Automata on Infinite Words

Automata: Theory and Practice

Paritosh K. Pandya
(TIFR, Mumbai, India)

Graduate Course University of Trento
10-24 May 2005
Modelling Infinite Behaviours

Reactive systems

- Control programs, circuits, operating systems, network protocols.
- Infinite computation involving multiple agents
- Nondeterminism and scheduling
- Fairness constraints
Mutual Exclusion Problem

Initialise $y := 1$

- Asynchronous parallelism
- Guarded assignments.
Properties

- **Mutual exclusion**: In any execution, the system will not reach a state where both processes are in critical region.
- In any execution, process 1 will eventually enter critical region.

Global State: \[pc_1, pc_2, y \]

An Execution:

\[
\begin{align*}
N,N,1 & \rightarrow N,T,1 & \rightarrow N,T,1 & \rightarrow T,T,1 & \rightarrow T,C,0 & \rightarrow T,N,1 & \rightarrow \ldots
\end{align*}
\]
Global transition system

Global State: pc_1, pc_2, y
Theory of omega Automata

Topics:

- Buchi Automata: Deterministic and Nondeterministic
- Omega Regular Expressions, Monadic Logic
- Muller Automata
- Rabin and Streett Automata
- Safra’s Complementation Theorem (Optional)
- Omega Tree Automata and Rabin’s Tree Theorem (Optional)
Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence $a_0, a_1, a_2 \ldots$

Formally, $\alpha : \mathbb{N} \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^ω.
Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence $a_0, a_1, a_2 \ldots$

 Formally, $\alpha : \mathbb{N} \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^ω.

- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^\omega$.

Example: All words over $\{a, b\}$ with infinitely many a.
Infinite Word Languages

Modelling infinite computations of reactive systems.

- An ω-word α over Σ is infinite sequence

 $$a_0, a_1, a_2 \ldots$$

 Formally, $\alpha : \mathbb{N} \rightarrow \Sigma$. The set of all infinite words is denoted by Σ^ω.

- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^\omega$.

 Example All words over $\{a, b\}$ with infinitely many a.

Notation

omega words $\alpha, \beta, \gamma \in \Sigma^\omega$.

omega-languages $L, L_1 \subseteq \Sigma^\omega$

For $u \in \Sigma^+$, let $u^\omega = u.u.u \ldots$
We consider automaton runs over infinite words. Let $\alpha = aabbb...$. There are several possible runs.

Run $\rho_1 = s_1, s_1, s_1, s_1, s_1, s_2, s_2, ...$

Run $\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1, s_1, ...$

Acceptance Conditions Buchi, Muller, Rabin, Streett. Acceptance is based on infinitely often occurring states.

Notation Let $\rho \in S^\omega$. Then,

$$\text{Inf}(\rho) = \{ s \in S \mid \exists \infty i \in \mathbb{N}. \rho(i) = s \}.$$
Buchi Automata

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$
where $F \subseteq Q$ is the set of accepting states.
Buchi Automata

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

A run ρ of A on omega word α is infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.
Buchi Automata

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

- The run ρ is accepting if $\text{Inf}(\rho) \cap F \neq \emptyset$.
Buchi Automata

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

- The run ρ is accepting if

$$\text{Inf}(\rho) \cap F \neq \emptyset.$$

- Language accepted by A

$$L(A) = \{ \alpha \in \Sigma^* \mid A \text{ has an accepting run on } \alpha \}$$

- Languages accepted by NFA are called ω-regular languages.
Buchi Automata

Nondeterministic Buchi Automaton $A = (Q, \Sigma, \delta, I, F)$ where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.
- The run ρ is accepting if $Inf(\rho) \cap F \neq \emptyset$.
- Language accepted by A $L(A) = \{ \alpha \in \Sigma^* \mid A \text{ has an accepting run on } \alpha \}$
- Languages accepted by NFA are called ω-regular languages.

A Deterministic Buchi Automaton has transition function $\delta : Q \times \Sigma \to Q$ and unique initial state $I = \{q_0\}$.
Buchi Automaton Example

Let $\Sigma = \{a, b\}$.
Let Deterministic Buchi Automaton (DBA) A_1 be

With $F = \{s_1\}$ the automaton recognises
Let $\Sigma = \{a, b\}$. Let Deterministic Buchi Automaton (DBA) A_1 be

With $F = \{s_1\}$ the automaton recognises words with infinitely many a.
Buchi Automaton Example

Let $\Sigma = \{a, b\}$.
Let Deterministic Buchi Automaton (DBA) A_1 be

![Diagram of a Buchi Automaton]

- With $F = \{s_1\}$ the automaton recognises words with infinitely many a.
- With $F = \{s_2\}$ the automaton recognises words with infinitely many b.
Buchi Automaton Example 2

Let Nondeterministic Buchi Automaton (NBA) A_2 be

With $F = \{s_2\}$, automaton A_2 recognises
Let Nondeterministic Buchi Automaton (NBA) A_2 be

\[a, b \]

With $F = \{ s_2 \}$, automaton A_2 recognises words with finitely many a. Thus, $L(A_2) = \overline{L(A_1)}$.

\[b \]

\[s_1 \]

\[s_2 \]
Limit Languages Let $U \subseteq \Sigma^*$. Then,

$$\text{lim}(U) \overset{\text{def}}{=} \{ \alpha \in \Sigma^\omega \mid \exists \infty i \in \mathbb{N}. \alpha[0 : i] \in U \}.$$
Example: $\text{lim}((ab)^*) = \{(ab)^\omega\}$.
Limit Languages Let $U \subseteq \Sigma^*$. Then,

$$\text{lim}(U) \overset{\text{def}}{=} \{ \alpha \in \Sigma^\omega \mid \exists \in \mathbb{N}. \alpha[0 : i] \in U \}.$$

Example: $\text{lim}((ab)^*) = \{(ab)\omega\}$.

Theorem $L \subseteq \Sigma^\omega$ is DBA recognisable iff L has the form $\text{lim}(U)$ for some regular language $U \subseteq \Sigma^*$.

Proof Method Relate the languages of DFA for U with DBA for L.

Trento'2005 – p. 12/31
Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^*$. Then,

$$\text{lim}(U) \overset{\text{def}}{=} \{ \alpha \in \Sigma^\omega \mid \exists \infty i \in \mathbb{N}. \alpha[0 : i] \in U \}.$$

Example: $\text{lim}((ab)^*) = \{(ab)^\omega\}$.

Theorem $L \subseteq \Sigma^\omega$ is DBA recognisable iff L has the form $\text{lim}(U)$ for some regular language $U \subseteq \Sigma^*$.

Proof Method Relate the languages of DFA for U with DBA for L.

Claim Language $L(A_2)$ of words with finitely many a is not of form $\text{lim}(U)$ for any regular U.
Deterministic Buchi Automata

Limit Languages Let $U \subseteq \Sigma^*$. Then,

$$\lim(U) \overset{\text{def}}{=} \{ \alpha \in \Sigma^\omega \mid \exists \infty i \in \mathbb{N}. \alpha[0 : i] \in U \}.$$

Example: $\lim((ab)^*) = \{(ab)^\omega\}$.

Theorem $L \subseteq \Sigma^\omega$ is DBA recognisable iff L has the form $\lim(U)$ for some regular language $U \subseteq \Sigma^*$.

Proof Method Relate the languages of DFA for U with DBA for L.

Claim Language $L(A_2)$ of words with finitely many a is not of form $\lim(U)$ for any regular U.

Corollary DBA are strictly less powerful than NBA.
Closure Properties

Theorem (Union) For NBA A_1, A_2 we can effectively construct an NBA A s.t. $L(A) = L(A_1) \cup L(A_2)$. The size $|A| = |A_1| + |A_2|$

Construction Take disjoint union of A_1 and A_2.

Theorem (Intersection) For NBA A_1, A_2 we can effectively construct NBA A s.t. $L(A) = L(A_1) \cap L(A_2)$. The size $|A| = |A_1| \times |A_2| \times 2$.

Proof Method Construct product automaton.
Example: Product of NBA

Consider the run on $\alpha = baa (bbaaa) (bbaaa) (bbaaa)$.

Positions of final states of two automata.

$$\alpha = ||baa (b|ba|aa)^\omega.$$

Does not visit final states simultaneously. But belongs to intersection.
Example: Product of NBA

Consider the run on \(\alpha = baa (bbaaa) (bbaaa) (bbaaa) \ldots \)

Positions of final states of two automata.
\[
\alpha = ||baa (b|ba|aa)^\omega .
\]

Does not visit final states simultaneously. But belongs to intersection.

Solution Each component final state must be visited infinitely often, but not necessarily simultaneously.
Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$. Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$ where

$$Q = Q_1 \times Q_2 \times \{1, 2\}, \quad I = I_1 \times I_2 \times \{1\}, \quad F = F_1 \times Q_2 \times \{1\}.$$

$< p, q, 1 > \xrightarrow{a} < p', q', 1 >$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \notin F_1$.

$< p, q, 1 > \xrightarrow{a} < p', q', 2 >$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \in F_1$.

$< p, q, 2 > \xrightarrow{a} < p', q', 2 >$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \notin F_2$.

$< p, q, 2 > \xrightarrow{a} < p', q', 1 >$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \in F_2$.

Theorem $L(A_1 \times A_2) = L(A_1) \cap L(A_2)$.

Closure Properties (2)

Theorem (projection) For NBA A_1 over Σ_1 and surjection $h : \Sigma_1 \to \Sigma_2$, we can construct A_2 over Σ_2 s.t. $L(A_2) = h(L(A_1))$.

Construction Substitute label a by $h(a)$ in each transition. This can turn DBA into NBA.
Closure Properties (2)

Theorem (projection) For NBA A_1 over Σ_1 and surjection $h : \Sigma_1 \to \Sigma_2$, we can construct A_2 over Σ_2 s.t. $L(A_2) = h(L(A_1))$.

Construction Substitute label a by $h(a)$ in each transition. This can turn DBA into NBA.

Theorem (complementation) [Safra, MacNaughten] For NBA A_1 we can construct NBA A_2 such that $L(A_2) = \overline{L(A_1)}$. Size $|A_2| = O(2^n \log n)$ where $|A_1| = n$.
Decision Problems

Emptiness For NBA A, it is decidable whether $L(A) = \emptyset$.

Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- A MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $L(A) = \emptyset$ iff $N \cap I = \emptyset$.

Time Complexity: $O(|Q| + |\delta|)$.
Decision Problems

Emptiness For NBA A, it is decidable whether $L(A) = \emptyset$.

Method

- Find maximal strongly connected components (SCC) in graph of A disregarding the edge labels.
- A MSC Component C is called non-trivial if $C \cap F \neq \emptyset$ and C has at least one edge.
- Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $L(A) = \emptyset$ iff $N \cap I = \emptyset$.

Time Complexity: $O(|Q| + |\delta|)$.

Omega Regular Expressions

Define $U^ω = \{u_0.u_1 \ldots | u_i \in U\}$. Define $U.L = \{u.α | u \in U, α \in L\}$.

A language is called $ω$-regular if it has the form $\bigcup_{i=1}^{n} U_i.(V_i)^ω$ where U_i, V_i are regular languages.

Theorem A language L is $ω$-regular iff it is NBA recognisable.

Proof (\Rightarrow) Let A be NBA for L. Then,

$$L = \bigcup_{i \in I, f \in F} (α_{i,f}^Q) \cdot (α_{f,f}^Q)^ω.$$

Lemma Let U be regular and L, L_i be NBA recognizable. Then $U \cdot L$ is NBA recognizable. $U^ω$ is NBA recognizable. $\bigcup_{0 \leq i \leq n} L_i$ is NBA recognizable.
Variety of Acceptance Conditions

Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.

Let $FT = < F_1, F_2, \ldots, F_k >$ with $F_i \subseteq Q$.

A Generalised Buchi Automaton is (A, FT) where FT is as above.
Variety of Acceptance Conditions

Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.

Let $FT = < F_1, F_2, \ldots, F_k >$ with $F_i \subseteq Q$.

A **Generalised Buchi Automaton** is (A, FT) where FT is as above.

A run ρ of A is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.
Consider Automaton Graph $AG = (Q, \Sigma, \delta, I)$. A Buchi automaton is a pair (A, F) where $F \subseteq Q$.
Let $FT = \langle F_1, F_2, \ldots, F_k \rangle$ with $F_i \subseteq Q$.

A Generalised Buchi Automaton is (A, FT) where FT is as above.

A run ρ of A is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem For every Generalised Buchi Automaton (A, FT) we can construct a language equivalent Buchi Automaton (A', G').

Construction Let $Q' = Q \times \{1, \ldots, k\}$. Automaton remains in i phase till it visits a state in F_i. Then, it moves to $i + 1$ mode. After phase k it moves to phase 1.
Simulating GBA by BA

Let GBA \(A = (Q, \Sigma, \delta, I) \) with \(FT = (F_1, \ldots, F_k) \). Then we construct the BA \(A' = (Q', \Sigma, \delta', I', F') \) where

\[
Q' = Q \times \{1, \ldots, k\}.
\]

\[
I' = I \times \{1\}.
\]

\[
F' = F \times \{1\}.
\]
Simulating GBA by BA

Let GBA \(A = (Q, \Sigma, \delta, I) \) with \(FT = (F_1, \ldots, F_k) \). Then we construct the BA \(A' = (Q', \Sigma, \delta', I', F') \) where
\[
Q' = Q \times \{1, \ldots, k\},
\]
\[
I' = I \times \{1\},
\]
\[
F' = F \times \{1\}.
\]

The transition relation is:

- \(<p, i> \xrightarrow{a} <q, i> \iff p \xrightarrow{a} p' \text{ and } p \not\in F_i.\)
- \(<p, i> \xrightarrow{a} <q, j> \iff p \xrightarrow{a} q \text{ and } p \in F_i\)
 where \(j = i + 1\) if \(i < k\) and \(j = 1\) otherwise.
Simulating GBA by BA

Let GBA $A = (Q, \Sigma, \delta, I)$ with $FT = (F_1, \ldots, F_k)$. Then we construct the BA $A' = (Q', \Sigma, \delta', I', F')$ where

$Q' = Q \times \{1, \ldots, k\}$.

$I' = I \times \{1\}$.

$F' = F \times \{1\}$.

The transition relation is:

1. $< p, i > \xrightarrow{a} < q, i >$ iff $p \xrightarrow{a} p'$ and $p \notin F_i$.

2. $< p, i > \xrightarrow{a} < q, j >$ iff $p \xrightarrow{a} q$ and $p \in F_i$
 where $j = i + 1$ if $i < k$ and $j = 1$ otherwise.

Lemma $L(A) = L(A')$. Size $|A'| = |A| \times k$.

Trento'2005 – p. 20/31
A **Muller** automaton is \((A, FT)\). A run \(\rho\) of \(A\) is Muller-accepting if \(\text{Inf}(\rho) \in FT\).

Example Deterministic Muller automaton \(A_1\) recognises:
- for \(FT = \langle \{s_1\}, \{s_1, s_2\} \rangle\).
- for \(FT = \langle \{s_2\} \rangle\).

![Diagram of a Muller automaton](image)
A **Muller** automaton is \((A, FT)\). A run \(\rho\) of \(A\) is Muller-accepting if \(\text{Inf}(\rho) \in FT\).

Example Deterministic Muller automaton \(A_1\) recognises:
- words with infinitely many \(a\) for \(FT = \langle \{s_1\}, \{s_1, s_2\} \rangle\).
- words with finitely many \(a\) for \(FT = \langle \{s_2\} \rangle\).
A Muller automaton is \((A, FT)\). A run \(\rho\) of \(A\) is Muller-accepting if \(Inf(\rho) \in FT\).

Example Deterministic Muller automaton \(A_1\) recognises:
- words with infinitely many \(a\) for \(FT = \langle \{s_1\}, \{s_1, s_2\} \rangle\).
- words with finitely many \(a\) for \(FT = \langle \{s_2\} \rangle\).

Exercise Describe \(L(A_1)\) of the above Muller Aut. when (a) \(FT = \langle \{s_1\} \rangle\), and (b) \(FT = \langle \{s_1\}, \{s_2\} \rangle\).
Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2.
Muller Automata (2)

Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2.

Construction A_1 and A_2 have same automaton graph. Let F be set of final states of Buchi A_1. Define Muller aut. final table $FT = \{ Y \in 2^Q \mid Y \cap F \neq \emptyset \}$.
Theorem For every Buchi automaton A_1 there is a language equivalent Muller automaton A_2.

Construction A_1 and A_2 have same automaton graph. Let F be set of final states of Buchi A_1. Define Muller aut. final table $FT = \{Y \in 2^Q \mid Y \cap F \neq \emptyset\}$.

Theorem [McNaughten] For every Buchi Automaton A_1 we can construct a language equivalent Deterministic Muller Automaton A_2.
Muller to Buchi

Theorem For every Muller automaton AM we can construct a language equivalent Buchi Automaton AB.
Theorem For every Muller automaton AM we can construct a language equivalent Buchi Automaton AB.

Construction Let FT be acceptance table of $AM = (A, < F_1, \ldots, F_k >)$.

- We construct a **Nondeterministic** Buchi Automaton A_i s.t. word α is accepted by A_i iff there is an ρ accepting run of AM on α with $Inf(\rho) = F_i$.

- Then, $L(AM) = \bigcup L(A_i)$ which is Buchi recognisable.
Muller to Buchi

Theorem For every Muller automaton AM we can construct a language equivalent Buchi Automaton AB.

Construction Let FT be acceptance table of $AM = (A, < F_1, \ldots, F_k >)$.

- We construct a Nondeterministic Buchi Automaton A_i s.t. word α is accepted by A_i iff there is an ρ accepting run of AM on α with $Inf(\rho) = F_i$.

- Then, $L(AM) = \cup L(A_i)$ which is Buchi recognisable.

Construction of A_i Any run of AM has initial finite part followed by infinite part. The finite part follows automaton graph of AM. In infinite part only the F_i states can be visited and each must be visited infinitely often.
Construction of A_i

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, \ldots, f_{m-1}\}$.

The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where
Construction of A_i

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, \ldots, f_{m-1}\}$. The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where

$Q_i = \{(q, fin) \mid q \in Q\} \cup \{(f, inf, j) \mid f \in F_i \land j \in \{1, \ldots, m\}\}.$

$I_i = \{(s, fin) \mid s \in I\}$ and $G_i = \{(f_m, inf, m)\}$
Construction of A_i

Let $AM = (Q, \Sigma, \delta, I, FT)$ with $F_i = \{f_1, f_2, \ldots, f_{m-1}\}$. The NBA $A_i = (Q_i, \Sigma, \delta_i, I_i, G_i)$ where

$$Q_i = \{(q, fin) \mid q \in Q\} \cup \{(f, inf, j) \mid f \in F_i \land j \in \{1, \ldots, m\}\}.$$

$I_i = \{(s, fin) \mid s \in I\}$ and $G_i = \{(f_m, inf, m)\}$

Transition Relation:
A be automaton graph \((Q, \Sigma, \delta, I)\) as before.
Let \(PT = \langle (G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k) \rangle\) with \(G_i, R_i \subseteq Q\).
Rabin and Streett Automata

Let $PT = \langle (G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k) \rangle$ with $G_i, R_i \subseteq Q$.

A Rabin automaton is (A, PT). A run ρ of A is Rabin-accepting if for some $i : 0 \leq i \leq k$ we have $Inf(\rho) \cap G_i \neq \emptyset$ and $Inf(\rho) \cap R_i = \emptyset$.
A be automaton graph \((Q, \Sigma, \delta, I)\) as before. Let \(PT = <(G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k)>\) with \(G_i, R_i \subseteq Q\).

A Rabin automaton is \((A, PT)\). A run \(\rho\) of \(A\) is Rabin-accepting if for some \(i: 0 \leq i \leq k\) we have \(\text{Inf}(\rho) \cap G_i \neq \emptyset\) and \(\text{Inf}(\rho) \cap R_i = \emptyset\).

A Streett automaton is \((A, PT)\). A run \(\rho\) of \(A\) is Streett-accepting if for all \(i: 0 \leq i \leq k\) we have \(\text{Inf}(\rho) \cap G_i \neq \emptyset\) implies \(\text{Inf}(\rho) \cap R_i \neq \emptyset\).
A be automaton graph \((Q, \Sigma, \delta, I)\) as before.
Let \(PT = < (G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k) >\) with \(G_i, R_i \subseteq Q\).

A Rabin automaton is \((A, PT)\). A run \(\rho\) of \(A\) is Rabin-accepting if for some \(i : 0 \leq i \leq k\) we have \(Inf(\rho) \cap G_i \neq \emptyset\) and \(Inf(\rho) \cap R_i = \emptyset\).

A Streett automaton is \((A, PT)\). A run \(\rho\) of \(A\) is Streett-accepting if for all \(i : 0 \leq i \leq k\) we have \(Inf(\rho) \cap G_i \neq \emptyset\) implies \(Inf(\rho) \cap R_i \neq \emptyset\).

Proposition \(\rho\) is Rabin accepting iff \(\rho\) is not Street accepting.
Examples

The Rabin Automaton above

- with $PT = \langle \{s_1\}, \emptyset \rangle$

- with $PT = \langle \{s_2\}, \{s_1\} \rangle$
The Rabin Automaton above

- with $PT = \langle \{s_1\}, \emptyset \rangle$ accepts words with infinitely many a.
- with $PT = \langle \{s_2\}, \{s_1\} \rangle$
Examples

The Rabin Automaton above

- with $PT = < (\{s_1\}, \emptyset) >$ accepts words with infinitely many a.
- with $PT = < (\{s_2\}, \{s_1\}) >$ accepts words with finitely many a.
Simulations

Buchi-to-Rabin Let F final states of Buchi. Let

$$PT \overset{\text{def}}{=} \langle (F, \emptyset) \rangle.$$
Simulations

Buchi-to-Rabin Let F final states of Buchi. Let $PT \overset{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Streett Let $PT \overset{\text{def}}{=} \langle (Q, F) \rangle$.
Simulations

Buchi-to-Rabin Let F final states of Buchi. Let
\[PT \overset{\text{def}}{=} \langle (F, \emptyset) \rangle. \]

Buchi-to-Streett Let $PT \overset{\text{def}}{=} \langle (Q, F) \rangle$.

Rabin-to-Buchi Similar to Muller-to-Buchi.
Complexity $|Q| \times k$.
Simulations

Buchi-to-Rabin Let F final states of Buchi. Let $PT \overset{\text{def}}{=} \langle (F, \emptyset) \rangle$.

Buchi-to-Streett Let $PT \overset{\text{def}}{=} \langle (Q, F) \rangle$.

Rabin-to-Buchi Similar to Muller-to-Buchi. Complexity $|Q| \times k$.

Streett-to-Buchi [Vardi] Complexity $|Q| \times 2^k$.
Rabin-to-Buchi

Classroom.

Exercise Give construction for simulating Rabin Automaton using a Muller Automaton.
Given Streett Automataon (A, PT) with $A = (Q, \Sigma, \delta, I)$ and $PT = <(G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k)>$ we construct NBA (A', G').
Streett-to-Buchi

Given Streett Automataon (A, PT) with $A = (Q, \Sigma, \delta, I)$ and $PT = \langle (G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k) \rangle$ we construct NBA (A', G').

Buchi automaton simulates A for initial finite prefix and then nondeterministically moves to infinite part where it checks that Streett-condition is met.
Streett-to-Buchi

Given Streett Automataon \((A, PT)\) with \(A = (Q, \Sigma, \delta, I)\) and \(PT = < (G_1, R_1), (G_2, R_2), \ldots, (G_k, R_k) >\) we construct NBA \((A', G')\).

Buchi automaton simulates \(A\) for initial finite prefix and then nondeterministically moves to infinite part where it checks that Streett-condition is met.

- For this it keeps two sets \(X_1, X_2 \subseteq \{1, \ldots, k\}\).
- If \(q\) is occurs, indices \(i\) such \(q \in G_i\) are added to \(X_1\).
- Similarly if \(q\) is occurs, indices \(i\) such \(q \in R_i\) are added to \(X_2\).
- If \(G_i \subseteq R_i\) then all requirements are met. We set \(R_i = \emptyset\). This should happen infinitely often.
(Cont)

\[Q' = \{(q, \text{fin}) \mid q \in Q\} \cup \{(q, X_1, X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1, \ldots, k\}\}. \]
(Cont)

\[Q' = \{(q, fin) \mid q \in Q\} \cup \{(q, X_1, X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1, \ldots, k\}\}. \]

\[G' = \{(q, X, \emptyset) \mid q \in Q \land X \subseteq \{1, \ldots, k\}\}. \]
\(Q' = \{(q, fin) \mid q \in Q\} \cup \{(q, X_1, X_2) \mid q \in Q \land X_1, X_2 \subseteq \{1, \ldots, k\}\}. \)

\(G' = \{(q, X, \emptyset) \mid q \in Q \land X \subseteq \{1, \ldots, k\}\}. \)

- \((p, fin) \xrightarrow{a} (q, fin)\) if \(p \xrightarrow{a} q\).
- \((p, fin) \xrightarrow{a} (q, \emptyset, \emptyset)\) if \(p \xrightarrow{a} q\).
- \((p, X, Y) \xrightarrow{a} (q, X \cup A, Y \cup B)\) if \(p \xrightarrow{a} q\) and \(X \cup A \not\subseteq Y \cup B\) and \(A = \{i \mid q \in G_i\}\) and \(B = \{i \mid q \in R_i\}\).
- \((p, X, Y) \xrightarrow{a} (q, X \cup A, \emptyset)\) if \(p \xrightarrow{a} q\) and \(X \cup A \subseteq Y \cup B\).
Safra’s Determinisation

Theorem For every Nondeterministic Buchi Automaton (A, F) we can construct a language equivalent deterministic Rabin automaton (A_F, PTF).
Safra’s Determinisation

Theorem For every Nondeterministic Buchi Automaton \((A, F)\) we can construct a language equivalent deterministic Rabin automaton \((A_F, PTF)\).

Complexity: \(A_F\) has \(O(2^{(n \log n)})\) states where \(A\) has \(n\) states. There is no construction with \(O(2^n)\) states.
Safra’s Determinisation

Theorem For every Nondeterministic Buchi Automaton \((A, F)\) we can construct a language equivalent deterministic Rabin automaton \((A_F, P T_F)\).

Complexity: \(A_F\) has \(O\left(2^{(n \log n)}\right)\) states where \(A\) has \(n\) states. There is no construction with \(O\left(2^n\right)\) states.

Complementation of Buchi Automata:
(1) Buchi to Deterministic-Rabin.
(2) Deterministic-Rabin to Deterministic Streett (Complement)
(3) Deterministic-Streett to Nodeterministic-Buchi