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Abstract

We illustrate the role of information theoretic ideas in combinatorial problems,
some of them arising in computer science. We also consider the problem of covering
graphs using other graphs, and show how information theoretic ideas are applied
to this setting. Our treatment of graph covering problems naturally motivates two
(already known) definitions of Körner’s graph entropy.

Keywords: Shannon entropy, counting problems, covering problems, graph entropy.

Contents:

Introduction
Sorting
Organization of the article

Entropy
Counting problems

Brégman’s thoerem
Shearer’s lemma

Covering problems
Hansel’s theorem
The Fredman-Komlós bound
Content of a graph

Körner’s graph entropy
Two definitions of graph entropy
Properties of graph entropy

Remarks

∗This paper appeared in the IIT Kharagpur, Golden Jubilee Volume, on Computational Mathematics,
Modelling and Algorithms (Ed. JC Mishra), Narosa Publishers, New Delhi, 2001.

1



Credits
Acknowledgements

References

1 Introduction

Information theoretic ideas underlie several combinatorial arguments. This is not sur-
prising, because in these arguments, one typically establishes a correspondence between
elements a of a set A, whose size one wishes to determine, and elements b of another set B,
whose size is known in advance. In other words, one shows how one can encode elements
of one set using elements of another. This is an information theoretic argument: one can
uniquely determine the element a from its encoding b. Let us consider an example.

1.1 Sorting

Suppose we are given a sequence 〈a1, a2, . . . , an〉 of distinct natural numbers. We wish
to compare these numbers, two at a time, and reorder them as 〈a′1, a′2, . . . , a′n〉 such that
a′1 < a′2 < · · · < a′n.

The sorting problem: How many comparisons must we make in the worst case?

The combinatorial argument: Fix a strategy for sorting. Suppose it makes t compar-
isons in the worst case. We wish to obtain a lower bound for t. Each comparison has two
possible outcomes, which we encode as 0 and 1. Thus, with each of the n! permutations
we can associated a unique string of 0’s and 1’s of lenght t. (If the algorithm stops before
making t comparisons, just let the remaining bits of the string to be 0’s.) The crucial
observation for us is this: once the outcomes of all the comparisons are known, the final
permutation is uniquely determined. Thus, a strategy for sorting using at most t compar-
isons implicitly gives us a procedure for uniquely encoding the n! permutations using 0-1
strings of length t. For this to be feasible, we must have 2t ≥ n!, that is, t ≥ log n!. (All
logarithms in this paper have base 2.)

This is just a counting argument. Let us try to make explicit the information theoretic
reasoning underlying it. The informal arguments is as follows. Since there are n! permu-
tations, one needs at least log n! bits of information to describe a permutation. On the
other hand, each comparison gives us at most one bit of information. The results of these
comparisons together allow us to identify the permutation uniquely. So, to collect log n!
bits of information we make log n! comparisons.

The counting argument above is straight forward, whereas the information theoretic
argument is rather vague. This vagueness can be removed by formalising the argument
using the notion of entropy. In the next section, we will discuss this notion briefly. We will
then return to the problem of sorting and give a formal information theoretic proof. This
formalisation will be rather contrived, containing hardly any new insight beyond what is
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there in the counting argument above. However, in later examples entropy will play a more
crucial role. For example, consider the following puzzle.

Suppose n distinct points in R3 have n1 distinct projections on the XY-plane,
n2 distinct projections on the XZ-plane and n3 distinct projections on the YZ-
plane. Then, n2 ≤ n1n2n3.

We will see later how the notion of entropy provides a rather simple and natural solution.

Organisation of this article

In the next section, we recall Shannon’s definition of entropy and describe some its prop-
erties. In Section 1.1, we give examples of some counting problems (including the puzzle
above) where entropy can be applied fruitfully. In Section 3.2, we study entropy in the
context of graph covering problems. A useful tool in this study is graph entropy discov-
ered by Körner [18]. In fact, there are several equivalent definitions of graph entropy. We
will see that two of these definitions can be derived naturally from our combinatorial and
information theoretic analysis of graph covering problems.

We assume that the reader is familiar with elementary probability: random variables,
conditioning, expectations, Jensen’s inequality. Many of our applications are for graphs.
We assume that the reader is familiar with the definitions of graphs: vertices, edges, degree,
independent sets, chromatic number.

2 Entropy

The entropy of a random variable X with finite range is

H[X]
def
= −

∑
x∈range[X]

Pr[X = x] log2 Pr[X = x].

H[X] measures the amount of uncertainty in X, or the amount of information obtained
when X is revealed. This formula is due to Shannon, who arrived at it while studying
information transmission; one can also derive this formula from axioms that a measure of
information is supposed to satisfy (see Khinchin [16]). Renyi [30] compares the pragmatic
and axiomatic approaches to entropy, and discusses other ways of measuring the informa-
tion in a random variable. To learn more about entropy and information theory see the
texts by Csiszár and Körner [7], and Cover and Thomas [6]. For our purposes, it will be
enough to keep the following intuitive picture in mind. There are two parties A and B.
At some later point in time, A and B will be separated by a large distance. The value
of the random variable X, will be revealed to A, who must then describe it to B. To
minimise the cost of communication, A and B fix a encoding (using 0-1 strings) of the
possible values that X can take. Roughly speaking, H[X] is the average number of bits A
must communicate to convey to B the value of X, under the best encoding.
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The conditional entropy of X given Y , measures the average uncertainty in X, after
the value of Y has been revealed; it is given by

H[X | Y ]
def
= E

Y
[H[XY ]],

where for y ∈ range[Y ], Xy is a random variable taking values in range(X), such that

Pr[Xy = x] = Pr[X = x | Y = y].

Facts about entropy: The following equalities follow immediately from the definitions.

H[XY ] = H[X] +H[Y | X];

H[XY | Z] = H[X | Z] +H[Y | XZ].

We will also need the following facts, which follow from Jensen’s inequality: for a concave
function f , E[f(X)] ≤ f(E[X]), and if f is strictly concave, equality holds if and only if X
is constant.

H[X] ≥ H[X | f(Y )] ≥ H[X | Y ] ≥ 0 for any function f ;

H[X] ≤ log2 | range[X]| (with equality iff X is uniformly distributed).

Notation: From now on, when we write log we mean log2. Also, [n] stands for the set
{1, 2, . . . , n}, and for a set U ,

(
U
r

)
is the set of all subsets of U of size r.

3 Counting problems

Let us now state the lower bound for sorting using the notation of entropy. Let X be a
random permutation of [n] chosen with uniform distribution. Then,

H[X] = lg n.

Let Y1, Y2, . . . , Yt be the outcome of the t comparisons performed when the actual or-
dering of the input is given by X. Thus, Y1, Y2, . . . , Yt are random variables dependent
on X. On the other hand, since we can recover X from Y1, Y2, . . . , Yt, it follows that
X = f(Y1, Y2, . . . , Yt), for some f . Thus,

lg n! ≤ H[f(Y1, Y2, . . . , Yt)]

≤ H[Y1, Y2, . . . , Yt]

≤
t∑
i=1

H[Yi]

≤ t.
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3.1 Brégman’s theorem

For this application, we need to recall some definitions from graph theory. A bipartite
graph is a graph where the vertex set can be partitioned into sets A and B, such that all
edges go between A and B. A matching in a graph is a set of pairwise disjoint edges; a
perfect matching is a matching where every vertex of the graph has an edge incident on it.
For a vertex v of a graph, d(v) denotes the degree of v, that is, the number of edges of G
incident on v.

Theorem 1 (Brégman [3]) Let G = (A,B,E) be a bipartite graph with |A|, |B| = n.
Then, the number of perfect matchings in G is at most∏

v∈A

(d(v)!)1/d(v).

First, it is obvious that the number of perfect matching is at most
∏

v∈A d(v). Let
us justify this using entropy: let Σ be the set of perfect matchings; let σ be a random
element of Σ chosen with uniform distribution. Then H[σ] = log |Σ|. On the other hand,
σ ≡ (σ(v) : v ∈ A). Fix an ordering v1, v2, . . . , vn for the vertices of A. We have

log |Σ| = H[σ] = H[σ(v1)] +H[σ(v2) | σ(v1)] + · · ·+H[σ(vn) | σ(v1) . . . σ(vn−1)] (1)

≤ H[σ(v1)] +H[σ(v2)] + · · ·+H[σ(vn)]

≤ log d(v1) + log d(v2) + · · ·+ log d(vn)

= log
∏
v∈A

d(v).

To improve this, we need to obtain better upper bounds for the right hand side of (1).
For instance, consider the term H[σ(vi) | σ(v1)σ(v2) . . . σ(vi−1)], which measures the un-
certainty in σ(vi) after σ(v1), σ(v2), . . . , σ(vi−1) have been revealed. We have used log d(v)
as an upper bound for this, ignoring any restrictions imposed on the number of possibil-
ities because σ(v1), σ(v2), . . . , σ(vi−1) are known. Now we wish to take this into account.
Observe that σ(vi) 6∈ {σ(v1), σ(v2), . . . , σ(vi−1)}; thus, the number of possibilities for σ(vi)
is not d(vi) but at most |N(vi)− {σ(v1), σ(v2), . . . , σ(vi−1)}|. To exploit this observation,
pick a random permutation, τ : [n] → A and examine σ in the order determined by τ .
That is, we replace (1) by

H[σ] = H[σ(τ(1))] +H[σ(τ(2)) | σ(τ(1))] + . . .+H[σ(τ(n)) | σ(τ(1)) . . . σ(τ(n− 1))]. (2)

Informal argument: How many possibilities remain for σ(v), when vertex v is con-
sidered in the above order, that is, after σ(τ(j)) has been revealed for all j ∈ J =
{1, 2 . . . , τ−1(v) − 1}? Fix a σ. Then, as we consider τ at random, it is equally likely
that |N(v)− σ(J)| is 1, 2, . . . , d(i). Thus, our examination of σ(v) has d(v) equally likely
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cases, where the kth case is |N(v) − σ(J)| = k. Thus, the average uncertainty in σ(v) is
at most

1

d(v)

d(v)∑
k=1

log k = log(d(v)!)1/d(v).

We then conclude from (2) that

H[σ] ≤
∑
v∈A

log(d(v)!)1/d(v).

Exercise: Make this argument precise. Hint: (2) implies

H[σ] = E
τ
[H[σ(τ(1))] +H[σ(τ(2)) | σ(τ(1))] + . . .+H[σ(τ(n)) | σ(τ(1)) . . . σ(τ(n− 1))]].

3.2 Shearer’s lemma

We now return to the puzzle stated at the end of the introduction.

Suppose n distinct points in R3 have n1 distinct projections on the XY-plane,
n2 distinct projections on the XZ-plane and n3 distinct projections on the YZ-
plane. Then,

n2 ≤ n1n2n3. (3)

Let P = (A,B,C) be one of the n points picked at random with uniform distribution.

Then, P1
def
= (A,B), P2

def
= (A,C) and P3

def
= (B,C) are its three projections. We have,

H[P ] = H[A] + H[B | A] + H[C | AB];
H[P1] = H[A] + H[B | A] ;
H[P2] = H[A] + H[C | A];
H[P3] = H[B] + H[C | B].

By adding the last three equations and comparing the result with the first (using H[C |
AB] ≤ H[C | A], H[C | B] and H[B | A] ≤ H[B]]), we obtain, 2H[P ] ≤ H[P1] +H[P2] +
H[P3]. This implies (3) because H[P ] = log n and H[Pi] ≤ log ni.

Lemma 1 (Shearer [4]) Let X = (X1, X2, . . . , Xn) be a random variable and A = {Ai}i∈I
be a collection of subsets of [n], such that each element of [n] appears in at least k members
of A. For A ⊆ [n], let XA = (Xj : j ∈ A). Then,∑

i∈I

H[XAi
] ≥ kH[X]. (4)
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Proof: We have

H[X] =
n∑
j=1

H[Xj | (X` : ` < j)]

and H[XAi
] =

∑
j∈Ai

H[Xj | (X` : ` ∈ Ai, ` < j)]. (5)

We add (5) for all i = 1, 2, . . . , n. Since each j ∈ [n] appears in at least k Ai’s, in the
resulting equation, there are k terms of the form H[Xj | ∗] on the right hand side. Now,
(4) follows from this because H[Xj | (X` : ` < j)] ≤ H[Xj | (X` : ` ∈ Ai, ` < j)].

Corollary 1 Let F and A = {Ai}i∈I be a collection of subsets of [n], such that each
element of [n] appears in at least r members of A. For i ∈ I, let Fi = {f ∩ Ai : f ∈ F}.
Then, ∏

i∈I

|Fi| ≥ |F|r.

Example: Counting intersecting graphs

Theorem 2 (Chung, Frankl, Graham and Shearer [4]) Suppose G is a family of graphs

with vertex set [n] such that for all G,G′ ∈ G, G∩G′ contains a triangle. Then, |G| < 2(n
2)−2.

Note: This improves |G| ≤ 2(n
2)−1, which follows from G ∩G′ 6= ∅.

Proof: Let m =
(
n
2

)
. For S ∈

(
[n]

bn/2c

)
, let AS be the graph on [n] with edges

(
S
2

)
∪

(
[n]−S

2

)
.

Then, G ∩G′ ∩ AS 6= ∅, for G,G′ ∈ G and S ∈
(

[n]
n/2

)
. It follows that

|{G ∩ AS : G ∈ G}| ≤ 2|AS |−1.

Let m′ = |AS|. Then, each edge in
(
[n]
2

)
appears in m′/m of the graphs AS. We conclude

from the corollary above that

|G|
m′
m ( n

bn/2c) ≤ (2m
′−1)(

n
bn/2c)

i.e. |G| ≤ 2m− m
m′ .

Example: Embedding graphs

For a graph H, let N(H, `) be the maximum number of copies of H that appear in a graph
with ` edges.

Suppose H is the 3-star and G is the `-star. Then the number of copies of H in G is
`(`− 1)(`− 2). Clearly, this is the best possible. Suppose H is the triangle and G = K√

2`.

Then, the number of copies of H in G is 6
(√

2`
3

)
. To see that this is the best possible (up
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to constant factors), note that the number of copies of H that map a fixed vertex of the
triangle to a vertex i of G is at most min{d2

i , 2`} ≤ di
√

2`. Hence the total number of
copies of H in G is at most

∑
i di
√

2` ≤ 2
√

2(
√
`)3.

Suppose H is 3-star attached to a triangle and G is K√
`+1 attached to a (`/2)-star.

Then, the number of copies of H in G is at least 12
(
`/2
3

)(√
`

2

)
∼ `4

4
.

Goal: Determine the exponent of ` in N(H, `).

Background on fractional independent sets and fractional covers: Let H be a
graph. I ⊆ V (H) is independent if |e ∩ I| ≤ 1 for all e ∈ E(H).

α(H) = max{|I| : I is independent}.

To define the fractional version of α, consider functions ϕ : V (H) → [0, 1] such that
∀e

∑
v∈e φ(v) ≤ 1, and let size(ϕ) =

∑
v∈V (H) ϕ(v). Then,

α∗(H) = max
ϕ

size(ϕ).

Note α∗ ≥ α.
We say that A ⊆ E(H) is a cover if

⋃
A = V .

ρ(H) = min{|A| : A is a cover of H}.

For the fractional version, consider ψ : E → [0, 1] such that ∀v
∑

e:v∈e ψ(e) ≥ 1 and let
size(ψ) =

∑
e ψ(e). Then,

ρ∗(H) = min
ψ

size(ψ).

Fact 1 ∀H ρ∗(H) = α∗(H).

Proof: This follows from the duality theorem of linear programming (see e.g. [5, page 54])

Theorem 3 (Friedgut and Kahn [1, 9]) ∀H ∃c1, c2 such that

∀` : c1`
ρ∗(H) ≤ N(H, `) ≤ c2`

ρ∗(H). (6)

Proof: Let σ : V (H) → V (G) be an embedding of H in G. We identify σ with (σ(v) :
v ∈ V (H)). Let ψ : E(H) → [0, 1] be the function realizing ρ∗. We may assume that
ψ(e) = n(e)/s, for some non-negative integers n(e) and positive integer s. Let e1, e2, . . . , ek
be a list of edges of H, where edge e ∈ E(H) appears n(e) times. Each vertex of H appears
in at least s edges in the list. Let σ be chosen at random with uniform distribution from
the set of all embeddings, Σ, of H in G. By Shearer’s lemma, we have

sH[σ] ≤
k∑
i=1

H[σei
].
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Note that H[σ] = log |Σ| and H[σei
] ≤ log 2`. Thus,

s log |Σ| ≤ log(2`)×
∑
e∈E

n(e);

that is,
|Σ| ≤ (2`)

P
e n(e)/s ≤ (2`)ρ

∗(H).

This establishes the second inequality in (6).
For the first inequality, we use Fact 1 stated above. Let φ : V → [0, 1] be the fractional

independent set in H of size α∗. Suppose H has k vertices and m edges. Let G be
a k-partite graph with vertex sets (Vv : v ∈ V (H)) with |V (v)| =

⌊
(`/m)φ(v)

⌋
. Let

E(G) = {{i, j} : i ∈ Vv ∧ j ∈ Vw ∧ {v, w} ∈ E(H)}.

Example: Counting independent sets in regular bipartite graphs

Theorem 4 (Kahn and Lawrenz [14]) Let G = (A,B,E) be an n-regular bipartite
graph with |A| = |B| = m. Then, the number of independent sets in G is at most
(2n+1 − 1)m/n.

Proof: Let I(G) be the set of independent sets of G. Let I be a random element of
I(G) chosen with uniform distribution. Then, H[I] = log |I(G)|. We identify I with its
characteristic vector (Xv : v ∈ A ∪B). Then,

H[I] = H[XA | XB] +H[XB]

≤
∑
v∈A

H[Xv | XB] +
1

n

∑
v∈A

H[XN(v)] (by Shearer’s lemma)

≤
∑
v∈A

(H[Xv | XN(v)] +
1

n
H[XN(v)]). (7)

Fix v ∈ A. Let

χv =

{
0 if XN(v) = 0
1 otherwise

,

and let p
def
= Pr[χv = 0]. Then,

H[Xv | XN(v)] ≤ H[Xv | χv] (actually, this is an equality)

≤ p. (8)

Also,

H[XN(v)] = H[XN(v)χv]

= H[χv] +H[XN(v) | χv]
≤ H(p) + (1− p) log(2n − 1). (9)
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Combining (8) and (9) with (7), we get

H[I] ≤
∑
v∈A

(p+
1

n
[H(p) + (1− p) log(2n − 1)].) (10)

The function f(p)
def
= p + 1

n
[H(p) + (1 − p) log(2n − 1)] is convex and has derivative 1 +

1
n
(log 1−p

p
− log(2n− 1)). The maximum is, therefore, attained when p = 2n/(2n+1− 1) and

f(p) = 1
n

log(2n+1 − 1). Thus, (10) implies log |I(G)| = H[I] ≤ m
n

log(2n+1 − 1).

4 Covering problems

Proposition 1 Suppose G1, G2, . . . , Gt are bipartite graphs with vertex set [n], such that
G1 ∪G2 ∪ . . . ∪Gt = Kn. Then, t ≥ log n.

This can be justified by comparing the chromatic numbers of the two sides: χ(Gi) ≤ 1,
χ(Kn) = n, and the chromatic number of the union of two graphs is at most the product
of their chromatic numbers. Let us state this argument in the language of entropy.

Let Gi(Ai, Bi, Ei). Pick v ∈ [n] at random, and let χi be the indicator variable
for the event ‘v ∈ Ai’.

χi =

{
0 if v ∈ Ai
1 if v ∈ Bi

.

Then, v is completely determined once the χi’s are known.

0 = H[v | (χi : i ∈ [t])] = H[v (χi : i ∈ [t])]−H[(χi : i ∈ [t])]

≥ H[v]−
t∑
i=1

H[χi]

≥ log n− t.

That is, when v is picked at random, the bipartite graph Gi gives at most one bit of
information about v in the form of χi(v), yet all the χi’s together determine v. Since, v
has log n bits of information, t must be at least log n. Now, consider an extension of this
argument. Suppose Gi has many isolated vertices: let size(Gi) be the number of non-
isolated vertices in Gi. Then, it seems reasonable to bound the information provided by Gi

by size(Gi)/n instead of 1. We then expect the following strengthening of Proposition 1.

Theorem 5 (Hansel [11]) Let G1, G2, . . . , Gt be as in Proposition 1. Then,

1

n

t∑
i=1

size(Gi) ≥ log n.
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Proof: The entropy based proof of Proposition 1 can be modified to yield this claim, in
an even stronger form. We shall present the stronger form with its entropy based proof
later. To justify Theorem 5, we will give a counting argument, due to Hansel [11] (see also
Katona and Szemerédi [15], and Nilli [24]), which we state in the language of probability.

Let the set of non-isolated vertices of Gi be Âi ∪ B̂i. For each i, randomly choose one
of Âi and B̂i, and delete all its vertices from [n]. Clearly, in the end at most one vertex
of [n] can survive. On the other hand, Pr[v survives] = 2−mv , where mv is the number of
bipartite graphs Gi where v appears non-isolated. By linearity of expectation,∑

v∈[n]

2−mv ≤ 1.

Since the arithmetic mean is at least the geometric mean,

n2−
P

v∈[n]mv/n ≥ 1,

that is, 1
n

∑
v∈[n]mv ≥ log n. Our assertion follows from this because

∑
v∈[n]

mv =
t∑
i=1

size(Gi).

1

Exercise:

1. What if the the union of the Gi’s is not the complete graph, but a graph whose
independent sets have size at most α? Using Hansel’s proof show that the inequality
holds in this case with the log n on the right hand side replaced by log(n/α).

2. Now assume that the Gi’s are k-partite graphs. Show that the right hand side can
be replaced by (log n)/(log k).

Example: The Fredman-Komlós bound

We now consider the generalisation of Proposition 1 to r-uniform hypergraphs. Let Kn(r)
be the complete r-uniform hypergraph on n vertices, (V = [n], E =

(
[n]
r

)
). An r-uniform

hypergraph is r-partite if V (H) can be partitioned as V1, V2, . . . , Vr such that |e ∩ Vi| = 1,
∀e ∈ E(H) and ∀i ∈ [r].

Suppose Kn(r) is the union of r-partite hypergraphs H1, H2, . . . , Ht. How big must t
be? An r-partite hypergraph on [n] has at most (n

r
)r edges; hence

t ≥
(
n
r

)
(n
r
)r
−→ exp(r)√

2πr
. (11)

1In fact, Hansel proved more. See the remarks at the end of the article.
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Also, if H is an r-partite hypergraph, then it has an independent set (containing no edges)
of size r−1

r
|V (H)|. Thus, n( r−1

r
)t ≤ r − 1. Therefore,

t ≥ log n− log(r − 1)

log r − log(r − 1)
−→ r ln(

n

r − 1
). (12)

The lower bound (11) gives an exponential dependence on r; on the other hand, (12) gives
a logarithmic dependence on n.

Exercise: Show that for each r, for all large n, there exist O(
√
r exp(r) log n) r-partite

hypergraphs whose union is Kn(r). Hint: pick the r-partite hypergraphs at random.

Fredman and Komlós combined the two lower bounds shown above, and showed that
the upper bound in the above exercise is close to optimal.

Theorem 6 Let H1, H2, . . . , Ht be r-partite r-uniform hypergraphs such that H1 ∪ H2 ∪
. . . Ht = Kn(r). Then,

t ≥
(
n
r−2

)
(n− r + 2) log(n− r + 2)

2(n
r
)r−1

(
r
2

) −→ exp(r)

r
√

2πr
log n.

Proof: With each r-uniform hypergraph H, we associate a graph G(H):

V (G(H)) = {(S, i) : S ∈
(

[n]

r − 2

)
and i ∈ [n]− S};

E(G(H)) = {{(S, i), (S, j)} : S ∪ {i, j} ∈ E(H)}.

Then the assumption of the theorem implies,
⋃
iG(Hi) = G(Kn(r)). Now, G(Kn(r))

consists of
(
n
r−2

)
components, one for each S ∈

(
[n]
r−2

)
; each component is a complete graph

on n− r + 2 vertices. On the other hand, the contribution of G(Hi) to such a component
is a bipartite graph. By Proposition 1, the total number of bipartite graphs needed to
produce all the components is at least

(
n
r

)
log(n − r + 2). Also, one Hi has a non-empty

contribution in at most (n
r
)r−2

(
r
2

)
components. Thus,

t ≥
(
n
r

)
log(n− r + 2)

(n
r
)r−2

(
r
2

) −→ exp(r)

r2
√

2πr
log n,

which is less than the bound in the theorem by a factor r/2. To get the bound in the
theorem, we consider the size of the contribution of the Hi instead of just their number.
That is, we use Theorem 5 instead of Proposition 1.

By Theorem 5, the sum of the sizes of all the contributions to all the components must
be at least

(
n
r−2

)
(n− r+ 2) log(n− r+ 2). On the other hand, one can show that the sum

of the sizes of the contributions of one Hi is at most 2(n
r
)r−1

(
r
2

)
. It follows that

2

(
r

2

) (n
r

)r−1

× t ≥
(

n

r − 2

)
(n− r + 2) log(n− r + 2).

12



This theorem has its roots in computer science; it arises in the study of hashing, a
method widely used to store efficiently.

Let U = [n] and let f : U → [k]. We say that a subset S of U is perfectly
hashed by f if f is one-to-one on S (that is, there are no collisions). We say
that a family F of functions from U to [k] is a (k, r)-family of perfect hash
functions if for every subset S of U of size r, there is a fucntions f in F that
perfectly hashes S. Such a family provides a means for storing subsets of size r
in tables with k cells. We wish to determine the minimum size of a (k, r)-family
of perfect hash functions for a universe of size n.

The following exercise is just a translation of this problem in the language of hypergraphs.
This is a slight generalization of Theorem 6, and one can apply the same method.

Exercise: Let H1, H2, . . . , Ht be k-partite r-uniform hypergraphs such that H1 ∪ H2 ∪
. . . Ht = Kn(r). Then,

t ≥
(
n
r−2

)
(n− r + 2) log(n− r + 2)

(k − r + 2)(n
k
)r−1

(
k
r−2

)
log(k − r + 2)

. (13)

Fredman and Komlós, however, proved (13) without appealing to Theorem 5. Instead,
they used a functional on graphs, which they called its content, and proved an inequality
on the content of a union of graphs. Their notion of content and their inequality (inequality
(18) below) can, in fact, be derived by refining Hansel’s proof. It can also be obtained from
an information theoretic proof of Hansel’s theorem due to Pippenger [25]. To illustrate
Pippenger’s method, we will use it to derive the inequality of Fredman and Komlós.

Let G1, G2, . . . , Gt be graphs with vertex set [n], such that

G1 ∪G2 ∪ . . . ∪Gt = Kn.

Let χi be a colouring of Gi. The argument we are about to present resembles the entropy
based proof of Proposition 1. Let X be a random element of [n]. For i = 1, 2, . . . , t, define
Yi as follows:

Yi
def
=

{
χi(X) if X is non-isolated in Gi

χ(Zi) if X is isolated in Gi.
,

where Zi is a random (uniformly chosen, independent of X and other Zi’s) non-isolated
vertex of Gi. We then have

0 = H[X | Y1Y2 . . . Yt] (14)

= H[XY1 . . . Yt]−H[Y1 . . . Yt]

= H[X] +H[Y1 . . . Yt | X]−H[Y1 . . . Yt] (15)

≥ log n+H[Y1 . . . Yt | X]−
t∑
i=1

H[Yi] (16)

13



Now, Y1, Y2, . . . , Yt are independent when conditioned on X (e.g. Pr[Y1 = y1 ∧ Y2 = y2 |
X = x] = Pr[Y1 = y1 | X = x] × Pr[Y2 = y2 | X = x].) Hence, H[Y1Y2 . . . Yt | X] =∑t

i=1H[Yi | X]. Thus, (16) implies

t∑
i=1

H[Yi]−H[Yi | X] ≥ log n.

Furthermore, it follows from the definition of conditional entropy, that

H[Yi | X] =

(
1− size(Gi)

n

)
H[Yi].

Hence, we have
t∑
i=1

H[Yi]
size(Gi)

n
≥ log n. (17)

Definition 1 For a graph G on [n], let χ̂ be the colouring of the non-isolated vertices of
G such that H[χ̂(Z)] is minimum, where Z is a randomly chosen non-isolated vertex of G.
Then,

content(G)
def
=

size(G)

n
H[χ̂(Z)].

Inequality (17) can now be restated using content.

Theorem 7 If G1, G2, . . . , Gt are graphs on vertex set [n] such that G1∪G2∪. . .∪Gt = Kn,
then

t∑
i=1

content(Gi) ≥ log n.

Exercise: Strengthen the above theorem to the following: if G1∪G2∪ . . .∪Gt = G, then

t∑
i=1

content(Gi) ≥ log

(
n

α(G)

)
. (18)

Example: Scrambling permutations

Theorem 8 [10] Let S be a set of permutations of [n] such that for each triple (i, j, k) of
distinct elements of [n], there is a permutation π ∈ S such that either π(i) < π(j) < π(k)
or π(k) < π(j) < π(i). Then,

|S| ≥ (
2

log e
) log n.

14



Proof: With each permutation π ∈ S, we associate a graph G(π):

V (G(π)) = {(i, j) : i, j ∈ [n], i 6= j};
E(G(π)) = {{(i, j), (k, j)} : π(i) < π(j) < π(k) or π(k) < π(j) < π(k)}.

The graph G∗ =
⋃
π∈S G(π) consists of n components, each a clique on n− 1 vertices. One

G(π), on the other hand, contributes n−2 complete bipartite graphs to these cliques. The
sum of the contents of these bipartite graphs is precisely

n−2∑
i=1

H

(
i

n− 1

)
≤ (n− 1)

∫ 1

0

H(p)dp =

(
log e

2

)
(n− 1).

[Exercise: Verify the first inequality.] Thus, the sum of the contents of all the bipartite
graphs contributed by the G(π)’s, π ∈ S, put together is at most |S| · ( log e

2
)(n − 1). By

Theorem 7, this quantity must be at least n log(n−1). Hence, |S| ≥ ( 2
log e

)( n
n−1

) log(n−1) ≥
( 2

log e
) log n.

5 Körner’s graph entropy

The arguments above are based on the inequalities relating the content of graphs to
some property of their union. We can extract even more from the proof of these inequalities.
This will lead us to a notion of entropy of a graph G, denoted by H(G), where we can will
be able to write

t∑
i=1

H(Gi) ≥ H(
t⋃
i=1

Gi).

The inequalities derived earlier will then become special cases of this new inequality. In fact,
we will arrive at two competing definitions for H(G), one from the proof of Theorem 7 and
another from the proof the combinatorial proof of Theorem 5. These seemingly different
definitions will turn out to be equivalent!
The first definition of graph entropy (H̃(G)): Why was (14) in the proof of The-
orem 7 justified? Because, two different vertices cannot be independent in all Gi’s. The
main point, therefore, is that Yi represents an independent set of Gi containing X; that Yi
arose from a colouring of Gi is not significant. Let us, then restate Pippenger’s argument
keeping only what is needed.

For each v ∈ V and each i, let Di,v be a distribution on independent sets of
Gi containing the vertex v. Now, pick X at random and let Yi be a random
independent set chosen according to Di,X . Inequality (17) now becomes

t∑
i=1

H[Yi]−H[Yi | Xi] ≥ log n;

i.e.
t∑
i=1

I[X, Yi] ≥ log n.
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[For random variables (X,Y ) with some joint distribution, I[X, Y ] stands for
mutual information of X and Y :

I[X, Y ]
def
= H[X] +H[Y ]−H[XY ].

]

This motivates the following definition.

Definition 2 H̃(G) = min I(X, Y ), where (X, Y ) range over pairs of random
variables (with some joint distribution) such that

1. X takes values in V (G) with uniform distribution;

2. Y takes values in the set of independent sets of G;

3. Pr[X ∈ Y ] = 1.

Proposition 2 1.
t⋃
i=1

Gi = G⇒
t∑
i=1

H̃[Gi] ≥ log

(
n

α(G)

)
.

2. H̃(G) ≤ content(G).

3. H̃(G) ≥ log

(
n

α(G)

)
.

The second definition of graph entropy (Ĥ(G)): We arrived at the definition of
H̃(G) by refining Pippenger’s proof of Theorem 7; the key idea was that we allowed in-
dependent sets associated with a vertex of a graph to be chosen without recourse to an
underlying colouring of the graph. We will now use this idea and refine Hansel’s proof of
Theorem 5.

For i = 1, 2, . . . , t, let Yi (independent for each i) be a random variable taking
values as independent sets in Gi. For i = 1, 2, . . . , t, delete all vertices outside
Yi from [n]. As before,

1 ≥
∑
v∈[n]

Pr[v ∈
t⋂
i=1

Yi]

=
∑
v∈[n]

t∏
i=1

Pr[v ∈ Yi]

≥ n
∏
v∈n

t∏
i=1

Pr[v ∈ Yi]1/n.

That is,
t∑
i=1

−
∑
v∈[n]

1

n
log Pr[v ∈ Yi] ≥ log n.

This motivates the following definition.
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Definition 3 Let A(G) be the set of independent sets of G. Let Ĥ(G) be the
minimum value attained by

−
∑

v∈V (G)

1

|V (G)|
log Pr[v ∈ Y ]

as Y varies over all random variables that take values in the set of independent
sets of G.

Proposition 3 1.
t⋃
i=1

Gi = G⇒
t∑
i=1

Ĥ[Gi] ≥ log

(
n

α(G)

)
.

2. Ĥ(G) ≤ content(G).

3. Ĥ(G) ≥ log

(
n

α(G)

)
.

5.1 Equivalence of the two definitions

H̃(G) and Ĥ(G) are two equivalent definitions of Körner’s notion of graph entropy. We
now prove that they are equivalent; after that, we will use H(G) to refer to this quantity.

Theorem 9 H̃(G) = Ĥ(G).

Proof: The proof will have two parts: first we show H̃(G) ≥ Ĥ(G); then we show H̃(G) ≤
Ĥ(G). For the first inequality, we take a pair of random variables X, Y appearing in the
minimisation in the definition of H̃ and produce a random variable Y suitable for the
definition Ĥ. For the second inequality, we do the reverse. That is, starting from the
random variable Z from the definition of Ĥ, we construct a pair of random variables X, Y
suitable in the minimisation in the definition of H̃. We need a few preliminary observations.

Specifying the random variables X, Y in Definition 2 is equivalent to specifying the
different probabilities

piJ
def
= Pr[X = i ∧ Y = J ],

where i is a vertex and J an independent set of G. (In this proof, i will range over vertices
of G and J over independent sets of G, when their ranges are not explicitly mentioned.)
Condition (2) of the Definition 2 is equivalent to saying ‘piJ = 0 whenever i 6∈ J ’. Let

pi
def
=

∑
J

piJ = Pr[X = i];

pJ
def
=

∑
i

piJ = Pr[Y = J ].

17



By condition (1) of Definition 2, pi = 1
n
. Now,

H[X] = −
∑
i

pi log pi = −
∑
iJ

piJ log pi;

H[X | Y ] = −
∑
i

pi
∑
J

piJ
pi

log
piJ
pi

;

hence, I[X,Y ] = −
∑

i,J :piJ>0

piJ log
pipJ
piJ

.

Using these formulas for H[X], HX | Y ] and I[X, Y ], we can now complete our proof.

H̃(G) ≥ Ĥ(G): We have

I[X,Y ] = −
∑

i,J :piJ>0

piJ log
pipJ
piJ

= −
∑
i

pi
∑

J :piJ>0

piJ
pi

log
pipJ
piJ

≥ −
∑
i

pi log
∑

J :piJ>0

piJ (by Jensen’s inequality)

= −
∑
i

1

n
log Pr[i ∈ Y ].

It follows that

H̃(G) = min
(X,Y )

I[X, Y ] ≥ min
Y
− 1

n

∑
i

Pr[i ∈ Y ] = Ĥ(G).

H̃(G) ≤ Ĥ(G): Let a ∈ VP (G) be the point where the minimum in Definition 3 is
attained. Because a is in the interior of Rn

+, ai > 0. Let Z be the random variable

taking values as independent sets of G for which Pr[i ∈ Z] = ai; let qJ
def
= Pr[Z = J ].

We will now specify random variables (X, Y ) satisfying the conditions in Definition 2 by
specifying the values piJ . We already know (by condition (1)) that pi = Pr[X = i] = 1

n
.

Let Pr[Y = J | X = i] = qJ
ai

for J containing i and 0 for other J ’s. That is,

piJ =

{ piqJ
ai

if i ∈ J
0 otherwise

.

Then,

H̃(G) ≤ I[X, Y ] = −
∑

i,J :piJ>0

piJ log
pipJ
piqJ/ai

= −
∑

i,J :piJ>0

piJ log
aipJ
qJ
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= −
∑
iJ

piJ log ai −
∑

i,J :piJ>0

piJ log
pJ
qJ

= − 1

n

∑
i

log ai +
∑

J :piJ>0

pJ log
qJ
pJ

≤ − 1

n

∑
i

log ai + log
∑
J :pJ>0

qJ

≤ Ĥ(G).

Remark: It follows from the first part of the above proof that for the Y realizing the
minimum in Definition 2, Pr[Y = J ] is non-zero only if J is a maximal independent set.
However, the distribution of Y is not uniquely determined (e.g. consider K2,2).

5.2 Properties of graph entropy

In this section, we shall see some basic properties of graph entropy.

Theorem 10 (Monotonicity) Graph entropy is monotone i.e. if F ⊆ G are graphs on
V where containment is as sets of edges, then H(F ) ≤ H(G).

Proof: Let Y be the random variable taking values in independent sets of G, which
attains the minimum in the definition of entropy. Since an independent set in G is also an
independent set in F , we have

H(F ) ≤ −1

n

∑
v∈V

log Pr[v ∈ Y ] = H(G)

Theorem 11 (Subadditivity) Graph entropy is subadditive i.e. for any two graphs F,G
on the same set V of vertices,

H(F
⋃

G) ≤ H(F ) +H(G)

Here F ∪ G) denotes the graph with vertex set V whose edge set is the union of the edge
sets of F and G.

Proof: Let Y1, Y2 be random variables taking values in independent sets of F,G respec-
tively, which attain the minimum in the definition of entropy. We can assume that Y1, Y2
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are independent. Also note that Y1 ∩ Y2 is a random variable taking values in independent
sets of F ∪G. Hence we have

H(F ) +H(G) = − 1

n

∑
v∈V

log Pr[v ∈ Y1]−
1

n

∑
v∈V

log Pr[v ∈ Y2]

= − 1

n

∑
v∈V

log(Pr[v ∈ Y1] Pr[v ∈ Y2])

= − 1

n

∑
v∈V

log Pr[v ∈ Y1 ∩ Y2]

≥ H(F ∪G)

Theorem 12 (Additivity of disconnected components) If F and G are graphs on
disjoint sets of vertices and F ]G is the graph whose vertex and edge sets are the disjoint
unions of the vertex and edge sets of F and G, then

H(F ]G) =
|F |

|F |+ |G|
H(F ) +

|G|
|F |+ |G|

H(G)

Here |F |, |G| denote the number of vertices in F,G respectively.

Proof: We first show that the left hand side is greater than or equal to the right hand
side. Let Y be a random variable taking values in the independent sets of F ] G, which
achieves the minimum in the definition of entropy. Y ∩F and Y ∩G are random variables
taking values in the independent sets of F and G respectively. Now

H(F ]G) = − 1

|F |+ |G|
∑

v∈F]G

log Pr[v ∈ Y ]

= − 1

|F |+ |G|
∑
v∈F

log Pr[v ∈ Y ∩ F ]− 1

|F |+ |G|
∑
v∈G

log Pr[v ∈ Y ∩G]

≥ |F |
|F |+ |G|

H(F ) +
|G|

|F |+ |G|
H(G)

We now show that the left hand side is less than or equal to the right hand side. Let
Y1, Y2 be random variables taking values in the independent sets of F,G respectively, which
achieve the minimum in the definition of entropy. Then Y1

⋃
Y2 is a random variable taking

values in the independent sets of F ]G. Now

H(F ]G) ≤ − 1

|F |+ |G|
∑

v∈F]G

log Pr[v ∈ Y1

⋃
Y2]

= − 1

|F |+ |G|
∑
v∈F

log Pr[v ∈ Y1]−
1

|F |+ |G|
∑
v∈G

log Pr[v ∈ Y2]

=
|F |

|F |+ |G|
H(F ) +

|G|
|F |+ |G|

H(G)
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Exercise: Show that the entropy of the empty graph is zero. Also show that if G is not
empty, then H(G) > 0. (Hint: Use monotonicity and additivity).

Exercise: Show that the entropy of the complete graph is log n.

Exercise: Show that the entropy of a bipartite graph is at most 1.

6 Remarks

Counting problems: A short proof for Brégman’s Theorem (Minc’s conjecture) was
found by Schrijver [31]. Spencer [34] (see also Alon and Spencer [2]) described Schrijver’s
argument using a randomised algorithm; Radhakrishnan [29] stated this argument in the
language of entropy.

Usually, Corollary 1 is called Shearer’s Lemma. The version above (Lemma 1) was
stated explicitly by Kahn [12], with the remark that the original entropy based proof
actually implies this stronger form. The proof given above is due to Llewellyn and Rad-
hakrishnan [22].

Theorem 3 was proved by Alon [1] using a different method. The proof given above,
due to Friedgut and Kahn [9], works for hypergraphs as well, although we have stated it
only for graphs. In fact, for the special case of graphs, Kahn and Friedgut give another
proof using harmonic analysis.

Kahn [12] generalises Theorem 4, using essentially the same ideas, to graded posets.
This gives a simple proof of the following theorem of Klietman and Markowsky [17]: the
number of antichains in the poset of subsets of an n-element set is

2(1+O((logm)/
√
m))( m

bm/2c).

Covering problems: Hansel’s elegant argument appeared in the context of computing
Boolean functions [11].

A monotone contact network is an undirected graph with two distinguished
vertices s and t. Each edge is labelled by a Boolean variable xi, i = 1, 2, . . . , n.
What is the minimum number of edges in a monotone contact network such
that there is an (s, t)-path of all 1s iff at least two variables are set to 1? Take
a random (s, t)-cut in this graph. Then, clearly, the number of variables ‘going
across’ the cut is at least n − 1. If variable xi appears ni times, then the
probability that it goes across the cut is at most 1 − 2−ni . By linearity of
expectation

n∑
i=1

(1− 2−ni) ≥ n− 1.

It follows that
∑n

i=1 ni ≥ n log n; hence, the contact network has at least n log n
edges.
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A similar result in the context of Boolean formulas was proved by Krichevskii [21].
The Fredman-Komlós bound was proved for a family of perfect hash functions. They

considered the following question: What is the smallest family of hash function from [n] to
[k] so that every set r sized subset of [n] is perfectly hashed by some hash function in the
family. They showed that the right hand side of (13) is a lower bound on the size of such a
family. Subsequently, their bounds were rederived using graph entropy by Körner [19] and
improved by Körner and Marton [20]. Nilli [24] derives the bound of Körner and Marton
using elementary arguments (similar to those used in the proof of Theorem 5 above).

The original proof (see [10]) of Füredi’s theorem on scrambling permutations used en-
tropy directly without appealing to the Fredman-Komlós inequality. Füredi also considered
a generalisation of the problem.

Call a family F of an n-element underlying set P completely k-scrambling if for
every sequence 〈p1, p2, . . . , pk〉 of k distinct elements of P there is a permutation
π ∈ F with

π(p1) < π(p2) < · · · < π(pk).

Determine N∗(n, k), the size of the smallest completely k-scrambling family.

It is known that

1

2
(k − 1)! log n < N∗(n, k) <

k

log(k!/(k!− 1))
log n.

(The first inequality was shown by Füredi, the second by Hajnal and Spencer [33].) Note
that N∗(n, k) ≥ k!, so Füredi’s lower bound is interesting only when k is much smaller
than log n. Using the Fredman-Komlós inequality, one can improve Füredi’s lower bound
to (

2

log e

) (
n

2n− k + 1

)
(k − 1)! log(n− k + 2).

(See [26] for details.)

Graph entropy: Graph entropy was defined by Körner [18] in 1973, in connection with a
problem in coding theory, where he showed that his definition was equivalent to the defini-
tion of Ĥ(G) above. Our second definition, H̃(G) and the proof that it is equivalent to the
earlier definitions are taken from Csiszár, Körner, Lováasz, Marton and Simonyi [8]. How-
ever, it does not seem to have been observed before that these definitions arise naturally
from previous works on graph covering. Graph entropy has been applied to several prob-
lems: lower bounds on the size of families of perfect hash functions [19, 20], lower bounds
for Boolean formula size [23, 27, 28], algorithms for sorting partially ordered sets [13] and
characterising perfect graphs [8]. Simonyi [32] gives a survey of graph entropy and its
various application.
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