 1)Nk.Applying Observation 5.19, f ′α(u) = f
′
α(u + Nk!) as p′ divides Nk! and u + Nk! ≤

Nk! + 2(k − 1)Nk − r′. Thus f(x) = f(x + d · Nk!), when ℓ ≤ x ≤ n − kNk+1 + ℓestablishing the (ℓ, r, p)-periodiity of f .
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We extend our result to any general �nite alphabet Σ = {a1, . . . , at}, where
t ≥ 2. Consider three t-dimensional vetors ℓ = (ℓ1, . . . , ℓt), r = (r1, . . . , rt) and
p = (p1, . . . , pt) where ℓi, ri and pi are positive integers. De�ne an equivalene relation
∼ℓ,r,p over Σn by setting x ∼ℓ,r,p y preisely if for eah i, either |x|ai

= |y|ai
OR

ℓi ≤ |x|ai
, |y|ai

≤ n− ri and |x|ai
≡ |y|ai

mod(pi). We all a funtion f : Σn → {0, 1}to be (ℓ, r, p)-periodi if f(x) = f(y) whenever x ∼ℓ,r,p y. We show the following:Lemma 5.20 If a symmetri funtion f : Σn → {0, 1} has bounded k-party sym-metri ommuniation omplexity then f is (ℓ, r, p)-periodi with ℓi = ri = (k−1)Nkand pi = Nk! for eah i ≤ t, where t is the size of the alphabet Σ.Proof: Let Σ = {a1, . . . , at}. For any Σ0 ⊆ Σ and any word w in (Σ−Σ0)
∗, we de�nea symmetri funtion fΣ0

w : Σ
n−|w|
0 by letting fΣ0

w (x) = f(wx). We now argue byindution of the ardinality t of Σ. It gets easily veri�ed that our base ase of t = 2is guaranteed by Lemma 5.17. Let t ≥ 3. Consider two string x, y with x ∼ℓ,r,p y.If for eah i |x|ai
= |y|ai

, then trivially f(x) = f(y). Otherwise, pik i 6= j suhthat |x|ai
< |y|ai

and |x|aj
> |y|aj

. Assume w.l.o.g that ||x|ai
− |y|ai

| ≤ ||x|aj
− |y|aj

|.Let si = |x|ai
and sj = |x|aj

. Consider string u = (ai)
si(aj)

sj and a string α ∈
(Σ\{ai, aj})n−si−sj that is obtained from x by deleting all the ourrenes of letters aiand aj . Clearly, f(x) = fα(u). The funtion f {ai,aj}

α has onstant k-party symmetriomplexity over the binary alphabet {ai, aj}. Applying the base ase of our indutionto this funtion, fα is periodi and there exists a string v ∼ℓ′,r′,p′ u with |v|ai
= |y|aiand fα(v) = fα(u) = f(x). Notie that αv ∼ℓ,r,p y and |αv|ai

= |y|ai
= (say) r.Finally, let β = (ai)

r. Then f(x) = fβ(u′) where u′ ∈ (Σ \ {ai})n−r is obtained by141



deleting all ourrenes of letter ai from αv. Applying the indution hypothesis on
Σ \ {ai}, we onlude that there exists a v′ in (Σ− {ai})n−r suh that |v′|am = |y|amfor eah m 6= i and f(x) = fβ(u′) = fβ(v′) = f(y).Theorem 5.8 now follows from Lemma 5.20 as two players an ompute the ountof eah letter in Σ up to a onstant threshold and a onstant modulus in onstantommuniation.5.4 Consequenes and ConlusionThere are interesting onsequenes of these results for low degree polynomialsand onstant depth iruits. For instane, it is already known by results of [PT88,TB98℄ that onstant degree multivariate polynomials over a �xed modulus4 m annotompute MAJORITY by a generalized representation. Our results on the multipartyommuniation omplexity of symmetri funtions yields a new proof of this result asfollows: onsider any polynomial P over Zm of degree d with aepting set A ⊆ Zm.It gets readily veri�ed that the funtion f represented by P has onstant (d + 1)-party symmetri ommuniation omplexity as in any partition, eah monomial of
P an be evaluated by some player without ommuniating with others. Thus, themonomials of P are partitioned into at most d+ 1 lasses with eah player assignedone lass. Given an assignment, eah player omputes a logm bit answer that is thesum of all the monomials of P in the player's lass. Knowing all the answers (andthe aepting set A) the referee an ompute the value of f . Applying Lemma 5.20,4 The modulus m is not neessarily a prime power.142



we know that f must be (ℓ, r, p)-periodi, for onstants ℓ, r, p, and hene f annotbe MAJORITY.We next desribe an appliation of our result to onstant-depth iruits. Al-though in this thesis we have foussed on models of omputation that are non-uniform, it is known that uniformity onditions an ease the task of proving lowerbounds. For instane, Allender and Gore [AG94℄ have shown that uniform ACC0iruits annot ompute the Permanent funtion e�iently5 . Our results on theommuniation omplexity of languages with neutral letters suggests that addinga neutral letter to funtions might be a simple but e�etive way of ontaining thepower of non-uniformity not only in the multiparty model, but also in the model ofonstant-depth iruits.Corollary 5.21 Every language with a neutral letter that an be omputed by CC0[pr]iruits of arbitrary size is regular, if p is a �xed prime and r ≥ 1 is a �xed integer.Proof: Reall that the output of eah gate of suh a iruit an be exatly repre-sented as a polynomial of degree at most pr − 1 over Zpin the input variables of thegate. Thus, the output of the entire iruit is exatly represented by a polynomialof degree at most k = (pr− 1)d in the input variables of the iruit over Zp. We on-lude that the funtion omputed has onstant k+1-party symmetri ommuniationomplexity. Applying Theorem 5.7, we are done.
5 We annot separate non-uniform ACC0 from NEXP.143



CHAPTER 6Communiation Complexity of Funtions in AC0In the last hapter, our fous was on understanding the struture of the lass ofproblems that admit onstant ommuniation protools under every possible parti-tion of the input letters. This investigation brought out further di�erenes betweenthe harateristis of the multiparty model and the two player model. In partiular,we established that three players an ompute funtions of arbitrarily large iruitomplexity in onstant ost under the worst possible partition of input letters. In the�rst part of this hapter, we explore the multiparty model from the other diretion.We want to answer the following question: �What is the lowest iruit omplexitylass whih ontains a funtion of very large1 k-party ommuniation omplexity?�.We explore this question by restriting ourselves to the binary alphabet. Further,for eah funtion that we onsider, the input bits are partitioned among players insome �xed way, unlike in the last hapter.It is trivial to observe that if f lies in NC0, then it has onstant ost deterministiprotools for two players. This is beause f depends on a onstant number of lettersand Alie an ommuniate to Bob the relevant letters from her partition in onstant1 By `very large', we typially mean nΩ(1) omplexity. We say that a funtionhas `large' omplexity if it is superpolylogarithmi, i.e. it does not have e�ientprotools. 144



ost. While it is well known that for k = 2 there are funtions in shallow AC0 (likeEquality and Disjointness) that have linear deterministi omplexity, no funtion inAC0 was known, until reently, that had superlogarithmi three party deterministiommuniation omplexity. The best that one ould say was that ACC0 ontainsfuntions of very large k-party omplexity for every k < δ logn, where the inputsize is kn and δ is a onstant. This followed from the work of Babai, Nisan andSzegedy [BNS92℄ who showed that the natural k-wise generalization of the InnerProdut funtion, alled Generalized Inner Produt, has large k-party randomizedomplexity, for k < δ log n. This work introdued the powerful disrepany methodthat has been the bakbone of almost2 all subsequent strong lower bound results (forexample [Gro92, Raz00, FG05℄) in the multiparty model. Unfortunately, it was notknown if this method ould be applied to a funtion in AC0 even for two players.Reently, Sherstov [She07℄ provided the �rst suessful appliation of the dis-repany method for a funtion in AC0 for two players. We extend this tehnique tomultiple players yielding the following (�rst published in [Cha07b℄):Theorem 6.1 For eah k, there exists a funtion FMP
k omputable by depth-threeAC0 iruits of linear size that has the following randomized k-party ommuniationomplexity:

Rǫ
k

(
FMP

k

)
= Ω

(
n

1
2k+1

(
22k/(2k+1)2e(k − 1)

)k−1
+ log ǫ

)
.

2 In the few ases, like in [Cha07a, BPSW06, VW07a℄, where non-disrepanybased tehniques have been applied, they are only known to apply to restritedommuniation protools. 145



Consequently, for k = o(log log n) there exist funtions in linear depth-threeAC0 that have no e�ient (i.e polylogarithmi ost) randomized k-party protoolsomputing them with an advantage ǫ that is better than any inverse-quasipolynomialfuntion. This is in ontrast to the easily veri�able fat that every funtion havingpolynomial size depth-two iruits has an e�ient two-player randomized protoolomputing it with advantage that is at least an inverse polynomial funtion of thelength of its input. What happens if we demand more from our randomized protools,i.e. we require them to have a �xed advantage over random guessing? Could we stillompute every funtion in depth-two AC0 e�iently?It is not di�ult to see that every funtion that is omputable by a depth-twoAC0 iruit of size s has either O(log s) non-deterministi or o-non-deterministiommuniation omplexity. As we point out later, the Disrepany Method yieldspoor lower bounds on funtions that have e�ient non-deterministi or o-non-deterministi protools. This makes the method unsuitable to work well for funtionsomputable e�iently by depth-two iruits. A spei� instane is the Disjointnessfuntion for whih no superlogarithmi lower bounds were known for three or moreplayers until reently. Fueled by two very reent and independent breakthroughs,made by Sherstov [She08b℄ and Shi and Zhu [SZ07℄ respetively in the ontext ofquantum ommuniation lower bounds for two players, we develop the GeneralizedDisrepany Method for multiparty lassial ommuniation. This leads us to obtainthe following strong bound on the ommuniation omplexity of Disjointness:
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Theorem 6.2 For any onstant ǫ > 0,
Rǫ

k(DISJk) = Ω

(
n

1
k+1

22k(k − 1)2k−1

)
.A similar result was also obtained by Lee and Shraibman [LS08℄ independently.6.0.1 Our Approah and OrganizationReall the k-wise generalization of the Inner Produt funtion, alled GIPkfrom Setion 4.2 in Chapter 4. There, we viewed funtions like GIPk and k-wiseDisjointness to be generated by an underlying (base) symmetri prediate. We viewthings slightly more generally here by generating a funtion, to be omputed by

k-players, from a base funtion that is not neessarily symmetri.Let y1, . . . , yk−1 be (k−1) binary strings, eah of length n. De�ne the (k−1)×nboolean matrix A obtained by plaing yi in the ith row of A. For x ∈ {0, 1}n, let
x⇐ y1, . . . , yk−1 be the n-bit string xi1xi2 . . . xit0

n−t, where i1, . . . , it are the indiesof the all-one olumns of A. Further, let g : {0, 1}n → {−1, 1} be any funtion.We de�ne Gg
k : ({0, 1}n)k → {−1, 1} by Gg

k(x, y
1, . . . , yk−1) := g(x ⇐ y1, . . . , yk−1).We all g the base funtion of Gg

k. Observe that GPARITY
k is the Generalized InnerProdut funtion and GNOR

k is the Disjointness funtion. While both the aboveexamples use a symmetri base funtion, we use ruially a non-symmetri one toprove Theorem 6.1 in Setion 6.4.It is reasonable to expet that the ommuniation omplexity of a funtion isrelated to some intrinsi property of its base funtion. The result of Babai, Nisanand Szegedy an be interpreted as follows: if the base funtion is PARITY, thenthe generated funtion has low disrepany under the uniform distribution. In this147



light, a natural question that emerges is �what happens if our base funtion is loseto PARITY in an appropriately de�ned sense?�. Fourier analysis over Zn
2 provides aspontaneous measure of loseness to PARITY. Reall that this analysis deomposesevery funtion as a linear ombination of haraters. It is easy to verify that eahharater of Zn

2 orresponds to the PARITY funtion de�ned over a subset of the setof n variables. The size of the subset is alled the order of the parity. The funtionPARITY is orthogonal to every parity whose order is less than n. In this light, wesay that a funtion is lose to PARITY, if it an be expressed as a sum of high orderparities or equivalently, is orthogonal to low order parities.Our main tehnial ingredient, alled the Orthogonality-Disrepany Lemma,extending the Degree/Disrepany Theorem of Sherstov [She07℄, generalizes the re-sult of [BNS92℄. Babai et.al. prove that GPARITY
k has small disrepany under theuniform distribution. For tehnial reasons, we look at a funtion F g

k , generated by gemploying another masking sheme, that is losely related to Gg
k. Roughly speaking,the Orthogonality-Disrepany Lemma states that if g is orthogonal to low-orderparities , then funtion F g

k has low disrepany under an appropriate probabilitydistribution. The disrepany method implies that F g
k has large randomized om-muniation omplexity. As the ommuniation tensor of F g

k is a sub-tensor of theone for Gg
k, it follows that Gg

k has large ommuniation omplexity as well.We prove Theorem 6.1 by �nding a base funtion in AC0 that has suh nieorthogonality property. The key to �nding it is to use the well-known notion ofvoting representation of boolean funtions as introdued by Aspnes et.al. [ABFR94℄
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(see Setion 6.1.1). The use of a well-known duality priniple, desribed in Se-tion 6.3, allows passage from funtions of high voting degree to funtions with theabove orthogonality property. This passage was invented in the ontext of two-playerommuniation in the elegant work of Sherstov [She07℄. Like Sherstov, we use theMinsky-Papert funtion, introdued in [MP88℄ and reviewed in Setion 6.4 of thishapter, as our base funtion of high voting degree that an be omputed by simpledepth-two AC0 iruits.The base funtion generating k-wise Disjointness is the NOR funtion. Its vot-ing degree is merely one and hene the Orthogonality-Disrepany Lemma annotbe diretly used for funtions generated by NOR. However, the breakthrough workof Razborov [Raz03℄ and the earlier work of Buhrman et.al.[BCW98℄ establisheda tight relationship between the two-party quantum ommuniation omplexity of
Gg

2 and a well studied property of the symmetri funtion g. This property is theapproximate degree of boolean funtions, whose study was begun systematially inthe work of Nisan and Szegedy [NS94℄. In partiular, they show that NOR hashigh approximation degree. While Razborov's lower bound, employing the �multidi-mensional disrepany method�, only worked for symmetri funtions, the notion ofapproximate degree extends to all boolean funtions.Reently, Sherstov [She08b℄ and independently Shi and Zhu [SZ07℄ showed thefollowing: a funtion g of high approximation degree (say d) orrelates well with afuntion f under a distribution µ, where f has zero orrelation with low-order parities(order less than d) under µ. Thus, the Orthogonality-Disrepany Lemma, appliedto f , shows that the funtion generated by f has high ommuniation omplexity. In149



order to reason about the ommuniation omplexity of Gg
k, an additional ingredientomes into play. This is an ingenious modi�ation of the Disrepany Method thatoriginated in the work of Klauk [Kla01℄ and got further generalized by Razborov[Raz03℄. This method, that we all the Generalized Disrepany Method, is used toonlude that Gg

k has large (bounded error) randomized ommuniation omplexitybased on the fat that g and f orrelate well. We use this idea to prove Theorem 6.2in Setion 6.5.1. More generally, this leads us to obtaining lower bounds on the
k-party ommuniation omplexity of every funtion of the form Gg

k, where g isa non-onstant symmetri funtion (Corollary 6.22 in Setion 6.5.2). Finally, weextend to the multiparty setting the work of [SZ07℄ in Setion 6.6 for blok-omposedfuntions. Both these extensions yield exponential improvements for lower bounds onthe k-party omplexity of Disjointness. They also provide bounds on other interestinglasses of funtions.6.1 Preliminaries6.1.1 Voting and Approximation DegreeReall that we reviewed Fourier analysis over abelian groups in Setion 3.2.1of Chapter 3. There, we spei�ally looked at the vetor spae of omplex-valuedfuntions over the group Zn
m. Here, we restrit ourselves to the spae of real valuedfuntions over the boolean ube Zn

2 . The set of haraters of the ube is given by
Ẑn

2 = {(−1)
P

i∈S xi |S ⊆ [n]}. In this hapter, we map the ube {0, 1}n bijetively to
{1,−1}n by mapping the ith o-ordinate of a point as follows: xi → (−1)xi . Underthis transformation, the set of haraters beomes the familiar set of multilinear
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monomials3 M = {χS =
∏

i∈S xi |S ⊆ [n]}. Let us speialize the standard innerprodut, de�ned in Setion 3.2.1, to the spae of real-valued funtions on the ube,i.e. for two funtions f, g : {1,−1}n → R,
〈f, g〉 = Exf(x)g(x).Then, a basi fat of Fourier analysis is M forms an orthonormal basis w.r.t tothe standard inner produt. Thus, every boolean funtion4 f : {1,−1}n → {1,−1}is uniquely represented by a real linear ombination of monomials from M, i.e.a polynomial with real oe�ients. The exat degree of f is the degree of thispolynomial. However, in this setion, we de�ne two di�erent representations.De�ne sign(z) to be −1 if z < 0 and 1 if z > 0, for every non-zero z ∈ R. Apolynomial P =

∑
S⊆[n] aSχS, with aS ∈ R, is a voting representation of a booleanfuntion f if f(x) = sign(P (x)

) for eah x ∈ {1,−1}n. Note that this requires Pnot to evaluate to zero at any point of the ube. For example, polynomials P1(x) =

x1+· · ·+xn−0.5 and P2(x) =
∏n

i=1 xi are voting representations of MAJORITY andPARITY respetively. It is not hard to verify that every boolean funtion f has avoting representation. In partiular, the polynomial that exatly represents f is alsoa voting representation of f . However, it is not neessarily the most eonomial one3 Reall that a very similar basis set was used by Razborov and Smolensky toanalyze the vetor spae of funtions from the ube to a �nite �eld (see Setion 2.1.3in Chapter 2).4 Note that we have hanged the range of f from {0, 1} to {1,−1}. Reall thatwe have enountered this hange many times before.151



in terms of degree. For instane, the exat degree of MAJORITY is Ω(n) whereasour representation uses a linear polynomial.The degree of a voting representation is simply the degree of the polynomial Pinvolved. Thus, in our example before, the representation of PARITY uses degree n.The voting degree of a funtion f , denoted by deg(f), is the minimum degree overall possible voting representations of f .Fat 6.3 (from [ABFR94℄) The voting degree of PARITY is n.Proof: Let P be any polynomial that is a voting representation of PARITY. Then, byde�nition P (x)PARITY(x) > 0, for eah x. In other words, ExP (x) (
∏n

i=1 xi) > 0.But if the degree of P is less than n, then by the orthonormality of monomials,
ExP (x) (

∏n
i=1 xi) = 0 and we get a ontradition.In fat, using Fourier analysis over the ube Zn

m, one an, more generally, show thatMODm has voting degree Ω(n), for any �xed integer m ≥ 2 (see Barrington andStraubing [BS94℄).Is there any funtion in AC0 that has high voting degree? It is easily veri�ed thatAND and OR have voting degree 1. On the other hand, a simple funtion in depth-two has high voting degree. Minsky and Papert [MP88℄ onsidered suh a funtionthat we all the Minsky-Papert funtion and denote by MP. For any t, we de�ne MPover m = 4t3 variables as follows: MP(x) = ∨t
i=1 ∧4t2

j=1 xi,j. There is a simple votingrepresentation of MP having degree t. This is beause of the following observation:rewrite MP as an AND of OR's by distributing the outer OR over the inner ANDsusing basi boolean algebra. Eah OR is over t variables and an be representedexatly by a degree t polynomial that has range {1,−1}. We are left to represent152



the AND of suh t4t2 polynomials, eah of degree t. Treating eah polynomial as aboolean variable and using the degree-one voting representation of AND, we get ourdesired representation of degree t of MP. Minsky and Papert showed that the degreeof this representation is optimal.Theorem 6.4 (from [MP88℄) The Minsky-Papert funtion de�ned on m = 4t3variables has voting degree t.Proof: We only need to show the lower bound of t for the voting degree. An im-portant tehnique, alled symmetrization, was introdued and used by [MP88℄ inthe argument. It goes this way: let the lauses of MP be numbered 1, . . . , t, eahhaving its own set of 4t2 variables disjoint from the others. Let Si represent the setof permutations of the variables of the ith lause. Consider a set of t permutations
σ1, . . . , σt, with σi ∈ Si. For any polynomial P , let Pσ1,...,σt be the polynomial ob-tained from P by letting σi permute its variables from the ith lause. Then, observethat if P is a polynomial of minimal degree d that is a voting representation of MP,then so is Pσ1,...,σt . Hene,

P ′ ≡def ∑
σi∈Si

Pσ1,...,σtis a voting representation of degree t of MP. By onstrution, P ′ is symmetri w.r.t.variables in the same lause of MP. This passage from an arbitrary polynomial to asymmetri (w.r.t. lauses) polynomial is alled symmetrization.Let ui represent the number of variables in Clause i of MP, set to 1. Thereexists a polynomial Q of degree d (same as that of P ′) on t variables u1, . . . , ut, with
ui ∈ {0, . . . , 4t2}, suh that Q outputs a negative number if at least one ui is set153



to 4t2 and otherwise is positive. Obtain a univariate polynomial R(v) from Q, byreplaing the ui in Q by (4t2 − (2i− v)2). Clearly, the degree of R is at most twiethe degree of Q, i.e. at most 2d. On the other hand, onsider the behavior of R onthe set {0, . . . , 2t}. It is easily veri�ed that for odd values in this set R is positiveand for even values it is negative. Thus, R has at least 2t zeroes and hene musthave degree at least 2t. Hene, d ≥ t.We point out that the work of [ABFR94, OS03℄ are good soures for familiarizingoneself with further interesting properties of voting representations.A voting polynomial just maintains the sign of the funtion. In priniple, it ouldbe very far from the value of the funtion at a given point of the ube. One ouldnaturally tighten up this notion by demanding that a polynomial evaluate lose tothe value of the funtion represented, at eah point of the ube. A polynomial P thatis always within δ of the funtion f is a δ-approximation of f , i.e. |f(x)−P (x)| ≤ δfor eah x ∈ {1,−1}n and δ ≥ 0. The δ-approximation degree of f , denoted bydegδ(f), is the minimal degree suh that there exists a polynomial of that degreewhih is a δ-approximation of f . Note that for any δ < 1, a δ-approximation of aboolean funtion is a speial voting representation of the funtion.It follows that deg(f) ≤ degδ(f) for any δ < 1. The gap, between the twodegrees, an be quite large. Nisan and Szegedy5 [NS94℄ show that every booleanfuntion that depends on eah variable has δ-approximation degree Ω(log n). Further,5 Nisan and Szegedy also related the approximation degree of a boolean funtionwith its omplexity in the model of deision trees.154



they show that the AND and OR funtions, eah having voting degree 1, have (1/3)-approximation degree Θ(
√
n). The work of [NS94℄ was followed by the work of Paturi[Pat92℄ who haraterized the approximation degree of every symmetri funtion.Paturi's haraterization is quite helpful for our investigation and let us statehis result. For any prediate D : {0, 1, . . . , n} → {1,−1}, de�ne
ℓ0(D) ∈ {0, 1, . . . , ⌊n/2⌋}

ℓ1(D) ∈ {0, 1, . . . , ⌈n/2⌉}suh that D is onstant over the interval [ℓ0(D), n− ℓ1(D)] and ℓ0(D) and ℓ1(D) arethe smallest possible values for whih this happens. A symmetri funtion f induesa prediate Df in the following natural way: f(x) = Df(x1 + · · ·+xn). For example,for the OR funtion ℓ0(DOR) = 1 and ℓ1(DOR) = 0.Paturi's theorem provides bounds on the approximate degree of symmetri fun-tions in terms of the properties of its underlying prediate.Theorem 6.5 ([Pat92℄) Let f : {0, 1}n → {1,−1} be any symmetri funtion in-duing the prediate Df : {0, . . . , n} → {1,−1}. Then,deg1/3(f) = Θ
(√

n(ℓ0(Df) + ℓ1(Df))
)
. (6.1)In partiular, the (1/3)-approximate degree of NOR is Θ(
√
n).6.1.2 Disrepany under Produt DistributionsWe reall a trik of repeatedly applying Cauhy-Shwartz to get an expressionthat upper bounds the ylindrial disrepany of a funtion under produt distri-butions. This trik to simplify the alulation of disrepany appeared originally in155



the work of Babai et.al.[BNS92℄. The expliit and onvenient form in whih we useit here is attributable to Raz [Raz00℄. Our presentation below seems to be slightlysimpler and more diret than Raz's.Let µx, µ1, · · · , µk−1 be probability distributions over �nite sets X, Y 1, . . . , Y k−1respetively. Let µ = µx×µ1×· · ·×µk−1 be the produt distribution generated and
f : {X × Y 1 × · · · × Y k−1} → {−1, 1} be any boolean funtion.Lemma 6.6 (Raz [Raz00℄) For 1 ≤ i ≤ k − 1 and j ∈ {0, 1} let yi

j be a randomvariable distributed aording to µi and let x be distributed aording to µx. Then,
(disk,µ(f)

)2k−1

≤ Ey1
0 ,y1

1 ,...,yk−1
0 ,yk−1

1

∣∣∣∣Ex

∏

u∈{0,1}k−1

f
(
x, y1

u1
, . . . , yk−1

uk−1

)∣∣∣∣. (6.2)Proof: We prove (6.2) by indution of k. Thus, our Indution Hypothesis is that(6.2) is true for every funtion when k = k− 1. Reall that for an arbitrary ylinderintersetion φ,disφ
k,µ(f) =

∣∣∣∣E(x,y1,...,yk−1)∼µf
(
x, y1, . . . , yk−1

)
φ
(
x, y1, . . . , yk−1

)∣∣∣∣.Let us fator the harateristi funtion φ in terms of the harateristi funtions ofthe ylinders interseting.
φ
(
x, y1, . . . , yk

)
= φx

(
y1, . . . , yk

) k−1∏

i=1

φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)
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where φx is the ylinder in the diretion of X and φi is in the diretion of Y i. Then,using the triangle inequality, one getsdisφ
k,µ(f) ≤ Ex,y1,...,yk−2

∣∣∣∣φ
k−1
(
x, y1, . . . , yk−2

)
×

Eyk−1f
(
x, y1, . . . , yk−1

)
φx
(
y1, . . . , yk−1

) k−2∏

i=1

φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)∣∣∣∣.Noting that harateristi funtions are 0-1 valued, we further simplify:disφ
k,µ(f) ≤

Ex,y1,...,yk−2

∣∣∣∣Eyk−1f
(
x, y1, . . . , yk−1

)
φx
(
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φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)∣∣∣∣.Squaring both sides and using the onsequene (Ez)2 ≤ Ez2 of Cauhy-Shwartz,one gets
(disφ

k,µ(f)
)2 ≤ Eyk−1

0 ,yk−1
1

G
(
yk−1

0 , yk−1
1

) (6.3)where
G
(
yk−1

0 , yk−1
1

)
=

Ex,y1,...,yk−1

∏

u∈{0,1}
f
(
x, y1, . . . , yk−2, yk−1

u

)
φx
(
y1, . . . , yk−1

u

) k−2∏

i=1

φi
(
x, y1, . . . , yk−2, yk−2

u

)
.In order to apply our Indutive Hypothesis, we make the following de�nitions forevery �xed yk−1

0 and yk−1
1 :

g
(
x, y1, . . . , yk−2

)
=def f(x, y1, . . . , yk−2, yk−1

0

)
f
(
x, y1, . . . , yk−2, yk−1

1

) (6.4)
γx
(
y1, . . . , yk−2

)
=def φx

(
y1, . . . , yk−2, yk−1

0

)
φx
(
y1, . . . , yk−2, yk−1

1

)157



and for 1 ≤ i ≤ k − 2,
γi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−2

)

=def φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−2, yk−1

0

)
φi
(
y1, . . . , yi−1, yi+1, . . . , yk−2, yk−1

1

)
.For eah yk−1

0 , yk−1
1 , let γ denote the (k − 1)-fold ylinder intersetion formed bythe ylinders γx, γ1, . . . , γk−2. Further, let ν be the (k− 1)-fold produt distribution

µx × µ1 × · · · × µk−2. Then,
∣∣∣∣G
(
yk−1

0 , yk−1
1

)∣∣∣∣ = disγ
k−1,ν(g). (6.5)Noting that repeatedly applying Cauhy-Shwartz m times yields (Ez)2m ≤ Ez2m forany integer m ≥ 0, plugging (6.5) into (6.3) yields,

(disφ
k,µ

)2k−1

≤
(disγ

k−1,ν(g)
)2k−2

. (6.6)Applying the Indutive Hypothesis to the RHS of (6.6) further gives
(disφ

k,µ(f)
)2k−1

≤ Eyk−1
0 ,yk−1

1
Ey1

0 ,y1
1...,yk−2

0 ,yk−2
1

∣∣∣∣Ex

∏

u∈{0,1}k−2

g
(
x, y1

u1
, . . . , yk−2

uk−2

)∣∣∣∣.Substituting the de�nition of g given in terms of f by (6.4), the above expressionyields easily the RHS of (6.2). As φ is an arbitrary ylinder intersetion, we aredone.
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6.2 Generating funtions with low disrepany6.2.1 Masking ShemesWe have already de�ned one masking sheme through the notation x⇐ y1, . . . , yk.This allowed us to de�ne Gg
k for a base funtion g. Well-known funtions suh asGIPk and DISJk are representable in this notation by GPARITY

k and GNOR
k respe-tively. We now de�ne a seond masking sheme whih plays a ruial role in lowerbounding the ommuniation omplexity of Gg

k. This masking sheme is obtained by�rst slightly simplifying the pattern matries in [She08b℄ and then generalizing thesimpli�ed matries to higher dimensions for dealing with multiple players.Let S1, . . . Sk−1 ∈ [ℓ]m for some positive ℓ and m. Let x ∈ {0, 1}n where n =

ℓk−1m. Here it is onvenient to think of x to be divided into m equal bloks whereeah blok is a (k − 1)-dimensional array with eah dimension having size ℓ. Thearray orresponding to the ith blok of x is denoted by x[i]. Further, eah Si isa vetor of length m with eah o-ordinate being an element from {1, . . . , ℓ}. The
(k−1) vetors S1, . . . , Sk−1 jointly unmaskm bits of x, denoted by x← S1, . . . , Sk−1,preisely one from eah blok of x, i.e.

x[1]
[
S1[1], S2[1], ..., Sk−1[1]

]
, . . . , x[m]

[
S1[m], S2[m], . . . , Sk−1[m]

]
.See Figure 6�1 for an illustration of this masking sheme.For a given base funtion f : {0, 1}m → {−1, 1}, we de�ne F f

k : {0, 1}n ×

([ℓ]m)k−1 → {−1, 1} as F f
k (x, S1, . . . , Sk−1) = f(x ← S1, . . . , Sk−1), where n =

ℓk−1m.
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S2

1 0 1 1 1 0 1 1 0
x = 0 0 0 0 1 0 1 1 1

1 1 0 0 0 0 0 1 0

S1 x← S1, S2 = 001Figure 6�1: Illustration of the masking sheme x ← S1, S2. The parameters are
ℓ = 3, m = 3, n = 27.Lemma 6.7 Let n = ℓk−1m. If f : {0, 1}m → {−1, 1} and f ′ : {0, 1}n → {−1, 1}are related by f(z) = f ′(z0n−m), then

Rǫ
k(F

f
k ) ≤ Rǫ

k(G
f ′

k ). (6.7)Proof:[Proof Sketh℄ Observe that there are funtions Γi : [ℓ]m → {0, 1}n suh that
F f

k (x, S1, . . . , Sk−1) = Gf ′

k (x,Γ1(S
1), . . . ,Γk−1(S

k−1)) for all x, S1, . . . , Sk−1. There-fore the players an privately onvert their inputs and apply the protool for Gf ′

k .Note that the proof shows that (6.7) holds not just for randomized but any modelof ommuniation.6.2.2 Orthogonality and DisrepanyHere, we prove that if the base funtion f in our masking sheme has a ertainnie property, then the masked funtion F f
k has small disrepany. To desribe thisproperty, let us de�ne the following: for a distribution µ on inputs, equip the spae
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with the biased inner produt 〈·〉µ, where for two funtions f, g,
〈f, g〉µ =def Ex∼µf(x)g(x).We say that f is (µ, d)-orthogonal if it is orthogonal, w.r.t. the above µ-biased innerprodut, to every parity/harater of order less than d , i.e. 〈f, χS〉µ = 0, for all

|S| < d.Lemma 6.8 (Orthogonality-Disrepany Lemma) Let f : {−1, 1}m → {−1, 1}be any (µ, d)-orthogonal funtion for some distribution µ on {−1, 1}m and some in-teger d > 0. Derive the probability distribution λ on {−1, 1}n ×
(
[ℓ]m

)k−1 from µ asfollows: λ(x, S1, . . . , Sk−1) = µ(x←S1,...,Sk−1)

ℓm(k−1)2n−m . Then,
(disk,λ

(
F f

k

))2k−1

≤
(k−1)m∑

j=d

(
(k − 1)m

j

)(
22k−1−1

ℓ− 1

)j

. (6.8)Hene, for ℓ− 1 ≥ 22k
(k−1)em

d
and d > 2,disk,λ

(
F f

k

)
≤ 1

2d/2k−1 . (6.9)Proof: The starting point is the expression for disrepany w.r.t. an arbitrary ylin-der intersetion φ,disφ
k(F

f
k ) =

∣∣∣∣
∑

x,S1,...,Sk−1

F f
k (x, S1, . . . , Sk−1)φ(x, S1, . . . , Sk−1) · λ(x, S1, . . . , Sk−1)

∣∣∣∣.(6.10)
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This hanges to the more onvenient expeted value notation as follows:disφ
k(F

f
k ) = 2m

∣∣∣∣Ex,S1,...,Sk−1F f
k (x, S1, . . . , Sk−1)× φ(x, S1, . . . , Sk−1)µ

(
x← S1, . . . , Sk−1

)∣∣∣∣(6.11)where, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}ℓk−1m ×
(
[ℓ]m

)k−1.Thus, de�ningGf
k asGf

k(x, S
1, . . . , Sk−1) =def F f

k (x, S1, . . . , Sk−1)µ(x← S1, . . . , Sk−1),we have disk,λ(F
f
k ) = 2mdisk,U(G

f
k)where U is the uniform distribution.Appliation of Equation (6.2) of Lemma 6.6 to the funtion Gf

k easily yields
(disk,λ(F

f
k )
)2k−1

= 2m2k−1(disk,U(G
f
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(
F f

k (x, S1
u1
, . . . , Sk−1

uk−1
)µ(x← S1

u1
, . . . , Sk−1

uk−1
)

)∣∣∣∣. (6.13)We look at a �xed Si
0, S

i
1, for i = 1, . . . , k − 1. Let ri =

∣∣Si
0 ∩ Si

1

∣∣ and r =
∑

i ri for
1 ≤ i ≤ k − 1. We make two laims below.
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Claim 6.9
Hf

k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
≤ 2(2k−1−1)r

22k−1m
. (6.14)Claim 6.10 Let r < d. Then,

Hf
k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
= 0. (6.15)We prove these laims in the next setion. Claim 6.9 simply follows from the fatthat µ is a probability distribution and f is 1/-1 valued while Claim 6.10 uses the

(µ, d)-orthogonality of f . We now ontinue with the proof of the Orthogonality-Disrepany Lemma assuming these laims. Applying them, we obtain
(disφ
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. (6.16)Sine the random variables r1, . . . , rk−1 are independent, Pr[r1 = j1 ∧ · · · ∧ rk−1 =
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ℓm , wefurther obtain:
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The following simple ombinatorial identity is well known:
∑

j1+···+jk−1=j

(
m

j1

)
· · ·
(
m

jk−1

)
=

(
(k − 1)m

j

)
.Plugging this identity into (6.17) immediately yields (6.8) of the Orthogonality-Disrepany Lemma. Realling ((k−1)m

j

)
≤
(e(k−1)m

j

)j, and hoosing ℓ− 1 ≥ 22k
(k −

1)em/d, we get (6.9).6.2.3 Proofs of ClaimsWe identify the set of all assignments to boolean variables in X = {x1, . . . , xn}with the n-ary boolean ube {0, 1}n. For any u ∈ {0, 1}k−1, let Zu represent theset of m variables indexed jointly by S1
u1
, . . . , Sk−1

uk−1
. There is preisely one variablehosen from eah blok of X. Denote by Zu[α] the unique variable in Zu that is inthe αth blok of X, for eah 1 ≤ α ≤ m. Let Z = ∪uZu. Abusing notation, weuse Zu in the ontext of expeted value alulations to also mean a uniformly hosenrandom assignment to the variables in the set Zu.Proof:[Proof of Claim 6.10℄
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∣∣∣∣. (6.18)Observe that for any blok α and any u 6= 0k−1, Zu[α] = Z0k−1 [α] i� for eah isuh that ui = 1, Si
0[α] = Si

1[α]. Reall that ri is the number of indies α suh that
Si

0[α] = Si
1[α]. Therefore, there are at most r =

∑k−1
i=1 ri many indies α suh that164



Zu[α] = Z0k−1[α] for some u 6= 0k−1. This means the inner expetation in (6.18) isa funtion that depends on at most r variables. Sine f is orthogonal under µ withevery polynomial of degree less than d and r < d, we get the desired result.Proof:[Proof of Claim 6.9℄ Observe that sine F f
k is 1/-1 valued, we get the following:

Hf
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1
1 , . . . , S
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1
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∏

u∈{0,1}k−1

µ(x← S1
u1
, . . . , Sk−1
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= EX−Z EZ

∏

u∈{0,1}k−1

µ(Zu)

= EX−Z
1

2|Z|

∑

Z∈{0,1}|Z|

∏

u∈{0,1}k−1

µ(Zu) (6.19)
≤ EX−Z

1

2|Z|

∑

y1,...,y2k−1

∈{0,1}m

2k−1∏

i=1

µ(yi) (6.20)where the last inequality holds beause every produt in the inner sum of (6.19)appears in the inner sum of (6.20). Using the fat that µ is a probability distribution,we get: RHS of (6.20) = EX−Z
1

2|Z|

2k−1∏

i=1

∑

yi∈{0,1}m
µ(yi)

= EX−Z
1

2|Z|

=
1

2|Z|
.We �nd a lower bound on |Z|. Let tu denote the Hamming weight of the string

u and {j1, . . . , jtu} denote the set of indies in [k − 1] at whih u has a 1. De�ne
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Yu =
{
Zu[α] | Sjs

1 [α] 6= Sjs

0 [α]; 1 ≤ s ≤ tu; 1 ≤ α ≤ m
}
. (6.21)The following follow from the above de�nition.

• |Y0k−1| = m and |Yu| ≥ m−∑1≤s≤ti
rjs ≥ m− r for all u 6= 0k−1.

• Yu ∩ Yv = ∅, for u 6= v. This follows from the following argument: W.l.o.g.assume there is an index β where u has a one but v has a zero. Consider anyblok α suh that Zu[α] is in Yu. It must be true that Sβ
1 [α] 6= Sβ

0 [α]. Thismeans that Zu[α] 6= Zv[α]. Therefore Zu[α] is not in Yv and we are done.
• Y := ∪u∈{0,1}k−1Yu = Z. This is beause if Zu[α] is not in Yu then there areindies j1, . . . , js where u ontains a one and Sji

0 [α] = Sji
1 [α]. Let v be the stringthat ontains a zero at positions j1, . . . , js and at other positions, orrespondsto u. Then by de�nition, Zu[α] = Zv[α] ∈ Yv.Thus, |Z| = |Y | =∑u |Yu| ≥ m+

∑
u 6=0(m− r) = 2k−1m− (2k−1 − 1)r and theresult follows.6.3 Masking funtions of high voting degreeThe theorem below shows that (µ, d)-orthogonality of a funtion f , that is keyto using the Orthogonality-Disrepany Lemma, follows from the fat that the votingdegree of f is more than d.Theorem 6.11 (see [She07℄) For any boolean funtion f : {−1, 1}n → {−1, 1},preisely one of the following holds:

• deg(f) ≤ d.
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• there exists a distribution µ over {−1, 1}n, suh that f is (µ, d)-orthogonal, i.e.for all |S| ≤ d, 〈f(x), χS(x)〉µ = 0.In partiular, this means that if deg(f) ≥ d, then for any funtion g that dependson at most d− 1 variables, 〈f(x), g(x)〉µ = 0.As an immediate onsequene of Theorem 6.11 and the Orthogonality-DisrepanyLemma, we obtain the following:Corollary 6.12 (Multiparty Degree-Disrepany Lemma) Let f : {−1, 1}m →

{−1, 1} have voting polynomial degree d. Then for any k ≥ 2, there exists a proba-bility distribution λ suh that for ℓ ≥ m,
(disk,λ

(
F f

k

))2k−1

≤
m∑

j=d

(
(k − 1)m

j

)(
22k−1−1

ℓ− 1

)j

.Hene, for ℓ− 1 ≥ 22k
(k−1)em

d
and d > 2,disk,λ

(
F f

k

)
≤ 1

2d/2k−1 .The above lemma, using a slightly di�erent masking funtion and with a quadratidependene of ℓ on m (instead of the linear dependene above), appeared in our work[Cha07b℄ as an extension of the two player Degree/Disrepany Theorem of Sherstov[She07℄.Combining Corollary 6.12 with the Disrepany Method (i.e. Lemma 4.18)diretly yields a method to obtain lower bounds on a masked funtion whose basefuntion has high voting degree.
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Theorem 6.13 Let f , de�ned on inputs of length m, have voting degree d. For any
k ≥ 2, de�ne F f

k as before on inputs of length n = mℓk−1, where ℓ ≥ 22k
(k−1)em

d
and

d > 2. Then,
Rǫ

k

(
F f

k

)
= Ω

( d

2k−1
+ log ǫ

)
. (6.22)6.4 Communiation omplexity of funtions in AC0Given Theorem 6.13, the natural question is �how di�ult is it to �nd a fun-tion of high voting degree?�. We reall from Setion 6.1.1 that the Minsky-Papertfuntion, MP(x) = ∨t

i=1 ∧4t2

j=1 xi,j , is in depth-two AC0 and has a high voting degreeof t.Corollary 6.14 Consider the Minsky-Papert funtion MP on m variables. Let d =

Ω(m1/3) denote its voting degree. If n = mℓk−1 and ℓ = 22k
(k − 1)em/d, then

Rǫ
k

(
FMP

k

)
= Ω

(
n

1
2k+1

(
22k/(2k+1)2e(k − 1)

)k−1
+ log ǫ

)
.Proof: The result follows by a short and straightforward alulation, starting fromTheorem 6.13. We inlude it for the sake of ompleteness. Noting that m = d3

n = mℓk−1 =
(
22k

(k − 1)e
)k−1

d2k+1.Hene,
d =

n
1

2k+1

(
22k/(2k+1)e(k − 1)

)k−1
.Appliation of (6.22) to the above ompletes the alulation.
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This shows that there exists simple base funtions omputable by small depth-two AC0 iruits that give rise to masked funtions of large randomized ommunia-tion omplexity. The following observation shows that our masking sheme does notsigni�antly inrease the iruit omplexity of the base funtion.Observation 6.15 Let f : {0, 1}m → {0, 1} be any boolean funtion and F f
k be theorresponding masked funtion on n = mℓk−1 bits. If f an be omputed by a iruit

C of size s(m) and depth d(m), then F f
k an be omputed by a iruit C ◦AND ◦ORof size n+ s(m) and depth d(m) + 2.Proof: We view the domain of F f

k as {0, 1}mℓk−1×
((
{0, 1}log ℓ

)m
)k−1, enoding eahindex/pointer by (log ℓ) bits.Consider the deoding funtion U : {0, 1}ℓk−1 × {0, 1}(k−1) log ℓ that on input

(α, β) interprets β to be a set of k − 1 indies from [ℓ] and then outputs the bit ofthe blok α (of size ℓk−1) orresponding to this set of indies. It is not hard to verifythat U is omputed by a depth-two OR ◦AND iruit of size ℓk−1. It also gets easilyveri�ed that if we replae eah bit of the blok α by its omplement in the OR◦ANDiruit for U , we ompute the omplement of U, i.e. ¬U . Applying de Morgan'slaw to this iruit for ¬U (i.e. negating the iruit and propagating the negationsusing de Morgan's laws to the bottom) yields the required AND ◦OR iruit of size
ℓk−1 for U . Thus, F f

k (x, S1, . . . , Sk−1) = f (U(x[1], y1), . . . , U(x[m], ym)), where x[i]is the ith blok of x and eah yi is the binary string of length (k − 1) log ℓ obtainedby onatenating the enodings of the ith o-ordinate of eah vetor S1, . . . , Sk−1.
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Thus, omputing eah of the m instanes of U by a orresponding AND ◦OR iruitof size ℓk−1 and f by the iruit C we derive the observation.Fat 6.16 (follows from [She07℄) The funtion FMP
k has a linear size depth-threeAC0 iruit.Proof: One derives a depth-four iruit for FMP

k by applying Observation 6.15 andthe fat that MP on m variables an be omputed by a depth-two AND◦OR iruit.Note that the two middle layers of this iruit onsist only of AND gates and anthus be ollapsed into a single layer. This yields the required depth-three iruit for
FMP

k .The above fat and the lower bound on the randomized ommuniation om-plexity of FMP
k shows that there are funtions that an be omputed very e�ientlyby depth-three AC0 iruits that have no e�ient multiparty randomized proto-ols as long as the number of players is o(log logn), even when a mere inverse-quasipolynomial advantage over random guessing is required. This, in some sense,omplements the result from the last hapter where we saw that just three play-ers an ompute deterministially funtions of arbitrarily large iruit omplexity inonstant ost.6.5 The Generalized Disrepany MethodAt the heart of the tehnique introdued in the last setion is the DisrepanyMethod (Lemma 4.18). Unfortunately, its appliability is limited to those funtionsthat have small disrepany. However, there are several important and simple fun-tions that have large ylindrial disrepany. Disjointness is a lassial example ofsuh a funtion. 170



Lemma 6.17 (Folklore) Under every distribution µ over the inputs,
disck,µ(DISJk) ≥

1

2n
− 1

2n2
.Proof: Let X+ and X− be the set of disjoint and non-disjoint inputs respetively.The �rst thing to observe is that if |µ(X+) − µ(X−)| ≥ (1/n), then we are doneimmediately by onsidering the disrepany over the intersetion orresponding tothe entire set of inputs. Hene, we may assume |µ(X+) − µ(X−)| < (1/n). Thus,

µ(X−) ≥ 1/2− (1/2n). However, X− an be overed by the following n monohro-mati ylinder intersetions: let Ci be the set of inputs in whih the ith olumn isan all-one olumn. Then X− = ∪n
i=1Ci. By averaging, there exists an i suh that

µ(Ci) ≥ 1/2n− (1/2n2). Taking the disrepany of this Ci, we are done.It is therefore impossible to obtain better than Ω(log n) bounds on the om-muniation omplexity of Disjointness by a diret appliation of the disrepanymethod. In fat, the above argument shows that this method fails to give betterthan polylogarithmi lower bounds for any funtion that is in NPcc
k or o-NPcc

k . Inother words, the Disrepany Method is too strong, i.e. not only does it yield boundsfor the randomized model, but it also yields bounds on non-deterministi ommuni-ation omplexity. This makes it unsuitable as a method for separating the power ofrandomness from non-determinism, i.e. lasses BPPcc
k and NPcc

k ( or o-NPCC
k ).Fortunately, there is a simple generalization of the Disrepany Method thatis somewhat surprisingly e�etive for dealing with several funtions that have largedisrepany. Curiously, this method grew out of researh on quantum ommuniation
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omplexity. To the best of our knowledge, it remained unknown among severalresearhers whose primary fous was on lassial ommuniation.The origins of the idea of generalizing the disrepany method an be found inthe work of Klauk [Kla01℄6 . Klauk onsidered, in the setting of two players, fun-tions of the form f(x, y) = g(x∧y) where the ∧ operation is naturally applied bitwiseto the bits of x and y. He observed that if g orrelates well with a parity funtionon some large subset S of {1, . . . , n} under the uniform distribution7 , then f orre-lates well with the inner-produt funtion of the olumns indexed by elements of S,denoted by IPS, under a simple produt distribution µ. The ingenuity in Klauk'sargument is that he shows IPS having small disrepany under µ implies that f haslarge distributional omplexity under µ. This, as he orretly adds, follows despitethe possibility that f itself has large disrepany. Indeed, Klauk proves that IPhas very small retangular disrepany under µ. Klauk goes on to show that this�generalized form of the disrepany method� an be used to obtain a lower bound of
Ω(n/ log n) on the quantum (and hene lassial randomized) ommuniation om-plexity of MAJ(x ∧ y) despite the fat that it has large disrepany.The main idea in Klauk's work an be abstrated in following terms: A funtion
f may have high disrepany and still orrelate well under some distribution µ witha funtion h that has small disrepany under µ. Exhibiting suh a h, yields lowerbounds on the bounded-error ommuniation omplexity of f .6 The full version of Klauk's work appears in [Kla07℄.7 In other words, g has a large high-order Fourier oe�ient, i.e. f̂(S) is large.172



This priniple was re-expressed, in a more general fashion, in matrix theoretiterms for the two player quantum ommuniation model by Razborov [Raz03℄, wherehe alled it the �Disrepany Method�. One may dare say, that this matrix theoretiformulation may have hindered the reognition of the wider appliability of the un-derlying priniple. Sherstov [She08b, Se. 2.4℄ provides a nie reinterpretation ofRazborov's formulation of the Disrepany method and points out the fat that thegeneral priniple at play is independent of the preise ommuniation model for twoplayers. Based on this observation by Sherstov, we speialize the Klauk-RazborovPriniple to the multi-party model in [CA08℄ as follows:Lemma 6.18 (Generalized Disrepany Method) Denote X = Y1 × ... × Yk.Let f : X → {−1, 1} and g : X → {−1, 1} be suh that under some distribution µwe have Corrµ(f, g) ≥ δ. Then
Rǫ

k(f) ≥ log

(
δ + 2ǫ− 1disk,µ(g)

)
. (6.23)Proof: Let P be a k-party randomized protool that omputes f with advantage ǫand ost c. Then for every distribution µ over the inputs, we an derive a deter-ministi k-player protool P ′ for f that errs only on at most a (1/2 − ǫ) frationof the inputs (w.r.t. µ) and has ost c. Take µ to be a distribution satisfying theorrelation inequality. We know that P ′ partitions the input spae into at most 2cmonohromati (w.r.t. P ′) ylinder intersetions. Let C denote this set of ylinder
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intersetions. Then,
δ ≤

∣∣Ex∼µf(x)g(x)
∣∣

=
∣∣∑

x

f(x)g(x)µ(x)
∣∣

≤
∣∣∑

x

P ′(x)g(x)µ(x)
∣∣+
∣∣∑

x

(f(x)− P ′(x))g(x)µ(x)
∣∣.Sine P ′ is a onstant over every ylinder intersetion S in C, we have

δ ≤
∑

S∈C

∣∣∑

x∈S

P ′(x)g(x)µ(x)
∣∣+
∑

x

∣∣g(x)
∣∣ ·
∣∣f(x)−P ′(x)

∣∣µ(x)

≤
∑

S∈C

∣∣∑

x∈S

g(x)µ(x)
∣∣+
∑

x

∣∣f(x)−P ′(x)
∣∣µ(x)

≤ 2cdisk,µ(g) + 2(1/2− ǫ).This gives us immediately (6.23).Observe that when f = g, i.e. Corrµ(f, g) = 1, we reover the lassial disrep-any method (Lemma 4.18).6.5.1 Appliations to DisjointnessAlthough the �generalized form of the disrepany method� was known to re-searhers in quantum ommuniation omplexity sine the work of Klauk [Kla01℄,it was not known if this method ould be applied to Disjointness. In fat, Razborov[Raz03℄ remarks that even this generalized priniple is not appliable to the Disjoint-ness funtion. Sherstov [She08b℄ disproves this remark by designing a novel strategythat allows the appliation of this Generalized Disrepany Method to yield stronglower bounds on the 2-party bounded-error quantum ommuniation omplexity of174



Disjointness. A key ingredient in this strategy is a beautiful duality between approx-imability and orthogonality. The intuition is that if a funtion is at a large distanefrom the linear spae spanned by haraters of degree less than d, then its proje-tion on the dual spae spanned by haraters of degree at least d is large. Morepreisely, reall from Setion 6.1.1 that the δ-approximation degree of a booleanfuntion f , denoted by degδ(f), is the degree of the smallest degree real polynomialthat approximates f point-wise within δ.Lemma 6.19 (Sherstov [She08b℄, Shi and Zhu [SZ07℄) Let f : {−1, 1}m → Rbe given with degδ(f) = d ≥ 1. Then there exists g : {−1, 1}m → {−1, 1} and adistribution µ on {−1, 1}m suh that g is (µ, d)-orthogonal and Corrµ(f, g) > δ.This Approximation/Orthogonality Priniple is a lassial result in funtionalanalysis. It has been of interest to researhers in omputational omplexity before8 inother ontexts. But to the best of our knowledge, its use in ommuniation om-plexity �rst appears in the independent works of Sherstov [She08b℄ and Shi and Zhu[SZ07℄. We do not prove this lemma but the interested reader an look up its shortproof in [She08b, SZ07, Spa08℄ whih is based on an appliation of linear program-ming duality. In this setion, we extend Sherstov's strategy to the multiparty settingusing the Orthogonality-Disrepany Lemma.8 For instane, in his work [Spa08℄ Spalek redits Buhrman and Szegedy to havedisovered this priniple independently.
175



Theorem 6.20 Let f : {0, 1}m → {−1, 1} have δ-approximate degree d. Let n ≥
(22k

(k−1)e
d

)k−1
mk, and f ′ : {0, 1}n → {−1, 1} be suh that f(z) = f ′(z0n−m). Then

Rǫ
k(G

f ′

k ) ≥ d

2k−1
+ log(δ + 2ǫ− 1). (6.24)Proof: Applying Lemma 6.19 we obtain a funtion g and a distribution µ suhthat Corrµ(f, g) > δ and g is (µ, d)-orthogonal. Thus, applying the Orthogonality-Disrepany Lemma 6.8, we getdisk,λ

(
F g

k

)
≤ 1

2d/2k−1 (6.25)where λ is preisely obtained from µ as stated in Lemma 6.8 and ℓ ≥ 22k
(k−1)em/d.Sine n = ℓk−1m, (6.25) holds for n ≥ (22k

(k−1)e
d

)k−1
mk.It an be easily veri�ed that Corrλ(F f

k , F
g
k ) = Corrµ(f, g) > δ. Thus, by pluggingthe value of disk,λ

(
F g

k

) in (6.23) of the Generalized Disrepany Method, we get
Rǫ

k(F
f
k ) ≥ d

2k−1
+ log(δ + 2ǫ− 1).We observe that the ommuniation matrix of F f

k embeds as a submatrix in theommuniation matrix of Gf ′

k . The proof is �nished by noting that a protool forsolving Gf ′

k yields one for Gf
k .In partiular, strong lower bounds on the bounded-error randomized multipartyommuniation omplexity of Disjointness follows readily from Theorem 6.20. Thissigni�antly improves the best earlier lower bound of Ω(log n) due to Tesson [Tes03℄and Beame et.al. [BPSW06℄ for three or more players.
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Corollary 6.21
Rǫ

k(DISJk) = Ω

(
n

1
k+1

22k(k − 1)2k−1

)for any onstant ǫ > 0.Proof: Let f = NORm and f ′ = NORn. We know deg1/3(NORm) = Θ(
√
m) byTheorem 6.5. Setting n =

( 22k
(k−1)edeg1/3(NORm)

)k−1
mk, and writing (6.24) in terms of ngives the result for any onstant ǫ > 1/6. The bound an be made to work for everyonstant ǫ by a standard boosting argument.Reall that there is a simple non-deterministi protool of ost O(logn) om-puting non-Disjointness, i.e. GOR

k . Thus, Corollary 6.21 provides an expliit sepa-ration of the lass of funtions having e�ient randomized protools with boundederror from the lass of funtions having e�ient non-deterministi protools, i.e.NPcc
k * BPPcc

k for k < log logn − log log logn. Suh a separation �rst appeared inthe joint work with A. Ada [CA08℄ and independently in the work of Lee and Shraib-man [LS08℄. David, Pitassi and Viola [DPV08℄ have reently pushed our argumentfurther, making elegant use of the probabilisti method, to show that suh a separa-tion ontinues to exist for δ logn players for every onstant δ < 1. They also providean expliit funtion witnessing their separation by derandomizing their argument.
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6.5.2 Other Symmetri FuntionsTheorem 6.20 does not immediately provide strong bounds on the ommunia-tion omplexity of Gf
k for every symmetri f . For instane, if f is the MAJORITYfuntion then one has to work a little more to derive strong lower bounds9.In this setion, using Theorem 6.20 and Paturi's Theorem (Theorem 6.5), weobtain a lower bound on the ommuniation omplexity of Gf

k for eah non-trivialsymmetri f . Let f : {0, 1}n → {1,−1} be the symmetri funtion indued froma prediate D : {0, 1, . . . , n} → {1,−1}. We denote by GD
k the funtion Gf

k . For
t ∈ {0, 1, . . . , n − 1}, de�ne Dt : {0, 1, . . . , n − t} → {1,−1} by Dt(i) = D(i + t).Observe that the ommuniation omplexity of GD

k is at least the ommuniationomplexity of GDt
k .Corollary 6.22 Let D : {0, 1, . . . , n} → {1,−1} be any prediate with the (1/3)-approximate degree of D, denoted by deg1/3(D), equal to d. Let ℓ0 = ℓ0(D) and

ℓ1 = ℓ1(D). De�ne T : N→ N by
T (n) =

(
n

(22k(k − 1)e/d)k−1

) 1
k

.Then for any onstant ǫ > 0,
Rǫ

k(G
D
k ) = Ω

(
Ψ(ℓ0) +

T (ℓ1)

2k−1

)

9 Lower bounds for GMAJ
k an be obtained in another way. It is not too di�ultto see that a k-party protool for GMAJ

k an be used to derive a protool for GPARITY
kwith a small blow-up in ost. Thus, GMAJ

k is as hard as GIP.178



where,
Ψ(ℓ0) = min

{√
T (n)ℓ0
2k−1

,
T (n− ℓ0)

2k−1

}
.Proof: The �rst thing to note is that the relationship between T (n) and n is exatlythe relationship between m and n in Theorem 6.20. This is not aidental. Indeed,the general idea of our proof is to show that the prediate D `embeds' anotherprediate D′1 with the following property: D′1 is de�ned over the set {0, . . . , n1}and there is a prediate D1 de�ned over {0, . . . , T (n1)}. Further, we show that

T (n1), n1 and deg1/3(D1) an be made to orrespond to m,n and d of Theroem 6.20respetively. Here, D1 plays the role of D in Theorem 6.20 and D′1 that of D′. Thisallows us to onlude that the ommuniation omplexity of GD′
1

k is high. Thus, GD
khas high ommuniation omplexity as well.We implement the above idea by onsidering the following three ases. In eahase, let ℓ0 = ℓ0(D) and ℓ1 = ℓ1(D). Further, let c = log(1/3 + 2ǫ− 1). W.l.o.g., weassume10 that ǫ > 1/3, so that c is a well de�ned onstant.Case 1: Suppose ℓ0 ≤ T (n)/2. In this aseD′1 is the same asD. LetD1 : {0, 1, . . . , T (n)} →

{1,−1} be suh that for any z ∈ {0, 1}T (n), we have D1(|z|) = D′1(|z|). By Theo-rem 6.20, the omplexity of GD
k is Ω(d/2k−1) where d = deg1/3(D1). By Paturi'sTheorem, deg1/3(D1) ≥

√
T (n)ℓ0(D1) =

√
T (n)ℓ0 and so

Rǫ
k(G

D
k ) ≥ Rǫ

k(G
D′

1
k ) =

√
T (n)ℓ0
2k−1

+ c.10 We an always apply boosting later to lift our bounds to any onstant ǫ, usingObservation 4.1 in Chapter 4. 179



Case 2: Suppose T (n)/2 < ℓ0 ≤ n/2. In this ase D′1 is Dt where t = ℓ0−T (n−ℓ0)/2.Let D1 : {0, 1, . . . , T (n − ℓ0)} → {1,−1} be suh that D1(|z|) = D′1(|z|). So byTheorem 6.20, the omplexity of GD′
1

k is Ω(d/2k−1) where d is the approximationdegree of D1. We know
D1(T (n− ℓ0)/2) = D′1(T (n− ℓ0)/2)

= Dt(T (n− ℓ0)/2)

= D(T (n− ℓ0)/2 + ℓ0 − T (n− ℓ0)/2)

= D(ℓ0)

6= D(ℓ0 − 1) by defn. of ℓ0
= D1(T (n− ℓ0)/2− 1).Hene, ℓ0(D1) = T (n−ℓ0)/2. Thus by Paturi's Theorem, deg1/3(D1) ≥

√
T (n− ℓ0)2/2.This implies, as before,

Rǫ
k(G

D
k ) =

T (n− ℓ0)
2k−1

+ c.Case 3: Suppose ℓ0 = 0 and ℓ1 6= 0. Unlike in the �rst two ases, we bound theapproximate degree of D1 by estimating ℓ1(D1) in terms of ℓ1. The rest of theargument is similar to the one for Case 2. Consider D′1 = Dt where t = n − ℓ1 −

T (ℓ1)/2. Let D1 : {0, 1, . . . , T (ℓ1)} → {1,−1} be suh that D1(|z|) = D′1(|z|) =

Dt(|z|). As in Case 2, one veri�es that D1(T (ℓ1)/2) 6= D1(T (ℓ1)/2 + 1). Thus
ℓ1(D1) = T (ℓ1)/2. So, deg1/3(D1) ≥

√
T (ℓ1)2/2. Therefore,

Rǫ
k(G

D
k ) =

T (ℓ1)

2k−1
+ c.
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Combining these three ases, we get the desired result.6.6 Lower Bounds by Blok-CompositionIn this setion, we develop a new lower bound tehnique extending the reentwork of Shi and Zhu [SZ07℄. We all this the multiparty blok-omposition method.It also yields strong lower bounds of nΩ(1) on the k-party ommuniation omplexityof Disjointness, when k is a onstant. But the new bound deays muh faster with kand therefore provides onsiderably weaker bounds for non-onstant k as omparedto the one derived earlier, in Setion 6.5.1. The reason we present this tehnique istwo-fold. First, it is of independent interest as it yields a new proof of strong boundson the Disjointness result. In partiular, reently Sherstov [She08a℄ remarked that itis not lear how to extend the method of Shi and Zhu to the multiparty setting. Ourextension shows that indeed their method an be modi�ed and extended for multipleparties in a simple fashion. Seond, the tehnique also appears slightly more generalthan the one presented earlier. It is not lear whether in some ontext, the seondtehnique may be more onvenient to apply.Both tehniques make use of the same duality between the notions of approxima-bility and orthogonality (Lemma 6.19) and the Generalized Disrepany Method. Infat, they are losely related and we further disuss this relationship in Setion 6.6.2.We start with the formal desription of the blok-omposition method. Considera real valued funtion h : {1,−1}m → R and a boolean funtion q : ({1,−1}s)k+1 →

{1,−1}. We naturally view the input spae of q as a two dimensional blok with
(k+1) rows and s olumns and we all q the blok funtion in the ensuing disussion.Consider a boolean matrixA of dimension (k+1)×(ms) that we view as made up ofm181



ontiguous bloks, eah of dimension (k+1)×s. We de�ne a funtion (h�q) over suhboolean matries that evaluates on its input in the following way: it �rst applies q toeah of the m bloks of the matrix to obtain anm-bit boolean string and then applies
h to this string to output its value, i.e. (h�q)(z1, . . . , zm) = h

(
q(z1), . . . , q(zm)

),with eah zi ∈ {1,−1}(k+1)s. In this language, funtions like GIP and Disjointnessare rewritten as (PARITY�AND) and (NOR�AND) respetively, where the innerfuntion AND ats on bloks of dimension (k + 1)× 1.Equivalently, in the ontext of the k-party ommuniation problem of evaluating
(h�q), we partition the input matrix A in the obvious way: the (k + 1) rows of thematrix are denoted by x, y1, . . . , yk respetively and Player 1 gets x on the forehead,and for 1 ≤ i ≤ k, Player (i+ 1) gets yi on the forehead.We are interested in the question �For a boolean h, what properties of h and q aresu�ient to make (h�q) have large ommuniation omplexity?�. This question, inthe ontext of two-player quantum ommuniation, was introdued and investigatedin the reent work of Shi and Zhu [SZ07℄. They derive tight lower bounds on thetwo-party quantum ommuniation omplexity by using the sophistiated mahineryof Hahn polynomials and spetral analysis. However, we do not use these tools inextending the method to the multiparty setting.6.6.1 Hardness Ampli�ationLet νx, ν1, . . . , νk be probability distributions over sets Ix, I1, . . . , Ik ⊂ {1,−1}s.Let ν be the produt of these distributions and onsider a boolean funtion q de�nedover bloks of dimension (k + 1) × s. Then, de�ne the (k + 1)-dimensional ubemeasure of q w.r.t. ν, denoted by Eν,k+1(q), as follows:182



Eν,k+1(q) ≡def Eyi
0,yi

1∼νi

∣∣∣∣Ex∼νx

( ∏

u∈{0,1}k
q(x, y1

u1
, . . . , yk

uk
)

)∣∣∣∣.We say that q is balaned under ν if
Ex∼νx;yi∼νi

q(x, y1 . . . , yk) = 0.Before we proeed further, let us derive a probability distribution λ over theinputs of a blok-omposed funtion (h�g), given any distribution for inputs of hand a distribution ν that leaves q balaned.Proposition 6.23 Let µ be any distribution over {0, 1}m. Let q : {1,−1}(k+1)s →

{1,−1} be a blok funtion that is balaned by a distribution ν over its inputs. Then,the funtion
λ(z1, . . . , zm) = 2m ×

(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi)is a probability distribution over the set of (k + 1) × (ms) boolean matries, whereeah zi is a blok of dimension (k + 1)× s.Proof: This is true beause q is balaned under ν. More preisely,
∑

zi∈{1,−1}(k+1)s:i≤m

λ(z1, . . . , zm) =
∑

zi∈{1,−1}(k+1)s:i≤m

2m×
(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi).This an be re-written in the following manner. For any x ∈ {1,−1}m, let xi denoteits ith oordinate.
183



∑

x∈{1,−1}m
2m

∑

zi∈{1,−1}(k+1)s:q(zi)=xi

µ(x1, . . . , xm)
m∏

i=1

ν(zi)

=
∑

x∈{1,−1}m

[
µ(x1, . . . , xm)2m

m∏

i=1

( ∑

zi∈{1,−1}(k+1)s:q(zi)=xi

ν(zi)

)]
. (6.26)Sine q is balaned under ν, for eah i and x, we have

∑

zi∈{1,−1}(k+1)s:q(zi)=xi

ν(zi) =
1

2
.Substituting this in (6.26), and realling that µ is a distribution on {1,−1}m, we get

∑

zi∈{1,−1}(k+1)s:i≤m

λ(z1, . . . , zm) =
∑

x∈{1,−1}m
µ(x1, . . . , xm) = 1.

Let h be (µ, d)-orthogonal for some distribution µ and integer d > 0. Further,let q be balaned under a distribution ν suh that the ube measure of q w.r.t ν isnot too large. The following lemma shows that the disrepany of (h�q) is exponen-tially small w.r.t. the distribution λ that is generated out of µ and ν aording toProposition 6.23.Lemma 6.24 (Disrepany Ampli�ation) Let h : {1,−1}m → {1,−1} be a
(µ, d)-orthogonal funtion and q : {1,−1}(k+1)s → {1,−1} be a blok funtion that isbalaned under a produt distribution ν. If (Eν,k+1(q)

)1/2k

≤ d
8em

, thendisλ,k+1(h�q) ≤
1

2d
(6.27)
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where, λ is the probability distribution de�ned in the following manner:
λ(z1, . . . , zm) = 2m ×

(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi). (6.28)Here, eah zi is a blok of dimension (k + 1)× s.Proof: Reall from Setion 6.1.1 that every real valued-funtion over {1,−1}m anbe deomposed, via the Fourier transform, in terms of the monomials χS, with
S ⊆ [m]. The main idea in the proof is the following: De�ne hµ(z1, . . . , zm) =

h(z1, . . . , zm)µ(z1, . . . , zm). Use the Fourier expansion of the funtion hµ to de-ompose the funtion (hµ�q) in terms of funtions of the form (χS�q). Use thisdeomposition to upper bound the disrepany of (h�q), w.r.t. λ, as the sum ofdisrepanies of eah (χS�q), w.r.t. to the distribution that is an m-fold produt of
ν. Finally, using the ube measure, we show that the disrepany of eah (χS�q)deays rapidly with the size of the set S.Forthwith are the details. Let τ be the harateristi funtion of any (k+1)-wiseylinder intersetion. Then, using the de�nition of λ and disrepany one getsdisλ,τ

(
h�q

)
= 2m

∣∣∣∣
∑

z=(z1,...,zm)

(
(hµ)�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣.Applying the (µ, d)-orthogonality of h and the triangle inequality, the RHS abovesimpli�es to
2m

∣∣∣∣
∑

|S|≥d:S⊆[m]

ĥµ(S)
∑

z=(z1,...,zm)

(
χS�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣ ≤

2m
∑

|S|≥d

∣∣ĥµ(S)
∣∣
∣∣∣∣

∑

z=(z1,...,zm)

(
χS�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣.185



It is not hard to verify that, as h is boolean valued and µ is a probabilitydistribution, ĥµ(S) ≤ 1/2m for any S. Using this, the above further simpli�es todisλ,τ

(
h�q

)
≤
∑

|S|≥d

∣∣∣∣Ezi∼ν

(
χS�q

)
(z)τ(z)

∣∣∣∣.As τ is an arbitrary ylinder intersetion,disλ

(
h�q

)
≤
∑

|S|≥d

disν

(
χS�q

)
, (6.29)where ν is simply the m-fold produt of ν. This ompletes the �rst part of theproof. For the seond part, we readily estimate the disrepany of (χS�q) below interms of Eν,k+1(q). Heneforth, we abuse notation and overload S to also mean theharateristi vetor of the set S.Proposition 6.25 For any S ∈ {0, 1}m,disν,k+1

(
χS�q

)
≤
(
Eν,k+1(q)

)|S|/2k

. (6.30)Proof: Before we plunge into the alulations, we set some notation. Reall that
x, y1, . . . , yk represent the (k + 1) rows of the input matrix of (h�q). Let x[i] and
y1[i], . . . , yk[i] represent respetively the portion of these rows that belongs to the ithblok zi of the input matrix, for 1 ≤ i ≤ m. In other words, denoting the jth row ofthe ith blok naturally by zi[j], x[i] = zi[1] and yj[i] = zi[j + 1], for 1 ≤ i ≤ m and
1 ≤ j ≤ k.Reall the upper bound on disrepany provided by the ube measure throughLemma 6.6 in Setion 6.1.2. Using the de�nition of ν and ν, and applying equation
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(6.2), we proeed as follows:
(disν,k+1

(
χS�q

))2k

≤ Eyi
0,yi

1∼(νi)m:1≤i≤k

∣∣∣∣Ex∼(νx)m

∏

u∈{0,1}k

(
χS�q

)(
x, y1

u1
, . . . , yk

uk

)∣∣∣∣

= Eyi
0,yi

1∼νi:1≤i≤k

∣∣∣∣
∏

j:Sj=1

Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣

= Eyi
0,yi

1∼νi

∏

j:Sj=1

∣∣∣∣Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣

=
∏

j:Sj=1

Eyi
0[j],yi

1[j]∼νi:1≤i≤k

∣∣∣∣Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣. (6.31)Applying the de�nition of Eν,k+1 to equation (6.31) immediately yields equation(6.30).Below, we ombine Proposition 6.25 and Equation (6.29). Further we drop thesubsript of k + 1 from Eν,k+1 to avoid lutter.disλ

(
h�q

)
≤

m∑

j=d

(
m

j

)(
Eν(q)

)j/2k

.Substituting the identity (m
j

)
≤
(

em
j

)j, we getdisλ

(
h�q

)
≤

m∑

j=d

(
em

j

(
Eν(q)

)1/2k
)j

,whene equation (6.27) readily follows under the ondition (Eν(q)
)1/2k

≤ d
8em

imposedby Lemma 6.24. 187



6.6.2 Appliation to DisjointnessWe show that the masking sheme that we reated in Setion 6.2.1 an be viewedas a speial ase of Blok Composition. Consider the following k-wise indexingfuntion: INk : X × Y 1 × · · · × Y k → {1,−1} where X = {1,−1}ℓk is the spaeof k-dimensional boolean arrays with eah dimension of size ℓ i.e. an instane of
X ontains ℓk boolean elements. Eah Y i = [ℓ] is the spae of pointers in the ithdimension of X. On a given input instane (x, y1, . . . , yk), INk outputs the value ofthe element of x jointly indexed by the k pointer variables. The starting point is toobserve that the ommuniation tensor of (NOR�INk) is embedded as a sub-tensorof the (k + 1)-wise Disjointness funtion. Thus, lower bounding the ommuniationomplexity of (NOR�INk) is su�ient for our appliation. Here, we show that theDisrepany Ampli�ation Lemma yields interesting lower bounds for (NOR�INk)by hoosing the right blok size.As before, we use the Generalized Disrepany Method. From Paturi's Theorem,we reall that deg1/3(NOR) = θ(

√
m). We use the Approximation/OrthogonalityPriniple of Lemma 6.19 to derive a funtion g and a distribution µ suh that g is

(µ, d)-orthogonal. Further, Corrµ(OR, g) is at least 1/3. The Generalized Disrep-any Method presribes us to upper bound the disrepany of (g�INk) to lowerbound the ommuniation omplexity of (NOR�INk). To that e�et, let U be theuniform distribution over the spae of inputs to INk. De�ne λ just as given byequation (6.28) in the Disrepany Ampli�ation Lemma with ν = U . Note that
U renders INk balaned. In order to apply our Ampli�ation Lemma, we estimate
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EU ,k+1

(INk

).
EU ,k+1(IN) = Eyi

0,yi
1∼µi

∣∣∣∣Ex

( ∏

u∈{0,1}k
INk(x, y

1
u1
, . . . , yk

uk
)

)∣∣∣∣.It is not hard to verify that the inner expetation over x is one whenever yi
0 = yi

1 forsome i and is zero otherwise. Thus, applying the union bound,
EU ,k+1(INk) ≤

k

ℓ
.Observe that the parameter s, whih is the length of a blok in the Ampli�ationLemma, is set to ℓk for INk. Substituting s = ℓk, one gets EU ,k+1(IN) = k

s1/k . In orderto apply the Disrepany Ampli�ation Lemma, we require
(

k

s1/k

)1/2k

≤ d

8em
,where d is the approximation degree of the outer funtion g. The above is satis�edby setting

s = kk

(
8em

d

)k2k

.Plugging in d = θ(
√
m) for g and noting that (g�INk) in this ase is over n = smolumns, gives us the bound below:disλ,k+1

(
g�INk

)
= O

(
2−n

1
k2k+2

)
.It an be easily veri�ed that Corrλ(NOR�IN, g�IN) = Corrµ(NOR, g) ≥ 1/3.Hene, equation (6.23) of the Generalized Disrepany Method �nally yields:

R
1/3
k+1

(DISJ) ≥ R
1/3
k+1

(OR�IN) = Ω

(
n

1

k2k+2

)
. (6.32)189



Note that for onstant k, we obtain a bound of nΩ(1), that is exponentially betterthan the log n bound that was the best known bound for Disjointness until veryreently. However, it is muh weaker than the bound obtained earlier applying theOrthogonality-Disrepany Lemma. This is despite the fat that in both ases weuse idential indexing funtion over bloks. The reason for it is that in establishingthe Disrepany Ampli�ation Lemma, we are heavily using the triangle inequalitywithout assuming anything about our inside funtion on bloks. The alulation inOrthogonality-Disrepany Lemma, on the other hand, proeeds muh more arefullytaking into aount the very speial struture of the indexing funtion.6.7 ConlusionWe have shown that depth-three AC0 iruits ontain funtions that are hardfor k-player randomized protools in a very strong sense. They need to ommuniatesuperpolylogarithmi number of bits even when they are required to gain a mereinverse-quasipolynomial advantage over random guessing and k = o(log log n). Thisresult, building on the work of Sherstov [She07℄, exploits a onnetion between votingdegree of a boolean funtion f and the disrepany of another funtion F f
k that masks

f . In the next hapter, we derive important appliations of this result to iruitomplexity.Further, we have shown that multiparty randomized protools annot omputee�iently funtions in depth-two AC0, when they are required to ahieve boundedadvantage over random guessing. This has settled a major open question by showingthat Disjointness has nΩ(1) k-party omplexity in the bounded error model, if k is a
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onstant. We prove this result in two ways. The �rst is by extending the pattern-matrix method of Sherstov [She08b℄ for two-player quantum protools. The seond isby extending the blok-omposition method of Shi and Zhu [SZ07℄, also designed fortwo-player quantum protools. Both our extensions use the beautiful duality betweenthe notion of approximability of boolean funtions by polynomials over reals and thenotion of a polynomial being orthogonal to low-order parities. This duality wasintrodued in the setting of ommuniation omplexity by [She08b, SZ07℄. Finally,we remark that our extension of the blok-omposition method to the multipartysetting, answers a reent question raised by Sherstov [She08a℄.Beame, Pitassi and Segerlind [BPS05℄ have shown that strong lower bounds onthe randomized multiparty ommuniation omplexity of Disjointness results in newseparation of proof systems. In this regard, our bounds yield suh separations thatare not yet known to follow from other tehniques. Our bounds on Disjointness alsoresults in the �rst expliit separation of ommuniation omplexity lasses BPPcc
kand NPcc

k for k = o(log log n). This separation has been reently improved by David,Pitassi and Viola [DPV08℄, building upon our work.An interesting diretion for future researh is to answer the following two ques-tions: (a)Can we �nd a funtion in AC0 that has no e�ient protool of boundedadvantage for δ logn players for some onstant δ? (b)Can we �nd suh a funtion ifwe require only inverse-quasipolynomial advantage from protools? The last questionif answered in the positive will have important onsequenes for depth-three iruitsas the disussion in the next hapter shows. Very reently, Beame and Huynh-Ngo[BHN08℄ have made progress towards answering the �rst question. They show a191



funtion in AC0 that has no e�ient randomized bounded-error protools for δ√log nplayers, where δ is a onstant less than 1.
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CHAPTER 7Some Consequenes for Depth-Three CiruitsIn this hapter, we derive some results on depth-three iruits that follow eitherdiretly from results in the last hapter on multiparty ommuniation or use verysimilar ideas.We reall that understanding the omputational power of depth-three iruitsmade of MAJORITY and MOD ounting gates remains open. In partiular, we donot know if linear size depth-three iruits omprising only MODm gates or ompris-ing only MAJ gates an ompute every funtion in NP. Indeed, proving superlinearlower bounds on the size of suh iruits for omputing any expliit funtion is oneof the frontiers in the theory of lower bounds. Given this situation, it is pertinent toask what funtions are omputable by depth-three iruits in a non-trivial way.A lassial result of Allender [All89℄ shows that all funtions omputable byquasipolynomial size AC0 iruits an be omputed by iruits of depth-three andquasipolynomial size and of the following kind: MAJ ◦ MAJ ◦ MAJ(log n)O(1), i.e.iruits of depth three having only MAJORITY gates in whih the gates at thebase layer are restrited to have polylogarithmi fan-in. This result follows almostdiretly1 from the result, by Razborov and Smolensky, on the approximability of1 Allender showed a uniform version of this theorem, i.e. every uniform AC0 iruitof quasipolynomial size an be simulated by a uniform depth-three iruit with MAJ193



AC0 iruits by low degree polynomials over �nite �elds. More surprisingly, thework of Yao [Yao90℄ and Beigel-Tarui [BT94℄, making use of ideas in the proof ofToda's Theorem [Tod91℄, show that suh iruits are powerful enough to simulate thestritly bigger lass qACC0, i.e. the lass of funtions that are omputable by iruitsof onstant depth and quasipolynomial size that use MODm gates in addition to ANDand OR gates, for some �xed integer m > 1. The following is intriguing: althoughthe simulation requires these bottom fan-in restrited iruits to be quasipolynomialsize, we annot rule out the muh stronger (and stranger) possibility that linear sizesu�es to simulate the whole of NP.Håstad and Goldmann [HG91℄ showed that if suh depth three iruits were fur-ther restrited to have sub-logarithmi fan-in at the bottom layer, then they annotsimulate ACC0 in sub-exponential size. This left open the question whether suhrestrited iruits, even when they have onstant fan-in at the bottom, ould simu-late AC0 in quasi-polynomial size. In fat until very reently, no super-polynomiallower bounds were known on the size of depth-two iruits of type MAJ ◦MAJ forsimulating AC0. Sherstov [She07℄ reently resolved the depth two question in thenegative by analyzing the two-party randomized ommuniation omplexity of anappropriately hosen funtion in AC0. Håstad and Goldman, on the other hand,invoked the result of Babai, Nisan and Szegedy [BNS92℄ for the stronger multipartygates of quasipolynomial size. This uniform version is not known to follow from theRazborov-Smolensky argument. Allender used ideas from Toda's theorem to obtainhis result. 194



model to show their lower bound on the size of depth three iruits omputing thegeneralized inner produt funtion.We extended Sherstov's [She07℄ work in the last hapter to the multiparty model.As a simple onsequene of that extension, we prove the following result in thishapter:Theorem 7.1 Ciruits having a MAJ gate at the output, a middle layer of gatesomputing arbitrary symmetri funtions and a base layer of gates omputing anyfuntions of k input variables, i.e. of type MAJ ◦ SYMM ◦ ANYk, need size at leastexp(Ω

(
n1/(2k+3)

(22k ek)k

)) to simulate depth-three AC0 of linear size. Spei�ally, if k is aonstant (resp. o(log logn)) then suh iruits annot simulate AC0 if the top fan-inis subexponential (resp. quasipolynomial).In partiular, the above shows that Allender's lassi onstrution to simulateAC0 is reasonably lose to being optimal. In fat, Allender's original onstrutionshows that qpoly size iruits of type MAJ ◦ MODm ◦ AND(log n)O(1) an simulateACC0[pr] (i.e. iruits with MODpr gates in addition to AND/OR gates), for everyprime p that divides m and any �xed r. A long line of researh (see for example[CGT96, Gre99, Gre04, AB01℄) seeks to show that suh depth-three iruits annotsimulate ACC0 in quasipoly size. On the other hand, it is ommonly believed thatsuh iruits annot even ompute MODq, if m, q are o-prime.Reall, from Setion 2.1.4, that the Disriminator Lemma implies that obtainingan exponentially small upper bound on the orrelation between a funtion f and anyboolean funtion that is represented by a polynomial of poly-logarithmi degree over
Zm, is enough to prove that f annot be omputed in subexponential size by suh195



depth-three iruits. It is widely onjetured that MODq has small orrelation withfuntions represented by low degree polynomials over Zm, if m and q are o-prime.However for a long time, no good estimates were available even for the orrelationbetween general quadrati polynomials over Zm and MODq. This state of a�airs hasbeen signi�antly improved by the breakthrough work of Bourgain [Bou05℄ and Greenet.al. [GRS05℄, although the original problem of separating the lass of funtionsomputed by iruits MAJ ◦MODm ◦ AND(log n)O(1) of polynomial size from ACC0remains wide open. Note that this is unresolved even when m is a prime and thedepth-three iruits are of linear size.In the seond part of this hapter, we simplify Bourgain's method [Bou05,GRS05℄ of estimating the orrelation between polynomials of degree d over Zm andMODq when (m, q) = 1. We argue that the notion of disrepany, suitably modi�ed,an be used onveniently to obtain this estimate. This approah also points out thesimilarities between the tehniques used for estimating ylindrial disrepany in theommuniation setting and the tehniques used for obtaining bounds on orrelation.Additionally, our estimates for orrelation are slightly better than previous estimatesof [Bou05, GRS05℄.Applying the Disriminator Lemma from Setion 2.1.4, we obtain the following:Theorem 7.2 Any depth-three iruit of type MAJ ◦ MODm ◦ ANYk requires sizeexp(Ω(n/(m2m−1)d)
) to ompute MODq funtion, if m, q are o-prime.For the speial ase of m = 2, this mathes the reent bounds obtained by Violaand Wigderson [VW07a℄. It is not known if tehniques of [VW07a℄, based on Gowersnorm, an be extended to all m. 196



7.1 Simulating AC0 by Depth-Three CiruitsRazborov and Smolensky showed that ACC0[pk] iruits an be well-approximatedby low degree polynomials over Zpk . Let us reall, from Setion 2.1.3, their hara-terization of these iruits:Lemma 7.3 (Restatement of Theorem 2.17) Let p be any �xed prime. Foreah 0 < ǫ < 1 and for every iruit C in ACC0[pk] of depth d and size s, there existsa distribution UC over polynomials over Zp of degree at most ((pk − 1)(log(s/ǫ))
)d ,suh that for eah input x to C, PrP∼UC

[P (x) 6= C(x)] ≤ ǫ.Fix ǫ in the above haraterization to be su�iently smaller than 1/2. If wepik t polynomials independently and aording to distribution UC , then we expet
ǫt of them to evaluate di�erently than the iruit C on any �xed input x ∈ {0, 1}n.The probability that the number of suh erring polynomials exeeds 1

2
t (in this asethey deviate by a lot from the expeted number) is very small if the number ofpolynomials t is suitably large. Indeed, it is not hard to verify, using the Cherno�bound, that there exists a onstant cǫ depending on ǫ alone suh that if we pik

t = cǫn polynomials at random, then for any given x the probability that morethan half of them err on a �xed input is less that 2−n. Taking a union bound, theprobability that they err on at least one input is less than one. Noting that everypolynomial of degree d over Zp an be evaluated by a depth-two iruit of typeMODp ◦ANDd of size O(nd), the probabilisti method implies the following:Theorem 7.4 A funtion omputed by any ACC0[pk] iruit of size s and depth dan be also omputed by a depth-three iruit MAJ ◦MODp ◦ ANDt of size O(nt+1),where t = O((log s)d). The top fan-in of suh a depth-three iruit is merely linear.197



Note that, by ontrast, Theorem 7.1 says that if the bottom fan-in is restritedto o(log log n), then the top fan-in of depth-three iruits itself needs to be super-quasipolynomial to simulate AC0.7.2 From Communiation to CiruitsIn this setion, we derive Theorem 7.1 from our results on multiparty ommu-niation in the last hapter. In order to do so, we reall an established onnetionbetween randomized ommuniation omplexity of a funtion f and the size of depth-three iruits needed to ompute f .Fat 7.5 (see [HG91℄) If f is omputed by a iruit of type MAJ◦SYMM◦ANYk,of size s, then R1/2s
k+1 (f) ≤ k log s.Proof: Let C1, . . . , Ct, t ≤ s, be the subiruits feeding into the output MAJ gatein the iruit C for omputing f . The (k + 1)-player protool �rst �ips a set ofoins to randomly selet i ∈ {1, . . . , s}. Then it outputs the value of Ci on theinput instane. By the de�nition of a MAJ gate, it is easy to verify that the errorprobability is bounded by (1/2− 1/2s).The proof is ompleted by showing that eah Ci an be evaluated by ommu-niating at most k. log s bits. The key thing to note is that every ANYk gate atthe base of Ci an be evaluated by at least one of the k + 1 players with no om-muniation. The players agree beforehand on the set of base gates that eah playerevaluates. Sine the output gate of Ci omputes a symmetri funtion, the (k+1)-thplayer an determine the value of Ci, one the remaining players send the number
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of base gates that they respetively see evaluating to 1. This learly takes at most
k log s bits of ommuniation2.Armed with this observation, we are ready to prove our main theorem showingthat AC0 does not have e�ient simulation by depth-three iruits with restritedbottom fan-in. For this, reall the Minsky-Papert funtion, denoted by MP, de�nedas MP(x) = ∨t

i=1 ∧4t2

j=1 xi,j. This is easily seen to be omputable by linear depth-twoAC0. Using the masking sheme de�ned in Setion 6.2.1, we onsider the (k + 1)-wise masked Minsky-Papert funtion FMP
k+1. This masked funtion, using Fat 6.16,an be omputed in depth-three and linear size by AC0 iruits. On the otherhand, Corollary 6.14 (whih is a orollary to the Multiparty Degree-DisrepanyLemma), says that it has large randomized ommuniation omplexity even whenthe advantage over random guessing is small. We have realled all the neessary fatsto �nish o� the short formal argument proving our main theorem below.Proof:[Of Theorem 7.1℄ Let s be the size of any depth-three iruit of bottom fan-in

k omputing FMP
k+1. Then applying Fat 7.5 and Corollary 6.14, we get
k log s ≥ R

1/2s
k+1

(
FMP

k+1

)
≥ Ω

(
n

1
2k+3

(
22k+1/(2k+3)2ek

)k + log
1

2s

)
.This immediately yields our theorem.2 It is worthwhile to note that this protool is simultaneous.
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7.3 Polynomial DisrepanyIn this setion, we show that boolean funtions represented by low degree poly-nomials over Zm do not orrelate well with MODq, if m, q are o-prime. For this, wede�ne the notion of polynomial disrepany of a funtion.Let P be any multilinear polynomial of degree d over Zm in n variables. Let
Lq be the linear polynomial x1 + · · · + xn evaluated over Zq. Reall that eq(k)denotes exp(2πik/q), where i is the square-root of −1. Further, let f : {0, 1}n → Zq.Consider a distribution µ suh that f is almost balaned under µ, i.e. Prx[f(x) =

b] = 1/q+2−Ω(n). For example, Lq is almost balaned under the uniform distributionfor every q. Let 1P (x)≡a denote the harateristi vetor of the set of those points ofthe ube where polynomial P evaluates to a in Zm. We de�ne the mod-m polynomialdisrepany of f w.r.t. P and a ∈ Zm, b ∈ Zq−{0} under µ, denoted by PdisP,a,b
µ,m (f),to be the following: PdisP,a,b

µ,m (f) =

∣∣∣∣Ex∼µeq

(
bf(x)

)
· 1P (x)≡a

∣∣∣∣. (7.1)Note that if f has zero disrepany, then f evaluates to eah element of Zq with equalprobability over the set of points where P evaluates to a. Intuitively, the higher thedisrepany of f , the more skewed is the behavior of f over the set 1P (x)≡a.It is interesting to ompare the above notion of polynomial disrepany anddisrepany of ylinder intersetions as de�ned by (4.4) in Chapter 4. Note that in(4.4) f is assumed to be 1/− 1 valued. Noting this, we remark that the two notionsare extremely similar and this similarity beomes even learer if we assume q = 2 in200



(7.1). In this regard, the degree d of the polynomial has the same role as that of theparameter k in a k-wise ylinder intersetion. Further, the role played by polynomialdisrepany in bounding the orrelation of a polynomial with a boolean funtion isvery similar to the role played by disrepany of ylinder intersetions in boundingthe distributional ommuniation omplexity of a boolean funtion.The Mod-m, degree-d Polynomial Disrepany of f under µ, denoted by Pdisd,µ,m(f),is simply max{PdisP,a,b
µ,m (f)|deg(P ) = d, a ∈ Zm b ∈ Zq}. In this hapter, the defaultdistribution is uniform. Heneforth, we drop the subsript denoting the distributionexpliitly.Our main tehnial lemma, in this setion, is the following :Lemma 7.6 (Polynomial Disrepany Lemma) Let m, q > 1 be integers thatare o-prime and d ≥ 1. Then, there exists a onstant α = α(m, q) , suh that thefollowing holds: Pdisd,m(Lq) ≤ exp(− αn

(m2m−1)d

)
. (7.2)In words, (7.2) shows that P−1(a), for eah a, looks uniform to a MODq ounteri.e. every L−1

q (b) is almost equally represented in the set, provided the size of theset is large ompared to the size of the ube. We identify the similarities betweenthe alulation of polynomial disrepany of the Lq funtion and the method usedby [BNS92℄ to estimate the ylindrial disrepany for the generalized inner produtfuntion. In both estimates, the key tehnial ingredient is to raise the sum inquestion to its appropriate power.
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This easily leads to an upper bound of exp(−Ω(n/(m2m−1)d)) on orrelationbetween the MODq funtion and funtions represented by polynomials of degree dover Zm. In partiular, this implies the bound of exp(−Ω(n/4d)) for the speialase of m = 2 that was �rst reported in the reent work of [VW07a℄. Reall theelementary identity for roots of unity: ∑m−1
a=0 em(ay) = 1 if y is a multiple of m andis zero otherwise. We start by re-writing, using omplex roots of unity, the quantityPdisP,a,b

m (Lq) for any polynomial P over Zm and for any a ∈ Zm, b ∈ Zq as follows:PdisP,a,b
m (Lq) =

∣∣∣∣Ex

[(
1

m

m−1∑

α=0

em

(
α(P (x)− a)

))
eq

(
b(x1 + · · ·+ xn)

)]∣∣∣∣. (7.3)Let,
Sm,q

n (α, b, P ) = Ex

[
em(αP (x)) · eq

(
b(x1 + · · ·+ xn)

)]
. (7.4)Then, PdisP,a,b

m (Lq) ≤
1

m

∑

α∈[m]

∣∣Sm,q
n (α, b, P )

∣∣. (7.5)It is simple to verify that the Polynomial Disrepany Lemma gets establishedby the bound on |Sm,q
n (α, b, P )| provided below.Lemma 7.7 For eah pair of o-prime integers m, q > 1 there exists a onstant

β = β(q) suh that for every polynomial P of degree d > 0 over Zm and numbers
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α ∈ [m], b ∈ [q]− {0}, the following holds :
|Sm,q

n (α, b, P )| ≤ exp(− βn

(m2m−1)d

)
. (7.6)Before we begin our formal alulations, we remind the reader that a slightly weakerestimate of |Sm,q

n (α, b, P )| was �rst obtained in [Bou05, GRS05℄. The ase when Pis a linear polynomial was essentially dealt with in [CGT96℄.Observe that the quantity Sm,q
n , de�ned in (7.4), looks very similar to the sumthat was obtained in Babai, Nisan and Szegedy [BNS92℄ to alulate the disrepanyof GIP. There, they were interested in bounding disrepany of GIP w.r.t. k-ylinderintersetions. Here, we are interested in bounding the disrepany of Lq w.r.t. toa set that is the image of a polynomial. The key idea, introdued in [BNS92℄, isthat squaring the sum is e�etive in dealing with ylinder intersetions. This issomething that we adapted to our proof of the Degree-Disrepany Lemma in theprevious hapter. Here, the analogue of the BNS trik will be to raise the sum in(7.4) to its mth power.In order to further explain the intuition behind our proof of Lemma 7.7, weintrodue some de�nitions and notations. Let f : {0, 1}n → Zm be any funtion.Consider any set I ⊆ [n]. Note that eah binary vetor v of length |I| an bethought of as a partial assignment to the input variables of f by assigning v to thevariables in I in a natural way. Let f I(v) be the subfuntion of f on variables notindexed in I indued by the partial assignment v to variables indexed in I. Forany sequene Y = {y1, . . . , yt} having t boolean vetors from {0, 1}n, let fY be thefuntion de�ned by fY (x) = f(x) +
∑t

i=1 f(x ⊕ yi), where the sum is taken in Zm.203



Let I[Y ] ⊆ [n] be the set of those indies on whih every vetor in Y is zero and J [Y ]be just the omplement of I[Y ]. Then, the following observation will be very usefulin our alulation :Observation 7.8 Let P be a polynomial of degree d in n variables over Zm forany m > 1. Then, for eah sequene Y of (m − 1) boolean vetors in {0, 1}n, thepolynomial P J [Y ](v)
Y is a polynomial of degree (d− 1) in variables from I[Y ], for eahvetor v ∈ {0, 1}|J [Y ]| .A point worth mentioning is that, PY behaves almost like a disrete derivative of thepolynomial3 P .Proof Sketh:[of Lemma 7.7℄ We drop the supersript from Sm,q

n to avoid lutter inthe following disussion. We indue on the degree d of the polynomial. Our IndutiveHypothesis is that there exists a positive real onstant µd−1 < 1 suh that for allpolynomialsR of degree at most d−1 and for all n ≥ 0 we have |Sn(α, b, R)| ≤ 2nµn
d−1.The base ase of d = 0 is essentially dealt with in Chapter 3, Setion 3.2.4. Notethat µ0 depends only on q. Our indutive step yields a relationship between µd−1and µd that also gives us our desired expliit bound of (7.6). As in [Bou05, GRS05℄,we raise Sn to its mth power. Our point of departure from the earlier tehniques, isto write (Sn)m in a di�erent way.3 In the ase of m = 2, the notion of a disrete derivative appears in several works(see for example [GT05, Sam07℄).
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(Sn)m =Ey1,...,ym−1Ex

[
em

(
P (x) +

m−1∑

j=1

P (x⊕ yj)

)

× eq

( n∑

i=1

xi +
m−1∑

k=1

n∑

i=1

(xi ⊕ yk
i )

)] (7.7)Let Y be the sequene of lengthm−1 formed by a given set of vetors y1, . . . , ym−1.We denote by u and v respetively the projetion of x to I[Y ] and J [Y ]. Let nI and
nJ be the ardinality of I[Y ] and J [Y ] (note that nI +nJ = n) . Then, one an verify

(7.7) = Ey1,...,ym−1Ev

[
em

(
Qy1,...,ym−1

(v)
)
eq(nJ)Euem

(
P

I[Y ](v)
Y (u)

)
eq

(
m

nI∑

i=1

ui

)] (7.8)where Qy1,...,ym−1 is some polynomial that is determined by y1, . . . , ym−1 and polyno-mial P .The key thing to note is that Observation 7.8 implies that P I[Y ](v)
Y is a polynomialof degree at most d−1 over u for every sequene Y = y1, . . . , ym−1 and every vetor v.Hene, the inside sum of (7.8) over the variable u an be estimated using our indutivehypothesis. Note that raising to the mth power in (7.7) has ahieved a degreeredution of the polynomial in a manner that is very reminisent of how [BNS92℄does dimension redution of ylinder intersetions in the proof of their Lemma 2.5.The rest of the alulation proeeds exatly as in Green et. al. [GRS05℄, whihagain is very similar to the series of �nal steps in the proof of Lemma 2.5 in [BNS92℄.We repeat them for the sake of self-ontainment.205



Using the triangle inequality, the binomial theorem and noting that the numberof sequenes Y for whih |IY | = k is exatly (n
k

)
(2m−1 − 1)n−k, we get

|Sn|m ≤
n∑

k=0

(
n

k

)
(2m−1 − 1)n−k2n−k2kµk

d−1 = 2nm

(
1− 1− µd−1

2m−1

)n

. (7.9)Taking the mth root of both sides of (7.9), using the inequality (1 − x)1/m ≤

1− x/m if 0 ≤ x < 1 and m > 1 after rearranging, we obtain
1− µd ≥

1− µd−1

m2m−1
≥ 1− µ0(

m2m−1
)d . (7.10)Substituting β = 1 − µ0, one gets µd ≤ exp( − β
(m2m−1)d

). This immediatelyyields (7.6) in Lemma 7.7.Consider A = L−1
q (1) and B = L−1

q (0). For any a ∈ Zm and any polynomial Pover Zm, let P−1(a) be the subset of the ube where P evaluates to a. Then usingthe estimate on the mod-m polynomial disrepany of Lq, the following uniformityLemma gets easily established.Lemma 7.9 (Polynomial Uniformity Lemma) For any polynomial P of degree
d over Zm, a ∈ Zm and b ∈ {0, . . . , q − 1}, the following holds:
∣∣∣∣Pr

x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
− 1

q
Pr
x

[
P (x) ≡ a

]∣∣∣∣ ≤
q − 1

q
exp(− βn

(m2m−1)d

)
.Proof:

Pr
x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
= Ex

[(
1

q

q−1∑

β=0

eq

(
β(x1 + · · ·+ xn − b)

))
· 1P (x)≡a

]
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Expanding the sum inside the �rst multipliand and treating the ase of β = 0separately, the RHS above simpli�es to the following:
1

q
Ex

[
1P (x)≡a

]
+

1

q

∑

β 6=0

eq(−βb)Ex

[
eq

(
βLq

)
· 1P (x)≡a

]
.Identifying the �rst term above as just 1

q
Prx[P (x) ≡ a], we get the following

∣∣∣∣Pr
x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
− 1

q
Pr
x

[
P (x) ≡ a

]∣∣∣∣ ≤
1

q

∑

β 6=0

PdisP,a,β
m

(
Lq

)
.Plugging in the estimate from the Polynomial Disrepany Lemma �nishes the proof.Choose A = L−1

q (1) and B = L−1
q (0). The proof of Theorem 7.2 follows quiteeasily now using the Disriminator Lemma and the Polynomial Uniformity Lemmain exatly the same fashion as we derived Theorem 3.5 from the Linear UniformityLemma in Setion 3.2.5 of Chapter 3.
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CHAPTER 8ConlusionWe have explored the models of onstant-depth boolean iruits, `Number onthe Forehead' multiparty ommuniation protools and representation of booleanfuntions by multivariate polynomials over ommutative rings. While eah of themis fasinating in its own right, the three models are not unrelated. Indeed, it has beenknown for more than �fteen years that there are deep onnetions between them. Inthis thesis, we unravel fresh onnetions that we exploit ruially to make progress onquestions that naturally arise in eah model. For instane, in Chapter 3, our boundson the size of ACC0 iruits diretly results from bounds on degree in a new model ofpolynomial representation of boolean funtions. In Chapter 6, we utilize the notion ofthreshold and approximation degree of boolean funtions to make signi�ant progressin multiparty ommuniation omplexity. Finally in Chapter 7, we �nd a new kindof interplay between polynomials and ommuniation: ideas (as opposed to onreteresults) used in analyzing the ommuniation omplexity of a funtion are re-usablefor obtaining lower bounds on the degree needed by polynomials to approximateboolean funtions.The depth and rihness of these models are further suggested by the diversity ofthe mathematial tools employed to analyze them. For example, Chapter 3 makesheavy use of ideas from algebrai ombinatoris, probabilisti method, Fourier anal-ysis and exponential sums. Chapter 5 uses tools from error-orreting odes and208



Ramsey theory. Chapter 6 draws on approximation theory and linear programmingduality. Dually, the omputational view on lassial objets like polynomials raisesnew questions that are of independent mathematial interest: �how muh degree isneeded to represent a simple funtion like AND/MAJORITY/MODℓ in a naturalmodel of representation by polynomials?�. Suh questions are fundamental and thefat that polynomials have been under investigation for a long time, makes one feelthat they ought to have been answered. Yet, not only have they not been answered,making progress on them have required sophistiated arguments. In the �rst part ofChapter 3, we explored this theme. We de�ned a notion of representation by poly-nomials that generalizes earlier notions desribed in the literature. Proving lowerbounds on the degree of suh representations entailed a ombination of argumentsfrom the ombinatorial work of Tardos and Barrington [TB98℄ and the more alge-brai work of Green [Gre00℄. Further strong progress about these questions is verylikely to result in progress in mainstream mathematis.In this ontext, it is worthwhile to note that a new theory of low degree polyno-mials over �nite �elds is being developed, among others, by mathematiians Gowers[Gow01℄, Green1 and Tao [GT05, GT07℄. It is quite interesting to study the rela-tionship between the point of view on polynomials used in this thesis and the aboveworks whih draw motivation from additive ombinatoris. There already has beenexhange of ideas among the two points of view. For instane, Lovett, Meshulam1 Earlier, we referred to works by the omputer sientist Fred Green [Gre00,Gre99℄. The Green referred to here, is the ombinatorial number theorist Ben Green.209



and Samorodnitsky [LMS08℄ and independently Green and Tao [GT07℄, disprovedreently an important onjeture in additive ombinatoris, alled the Gowers In-verse Conjeture, using ideas from the work of Alon and Beigel [AB01℄. The work ofAlon and Beigel, on the other hand, was motivated by the question of determiningthe orrelation between low degree polynomials over Zm and MODℓ. Reall that thisquestion is explored in our work (in ontinuation of a long line of researh) in theseond part of Chapter 7. Indeed, the interation between the theory of omputationand pure mathematis is truly a two-way proess. The theory of low degree polyno-mials is a key area where further meaningful exhange between the two disiplines isvery likely to ontinue.While reahing the goal of proving strong lower bounds in the model of onstant-depth iruits with modular gates is still distant, our work suggests some intermediatesteps that should be attainable more easily. Let us outline a few suh steps. Ana-lyzing a single layer of MODm gates is an obvious diretion to pursue. In Chapter 3,we proved that a sublinear number of them at the base is too weak to ompute theMODℓ or AND funtion. This weakness is essentially information theoreti. In otherwords, C ◦MODm annot ompute suh funtions, no matter how powerful the ir-uit C is, if the MODm layer is sublinear in size. What bounds on the size of MODmlayer an be proved if we limit the power of C? If C is a single AND,OR or MAJgate, then our results (this is also known from the work of [KP94, Gre99℄) imply thatthe MODm layer must have exponential size for the iruit to ompute MODℓ. Onthe other hand, if C is a generalized MODm gate or an AC0 iruit of polynomialsize, no non-linear lower bounds are known on the size of the MODm layer. Making210



progress on this frontier should be within reah and is likely to shed new light onhow to approah more general iruits. We believe that the use of exponential sumsin analyzing iruits should be of further use here. While we have used exponentialsums on their own, an interesting diretion to pursue is to see if they an be ombinedwith existing tools to approximate AC0 iruits, for proving new lower bounds.Several areas in theoretial omputer siene, the theory of onstant-depth ir-uits in partiular, have immensely bene�tted from the study of the `Number on theForehead' model of multiparty ommuniation. Starting with the work of Håstadand Goldmann [HG91℄, other works like [Gro92, RW93℄ have used the strong lowerbounds of Babai, Nisan and Szegedy [BNS92℄ on the multiparty ommuniation om-plexity of a funtion to make progress in iruit omplexity. The tehnique of Babaiet.al. was the only known method for proving suh strong lower bounds. Before ourwork, it only yielded lower bounds for those funtions whose omputation involvedmodular ounting in one form or the other. Consequently, it ould not be diretlyapplied to yield bounds for a funtion in AC0. Building on the work of Sherstov[She07℄, we have reti�ed this problem in Chapter 6 to yield strong lower boundson the ommuniation omplexity of funtions in AC0. This has resulted in a newappliation to iruit omplexity: depth-three iruits omprising MAJ gates withsmall bottom fan-in annot e�iently ompute even funtions in AC0. This makesimportant progress in understanding the limitations of a natural sublass of TC0.The most powerful known appliation of the multiparty model to iruit om-plexity omes from proving lower bounds in the presene of a polylogarithmi number
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of players. Although this seems a distant goal, it is worth noting that analyzing si-multaneous protools is enough for this appliation. Our work suggests that newstruture an be disovered even analyzing suh protools for onstant number ofplayers. We initiated suh a study in Chapter 5 and disovered a surprising phe-nomenon. The presene of a neutral letter in a language takes away a lot of thepower of the multiparty model if the players are allowed to ommuniate onstantnumber of bits. This has been ruially used further in the work of Lautemann,Tesson and Thérien [LTT06℄. Does a similar phenomenon still our when moreommuniation is allowed? What an be said about the struture of languages thatan be reognized by randomized protools in onstant ommuniation? Investiga-tions of suh questions are likely to yield further insight into the model.In the seond part of Chapter 6, we made substantial progress in understandingthe ommuniation omplexity of the Disjointness funtion for a onstant number ofplayers. Apart from its appliation to other areas, this generated an important newtehnique for the multiparty model: the Generalized Disrepany Method. Our teh-nique has been improved very reently by the interesting work of Beame and Huynh-Ngo [BHN08℄. However, even their improvement, does not yield better bounds forDisjointness for onstant number of players. Our bound for Disjointness is not knownto be tight even for three players. It remains interesting to determine if linear lowerbounds ontinue to hold for Disjointness with a onstant number of players. On adi�erent note, Disjointness is an example of a funtion with low non-deterministiommuniation omplexity but high randomized ommuniation omplexity. Can we
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exhibit an expliit funtion that has the reverse property? This is a natural ques-tion regarding the relationship between randomness and non-determinism. Further,making progress on the question, almost surely, will generate new tehniques as allknown ones for the multiparty model end up proving lower bounds for randomizedprotools.
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