Last tíme

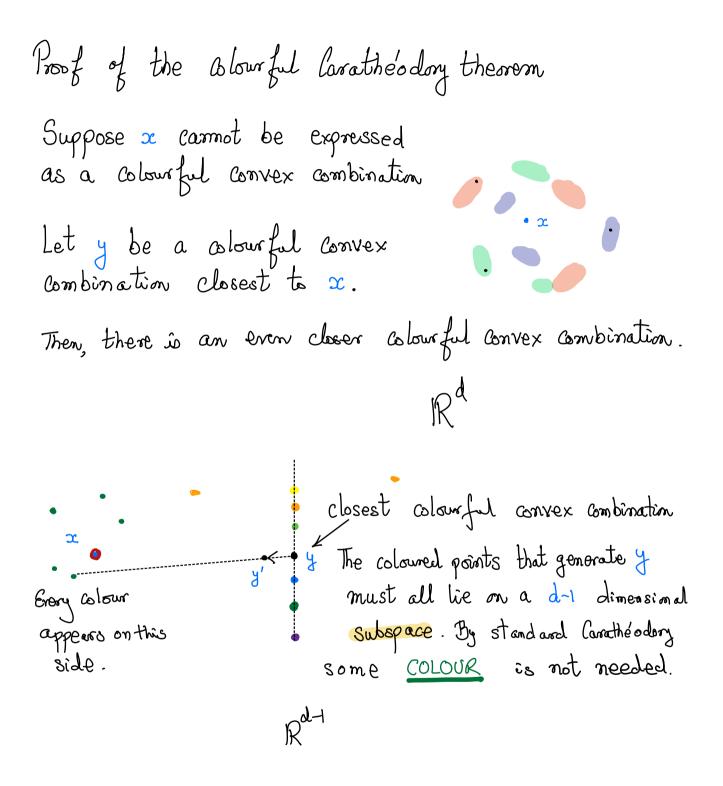
Decomposition of polyhedra Radon's theorem Tverberg's theorem Colourful Caratheodory theorem

Uniqueness of decomposition • l' is unique, and is called P = Q + Cthe characteristic cone politope come (or recession come of P). • Q is not uniquely determined P by P. y>1 • (0,1) 0 $ff A \times \leq b$ defines - not unique! P then Axso defines C. So it is unique. 0 Q is uniquely determined if C is pointed. contains no linear subspace other thran {o}.

Theorem: Every polyhedron P has a unique minimal
representation of the form

$$P = (anv.h.ll(\{\alpha_1, \alpha_2, ..., \alpha_r\}) + lone(\{\alpha_1, \alpha_2, ..., \alpha_r\}) + linespace(P)$$

(where
• $\alpha_1, \alpha_2, ..., \alpha_r, \ \alpha_1, \alpha_2, ..., \alpha_r$ are orthogonal to linespace(P)
• $\alpha_1, \alpha_2, ..., \alpha_r$ are unique, ker (A).
and
• $\mathcal{Y}_1, \mathcal{Y}_2, ..., \mathcal{Y}_r$ are unique up to multiplication by
a posive constant.
Colourful Carathéodory Theorem
 $S_1, S_2, ..., S_{d+1} = \mathbb{R}^d$
 $\alpha \in Conv(S_1) \cap Conv(S_2) \cap ... \cap Conv(S_{d+1})$
 $\mathcal{Y}_1 \in S_1, \ \alpha_2 \in S_2, ..., \ \alpha_{d+1} \in S_{d+1}$
 $st. \ \alpha \in Conv(\{\alpha_3, \alpha_2, ..., \alpha_{d+1}\})$



The ellipsoid method

(1) To find an optimal solution of the 2P
 maximize C^T× Subject to A×≤b, ×≥0
 it is enough to find a solution to the system
 A×≤b, ×≥o, A^ty>c, y≥o, Cx≥b^Ty

(2) To find a solution to a system Ax=b, x20, it is enough to be able to determine if such systems have a solution. (Repeatedly drop a variable and see of the system is still feasible. The resulting system has a unique solution.)

Ellípsoíds

Consider the unit ball in \mathbb{R}^n centered at 0. $\mathbb{B}(0,1) = \left\{ x \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 \leq 1 \right\}$ $= \left\{ x \in \mathbb{R}^n : x^T x \leq 1 \right\}$ $\overline{A}^1(y-c)$

Let
$$A \in \mathbb{R}$$
 be a non-singular matrix, $C \in \mathbb{R}^n$
lonsider the affine transformation $x \mapsto Ax + c$
The image of the ball under thus transformation
is
 $\{Y: Y = Ax + c \text{ and } x \in B(o, 1)\}$
 $= \{Y: (Y - c)^T (A^T)^T A^T (Y - c) \leq 1\}$
symmetric, positive definite
Such an object is alled an ellipsoid.
D is positive definite
 T
 $D = \mathbb{R}^T \mathbb{B}$ for some non-singular matrix \mathbb{B}
 $x^T D \propto > 0$ for all $x \neq 0$.
So an ellipsoid centered at c is a set of the form
 $\mathbb{C}(C, D) = \{x \in \mathbb{R}^n: (x - c)^T D^T (x - c) \leq 1\}$
D positive definite $\Rightarrow \{D \text{ has an orthonormal basis of eigenvectors} \\
All eigen values of D are positive.$

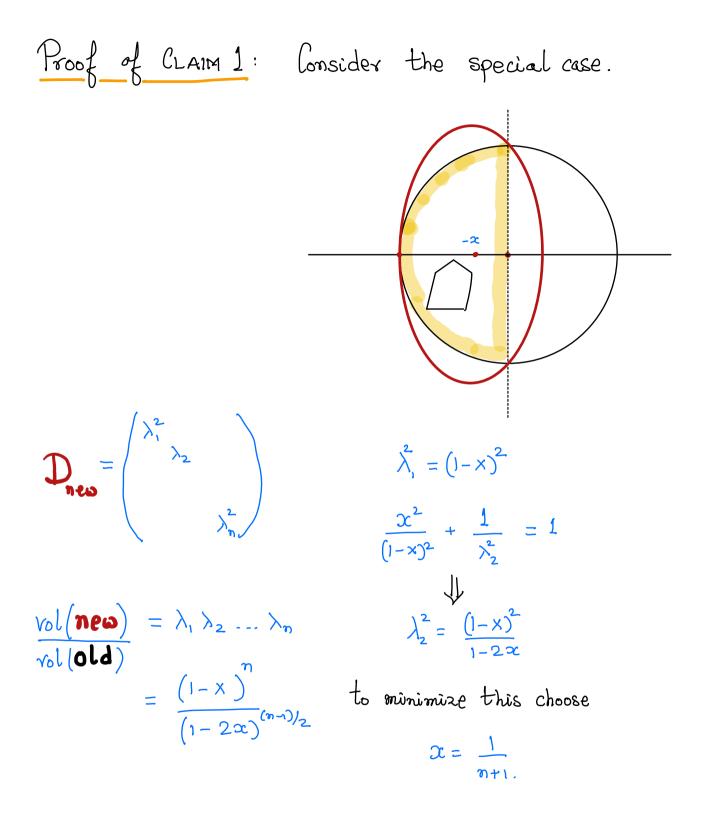
The outline

Assume: (i) The polyhedron $P := \{x : A \times \leq b\}$ is ACR^{mxn} bounded and full-dimensional. b CR^{mx} (i) Calculations can be done precisely. Let $y = 4n^2\varphi$, where φ is the maximum size (2) bits) of the matrix $\begin{bmatrix} A & B \end{bmatrix}$.

Fact: Each vertex of P has size at most V. Initial radius: $R = 2^{V}$ $P \subseteq B(0, R)$

Khachian: Determine a sequence of ellipsoids $E_0, E_1, E_2, ..., E_{0,...}$ s.t. $P \subseteq E_i$ $B(0, R) = E(Z_0, D_0)$ $R^2 I$

Iteration: Suppose
$$Z_i$$
 and D_i have been found
such that
 $P \subseteq E(Z_i, D_i)$
• If $Z_i \in P$, we have found a feasible solution. STOP.
• If $Z_i \notin P$, then it violates an inequality of the
form $a^T x \leq \beta$ in $A x \leq b$.
• Locate such an inequality
 $a^T x = \beta_i$
 $a^T x = \beta_i$
 $a^T x = \beta_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = a^T z_i$
 $a^T x = a^T z_i$
 $a^T x = \beta_i$
 $a^T x = a^T z_i$
 $a^T x = a^T z_i$



$$F_{00} \quad x = \frac{1}{n+1}, \quad \frac{V_0 \lfloor (ne\omega)}{V_0 \lfloor (old) \rangle} = \frac{\binom{n}{m+1}}{\binom{(n-1)}{(n-1)/2}}$$

$$= \left(\frac{n}{n+1}\right) \left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}}$$

$$\leq \left(1 - \frac{1}{n+1}\right) \left(1 + \frac{1}{n^2-1}\right)^{\frac{n-1}{2}} \leq \exp\left(-\frac{1}{n+1}\right) \exp\left(\frac{n-1}{2(n+1)}\right)$$

$$= \exp\left(\frac{-1}{2(n+1)}\right)$$

