Algorithms: Assignment sheet 3

Due date: December 11, 2020

1. Let T be a minimum spanning tree of a graph G, and let L be the sorted list of the edge
weights of T. Show that for any other minimum spanning tree 7" of G, the list L is also the
sorted list of edge weights of T”.

2. Boruvka’s algorithm. Assume all edge weights are distinct in an undirected connected graph
G = (V,E) on m edges and n vertices. Consider the following step: we simultaneously
contract the minimum weight edge incident on every vertex.

(a) Show that this step can be performed in O(m) time.
(b) Show that the resulting graph has at most n/2 vertices.

(c) Show that the MST of G is the union of the edges marked for contraction and the edges
of the MST of the resulting graph.

3. Euclid’s ged algorithm takes two numbers a and b such that a > b > 0, and determines their
gcd by computing the following sequence starting with rg = @ and r; = b.

r9 = 79 mod 1 qo =19 div 1 (0<ry<ry)
rg3 = 171 mod 7o g3 =11 div 1o (0 <73 <rg)
rE = rp—g mod rp_1 qr =Tk divrg_1 (0 <71 <7TE_1)

The sequence r; is strictly decreasing, implying that the algorithm terminates in a finite
number of stages. Termination occurs when ry_; mod r, = 0 (that is, ry divides rg_1).

(i) Show that r, = ged(a,b).
(ii) Show that this is a polynomial time algorithm.

(iii) Let F), be the nth Fibonacci number. Show that the worst case for Euclid’s algorithm
is when a and b are consecutive Fibonacci numbers. If a = Fj,;1 and b = F,,, then the
number of stages k equals n. Noting that F,, ~ ¢"/v/5, where ¢ is the golden ratio
1.618..., prove that the running time of this algorithm is polynomial in the lengths of a
and b.

(iv) Show that for all a > b > 0, there exist integers x and y such that
ged(a, b) = ax + by.

Moreover, x and y can be computed in polynomial time.



. This problem deals with an efficient technique for verifying matrix multiplication. The fastest
known algorithm for multiplying two n x n matrices runs in O(n*) time, where w ~ 2.37.
This is significantly faster than the obvious O(n?) algorithm but this O(n“) algorithm has
the disadvantage of being extremely complicated. Suppose we are given an implementation of
this algorithm and would like to verify its correctness. Since program verification is a difficult
task, a reasonable goal might be to verify the correctness of the output produced on specific
executions of the algorithm. In other words, given n X n matrices A, B, and C with entries
from rational numbers, we would like to verify that AB = C. Note that here we want to use
the fact that we do not have to compute C'; rather, our task is to verify that the product is
indeed C. Give an O(n?) time randomized algorithm for this problem with error probability
at most 1/2.

[Hint: Choose a random vector r € {0,1}" (each entry in r is chosen independently and
uniformly at random from {0,1}) and proceed.]

. (i) We choose a number a € {1,...,n — 1} uniformly at random in Miller-Rabin algorithm.
How do we perform this step in O(poly(logn)) time?

(ii) For any integer n, show that the set Z} = {k : 1 < k < n and gcd(k,n) = 1} forms a
group under the operation *,, i.e., multiplication modulo n.

. Let n be a non-Carmichael odd composite number. Consider the Miller-Rabin algorithm on
input n. Show that with probability > 3/4, (one invocation of) this algorithm returns the
answer “composite”.

. We have seen an efficient Monte Carlo algorithm for testing if a given number is prime. In
several applications (for example, the RSA crypto scheme), it is necessary to pick large prime
numbers at random. Suggest an efficient Monte Carlo algorithm for generating a random
©(logn) bit length prime.

[Hint: For any m, the probability that a random integer in {1,...,m} is prime ~ 1/lnm.]

. Design a randomized polynomial time algorithm for determining a non-trivial factor of n,
given a composite number n and ¢(n). That is, the running time of your algorithm should
be poly(logn) and with probability > 3/4, it should return a factor of n.

Hint: Pick an a € {1,...,n — 1} uniformly at random. The non-trivial case is when a € Z.
Use the idea for Carmichael numbers in Miller-Rabin algorithm.

. Consider the online edge colouring problem where the vertex set V' of the graph is fixed and
the edges in the graph are presented to you in an online manner, one after another. As each
edge e is specified, your algorithm must assign this edge e a colour and this colour of e cannot
be changed henceforth. While the offline edge colouring of G knows all the edges of E while
deciding on their colours, the online edge colouring algorithm has to decide on the colour of
each edge e without any knowledge of the future edges. Design a 2-competitive algorithm for
the online edge colouring problem.



10. Assume that renting skis costs Rs.100 per day and buying skis costs Rs.1000. Everyday you
have to decide whether you will continue to rent skis for one more day, or buy a pair of
skis. The online adversary, during the course of some unknown future day D, will change the
weather and stop the skiing season. You would like to minimize the cost of skiing.

If you knew the day D in advance, then you would buy skis at the start if 1000 < D - 100,
else you would rent skis everyday for D days. This is what the optimal offline algorithm will
do. However you do not know the day D in advance; design a 2-competitive online algorithm
for this problem. Show that every deterministic online algorithm for the ski-rental problem
is 2-competitive.



