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Synopsis

Introduction

Given a computational task, we can ask the following question: what is the amount of
resources we need to carry out this task? Computational complexity theory aims at de-
termining the exact amount of resources required to solve a problem in a mathematical
model of computation.

In this thesis we study some problems in computational complexity, where the models of
computation have an algebraic flavour. Specifically, we study the computational complexity
of some problems in the arithmetic circuit, quantum cell probe and quantum two-party
communication models.

This synopsis is organised as follows. In the next section, we formally define the com-
putational models and the problems therein, which have been studied in this thesis. We
outline the main results obtained in the section after that.

Computational models and problems studied

ΣΠΣ arithmetic circuits

By a ΣΠΣ arithmetic circuit over a field F, we mean an expression of the form

r∑
i=1

si∏
j=1

Lij(X)

where each Lij is a (possibly inhomogeneous) linear form in variables X1, . . . , Xn. The
above expression is to be treated as over the field F. Such ‘depth-three’ circuits play
an important role in the study of arithmetic complexity [GR00, SW99]. If each linear
form Lij(X) is homogeneous (i.e. has constant term zero), then the circuit is said to
be homogeneous, or else, it is said to be inhomogeneous. We also define a restricted
homogeneous model, the graph model, where all the coefficients of the variables in the
linear forms have to be 0 or 1, and for a given i, no variable can occur (with coefficient 1)
in more than one Lij. Although depth-three circuits appear to be rather restrictive, these
are the strongest model of arithmetic circuits for which super polynomial lower bounds are
known; no such lower bounds are known at present for depth-four circuits.
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The degree two elementary symmetric polynomial on n variables is defined by

S2
n(X1, . . . , Xn)

∆
=

∑
1≤i<j≤n

XiXj

In this thesis, we study the problem of computing S2
n(X1, . . . , Xn) using ΣΠΣ arith-

metic circuits over several fields, with the aim of obtaining tight bounds on the number
of multiplication gates required. Many of the techniques developed earlier (e.g. Nisan
and Wigderson’s method of partial derivatives [NW96]), in fact, give lower bounds on the
number of multiplication gates. We show our upper bounds in the graph and the homo-
geneous model; our lower bounds hold even in the stronger inhomogeneous model. We
obtain matching exact bounds for infinitely many n, for various fields.

Bounds on the number of multiplication gates required for computing S2
n(X) over the

field R in the graph model imply the same bounds for the problem of covering the complete
graph on n vertices Kn by complete bipartite graphs, such that each edge is covered exactly
once. This problem was first solved by Graham and Pollack [GP72], who showed the tight
bound of n − 1 for all n. Bounds on the number of multiplication gates required for
computing S2

n(X) over the field GF(2) in the graph model imply the same bounds for
the odd cover problem. In the odd cover problem, we want to cover Kn using complete
bipartite graphs, such that each edge is covered an odd number of times. The connection
to combinatorial problems is one more reason why we are interested in the number of
multiplication gates in ΣΠΣ circuits computing S2

n(X). The odd cover problem was stated
by Babai and Frankl [BF92], who also observed a lower bound of bn/2c. But the problem
of finding matching upper bounds was left open. In this thesis, we obtain a tight matching
bound of dn/2e for infinitely many odd and even n.

The quantum cell probe model

A static data structure problem consists of a set of data D, a set of queries Q, a set of
answers A, and a function f : D × Q → A. The aim is to store the data efficiently and
succinctly, so that any query can be answered with only a few probes to the data structure.
Yao [Yao81] started the study of static data structure problems in the classical cell probe
model. A classical (s, w, t) cell probe scheme for f has two components: a storage scheme
and a query scheme. Given the data to be stored, the storage scheme stores it as a table
of s cells, each cell w bits long. The query scheme has to answer queries about the data
stored. Given a query, the query scheme computes the answer to that query by making at
most t probes to the stored table, where each probe reads one cell at a time. The storage
scheme is deterministic whereas the query scheme can be deterministic or randomised. The
goal is to study tradeoffs between s, t and w.

In this thesis, we initiate the study of static data structure problems in the quantum
setting. To this end, we define the quantum cell probe model. A quantum (s, w, t) cell probe
scheme for f has two components: a classical deterministic storage scheme that stores the
data d ∈ D in a table Td using s cells each containing w bits, and a quantum query scheme
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that answers queries by ‘quantumly probing a cell at a time’ at most t times. Formally
speaking, the table Td for the stored data is made available to the query algorithm in the
form of an oracle unitary transform Od. To define Od formally, we represent the basis states
of the query algorithm as |j, b, z〉, where j ∈ [s − 1] is a binary string of length log s, b is
a binary string of length w, and z is a binary string of some fixed length. Here, j denotes
the address of a cell in the table Td, b denotes the qubits which will hold the contents of a
cell and z stands for the rest of the qubits (‘work qubits’) in the query algorithm. Od maps
|j, b, z〉 to |j, b⊕ (Td)j, z〉, where (Td)j is a bit string of length w and denotes the contents
of the jth cell in Td. A quantum query scheme with t probes is just a sequence of unitary
transformations

U0 → Od → U1 → Od → . . . Ut−1 → Od → Ut

where Uj’s are arbitrary unitary transformations that do not depend on the data stored
(representing the internal computations of the query algorithm). For a query q ∈ Q, the
computation starts in a computational basis state |q〉|0〉, where we assume that the ancilla
qubits are initially in the basis state |0〉. Then we apply in succession, the operators
U0, Od, U1, . . . , Ut−1, Od, Ut, and measure the final state. The answer consists of the values
on some of the output wires of the circuit. We say that the scheme has worst case error
probability less than ε if the answer is equal to f(d, q), for every (d, q) ∈ D × Q, with
probability greater than 1 − ε. The term ‘exact quantum scheme’ means that ε = 0, and
the term ‘bounded error quantum scheme’ means that ε = 1/3.

In this thesis, we study the static membership problem. Here one has to store a subset
S of size at most n from a universe U of size m, such that, given any query element x ∈ U,
one can quickly decide whether x ∈ S. This fundamental data structure problem has
been studied earlier in various settings (e.g. by Minsky and Papert [MP69], Yao [Yao81],
Fredman, Komlós and Szemerédi [FKS84] and Pagh [Pag01]). Most of these studies were
in the classical deterministic cell probe model. Yao [Yao81] showed that if the storage
scheme is restricted to be implicit, that is, the storage scheme can either store a member
of S in a cell or a ‘pointer value’ (the family of ‘pointer values’ is a set disjoint from the
universe U), then any deterministic query algorithm requires Ω(log n) probes in the worst
case, provided that the universe U is large enough. Recently, this problem was consid-
ered by Buhrman, Miltersen, Radhakrishnan and Venkatesh [BMRV00] in the classical bit
probe model (cell probe model where the cell size is only one bit), which was introduced
in [MP69]; they studied tradeoffs between storage space and number of probes in the clas-
sical deterministic case, and also showed lower and upper bounds for the storage space
when the query algorithm was randomised. In this work, we study this problem in the
quantum bit probe model and show tradeoffs between storage space and the number of
probes for exact quantum bit probe schemes and lower bounds on the storage space for
ε-error quantum bit probe schemes making a given number of probes. We also study this
problem in the bounded error quantum cell probe model with implicit storage schemes,
and extend Yao’s result to the quantum setting.

We also study the static predecessor problem. Here one has to store a subset S of size at
most n from the universe [m], such that, given any query element x ∈ [m], one can quickly
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find the predecessor of x in S. We show lower bounds for this problem in a restricted
version of the quantum cell probe model viz. the address-only quantum cell probe model.
Here the storage scheme is as in the general model, but the query scheme is restricted
to be ‘address-only’. This means that the state vector before a query to the oracle Od is
always a tensor product of a state vector on the address and work qubits (the (j, z) part
in (j, b, z) above), and a state vector on the data qubits (the b part in (j, b, z) above). The
state vector on the data qubits before a query to the oracle Od is independent of the query
element q and the data d but can vary with the probe number. Intuitively, we are only
making use of quantum parallelism over the address lines. This mode of querying a table
subsumes classical querying, and also many non-trivial quantum algorithms like Grover’s
algorithm [Gro96], Farhi et al.’s algorithm [FGGS99], Høyer et al.’s algorithm [HNS01]
etc. satisfy this condition. For classical querying, the state vector on the data qubits is
|0〉, independent of the probe number. For Grover and Farhi et al., the state vector on the
data qubit is (|0〉 − |1〉)/

√
2, independent of the probe number. For Høyer et al., the state

vector on the data qubit is |0〉 for some probe numbers, and (|0〉 − |1〉)/
√

2 for the other
probe numbers.

The two-party quantum communication model

This model was defined by Yao [Yao93] to study communication as a resource in quantum
computation. Let E,F,G be arbitrary finite sets and f : E×F → G be a function. There
are two players Alice and Bob, who hold qubits. When the communication game starts,
Alice holds |x〉 where x ∈ E together with some ancilla qubits in the state |0〉, and Bob
holds |y〉 where y ∈ F together with some ancilla qubits in the state |0〉. Thus the qubits
of Alice and Bob are initially in computational basis states, and the initial superposition is
simply |x〉A|0〉A|y〉B|0〉B. Here the subscripts denote the ownership of the qubits by Alice
and Bob. The players take turns to communicate to compute f(x, y). Suppose it is Alice’s
turn. Alice can make an arbitrary unitary transformation on her qubits and then send one
or more qubits to Bob. Sending qubits does not change the overall superposition, but rather
changes the ownership of the qubits, allowing Bob to apply his next unitary transformation
on his original qubits plus the newly received qubits. At the end of the protocol, the last
recipient of qubits performs a measurement on the qubits in her possession to output an
answer. We say a quantum protocol computes f with ε-error in the worst case, if for any
input (x, y) ∈ E × F , the probability that the protocol outputs the correct result f(x, y)
is greater than 1− ε. The term ‘bounded error quantum protocol’ means that ε = 1/3.

We require that Alice and Bob make a secure copy of their inputs before beginning the
protocol. This is possible since the inputs to Alice and Bob are in computational basis
states. Thus, without loss of generality, the input qubits of Alice and Bob are never sent
as messages, their state remains unchanged throughout the protocol, and they are never
measured i.e. some work qubits are measured to determine the result of the protocol. We
call such protocols secure. We will assume henceforth that all our protocols are secure.

To state our round elimination lemma in quantum communication, we have to define
the concept of a safe quantum communication protocol.
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Definition (Safe quantum protocol) A [t, c, l1, . . . , lt]
A ([t, c, l1, . . . , lt]

B) safe quantum
protocol is a secure quantum protocol where Alice (Bob) starts the communication, the
first message is l1 + c qubits long, the ith message, for i ≥ 2, is li qubits long, and the
communication goes on for t rounds. We think of the first message as having two parts:
the ‘main part’ which is l1 qubits long, and the ‘safe overhead part’ which is c qubits long.
The density matrix of the ‘safe overhead’ is independent of the inputs to Alice and Bob.

For the round elimination lemma, we also need to define the concept of a quantum
protocol with public coins. Intuitively, a public coin quantum protocol is a probability
distribution over (coinless) quantum protocols. We shall henceforth call the standard
definition of a quantum protocol as coinless. Our definition is similar to the classical
scenario, where a randomised protocol with public coins is a probability distribution over
deterministic protocols. We note however, that our definition of a public coin quantum
protocol is not the same as that of a quantum protocol with prior entanglement, which has
been studied previously (see e.g. [CvDNT98]). Our definition is weaker, in that it does not
allow the unitary transformations of Alice and Bob to alter the ‘public coin’.

Definition (Public coin quantum protocol) In a quantum protocol with a public coin,
there is, before the start of the protocol, a quantum state called a public coin, of the form∑

c

√
pc|c〉A|c〉B, where the subscripts denote ownership of qubits by Alice and Bob, pc are

finitely many non-negative real numbers and
∑

c pc = 1. Alice and Bob make (entangled)
copies of their respective halves of the public coin using CNOT gates before commencing
the protocol. The unitary transformations of Alice and Bob during the protocol do not
touch the public coin. The public coin is never measured, nor is it ever sent as a message.

Hence, one can think of the public coin quantum protocol to be a probability distribu-
tion, with probability pc, over finitely many coinless quantum protocols indexed by the coin
basis states |c〉. A safe public coin quantum protocol is similarly defined as a probability
distribution over finitely many safe coinless quantum protocols.

In this thesis, we prove a round elimination lemma in quantum communication com-
plexity. Suppose f : E × F → G is a function. In the communication game corresponding
to f , Alice gets a string x ∈ E, Bob gets a string y ∈ F , and they have to communicate
and compute f(x, y). In the communication game f (n), Alice gets n strings x1, . . . , xn ∈ E;
Bob gets an integer i ∈ [n], a string y ∈ F , and a copy of the strings x1, . . . , xi−1. Their
aim is to communicate and compute f(xi, y). Suppose a quantum protocol for f (n) is given
where Alice starts, and her first message is much smaller than n qubits. Intuitively, it
would seem that since Alice does not know i, the first round of communication cannot give
much information about xi, and thus, would not be very useful to Bob. Hence it should
be possible to eliminate the first round of communication, giving a quantum protocol for
computing f(xi, y) where Bob starts, with one less round of communication, and having
the same message complexity and similar error probability. The round elimination lemma
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justifies this intuition. Moreover, we show that this is true even if Bob also gets copies of
x1, . . . , xi−1, a case which is needed in many applications.

Main results

Bounds for computing S2
n(X)

We prove the following results about the number of multiplication gates required to com-
pute S2

n(X) using ΣΠΣ arithmetic circuits over various fields. In each case, our upper and
lower bounds match for infinitely many n. The proofs use linear algebraic techniques. Our
upper bounds are in the homogeneous model; our lower bounds hold in the inhomogeneous
model too. Our bounds in the graph model of ΣΠΣ arithmetic circuits for the field GF(2)
translate to the same bounds for the odd cover problem too.

Result For infinitely many odd and even n, dn/2e complete bipartite graphs are necessary
and sufficient to cover each edge of the complete graph on n vertices an odd number of
times. A similar result also holds for the number of multiplication gates required to compute
S2
n(X1, . . . , Xn) over the field GF(2), using ΣΠΣ arithmetic circuits.

Result For all n, dn/2e multiplication gates are necessary and sufficient to compute
S2
n(X1, . . . , Xn) over complex numbers, using ΣΠΣ arithmetic circuits.

The above results are joint work with Jaikumar Radhakrishnan and Sundar Vish-
wanathan [RSV00b].

Static membership in quantum bit probe model

We show a general time-space tradeoff for the static membership problem in the exact
quantum bit probe model, using linear algebraic techniques.

Result Suppose there exists an exact quantum bit probe scheme for storing subsets S of
size at most n from a universe of size m that uses s bits of storage and answers membership
queries with t quantum probes. Then,

n∑
i=0

(
m

i

)
≤

nt∑
i=0

(
s

i

)

This has two immediate consequences. First, by setting t = 1, we see that if only one
probe is allowed, then m bits of storage are necessary. (In [BMRV00], for the classical
model, this was justified using an ad hoc argument.) Thus, the classical deterministic bit
vector scheme that stores the characteristic vector of the set S and answers membership
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queries using one bit probe, is optimal even with exact quantum querying. Second, it fol-
lows (see [BMRV00] for details) that the classical deterministic scheme of Fredman, Komlós
and Szemerédi [FKS84], which uses O(n logm) bits of storage and answers membership
queries using O(logm) bit probes, is optimal even with exact quantum querying—quantum
schemes that use O(n logm) bits of storage must make Ω(logm) probes if n ≤ m1−Ω(1).
Recently, Pagh [Pag01] has shown classical deterministic schemes using the information-
theoretic minimum space O(n log(m/n)) and making O(log(m/n)) bit probes, which is
optimal even with exact quantum querying, by the above result. For t between 1 and
O(log(m/n)), Buhrman et al. [BMRV00] have given classical deterministic schemes making
t bit probes, which use O(nt(m/n)2/(t+1)) bits of storage. A lower bound of Ω(nt(m/n)1/t)
for storage space, for suitable values of the various parameters, follows from the above re-
sult. Thus, if we only care about space up to a polynomial, classical deterministic schemes
that make t bit probes for t between 1 and O(log(m/n)), and which use storage space
almost matching the exact quantum lower bounds, exist.

Interestingly, the above result holds even in the presence of errors, provided the error
is restricted to positive instances, that is the query algorithm sometimes (with probability
< 1) returns the answer ‘No’ for a query x that is actually in the set S, but always answers
‘No’ for a query x that is not a member of S.

We also give a simplified linear algebraic proof of the above theorem for deterministic
and positive error classical bit probe schemes. This theorem is in fact stronger than the
tradeoff results known previously for such schemes.

We then consider ε-error quantum bit probe schemes. We show the following lower
bound on the space requirement of an ε-error quantum bit probe scheme for the static
membership problem making p probes. The proof again uses linear algebraic methods.

Result For any p ≥ 1 and n/m < ε < 2−3p, suppose there is a quantum bit probe scheme
with two-sided error ε which stores subsets of size at most n from a universe of size m and

answers membership queries using p quantum probes. Define δ
∆
= ε1/p. It must use space

s = Ω

(
n log(m/n)

δ1/6 log(1/δ)

)
Buhrman et al. [BMRV00] showed the existence of two-sided ε-error classical bit probe

schemes which solve the static membership problem, making only one bit probe and using
space O(n logm

ε2
), for ε < 1/16. From this result, we note that for p bit probes, an upper

bound of O(n logm
ε4/p ) on the storage space, for ε < 2−p, follows by taking the above storage

scheme for error probability ε2/p

4
, and repeating the (classical randomised) single probe

query scheme p times. This diminishes the probability of error to ε. Thus, our lower
bounds for two-sided error quantum schemes roughly match the two-sided error classical
randomised upper bounds.

We also improve the lower bound in the result above on the space requirement of ε-error
bit probe schemes for the static membership problem making p probes, when the query
schemes are classical randomised.
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Result Let p ≥ 1, 18−p > ε > 1/m1/3 and m1/3 > 18n. Define δ
∆
= ε1/p. Any two-sided

ε-error classical randomised scheme which stores subsets of size at most n from a universe
of size m and answers membership queries using at most p bit probes must use space

Ω

(
n logm

δ2/5 log(1/δ)

)

These results are joint work with Jaikumar Radhakrishnan and S.Venkatesh [RSV00a].

Static membership in implicit storage quantum cell probe model

In this thesis, we generalise the Ω(log n) lower bound of Yao on the number of probes
required in any classical deterministic cell probe solution to the static membership problem
with implicit storage schemes, to the quantum setting. Consider the problem of storing a
subset S of size at most n of the universe [m] in a table with q cells, so that membership
queries can be answered efficiently. We restrict the storage scheme to be implicit, using
at most p ‘pointer values’. A ‘pointer value’ is a member of a set of size p (the set of
‘pointers’) disjoint from the universe. The term implicit means that the storage scheme
can store either a ‘pointer value’ or a member of S in a cell. In particular, the storage
scheme is not allowed to store an element of the universe which is not a member of S.
The query algorithm answers membership queries by performing t (general) quantum cell
probes. We call such schemes (p, q, t) implicit storage quantum cell probe schemes.

Result For every n, p, q, there exists an N(n, p, q) such that for all m ≥ N(n, p, q), the
following holds: Consider any bounded error (p, q, t) implicit storage quantum cell probe
scheme for the static membership problem with universe size m and size of the stored subset
at most n. Then the quantum query scheme must make t = Ω(log n) probes.

This result is joint work with S.Venkatesh [SV01].

Static predecessor in address-only quantum cell probe model

To show lower bounds for the static predecessor problem in the address-only quantum cell
probe model, we use a connection between quantum cell probe schemes for static data
structure problems and two-party quantum communication complexity. This connection
similar to that in Miltersen, Nisan, Safra and Wigderson [MNSW98], who exploited it in the
classical setting. Using this connection, we can convert an address-only quantum cell probe
solution for the predecessor problem into a particular kind of quantum communication
game. The quantum round elimination lemma is then used to prove lower bounds on the
rounds complexity of this game. Using this approach, we prove the following theorem.
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Result Suppose we have a (nO(1), (logm)O(1), t) bounded error quantum address-only cell
probe solution to the static predecessor problem, where the universe size is m and the subset

size is at most n. Then the number of queries t is at least Ω
(

log logm
log log logm

)
as a function of

m, and at least Ω
(√

logn
log logn

)
as a function of n.

Since our address-only quantum cell probe model subsumes the classical cell probe
model with randomised query schemes, our lower bound for the static predecessor problem
also holds in this classical randomised setting. This improves the previous lower bound of
Ω(
√

log logm) as a function of m and Ω(log1/3 n) as a function of n for this setting, shown
by Miltersen, Nisan, Safra and Wigderson [MNSW98]. Beame and Fich [BF99] have shown
an upper bound matching our lower bound up to constant factors, which uses nO(1) cells
of storage of word size O(logm) bits. In fact, both the storage and the query schemes
are classical deterministic in Beame and Fich’s solution. In the classical deterministic cell
probe model, Beame and Fich show a lower bound of t = Ω

(
log logm

log log logm

)
as a function of

m for (nO(1), 2(logm)1−Ω(1)
, t) cell probe schemes, and a lower bound of t = Ω

(√
logn

log logn

)
as

a function of n for (nO(1), (logm)O(1), t) cell probe schemes. But Beame and Fich’s lower
bound proof breaks down if the query scheme is randomised. Our result thus shows that
the upper bound scheme of Beame and Fich is optimal all the way up to the bounded error
address-only quantum cell probe model. Also, our proof is substantially simpler than that
of Beame and Fich.

This result is joint work with S.Venkatesh [SV01].

Round elimination in quantum and classical communication

We prove a round elimination lemma for quantum communication complexity in this thesis.
This result can be viewed as a quantum analogue of the round elimination lemma of
Miltersen, Nisan, Safra and Wigderson [MNSW98] for classical communication complexity.
Our quantum round elimination lemma is in fact stronger (!) than the classical round
elimination lemma of [MNSW98], and it allows us to show a quantum lower bound for the
static predecessor problem matching Beame and Fich’s upper bound, which the classical
round elimination lemma of [MNSW98] was unable to do. The quantum round elimination
lemma can be used to prove similar lower bounds for many other static data structure
problems in the address-only quantum cell probe model. It also finds applications to
various problems in quantum communication complexity (e.g. the ‘greater-than’ problem),
which are interesting on their own. Our quantum round elimination lemma is proved
using quantum information theoretic techniques, and builds on the work of Klauck et
al. [KNTZ01].

Result Suppose f : E × F → G is a function. Suppose the communication game f (n)

has a [t, c, l1, . . . , lt]
A safe public coin quantum protocol with worst case error less than δ.
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Then there is a [t− 1, c+ l1, l2, . . . , lt]
B safe public coin quantum protocol for f with worst

case error less than ε
∆
= δ + (4l1 ln 2/n)1/4.

In the classical setting, we can refine our information theoretic techniques to prove an
even stronger round elimination lemma for classical communication complexity.

Result Suppose f : E×F → G is a function. Suppose the communication game f (n) has
a [t, 0, l1, . . . , lt]

A public coin classical randomised protocol with worst case error less than
δ. Then there is a [t− 1, 0, l2, . . . , lt]

B public coin classical randomised protocol for f with

worst case error less than ε
∆
= δ + (1/2)(2l1 ln 2/n)1/2.

These results are joint work with S.Venkatesh [SV01].

Communication complexity of the ‘greater-than’ problem

As an application of our round elimination lemmas, we prove rounds versus communication
tradeoffs for the ‘greater-than’ problem. In the ‘greater-than’ problem GTn, Alice is given
x ∈ {0, 1}n, Bob is given y ∈ {0, 1}n, and they have to communicate and decide whether
x > y (treating x, y as integers).

Result The t round bounded error quantum (classical randomised) communication com-
plexity of GTn is Ω(n1/tt−3) (Ω(n1/tt−2)).

There exists a bounded error classical randomised protocol for GTn using t rounds of
communication and having a complexity of O(n1/t log n). Hence, for a constant number of
rounds, our quantum lower bound matches the classical upper bound to within logarithmic
factors. For one round quantum protocols, our result implies an Ω(n) lower bound for GTn
(which is optimal to within constant factors), improving upon the previous Ω(n/ log n)
lower bound of Klauck [Kla00]. No rounds versus communication tradeoff for this prob-
lem, for more than one round, was known earlier in the quantum setting. For classical
randomised protocols, Miltersen et al. [MNSW98] showed a lower bound of Ω(n1/t2−O(t))
using their round elimination lemma. If the number of rounds is unbounded, then there
is a classical randomised protocol for GTn using O(log n) rounds of communication and
having a complexity of O(log n) [Nis93]. An Ω(log n) lower bound for the bounded error
quantum communication complexity of GTn (irrespective of the number of rounds) follows
from Kremer’s result [Kre95] that the bounded error quantum communication complexity
of a function is lower bounded (up to constant factors) by the logarithm of the one round
(classical) deterministic communication complexity.

These results are joint work with S.Venkatesh [SV01].
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Chapter 1

Introduction

Given a computational task, we can ask the following question: what is the amount of
resources we need to carry out this task? Computational complexity theory is an area
of research in theoretical computer science that aims at determining the exact amount of
resources required to solve a problem in a model of computation.

Determining the exact computational complexity of a problem involves two notions.
The first is to define a mathematical model of computation. The second notion is to
define the computational resources used to solve a problem in this model. Once these
are defined, understanding the complexity of any problem involves establishing upper and
lower bounds on the amount of resources required to solve the problem. Tradeoffs between
various resources are also studied.

In recent years, a lot of excitement has been generated by a new model of computation
viz. quantum computation. In this thesis, the term “classical” refers to traditional non-
quantum models of computation. The quantum computation model aims to exploit the
quantum mechanical behaviour of nature for information processing purposes. The most
striking example of the power of this model, so far, has been Shor’s polynomial time
algorithm for prime factorisation of integers on a quantum computer [Sho97]. Another
notable example is Grover’s quantum algorithm for searching an unstructured database
using O(

√
n) queries.

In this thesis, we study some problems in computational complexity where the models of
computation have an algebraic flavour. Specifically, we study the computational complexity
of some problems in the arithmetic circuit, quantum cell probe and quantum two-party
communication models.

In this chapter, we describe the above computational models and the problems we study
in these models. We also describe the results obtained in the course of this work.

1.1 The arithmetic circuit model

Boolean circuits as a model of computation have been studied since the 1980s. Upper
and lower bounds for many problems in this model have been discovered. In particular,

1



1.1. The arithmetic circuit model

constant depth boolean circuits with gates of unbounded fanin have been studied with
great success, and many strong lower bounds are known for various boolean functions (e.g.
PARITY) in this model (see e.g. [H̊as89, Smo87]).

For functions with an algebraic flavour, it is natural to consider other models of com-
putation also. One of these is the arithmetic circuit model. An arithmetic circuit over
a field F computes a polynomial in variables X1, . . . , Xn over F. It is a directed acyclic
graph with a single node of out-degree 0, representing the ‘output’ of the circuit. Nodes of
in-degree 0 are labelled by variables from X1, . . . , Xn. The rest of the nodes (the ‘internal
nodes’) are labelled either by addition gates, or by multiplication gates. Here, addition and
multiplication are to be understood as being over F. The addition gate computes the sum,
and the multiplication gate computes the product of the polynomials at its inputs. The
edges of the graph (the ‘wires’ of the circuit) are labelled by scalars from F. They are to be
thought of as multiplying the polynomial at the tail of the edge, to get the polynomial at
the head of the edge. Thus, every node of the circuit naturally computes a polynomial in
X1, . . . , Xn over F. The ‘output’ of the circuit is the polynomial computed at the output
node.

Though the arithmetic circuit model is less general than the boolean circuit model,
and it may seem more amenable to mathematical study, fewer and weaker lower bounds
are known for explicit polynomials in this model. In particular, lower bounds for explicit
polynomials are known only if we allow polynomials with large degree or large coefficients
(see e.g. [Str73, BS82]). However, if we limit the degree and size of coefficients to be O(1),
then no non-trivial lower bound is known for general arithmetic circuits. For constant
depth circuits, exponential lower bounds are only known for fields F with characteristic 2
[Raz87, Smo87]. For finite fields of odd characteristic, exponential lower bounds are only
known for depth 3 [GK98, GR00]; no super polynomial lower bounds are known at present
for circuits of depth 4 and more. For characteristic zero, no super polynomial lower bounds
are known, even for depth-3 circuits. The best lower bounds for depth-3 circuits over fields
of characteristic zero are the almost quadratic lower bounds of [SW99].

By a ΣΠΣ arithmetic circuit over a field F, we mean an expression of the form

r∑
i=1

si∏
j=1

Lij(X) (1.1)

where each Lij is a (possibly inhomogeneous) linear form in variables X1, . . . , Xn. The
above expression is to be treated as over the field F. If each linear form Lij(X) is homoge-
neous (i.e. has constant term zero), then the circuit is said to be homogeneous, or else, it is
said to be inhomogeneous. In this thesis, we also define a restricted homogeneous model,
the graph model, where all the coefficients of the variables in the linear forms have to be 0
or 1, and for a given i, no variable can occur (with coefficient 1) in more than one Lij.

The k-th elementary symmetric polynomial on n variables is defined by

Skn(X)
∆
=
∑

T∈([n]
k )

∏
i∈T

Xi.

2



1.1. The arithmetic circuit model

Elementary symmetric polynomials are the most commonly studied candidates for show-
ing lower bounds in arithmetic circuits. Nisan and Wigderson [NW96] showed that any
homogeneous ΣΠΣ circuit for computing S2k

n (X) has size Ω((n/4k)k). In their paper, they
explicitly stated the method of partial derivatives (but see also Alon [Alo86]). Although a
super polynomial lower-bound was obtained in [NW96], the lower bound applied only to
homogeneous circuits. Indeed, Ben-Or (see [NW96]) showed that any elementary symmet-
ric polynomial can be computed by an inhomogeneous ΣΠΣ formula of size O(n2) (contrast
this with super polynomial lower bounds for computing MAJORITY using constant depth
boolean circuits). Thus inhomogeneous circuits are significantly more powerful than ho-
mogeneous circuits. Shpilka and Wigderson [SW99] (and later, Shpilka [Shp01]) addressed
this shortcoming of the Nisan-Wigderson result and showed an Ω(n2) lower bound on the
size of inhomogeneous formulae computing certain elementary symmetric polynomials, thus
showing that Ben-Or’s construction is optimal.

1.1.1 Computing S2
n(X) using ΣΠΣ arithmetic circuits

In this thesis, we study the problem of computing S2
n(X1, . . . , Xn), the degree two elemen-

tary symmetric polynomial in X1, . . . , Xn, using ΣΠΣ arithmetic circuits over several fields,
with the aim of obtaining tight bounds on the number of multiplication gates required.
Many of the techniques developed earlier (e.g. Nisan and Wigderson’s method of partial
derivatives [NW96]), in fact, give lower bounds on the number of multiplication gates. We
show our upper bounds in the graph and the homogeneous model; our lower bounds hold
even in the stronger inhomogeneous model. We obtain matching exact bounds for infinitely
many n, for various fields.

Bounds on the number of multiplication gates required for computing S2
n(X) over the

field R in the graph model imply the same bounds for the problem of covering the complete
graph on n vertices Kn by complete bipartite graphs, such that each edge is covered exactly
once. This problem was first solved by Graham and Pollack [GP72], who showed the tight
bound of n − 1 for all n. Bounds on the number of multiplication gates required for
computing S2

n(X) over the field GF(2) in the graph model imply the same bounds for the
odd cover problem. In the odd cover problem, we want to cover Kn using complete bipartite
graphs, such that each edge is covered an odd number of times. A similar connection holds
between computing S2

n(X) over the field GF(p), p an odd prime in the graph model, and the
1 mod p cover problem (where we want to cover Kn using complete bipartite graphs, such
that each edge is covered 1 mod p times). The connection to combinatorial problems is one
more reason why we are interested in the number of multiplication gates in ΣΠΣ circuits
computing S2

n(X). The odd cover problem was stated by Babai and Frankl [BF92], who
also observed a lower bound of bn/2c. But the problem of finding matching upper bounds
was left open. In this thesis, we obtain a tight matching bound of dn/2e for infinitely many
odd and even n.

Result 1 For infinitely many odd and even n, dn/2e complete bipartite graphs are neces-
sary and sufficient to cover each edge of the complete graph on n vertices an odd number

3



1.2. The quantum cell probe model

of times. A similar result also holds for the number of multiplication gates required to
compute S2

n(X1, . . . , Xn) over the field GF(2), using ΣΠΣ arithmetic circuits.

Result 2 For infinitely many odd and even n, dn/2e complete bipartite graphs are neces-
sary and sufficient to cover each edge of the complete graph on n vertices 1 mod p times.

Result 3 For all n, dn/2e multiplication gates are necessary and sufficient to compute
S2
n(X1, . . . , Xn) over complex numbers, using ΣΠΣ arithmetic circuits. Similar, but weaker,

results hold for computing S2
n(X) over finite fields of odd characteristic.

The above results are joint work with Jaikumar Radhakrishnan and Sundar Vish-
wanathan [RSV00b].

1.2 The quantum cell probe model

The classical cell probe model is a combinatorial model for studying static and dynamic
data structure problems. This model (or rather a variant, the classical bit probe model)
was first defined in the book Perceptrons by Minsky and Papert [MP69]. They studied
average case upper bounds for the static membership problem in this model. But it was
Yao [Yao81], who first took up the worst-case complexity study of static data structure
problems in the classical cell probe model.

A static data structure problem consists of a set of data D, a set of queries Q, a set of
answers A, and a function f : D × Q → A. The aim is to store the data efficiently and
succinctly, so that any query can be answered with only a few probes to the data structure.
A classical (s, w, t) cell probe scheme for f has two components: a storage scheme and a
query scheme. Given the data to be stored, the storage scheme stores it as a table of s
cells, each cell w bits long. The query scheme has to answer queries about the data stored.
Given a query, the query scheme computes the answer to that query by making at most t
probes to the stored table, where each probe reads one cell at a time. The storage scheme
is deterministic whereas the query scheme can be deterministic or randomised. The goal
is to study tradeoffs between s, t and w. A crucial aspect of the cell probe model is that
we only charge a scheme for the number of probes made to memory cells, and for the total
number of cells of storage used. All other computation is for free. Thus lower bounds in the
cell probe model are lower bounds on the complexity of any implementation of the problem
on a unit cost RAM with the same word size. An important variation of the classical cell
probe model is the classical bit probe model, where each cell holds just a single bit. Thus,
in this model, the query algorithm is allowed to probe only one bit of the memory at a
time. Arguably, the bit probe complexity of a data structure problem is a fundamental
measure; this, in particular, applies to decision problems where the final answer to a query
is a single bit.

An important static data structure problem is the static membership problem.

4



1.2. The quantum cell probe model

Let U = {1, 2, . . . ,m}. Given a subset S ⊆ U of at most n keys, store it effi-
ciently and succinctly so that queries of the form “Is x in S?” can be answered
with only a few probes to the data structure.

When the static membership problem is usually studied in the classical cell probe model,
the set S is stored as a table of cells, each capable of holding one element of the universe;
that is, if the universe has size m then each cell holds O(logm) bits. Queries are to be
answered by probing a cell of the table at a time adaptively; that is, each probe can
depend on the results of earlier probes and the query element x. The goal is to process
membership queries with as few probes as possible, and at the same time keep the size
of the table small. The static membership problem has a long history of study in this
model. Yao [Yao81] showed that if the storage scheme is restricted to be implicit, that
is, the storage scheme can either store a member of S in a cell or a ‘pointer value’ (the
family of ‘pointer values’ is a set disjoint from the universe U), then any deterministic
query algorithm requires Ω(log n) probes in the worst case, provided that the universe U
is large enough. Fredman, Komlós and Szemerédi [FKS84] gave a solution for the static
membership problem in the cell probe model that used a constant number of probes and a
table of size O(n). Their storage scheme is not implicit though; in fact, it can store in a cell
an element of the universe which is not a member of S. Note that if one is required to store
sets of size at most n, then there is an information theoretic lower bound of

⌈
log
∑

i≤n
(
m
i

)⌉
on the number of bits used. For n ≤ m1−Ω(1), this implies that the data structure must
store Ω(n logm) bits (and must, therefore, use Ω(n) cells). Thus, up to constant factors,
the above scheme uses optimal space and number of cell probes. Recently, this problem
was considered by Buhrman, Miltersen, Radhakrishnan and Venkatesh [BMRV00] in the
classical bit probe model; they studied tradeoffs between storage space and number of probes
in the classical deterministic case, and also showed lower and upper bounds for the storage
space when the query algorithm was randomised and made just one bit probe. In each
case, their lower bounds roughly matched the upper bounds. Also recently, Pagh [Pag01]
has shown classical deterministic schemes using the information-theoretic minimum space⌈
log
∑

i≤n
(
m
i

)⌉
and making O(log(m/n)) bit probes. This matches the lower bound for

classical deterministic schemes in [BMRV00].
Another important static data structure problem is the static predecessor problem.

Let U = {1, 2, . . . ,m}. Given a subset S ⊆ U of at most n keys, store it
efficiently and succinctly so that queries of the form “What is the predecessor
of x in S?” can be answered with only a few probes to the data structure.

The static predecessor problem too has a long history of study in the classical deter-
ministic (nO(1), O(logm), t)-cell probe model. Ajtai [Ajt88] was the first to show a super
constant lower bound on t. The lower bounds were later improved by various people
[Xia92, Mil94]. Miltersen, Nisan, Safra and Wigderson [MNSW98] showed that any clas-
sical (nO(1), (logm)O(1), t)-cell probe solution to the predecessor problem with randomised
query schemes requires t = Ω(

√
log logm) as a function of m, and t = Ω(log1/3 n) as a
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function of n. Recently, Beame and Fich [BF99] gave a (nO(1), O(logm), t) classical deter-
ministic cell probe solution for the predecessor problem where

t = O

(
min

(
log logm

log log logm
,

√
log n

log log n

))

Beame and Fich [BF99] also showed a lower bound of t = Ω
(

log logm
log log logm

)
as a function of

m for (nO(1), 2(logm)1−Ω(1)
, t) classical deterministic cell probe schemes for predecessor, and

a lower bound of t = Ω
(√

logn
log logn

)
as a function of n for (nO(1), (logm)O(1), t) classical

deterministic cell probe schemes for predecessor. But their lower bound proof breaks down
if the query algorithm is randomised; for such schemes, the best lower bound known till now
was that of Miltersen et al. [MNSW98]. Also, no upper bound better than that of [BF99]
was known for such schemes. Thus, there was a gap between upper and lower bounds
when the query scheme was randomised. For an account of many interesting results in the
classical cell probe model, see the recent survey of Miltersen [Mil99].

In this thesis, we initiate the study of static data structure problems in the quantum
setting. To that end, we define the quantum cell probe model. A quantum (s, w, t) cell probe
scheme for a static data structure problem f has two components: a classical deterministic
storage scheme that stores the data d ∈ D in a table Td using s cells each containing w
bits, and a quantum query scheme that answers queries by ‘quantumly probing a cell at
a time’ at most t times. Thus, our quantum cell probe model is basically the quantum
black box query model (see e.g. [BBC+98]) applied to the table of cells created by the
storage scheme. Formally speaking, the table Td for the stored data is made available to
the query algorithm in the form of an oracle unitary transform Od. To define Od formally,
we represent the basis states of the query algorithm as |j, b, z〉, where j ∈ [s−1] is a binary
string of length log s, b is a binary string of length w, and z is a binary string of some fixed
length. Here, j denotes the address of a cell in the table Td, b denotes the qubits which
will hold the contents of a cell and z stands for the rest of the qubits (‘work qubits’) in the
query algorithm. Od maps |j, b, z〉 to |j, b ⊕ (Td)j, z〉, where (Td)j is a bit string of length
w and denotes the contents of the jth cell in Td. In most previous work on the quantum
black box model, the data b was only one bit long. But in keeping with the analogy to
the classical cell probe model, we allow the data here to be w bits long. A quantum query
scheme with t probes is just a sequence of unitary transformations

U0 → Od → U1 → Od → . . . Ut−1 → Od → Ut

where Uj’s are arbitrary unitary transformations that do not depend on the data stored
(representing the internal computations of the query algorithm). For a query q ∈ Q, the
computation starts in a computational basis state |q〉|0〉, where we assume that the ancilla
qubits are initially in the basis state |0〉. Then we apply in succession, the operators
U0, Od, U1, . . . , Ut−1, Od, Ut, and measure the final state. The answer consists of the values
on some of the output wires of the circuit. We say that the scheme has worst case error
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1.2. The quantum cell probe model

probability less than ε if the answer is equal to f(d, q), for every (d, q) ∈ D × Q, with
probability greater than 1 − ε. The term ‘exact quantum scheme’ means that ε = 0, and
the term ‘bounded error quantum scheme’ means that ε = 1/3.

Remark: Our model for storage does not permit Od to be any arbitrary unitary transfor-
mation. However, this restricted form of the oracle is closer to the way data is stored and
accessed in the classical case. Moreover, in most previous works, storage has been modelled
using such an oracle (see e.g. [Gro96, BBBV97, BBC+98, Amb00]).

U0

Od

|j, b, z〉 7→
|j, b⊕ (Td)j, z〉

U1

j

b

z

Ut−1

Od

|j, b, z〉 7→
|j, b⊕ (Td)j, z〉

Ut

Figure 1.1: The query algorithm in a quantum cell probe scheme.

We also study a restricted version of the quantum cell probe model, which we call
the address-only quantum cell probe model. Here the storage scheme is as in the general
model, but the query scheme is restricted to be ‘address-only’. This means that the state
vector before a query to the oracle Od is always a tensor product of a state vector on the
address and work qubits (the (j, z) part in (j, b, z) above), and a state vector on the data
qubits (the b part in (j, b, z) above). The state vector on the data qubits before a query to
the oracle Od is independent of the query element q and the data d but can vary with the
probe number. Intuitively, we are only making use of quantum parallelism over the address
lines. This mode of querying a table subsumes classical querying, and also many non-trivial
quantum algorithms like Grover’s algorithm [Gro96], Farhi et al.’s algorithm [FGGS99],
Høyer et al.’s algorithm [HNS01] etc. satisfy this condition. For classical querying, the
state vector on the data qubits is |0〉, independent of the probe number. For Grover and
Farhi et al., the state vector on the data qubit is (|0〉 − |1〉)/

√
2, independent of the probe

number. For Høyer et al., the state vector on the data qubit is |0〉 for some probe numbers,
and (|0〉 − |1〉)/

√
2 for the other probe numbers.

1.2.1 Static membership in the quantum bit probe model

In this thesis, we study the static membership problem in the quantum bit probe model,
which is the quantum cell probe model with cell size w equal to one. We show tradeoffs
between storage space and the number of probes for exact quantum bit probe schemes and
lower bounds on the storage space for ε-error quantum bit probe schemes making a given
number of probes. Our results show that the lower bounds shown in [BMRV00] for the
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classical model also hold (with minor differences) in the quantum bit probe model. Thus,
our quantum lower bounds almost match the appropriate classical upper bounds.

Our investigations into the quantum bit probe complexity of set membership are in-
spired by similar results proved earlier in [BMRV00] in the classical model. However, the
methods used for classical models, which were based on combinatorial arguments involv-
ing set systems (in particular, bounds on the sizes of r-cover-free families [NW94, EFF85,
DR82]), seem to be powerless in giving the results in the quantum model. Instead, our
tradeoffs between storage space and the number of quantum probes are proved using linear
algebraic arguments. Roughly speaking, we lower and upper bound the dimension of a set
of unitary operators arising from the quantum query algorithm. The lower bound on the
dimension arises from the ‘correctness requirements’ of the quantum algorithm. The upper
bound on the dimension arises from limitations on the storage space and number of probes.
By playing the lower and upper bounds against each other, we get the desired tradeoffs. To
the best of our knowledge, this is the first time that linear algebraic arguments have been
used to prove lower bounds for data structure problems, classical or quantum. Counting of
dimensions has been previously used in quantum computing (see e.g. [AST+98, BdW01]),
but in quite different contexts and ways. Linear algebraic arguments similar to ours have
been heavily used in combinatorics. For a delightful introduction, see the book by Babai
and Frankl [BF92].

For classical deterministic query algorithms, Buhrman et al. [BMRV00] showed that
any (s, t)-scheme (which uses space s and t bit probes) satisfies

(
m
n

)
≤
(
s
nt

)
2nt. We show a

stronger (!) tradeoff result in the quantum bit probe model.

Result 4 Suppose there exists an exact quantum bit probe scheme for storing subsets S of
size at most n from a universe of size m that uses s bits of storage and answers membership
queries with t quantum probes. Then

n∑
i=0

(
m

i

)
≤

nt∑
i=0

(
s

i

)
This has two immediate consequences. First, by setting t = 1, we see that if only one probe
is allowed, then m bits of storage are necessary. (In [BMRV00], for the classical model,
this was justified using an ad hoc argument.) Thus, the classical deterministic bit vector
scheme that stores the characteristic vector of the set S and answers membership queries
using one bit probe, is optimal even with exact quantum querying. Second, it follows
(see [BMRV00] for details) that the classical deterministic scheme of Fredman, Komlós
and Szemerédi [FKS84], which uses O(n logm) bits of storage and answers membership
queries using O(logm) bit probes, is optimal even with exact quantum querying—quantum
schemes that use O(n logm) bits of storage must make Ω(logm) probes if n ≤ m1−Ω(1).
Recently, Pagh [Pag01] has shown classical deterministic schemes using the information-
theoretic minimum space O(n log(m/n)) and making O(log(m/n)) bit probes, which is
optimal even with exact quantum querying, by the above result. For t between 1 and
O(log(m/n)), Buhrman et al. [BMRV00] have given classical deterministic schemes making
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t bit probes, which use O(nt(m/n)2/(t+1)) bits of storage. A lower bound of Ω(nt(m/n)1/t)
for storage space, for suitable values of the various parameters, follows from the above
result. Thus, if we only care about space up to a polynomial, classical deterministic
schemes that make t bit probes for t between 1 and O(log(m/n)), and which use storage
space almost matching the exact quantum lower bounds, exist.

Interestingly, the above result holds even in the presence of errors, provided the error
is restricted to positive instances, that is the query algorithm sometimes (with probability
< 1) returns the answer ‘No’ for a query x that is actually in the set S, but always answers
‘No’ for a query x that is not a member of S.

We also give a simplified linear algebraic proof of the above theorem for deterministic
and positive error classical bit probe schemes. This theorem is in fact stronger than the
tradeoff results known previously for such schemes.

In the classical setting, there exists a scheme for storing subsets of size at most n
from a universe of size m that answers membership queries, with two-sided error at most
ε < 1/16, using just one bit probe, and using storage space O(n logm

ε2
). Also, any such

one probe scheme making two-sided error at most ε must use space Ω( n logm
ε log(1/ε)

). Both the

upper bound and the lower bound have been proved in [BMRV00]. By two-sided error,
we mean that the query algorithm can make an error for both positive instances (the
query element is a member of the stored set), as well as negative instances (the query
element is not a member of the stored set). Since different sets must be represented by
different tables, every scheme, no matter how many probes the query algorithm is allowed,
must use Ω(n log(m/n)) bits of storage, even in the bounded two-sided error quantum
model. However, one might ask if the dependence of space on ε is significantly better
in the quantum probe model. We show the following lower bound which implies that a
quantum scheme needs significantly more than the information-theoretic optimal space if
sub-constant error probabilities are desired.

Result 5 For any p ≥ 1 and n/m < ε < 2−3p, suppose there is a quantum bit probe scheme
with two-sided error ε which stores subsets of size at most n from a universe of size m and

answers membership queries using p quantum probes. Define δ
∆
= ε1/p. It must use space

s = Ω

(
n log(m/n)

δ1/6 log(1/δ)

)
Such a tradeoff between space and error probability for multiple probes was not known
earlier, even in the classical randomised model. Note that for p bit probes, an upper
bound of O(n logm

ε4/p ) on the storage space, for ε < 2−p, follows by taking the storage scheme

of [BMRV00] for error probability ε2/p

4
, and repeating the (classical randomised) single

probe query scheme p times. This diminishes the probability of error to ε. Thus, our lower
bounds for two-sided error quantum schemes roughly match the two-sided error classical
randomised upper bounds.

We also improve the lower bound in the result above on the space requirement of ε-error
bit probe schemes for the static membership problem making p probes, when the query
schemes are classical randomised.

9



1.2. The quantum cell probe model

Result 6 Let p ≥ 1, 18−p > ε > 1/m1/3 and m1/3 > 18n. Define δ
∆
= ε1/p. Any two-sided

ε-error classical randomised scheme which stores subsets of size at most n from a universe
of size m and answers membership queries using at most p bit probes must use space

Ω

(
n logm

δ2/5 log(1/δ)

)
These results are joint work with Jaikumar Radhakrishnan and S.Venkatesh [RSV00a].

1.2.2 Static membership in the implicit storage quantum cell
probe model

In this thesis, we generalise the Ω(log n) lower bound of Yao on the number of probes
required in any classical deterministic cell probe solution to the static membership problem
with implicit storage schemes, to the quantum setting. Consider the problem of storing a
subset S of size at most n of the universe [m] in a table with q cells, so that membership
queries can be answered efficiently. We restrict the storage scheme to be implicit, using
at most p ‘pointer values’. A ‘pointer value’ is a member of a set of size p (the set of
‘pointers’) disjoint from the universe. The term implicit means that the storage scheme
can store either a ‘pointer value’ or a member of S in a cell. In particular, the storage
scheme is not allowed to store an element of the universe which is not a member of S.
The query algorithm answers membership queries by performing t (general) quantum cell
probes. We call such schemes (p, q, t) implicit storage quantum cell probe schemes

Result 7 For every n, p, q, there exists an N(n, p, q) such that for all m ≥ N(n, p, q), the
following holds: Consider any bounded error (p, q, t) implicit storage quantum cell probe
scheme for the static membership problem with universe size m and size of the stored subset
at most n. Then the quantum query scheme must make t = Ω(log n) probes.

This result is joint work with S.Venkatesh [SV01].

1.2.3 Static predecessor in the address-only quantum cell probe
model

In this thesis, we also study the static predecessor problem. However, our lower bounds
are not in the most general quantum cell probe model, but in a restricted version viz. the
address-only quantum cell probe model. To show the lower bound for the static predeces-
sor problem in the address-only quantum cell probe model, we use a connection between
quantum cell probe schemes for static data structure problems and two-party quantum
communication complexity. This connection similar to that in Miltersen, Nisan, Safra and
Wigderson [MNSW98], who exploited it in the classical setting. Using this connection, we
can convert an address-only quantum cell probe solution for the predecessor problem into a
particular kind of quantum communication game. We then use a round elimination lemma
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1.3. The two-party quantum communication model

in quantum communication complexity to show lower bounds on the rounds complexity of
this game. Using this approach, we prove the following theorem.

Result 8 Suppose we have a (nO(1), (logm)O(1), t) bounded error quantum address-only cell
probe solution to the static predecessor problem, where the universe size is m and the subset

size is at most n. Then the number of queries t is at least Ω
(

log logm
log log logm

)
as a function of

m, and at least Ω
(√

logn
log logn

)
as a function of n.

Since our address-only quantum cell probe model subsumes the classical cell probe
model with randomised query schemes, our lower bound for the static predecessor problem
also holds in this classical randomised setting. This improves the previous lower bound
Ω(
√

log logm) as a function of m and Ω(log1/3 n) as a function of n for this setting, shown
by Miltersen, Nisan, Safra and Wigderson [MNSW98]. Beame and Fich [BF99] have shown
an upper bound matching our lower bound up to constant factors, which uses nO(1) cells
of storage of word size O(logm) bits. In fact, both the storage and the query schemes
are classical deterministic in Beame and Fich’s solution. In the classical deterministic cell
probe model, Beame and Fich show a lower bound of t = Ω

(
log logm

log log logm

)
as a function of

m for (nO(1), 2(logm)1−Ω(1)
, t) cell probe schemes, and a lower bound of t = Ω

(√
logn

log logn

)
as

a function of n for (nO(1), (logm)O(1), t) cell probe schemes. But Beame and Fich’s lower
bound proof breaks down if the query scheme is randomised. Our result thus shows that
the upper bound scheme of Beame and Fich is optimal all the way up to the bounded error
address-only quantum cell probe model. Also, our proof is substantially simpler than that
of Beame and Fich.

This result is joint work with S.Venkatesh [SV01].

1.3 The two-party quantum communication model

Classical communication complexity aims at studying the number of (classical) bits of
communication that the components of a communication system need to exchange to per-
form certain tasks. Yao [Yao79] defined a very simple model for studying communication
as a resource in the classical setting—the two-party (classical) communication model. In
this model, there are two parties, Alice and Bob, and their task is to evaluate a function
f(x, y), where x is Alice’s input and y is Bob’s input. The computation of f(x, y) is done
according to a (classical) communication protocol P . During the execution of the protocol,
the two parties alternately send messages as strings of bits. The protocol P is a set of rules
specifying the player who starts the protocol, the player whose turn it is to send a message
(based on the communication so far), what the players send (based on their inputs and the
communication so far) and when a run terminates. At the end of the run, the last recipient
of a message announces the output of the protocol. If the action of Alice is entirely a func-
tion of x and the communication which she has seen so far, and the same holds for the case
of Bob, the protocol is called (classical) deterministic. The communication complexity of
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a deterministic protocol P is the number of bits exchanged by the two parties in protocol
P for the worst case input (x, y). A deterministic communication protocol for function f
always outputs the correct value f(x, y), given the input x to Alice and the input y to Bob.
The deterministic communication complexity of f is the communication complexity of the
best classical deterministic protocol computing f .

We can strengthen the two-party deterministic model by allowing Alice and Bob to ‘toss
coins’ during the execution of the communication protocol. We assume that the coin tosses
are done in ‘public’, that is, the action of Alice is a functions of x, the communication which
she has seen so far, and the ‘public coin tosses’, and the same holds for Bob. We allow
the protocol to make errors. A public coins randomised protocol for function f outputs the
correct answer f(x, y), when Alice is given x and Bob is given y, with probability at least
2/3. The communication complexity of protocol P means the worst-case complexity, over
every input (x, y) and coin toss sequence. The randomised communication complexity of f
is the communication complexity of the best public coins randomised protocol computing
f . Similar definitions can be given for private coins randomised protocols, where the coin
tosses are done in ‘private’.

The two-party classical communication model has been extensively studied in the past,
and a rich theory has been built on it. For a comprehensive introduction, see the book by
Kushilevitz and Nisan [KN96].

We consider the following round elimination problem in communication complexity.
Suppose f : E × F → G is a function. In the communication game corresponding to f ,
Alice gets a string x ∈ E, Bob gets a string y ∈ F , and they have to compute f(x, y).
In the communication game f (n), Alice gets n strings x1, . . . , xn ∈ E; Bob gets an integer
i ∈ [n], a string y ∈ F , and a copy of the strings x1, . . . , xi−1. Their aim is to communicate
and compute f(xi, y). Suppose a protocol for f (n) is given where Alice starts, and her first
message is a bits long, where a is much smaller than n. Intuitively, it would seem that
since Alice does not know i, the first round of communication cannot give much information
about xi, and thus, would not be very useful to Bob. The round elimination lemma of
Miltersen, Nisan, Safra and Wigderson [MNSW98] for classical communication complexity
justifies this intuition. It says, informally speaking, that a public coins randomised protocol
P for f (n) with t rounds of communication and Alice starting, gives rise to a public coins
randomised protocol Q for f with t−1 rounds of communication and Bob starting, and the
message complexity and error probability of Q are comparable to those of P . Moreover, we
show that this is true even if Bob also gets copies of x1, . . . , xi−1, a case which is needed in
many applications of the round elimination lemma, for example, in proving lower bounds
for many static data structure problems in the classical setting. In fact, Miltersen et
al. [MNSW98] exploit the round elimination lemma in various ways to prove lower bounds
for the static predecessor and other static data structure problems. They also use it to
prove lower bounds for some communication complexity problems.

To study communication as a resource in quantum computation, Yao [Yao93] defined
the two-party quantum communication model, similar to the the two-party classical com-
munication model. Let E,F,G be arbitrary finite sets and f : E × F → G be a function.
There are two players Alice and Bob, who hold qubits. When the communication game
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starts, Alice holds |x〉 where x ∈ E together with some ancilla qubits in the state |0〉, and
Bob holds |y〉 where y ∈ F together with some ancilla qubits in the state |0〉. Thus the
qubits of Alice and Bob are initially in computational basis states, and the initial superpo-
sition is simply |x〉A|0〉A|y〉B|0〉B. Here the subscripts denote the ownership of the qubits
by Alice and Bob. The players take turns to communicate to compute f(x, y). Suppose
it is Alice’s turn. Alice can make an arbitrary unitary transformation on her qubits and
then send one or more qubits to Bob. Sending qubits does not change the overall super-
position, but rather changes the ownership of the qubits, allowing Bob to apply his next
unitary transformation on his original qubits plus the newly received qubits. At the end
of the protocol, the last recipient of qubits performs a measurement on the qubits in her
possession to output an answer. We say a quantum protocol computes f with ε-error in
the worst case, if for any input (x, y) ∈ E × F , the probability that the protocol outputs
the correct result f(x, y) is greater than 1− ε. The term ‘bounded error quantum protocol’
means that ε = 1/3.

We require that Alice and Bob make a secure copy of their inputs before beginning the
protocol. This is possible since the inputs to Alice and Bob are in computational basis
states. Thus, without loss of generality, the input qubits of Alice and Bob are never sent
as messages, their state remains unchanged throughout the protocol, and they are never
measured i.e. some work qubits are measured to determine the result of the protocol. We
call such protocols secure. We will assume henceforth that all our protocols are secure.

To state our round elimination lemma in quantum communication, we have to define
the concept of a safe quantum communication protocol.

Definition 1.1 (Safe quantum protocol) By a [t, c, l1, . . . , lt]
A ([t, c, l1, . . . , lt]

B) safe
quantum protocol, we mean a secure quantum protocol where Alice (Bob) starts the com-
munication, the first message is l1 + c qubits long, the ith message, for i ≥ 2, is li qubits
long, and the communication goes on for t rounds. We think of the first message as having
two parts: the ‘main part’ which is l1 qubits long, and the ‘safe overhead part’ which is c
qubits long. The density matrix of the ‘safe overhead’ is independent of the inputs to Alice
and Bob.

For the round elimination lemma, we also need to define the concept of a quantum
protocol with public coins. Intuitively, a public coin quantum protocol is a probability
distribution over finitely many (coinless) quantum protocols. We shall henceforth call the
standard definition of a quantum protocol as coinless. Our definition is similar to the
classical scenario, where a randomised protocol with public coins is a probability distribu-
tion over finitely many deterministic protocols. We note however, that our definition of
a public coin quantum protocol is not the same as that of a quantum protocol with prior
entanglement, which has been studied previously (see e.g. [CvDNT98]). Our definition is
weaker, in that it does not allow the unitary transformations of Alice and Bob to alter the
‘public coin’.

Definition 1.2 (Public coin quantum protocol) In a quantum protocol with a public
coin, there is, before the start of the protocol, a quantum state called a public coin, of
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the form
∑

c

√
pc|c〉A|c〉B, where the subscripts denote ownership of qubits by Alice and

Bob, pc are finitely many non-negative real numbers and
∑

c pc = 1. Alice and Bob make
(entangled) copies of their respective halves of the public coin using CNOT gates before
commencing the protocol. The unitary transformations of Alice and Bob during the protocol
do not touch the public coin. The public coin is never measured, nor is it ever sent as a
message.

Hence, one can think of the public coin quantum protocol to be a probability distribution,
with probability pc, over finitely many coinless quantum protocols indexed by the coin
basis states |c〉. A safe public coin quantum protocol is similarly defined as a probability
distribution over finitely many safe coinless quantum protocols.

1.3.1 Round elimination lemmas in quantum and classical com-
munication

We prove a round elimination lemma for quantum communication complexity in this thesis.
This result can be viewed as a quantum analogue of the round elimination lemma of
Miltersen, Nisan, Safra and Wigderson [MNSW98] for classical communication complexity.
Our quantum round elimination lemma is in fact stronger (!) than the classical round
elimination lemma of [MNSW98], and it allows us to show a quantum lower bound for the
static predecessor problem matching Beame and Fich’s upper bound, which the classical
round elimination lemma of [MNSW98] was unable to do. The quantum round elimination
lemma can be used to prove similar lower bounds for many other static data structure
problems in the address-only quantum cell probe model. It also finds applications to
various problems in quantum communication complexity (e.g. the ‘greater-than’ problem),
which are interesting on their own. Our quantum round elimination lemma is proved
using quantum information theoretic techniques, and builds on the work of Klauck et
al. [KNTZ01].

Result 9 Suppose f : E × F → G is a function. Suppose the communication game f (n)

has a [t, c, l1, . . . , lt]
A safe public coin quantum protocol with worst case error less than δ.

Then there is a [t− 1, c+ l1, l2, . . . , lt]
B safe public coin quantum protocol for f with worst

case error less than ε
∆
= δ + (4l1 ln 2/n)1/4.

In the classical setting, we can refine our information theoretic techniques to prove an
even stronger round elimination lemma for classical communication complexity.

Result 10 Suppose f : E × F → G is a function. Suppose the communication game f (n)

has a [t, 0, l1, . . . , lt]
A public coin classical randomised protocol with worst case error less

than δ. Then there is a [t− 1, 0, l2, . . . , lt]
B public coin classical randomised protocol for f

with worst case error less than ε
∆
= δ + (1/2)(2l1 ln 2/n)1/2.

These results are joint work with S.Venkatesh [SV01].
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1.3.2 Rounds versus communication tradeoffs for the ‘greater-
than’ problem

As an application of our round elimination lemmas, we prove rounds versus communication
tradeoffs for the ‘greater-than’ problem. In the ‘greater-than’ problem GTn, Alice is given
x ∈ {0, 1}n, Bob is given y ∈ {0, 1}n, and they have to communicate and decide whether
x > y (treating x, y as integers).

Result 11 The t round bounded error quantum (classical randomised) communication
complexity of GTn is Ω(n1/tt−3) (Ω(n1/tt−2)).

There exists a bounded error classical randomised protocol for GTn using t rounds of
communication and having a complexity of O(n1/t log n). Hence, for a constant number of
rounds, our quantum lower bound matches the classical upper bound to within logarithmic
factors. For one round quantum protocols, our result implies an Ω(n) lower bound for GTn
(which is optimal to within constant factors), improving upon the previous Ω(n/ log n)
lower bound of Klauck [Kla00]. No rounds versus communication tradeoff for this prob-
lem, for more than one round, was known earlier in the quantum setting. For classical
randomised protocols, Miltersen et al. [MNSW98] showed a lower bound of Ω(n1/t2−O(t))
using their round elimination lemma. If the number of rounds is unbounded, then there
is a classical randomised protocol for GTn using O(log n) rounds of communication and
having a complexity of O(log n) [Nis93]. An Ω(log n) lower bound for the bounded error
quantum communication complexity of GTn (irrespective of the number of rounds) follows
from Kremer’s result [Kre95] that the bounded error quantum communication complexity
of a function is lower bounded (up to constant factors) by the logarithm of the one round
(classical) deterministic communication complexity.

These results are joint work with S.Venkatesh [SV01].

1.4 Organisation of the thesis

In Chapter 2, we present our results on the computation of S2
n(X) using ΣΠΣ arithmetic

circuits. We talk about our results on the static membership problem in the quantum
bit probe model, and in the quantum cell probe model with implicit storage schemes, in
Chapter 3. A complete proof of a weaker lower bound in the implicit storage quantum cell
probe model can be found in the appendix. We then discuss the earlier round elimination
based approach of Miltersen et al. [MNSW98], as well as our improved round elimination
based approach, to the static predecessor problem in the classical setting, in Chapter 4. In
Chapter 5, we prove our quantum round elimination lemma, and use it to prove a lower
bound for predecessor in the address-only quantum cell probe model. This chapter also
contains an application of the quantum round elimination lemma to the communication
complexity of the ‘greater-than’ problem. To avoid congesting Chapters 4 and 5, the proofs
of some technical lemmas in those chapters have been moved to the appendix. We end
with a brief conclusion and a list of some open problems in Chapter 6.
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Chapter 2

Depth-3 arithmetic circuits for S2
n(X)

In this chapter, we present our results on computing S2
n(X) using ΣΠΣ arithmetic circuits

(defined in Section 1.1 over various fields. We first recall Graham and Pollack’s theo-
rem [GP72] on covering the complete graph on n vertices by complete bipartite graphs,
such that each edge is covered exactly once. We then state the connections between the
Graham-Pollack problem and computing S2

n(X) in the ΣΠΣ model, and after that, go on
to prove our bounds on computing S2

n(X) in this model.
The main new results in this chapter are

• For infinitely many odd and even n, dn/2e complete bipartite graphs are necessary
and sufficient to cover each edge of the complete graph on n vertices an odd number
of times (Theorem 2.2, Corollary 2.2 and Theorem 2.8). A similar result also holds for
the number of multiplication gates required to compute S2

n(X) over the field GF(2),
using ΣΠΣ arithmetic circuits (Theorems 2.3 and 2.8).

• For any odd prime p, for infinitely many odd and even n, dn/2e complete bipartite
graphs are sufficient to cover each edge of the complete graph on n vertices 1 mod p
times (Theorem 2.4).

• For all n, dn/2e multiplication gates are necessary and sufficient to compute S2
n(X)

over complex numbers, using ΣΠΣ arithmetic circuits (Theorems 2.5 and 2.9). Simi-
lar, but weaker, results hold for computing S2

n(X) over finite fields of odd character-
istic (Theorems 2.6, 2.7 and 2.10).

2.1 The Graham-Pollack theorem

Let Kn denote the complete graph on n vertices. By a decomposition of Kn, we mean a
set {G1, G2, . . . , Gr} of subgraphs of Kn such that

1. Each Gi is a complete bipartite graph (on some subset of the vertex set of Kn); and

2. Each edge of Kn appears in precisely one of the Gi’s.
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2.1. The Graham-Pollack theorem

It is easy to see that there is such a decomposition of the complete graph with n − 1
complete bipartite graphs. Graham and Pollack [GP72] showed that this is tight.

Theorem If {G1, G2, . . . , Gr} is a decomposition of Kn, then r ≥ n− 1.

The original proof of this theorem, and other proofs discovered since then [dCH89, Pec84,
Tve82], used algebraic reasoning in one form or another; no combinatorial proof of this
fact is known.

One of the goals of this work is to obtain extensions of this theorem. To better motivate
the problems we study, we first present a proof of this theorem. This will also help us
explain how algebraic reasoning enters the picture. Consider polynomials in variables
X = X1, X2, . . . , Xn with rational coefficients. Let

S2
n(X)

∆
=

∑
1≤i<j≤n

XiXj;

T 2
n(X)

∆
=

n∑
i=1

X2
i .

Then, we can reformulate the question as follows. What is the smallest r for which there
exist sets Li, Ri ⊆ [n], Li ∩Ri = ∅, for i = 1, 2, . . . , r, such that

S2
n(X) =

r∑
i=1

(
∑
j∈Li

Xj)× (
∑
j∈Ri

Xj) (2.1)

Notice that the two sums in the product on the right are homogeneous linear forms i.e.
linear forms in X1, . . . , Xn with constant term 0. One may generalise this question, and
ask: What is the smallest r for which there exist homogeneous linear forms Li(X), Ri(X)
for i = 1, 2 . . . , r, such that

S2
n(X) =

r∑
i=1

Li(X)Ri(X) (2.2)

Tverberg [Tve82] gave the following elegant argument to show that r must be at least
n− 1. Observe that T 2

n(X) = (
∑n

i=1Xi)
2 − 2S2

n(X). Thus, (2.2) implies

T 2
n(X) = (

n∑
i=1

Xi)
2 − 2

r∑
i=1

Li(X)Ri(X) (2.3)

Now if r is less than n − 1, then there exists a non-zero α = (α1, α2, . . . , αn) ∈ Qn such
that Li(α) = 0 for i = 1, 2 . . . , r and

∑n
i=1 αi = 0 (because at most n − 1 homogeneous

equations in n variables always have a non-zero solution). Under this assignment to the
variables, the right hand side of (2.3) is zero but the left hand side is not.

With this introduction to the Graham-Pollack theorem and its proof, we are now ready
to state the questions we consider in this chapter. Observe that the lower bound for
r in (2.2) depended crucially on the field being Q, and there are two main difficulties
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2.2. At a glance: The bounds for computing S2
n(X)

in generalising it to other fields. First, over fields of characteristic two, the relationship
between S2

n(X) and T 2
n(X) does not hold, for we cannot divide by 2. Second, even if

we are not working over fields of characteristic two, T 2
n(X) can vanish at some non-zero

points. Equations similar to (2.2) have been studied in the past in at least two different
contexts viz. covering a complete graph by complete bipartite graphs such that each edge
is covered an odd number of times (the odd cover problem), and depth–3 arithmetic circuits
for S2

n(X). In the following sections, we will study some of these questions in detail.

2.2 At a glance: The bounds for computing S2
n(X)

We study the computation of S2
n(X) in three different flavours of ΣΠΣ arithmetic circuits.

1. The graph model: This is the weakest model. Here, the linear forms Li(X) and
Ri(X) (see equation (2.2) above) must correspond to bipartite graphs; that is, all
coefficients must be 1 (or 0), no variable can appear in both Li and Ri (with coefficient
1), and no constant term is allowed in these linear forms. This is the setting for the
Graham-Pollack theorem and its generalisations.

2. The homogeneous model: Here the linear forms are required to be homogeneous, that
is, no constant term is allowed in them. However, any element from the field is
allowed as a coefficient in the linear forms. This model was studied by Nisan and
Wigderson [NW96], using the method of partial derivatives.

3. The inhomogeneous model: This is the most general model; there is no restriction on
the coefficients or the constant term.

We show our upper bounds in the graph and the homogeneous model; our lower bounds
hold even in the stronger inhomogeneous model. We juxtapose our results against the
previously known results and also briefly mention the proof technique used, highlighting
our contribution. Note that the previous lower bounds were for the homogeneous circuit
model only, and were proved using the method of partial derivatives [NW96] (but see also
the rank arguments of Babai and Frankl [BF92] for the graph model).

The notation ∃∞n used below means ‘for infinitely many n’ and the notation ∀n means
‘for all n’.

In the rest of the chapter, the odd cover problem shall refer to the problem of covering
a complete graph by complete bipartite graphs such that each edge is covered an odd
number of times. For an odd prime p, the 1 mod p cover problem shall refer to the problem
of covering a complete graph by complete bipartite graphs such that each edge is covered
1 mod p times. Observe that the odd cover problem corresponds to the graph model of
ΣΠΣ circuits over GF(2), and the 1 mod p cover problem corresponds to the graph model
of ΣΠΣ circuits over GF(p) (p an odd prime).
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2.2. At a glance: The bounds for computing S2
n(X)

2.2.1 The odd cover problem and computing S2
n(X) over GF(2)

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Graph Hom. Inhom. Graph Hom.

n ≡ 0 mod 4 n
2
∃∞n n

2
∃∞n n

2
∀n n− 1∀n n

2
∀n

n ≡ 2 mod 4 n
2
∃∞n n

2
∃∞n n

2
∀n n− 1∀n n

2
∀n

n ≡ 3 mod 4
⌈
n
2

⌉
∃∞n

⌈
n
2

⌉
∃∞n

⌈
n
2

⌉
∀n n− 1∀n

⌊
n
2

⌋
∀n

n ≡ 1 mod 4
⌈
n
2

⌉
∃∞n

⌊
n
2

⌋
∃∞n

⌊
n
2

⌋
∀n n− 1∀n

⌊
n
2

⌋
∀n

Table 2.1: Bounds for the odd cover problem and computing S2
n(X) over GF(2).

Proof Methods. For the upper bound in the graph model, we restrict our attention to a
class of schemes, which we call pairs constructions, for constructing odd covers of Kn . We
relate the pairs construction to the existence of certain kinds of good matrices. We then give
two different constructions of good matrices. The first construction is based on conference
matrices, which are related to Hadamard matrices. The second construction is based on
symmetric designs, and uses some elementary properties about quadratic residues. The
first construction gives optimal odd covers for infinitely many n of the form 0 mod 4; the
second gives optimal odd covers for infinitely many n of the form 2 mod 4. We get

⌈
n
2

⌉
sized odd covers for infinitely many n of the forms n = 1, 3 mod 4 from odd covers of Kn+1

of optimal size.
The

⌊
n
2

⌋
upper bound in the homogeneous model for n ≡ 1 mod 4 is got by locally

transforming a homogeneous circuit computing S2
n−1(X) using n−1

2
multiplication gates to

a homogeneous circuit computing S2
n(X) using the same number of multiplication gates.

For the lower bound, we use the method of substitution used by Shpilka and Wigder-
son [SW99], and subsequently refined by Shpilka [Shp01]. However, the proof is not a
straightforward application of earlier methods. Technical difficulties arise because we are
working over GF(2) and not over fields of characteristic zero. Almost all the earlier lower
bound proofs used partial derivatives in some way or the other. Over GF(2), most of these
approaches fail to work. Thus, we have to exploit the method of substitution in ways which
do not use partial derivatives.

In fact, we place the method of substitution in a general framework and recast it to
obtain a family of equations. We then exploit the family of equations depending upon the
field in question, to obtain different lower bounds for different fields.
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2.2. At a glance: The bounds for computing S2
n(X)

2.2.2 1 mod p cover problem, p an odd prime

Bounds:

Our Bounds Previous Bounds
Upper Bounds Upper Bounds Lower Bounds

Graph Graph Hom.

n even n
2
∃∞n n− 1∀n n

2
∀n

n odd
⌈
n
2

⌉
∃∞n n− 1∀n

⌊
n
2

⌋
∀n

Table 2.2: Bounds for the 1 mod p cover problem.

Proof Methods. The upper bound follows by a pairs construction argument (refer Sec-
tion 2.2.1). We reduce the problem of existence of a pairs construction to the existence
of certain kinds of matrices good for p. By a modification of the symmetric designs con-
struction (refer Section 2.2.1), we construct an infinite family of matrices good for p. This
suffices to show the upper bounds for the 1 mod p cover problem. We use the same lower
bounds as those known earlier for homogeneous circuits.

2.2.3 Computing S2
n(X) over C

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Hom. Inhom. Hom. Hom.

∀n
⌈
n
2

⌉ ⌈
n
2

⌉ ⌈
n+1

2

⌉ ⌈
n
2

⌉

Table 2.3: Bounds for computing S2
n(X) over C.

Proof Methods. For the upper bound, we reformulate the algebraic problem and arrive
at a suitable bilinear form. Then, if the notion of “distance” between vectors is defined
using this bilinear form, the problem reduces to finding suitably spaced vectors with com-
plex coordinates. We then show the existence of such a suitably spaced family of vectors.
The proof has a geometric flavour.

For the lower bound, we now use the general framework mentioned in Section 2.2.1.
This time however, the way we exploit the family of equations is very different; in particular,
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2.2. At a glance: The bounds for computing S2
n(X)

we view the constraints geometrically and arrive at a (different) bilinear form. Then, if
the notion of “distance” between vectors is defined using this bilinear form, the problem
reduces to placing a certain number of points on a sphere of a certain radius such that
all the points are equidistant with a certain common distance. We then show that such a
placement of points is impossible.

2.2.4 Computing S2
n(X) over GF(pr), p odd

Bounds:

Our Bounds Previous Bounds
Field Upper Bnds. Lower Bnds. Upper Bnds. Lower Bnds.

Hom. Inhom. Hom. Hom.

n even n
2
∀n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(pr)
r even n odd

⌈
n
2

⌉
∀n

⌈
n
2

⌉
∃∞n

⌈
n
2

⌉
∀n

⌈
n
2

⌉
∃∞n

p > 3
⌊
n
2

⌋
∀n

⌊
n
2

⌋
∀n

n even n
2
∀n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(3r)
r even n odd

⌈
n
2

⌉
∀n

⌊
n
2

⌋
∀n

⌈
n
2

⌉
∀n

⌈
n
2

⌉
∃∞n⌊

n
2

⌋
∀n

n even n
2
∃∞n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(pr)
r odd n odd

⌈
n
2

⌉
∀n

⌈
n
2

⌉
∃∞n

⌈
n
2

⌉
∀n

⌈
n
2

⌉
∃∞n

p ≡ 1 mod 4
⌊
n
2

⌋
∀n

⌊
n
2

⌋
∀n

n even n
2
∃∞n n

2
∀n n− 1∀n n

2
∀n

GF(pr)
r odd n odd

⌈
n
2

⌉
∃∞n

⌊
n
2

⌋
∀n n− 1∀n

⌊
n
2

⌋
∀n

p ≡ 3 mod 4

Table 2.4: Bounds for computing S2
n(X) over GF(pr), p an odd prime.

Proof Methods. For GF(pr), r even and GF(pr), p ≡ 1 mod 4, r odd, the proof of the
upper bound is very similar to our upper bound proof for complex numbers. The technical
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2.3. Upper bounds

reason behind this is that these fields have square roots of −1.
The upper bound for GF(pr), p ≡ 3 mod 4, r odd, follows from our upper bound for

the 1 mod p cover problem. Since these fields do not have square roots of −1, we cannot
mimic the upper bound arguments for complex numbers for these fields.

The proof of the lower bound for finite fields of odd characteristic is similar to the lower
bound proof for complex numbers, though, because of technical difficulties, the results are
not as tight for some values of n, as they were in the case of complex numbers.

2.2.5 Computing S2
n(X) over R and Q

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Graph Inhom. Graph Hom.

∀n n− 1 n− 1 n− 1 n− 1

Table 2.5: Bounds for computing S2
n(X) over R and Q.

Proof Methods. In this case, we show that the trivial upper bound of n − 1 is tight
even for inhomogeneous circuits. The proof of the Graham-Pollack theorem works only for
homogeneous circuits. To extend the result to inhomogeneous circuits, we need to use the
method of substitution. The result is relatively straightforward once the problem is placed
in this framework. We state the result for completeness.

2.3 Upper bounds

2.3.1 The odd cover problem and computing S2
n(X) over GF(2)

In this section, we will show that there is an odd cover of K2n by n complete bipartite
graphs whenever there exists a n × n matrix satisfying certain properties. We describe a
particular scheme for producing an odd cover of K2n, which we call a pairs construction.
We express the requirements for a pairs construction in the language of matrices, and then
give sufficient conditions for a matrix to encode a pairs construction. We call a matrix
satisfying these sufficient conditions a good matrix.

We want to cover the edges of K2n with n complete bipartite graphs such that each
edge is covered an odd number of times. A complete bipartite graph is fully described
by specifying its two colour classes A and B. Partition the vertex set [2n] (of K2n) into
ordered pairs (1, 2), (3, 4), . . . , (2n − 1, 2n). In a pairs construction of an odd cover of
K2n, if one element of a pair does not participate in a complete bipartite graph G in the
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2.3. Upper bounds

odd cover decomposition, then the other element of the pair does not participate in G
either, and also, both the elements of a pair do not appear in the same colour class in G.
Hence, to describe a complete bipartite graph G in a pairs construction of an odd cover
decomposition, it suffices to specify for each pair (2i− 1, 2i), whether the pair participates
in the bipartite graph, and when it does, whether 2i appears in colour class A or B. We
specify the n complete bipartite graphs in the odd cover decomposition by a n× n matrix
M with entries in {−1, 0, 1}. The rows of the matrix are indexed by pairs; the ith row is
for the pair (2i− 1, 2i). The columns are indexed by the complete bipartite graphs of the
odd cover decomposition. If Mij = 0, the pair (2i − 1, 2i) does not participate in the jth
bipartite graph Gj; if Mij = 1, 2i appears in colour class B of Gj; if Mij = −1, 2i appears
in colour class A of Gj.

M =
(1, 2)
(3, 4)
(5, 6)
(7, 8)

G1 G2 G3 G4
0 1 1 −1
−1 0 1 1
−1 −1 0 −1

1 −1 1 0



4 3 1 2 1 2 2 1
6 5 6 5 3 4 3 4
7 8 8 7 7 8 6 5

G1 G2 G3 G4

The matrix M describes a pairs construction of an odd cover of K8 by complete bipartite
graphs G1, G2, G3, G4.

Figure 2.1: An example of a pairs construction.

We now identify properties of the matrix M which ensure that the complete bipartite
graphs arising from it form an odd cover of K2n.

Definition 2.1 A n × n matrix with entries from {−1, 0, 1} is good if it satisfies the
following conditions:

1. In every row, the number of non-zero entries is odd.

2. For every pair of distinct rows, the number of columns where they both have non-zero
entries is congruent to 2 mod 4.

3. Any two distinct rows are orthogonal over the integers.

Lemma 2.1 If an n × n matrix is good, then the n complete bipartite graphs that arise
from it form an odd cover of K2n.
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2.3. Upper bounds

Proof: Since the number of non-zero entries in a row is odd, the number of times the
corresponding edge {2i−1, 2i} is covered is odd. Next, consider edges whose vertices come
from different pairs: say, the edge {1, 3}. We need to show that the number of bipartite
graphs where 1 and 3 are placed on opposite sides is odd. Consider the rows of the matrix
corresponding to pairs (1, 2) and (3, 4). Since these rows are orthogonal over the integers,
the number of times 1 appears on the opposite side of 3 must be equal to the number
of times 1 appears on the opposite side of 4. Since the number of columns where both
rows have non-zero entries is congruent to 2 mod 4, the number of times 1 appears on the
opposite side of 3 (as well as the number of times 1 appears on the opposite side of 4) must
be odd. Thus, given a good matrix, we can construct n complete bipartite graphs covering
each edge of K2n an odd number of times.

Thus, to obtain odd covers, it is enough to construct good matrices. We now give two
methods for constructing such matrices.

Construction 1: Skew symmetric conference matrices
A Hadamard matrix Hn is an n× n matrix with entries in {−1, 1} such that HnH

T
n =

nIn, where In is the n×n identity matrix. A conference matrix Cn is an n×n matrix, with
0’s on the diagonal and −1,+1 elsewhere, such that CnC

T
n = (n−1)In. The following fact

can be verified easily.

Lemma 2.2 n× n conference matrices, where n ≡ 0 mod 4, are good matrices.

Skew symmetric conference matrices can be obtained from skew Hadamard matrices. A
skew Hadamard matrix is defined as a Hadamard matrix that one gets by adding the
identity matrix to a skew symmetric conference matrix. Several constructions of skew
Hadamard matrices can be found in [Hal86, p. 247]. In particular, the following theorem
is proved there.

Theorem 2.1 There is a skew Hadamard matrix of order n if n = 2tk1 · · · ks, where
n ≡ 0 mod 4, each ki ≡ 0 mod 4 and each ki is of the form pr + 1, p an odd prime.

Corollary 2.1 There is a good matrix of order n if n satisfies the conditions in the above
theorem. Note that the conditions hold for infinitely many n.

As an illustrative example, we show the existence of skew Hadamard matrices Fn when n
is a power of 2. To do this, we modify the well-known recursive construction for Hadamard
matrices. For n = 2, set (F2)21 = −1 and the rest of the entries 1. Suppose now that we
have constructed Fn. To construct F2n, place a copy of Fn in the top left corner, a copy of
−Fn in the bottom left corner, and copies of FT

n in the top right and bottom right corners.
It is easy to check that F2n so constructed is skew Hadamard. In fact, the matrix M in
Figure 2.1 is nothing but F4 − I4.

Construction 2: Symmetric designs
The matrices M that we now construct are based on a well-known construction for

symmetric designs. These matrices are not conference matrices; in fact, they have more
than one zero in every row.
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2.3. Upper bounds

Let q be a prime power congruent to 3 mod 4. Let F = GF(q) be the finite field of q
elements. Index the rows of M with lines and the columns with points of the projective
2-space over F. That is, the projective points and lines are the one dimensional and two
dimensional subspaces respectively, of F3. A projective point is represented by a vector in
F3 (out of q − 1 possible representatives) in the one dimensional subspace corresponding
to it. A projective line is also represented by a vector in F3 (out of q − 1 possible repre-
sentatives). The representative for a projective line can be thought of as a ‘normal vector’
to the two dimensional subspace corresponding to it. We associate with each projective
line L a linear form on the vector space F3, given by L(w) = vTw, where w ∈ F3 and v
is the chosen representative for L. For a projective line L and a projective point Q, let

L(Q)
∆
= L(w), where w is the chosen representative for Q. Now the matrix M is defined

as follows. If L(Q) = 0 (i.e. projective point Q lies on projective line L), we set ML,Q = 0;
if L(Q) is a (non-zero) square in F, set ML,Q = 1; otherwise, set ML,Q = −1.

We now check that M is a good matrix. M is a n×n matrix, where n = q2 + q+ 1, q a
prime power congruent to 3 mod 4. The number of non-zero entries per row is q2 + q+ 1−
(q+ 1) = q2, which is odd. The number of columns where two distinct rows have non-zero
entries is q2 + q + 1 − 2(q + 1) + 1 = q2 − q. This number is 2 mod 4 since q ≡ 3 mod 4.
Recall that in the projective 2-space over GF(q), each line contains q + 1 points, and two
distinct lines intersect in a single point. Now we only need to check that any two distinct
rows (corresponding to distinct projective lines L,L′) are orthogonal over the integers. We
first observe that the following equality holds over the integers.∑

P

η(L(P ))η(L′(P )) =
1

q − 1

∑
v 6=(0,0,0)

η(L(v))η(L′(v)) (2.4)

where,

η(x) =


0 if x = 0
1 if x is a (non-zero) square
−1 if x is not a square

.

[The first sum is over all points P of the projective 2-space. The second is over all non-zero
triples v in F3.] The equality holds because if we take two non-zero triples u and w = αu
(α 6= 0) corresponding to the same projective point, then

η(L(w))η(L′(w)) = η(L(αu))η(L′(αu))

= η(αL(u))η(αL′(u))

= η(α)η(L(u))η(α)η(L′(u))

= η(L(u))η(L′(u))

Now consider the sum on the right hand side of (2.4). We have∑
v 6=(0,0,0)

η(L(v))η(L′(v)) =
∑

a,b∈F;a,b 6=0

∑
v:L(v)=a,L′(v)=b

v 6=(0,0,0)

η(a)η(b)
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The linear forms corresponding to two distinct projective lines are linearly independent;
i.e., L and L′ are linearly independent. Hence, for every pair (a, b) in the sum above, there
are exactly q triples v such that L(v) = a and L′(v) = b. Thus,∑

v 6=(0,0,0)

η(L(v))η(L′(v)) = q ·
∑

a,b∈F; a,b 6=0

η(a)η(b)

= q ·
∑

a,b∈F; a,b 6=0

η(ab)

= q(q − 1) ·
∑

c∈F; c6=0

η(c)

= 0

The last equality holds because there are exactly (q − 1)/2 squares and the same number
of non–squares in F − {0}. We conclude that the left hand side of (2.4) is 0; hence, the
rows corresponding to distinct projective lines are orthogonal over the integers.

We have thus proved the following lemma.

Lemma 2.3 If q ≡ 3 mod 4 is a prime power then there is a good matrix of order q2+q+1.
Note that infinitely many such q exist.

We can now easily prove the following theorem and its corollary.

Theorem 2.2 For infinitely many n ≡ 0, 2 mod 4 we have an odd cover of Kn using n
2

complete bipartite graphs.

Proof: We use n
2
× n

2
good matrices to construct an odd cover of Kn using n

2
complete

bipartite graphs(see Lemma 2.1). For infinitely many n ≡ 0 mod 4, we can use the good
matrices of Corollary 2.1. For infinitely many n ≡ 2 mod 4, we can use the good matrices
of Lemma 2.3.

Corollary 2.2 For infinitely many n ≡ 1, 3 mod 4 we have an odd cover of Kn using
⌈
n
2

⌉
complete bipartite graphs.

Proof: For odd n, any odd cover of Kn+1 using n+1
2

complete bipartite graphs gives us an
odd cover for Kn too. The corollary now follows from the above theorem.

We also prove the following lemma, which allows us to construct homogeneous ΣΠΣ
circuits for S2

n(X) with
⌊
n
2

⌋
multiplication gates, for infinitely many n ≡ 1 mod 4.

Lemma 2.4 If S2
n(X), n ≡ 0 mod 4, can be computed over GF(2) by a homogeneous ΣΠΣ

circuit using n
2

multiplication gates, then S2
n+1(X) can be computed over GF(2) by a ho-

mogeneous ΣΠΣ circuit using n
2

multiplication gates.

Proof: Consider a homogeneous circuit over GF(2)

r∑
i=1

Li(X1, . . . , Xn)Ri(X1, . . . , Xn) (2.5)
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2.3. Upper bounds

for S2
n(X1, . . . , Xn), n ≡ 0 mod 4, where r = n

2
. Define for 1 ≤ i ≤ r, homogeneous linear

forms L′i(X1, . . . , Xn+1), R′i(X1, . . . , Xn+1) over GF(2) as follows.

L′i(X1, . . . , Xn+1)
∆
= Li(X1, . . . , Xn) +Xn+1 if Li has an odd number of terms
∆
= Li(X1, . . . , Xn) otherwise

R′i(X1, . . . , Xn+1)
∆
= Ri(X1, . . . , Xn) +Xn+1 if Ri has an odd number of terms
∆
= Ri(X1, . . . , Xn) otherwise

We have the following equality over GF(2).

Claim

S2
n+1(X1, . . . , Xn+1) =

r∑
i=1

L′i(X1, . . . , Xn+1)R′i(X1, . . . , Xn+1)

Proof: Define homogeneous linear forms over Z, L′′i (X1, . . . , Xn+1), R′′i (X1, . . . , Xn+1), for
1 ≤ i ≤ r, as follows.

L′′i (X1, . . . , Xn+1)
∆
= Li(X1, . . . , Xn) + aiXn+1

R′′i (X1, . . . , Xn+1)
∆
= Ri(X1, . . . , Xn) + biXn+1

where ai, bi denote the number of (non-zero) terms in Li, Ri respectively. Consider the
following formula over Z.

r∑
i=1

L′′i (X1, . . . , Xn+1)R′′i (X1, . . . , Xn+1) (2.6)

Let cjk, 1 ≤ j ≤ k ≤ n denote the coefficient of XjXk in (2.5), treating (2.5) as a
formula over Z instead of over GF(2). Since formula (2.5) computes S2

n(X) over GF(2),
cjk, 1 ≤ j < k ≤ n are odd, and cjj, 1 ≤ j ≤ n are even. Let c′′jk, 1 ≤ j ≤ k ≤ n+ 1 denote
the coefficient of XjXk in (2.6) (note that c′′jk is an integer). For 1 ≤ j ≤ k ≤ n, c′′jk = cjk.
We will now show that c′′j,n+1, 1 ≤ j ≤ n are odd, and c′′n+1,n+1 is even. This suffices to
prove the claim, since L′′i ≡ L′i mod 2 and R′′i ≡ R′i mod 2.

For any 1 ≤ j ≤ n, it can be easily checked that

c′′j,n+1 =
∑

k:1≤k≤n

k 6=j

cjk + 2cjj

≡
∑

k:1≤k≤n

k 6=j

1 + 0 (mod 2)

≡ 1 (mod 2)

The last equivalence follows from the fact that, for any fixed j, the number of monomials
XjXk, 1 ≤ k ≤ n, k 6= j is odd, since n is even.

c′′n+1,n+1 =
∑

1≤j≤k≤n

cjk
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2.3. Upper bounds

=
∑

1≤j<k≤n

cjk +
∑

1≤j≤n

cjj

≡

( ∑
1≤j<k≤n

1 +
∑

1≤j≤n

0

)
(mod 2)

≡ 0 (mod 2)

The last equivalence follows from the fact that the number of monomials XjXk, 1 ≤ j <
k ≤ n is even, since n ≡ 0 mod 4.

Hence the claim is proved.
The lemma now follows from the above claim.
We can now prove the following theorem.

Theorem 2.3 For infinitely many n ≡ 0, 2, 3 mod 4 we have homogeneous ΣΠΣ circuits
computing S2

n(X) over GF(2) using
⌈
n
2

⌉
multiplication gates. For infinitely many n ≡

1 mod 4 we can compute S2
n(X) over GF(2) using homogeneous ΣΠΣ circuits having

⌊
n
2

⌋
multiplication gates.

Proof: The first part of the theorem follows from Theorem 2.2 and Corollary 2.2. To prove
the second part, consider a homogeneous circuit for S2

n−1(X1, . . . , Xn−1), n ≡ 1 mod 4,
using r = n−1

2
multiplication gates. Such circuits exist for infinitely many n ≡ 1 mod 4 by

the first part of the theorem. We now invoke Lemma 2.4 to complete the proof.

2.3.2 1 mod p cover problem, p an odd prime

In this subsection we will in fact show, for any odd number p (not necessarily prime), that
there is a 1 mod p cover of K2n by n complete bipartite graphs whenever there exists an
n × n matrix good for p (defined below). Also, from a 1 mod p cover of K2n+2 by n + 1
bipartite graphs, we get a 1 mod p cover of K2n+1 by n + 1 bipartite graphs. We note
that the skew Hadamard matrix construction of Section 2.3.1 does not generalise to give
us matrices good for p, when p is odd.

Definition 2.2 Let p be an odd number. A matrix with entries from {−1, 0, 1} is called a
good matrix for p if it satisfies the following conditions:

1. In every row, the number of non-zero entries is 1 mod p.

2. For every pair of distinct rows, the number of columns where they both have non-zero
entries is congruent to 2 mod 2p.

3. Any two distinct rows are orthogonal over the integers.

Lemma 2.5 Let p be an odd number. If an n×n matrix is good for p, then the n complete
bipartite graphs that arise from it form a 1 mod p cover of K2n. If n = q2 + q + 1 where q
is a prime power and q ≡ −1 mod 2p, then an n × n good matrix for p exists. Note that
infinitely many such q exist, by a result of Dirichlet.
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2.3. Upper bounds

Proof: The proof of the fact that an n× n good matrix for p gives us a 1 mod p cover of
K2n by n complete bipartite graphs, is similar to the proof of Lemma 2.1. The construction
of an n×n good matrix for p when n is of the given form is similar to the symmetric designs
construction of Section 2.3.1.

From the lemma, we can now prove the following theorem.

Theorem 2.4 Given an odd number p, for infinitely many odd and even n, we have a
1 mod p cover of Kn using

⌈
n
2

⌉
bipartite graphs.

2.3.3 Fields of characteristic different from 2

Now we give the proofs for the upper bounds in the homogeneous circuit model for com-
puting S2

n(X) over various fields of characteristic different from 2. We start by proving two
lemmas.

Lemma 2.6 S2
2k+1(X1, . . . , X2k+1) can be computed by a homogeneous ΣΠΣ circuit using

k + 1 multiplication gates over any field of characteristic not equal to 2 which has square
roots of −1.

Proof: This result has been observed implicitly by Shpilka [Shp01]. We give a proof here
for completeness. Let i denote a square root of −1.

S2
2k+1(X1, . . . , X2k+1)

=
1

2
((

2k+1∑
j=1

Xj)
2 −

2k+1∑
j=1

X2
j )

=
1

2
(((

2k+1∑
j=1

Xj)
2 −X2

1 )−
2k+1∑
j=2

X2
j )

=
1

2
((

2k+1∑
j=2

Xj)(2X1 +
2k+1∑
j=2

Xj)−
k∑
j=1

(X2
2j +X2

2j+1))

=
1

2
((

2k+1∑
j=2

Xj)(2X1 +
2k+1∑
j=2

Xj)−
k∑
j=1

(X2j + iX2j+1)(X2j − iX2j+1))

This shows that S2
2k+1(X1, . . . , X2k+1) can be done with k + 1 multiplication gates.

Lemma 2.7 S2
2k(X1, . . . , X2k) can be computed by a homogeneous ΣΠΣ circuit using k

multiplication gates over any field F of characteristic not equal to 2 which has square roots
of −1, 2 and 2k − 1.

Proof: Let am(X1, . . . , X2k) and bm(X1, . . . , X2k) denote the two homogeneous linear forms
feeding into the mth multiplication gate, 1 ≤ m ≤ k. Let

am(X1, . . . , X2k)
∆
=

∑2k
n=1 amnXmn

bm(X1, . . . , X2k)
∆
=

∑2k
n=1 bmnXmn

}
1 ≤ m ≤ k
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Since the circuit computes S2
2k(X1, . . . , X2k), equating the coefficients of X2

j , 1 ≤ j ≤ 2k
we get

k∑
m=1

amjbmj = 0 1 ≤ j ≤ 2k

Since the characteristic is not equal to 2, we can get an equivalent equation by multiplying
both sides by 2.

k∑
m=1

(amjbmj + amjbmj) = 0 1 ≤ j ≤ 2k (2.7)

Equating the coefficients of XjXl, 1 ≤ j < l ≤ 2k we get

k∑
m=1

(amjbml + amlbmj) = 1 1 ≤ j < l ≤ 2k (2.8)

Let us define vectors yj ∈ F2k, 1 ≤ j ≤ 2k as follows

yTj
∆
= (a1j, b1j, a2j, b2j, . . . , akj, bkj)

We can write (2.7), (2.8) in a succinct matrix form as

yTj Ayj = 0 1 ≤ j ≤ 2k
yTj Ayl = 1 1 ≤ j < l ≤ 2k

}
(2.9)

where the 2k × 2k matrix A consists of k blocks of the 2× 2 matrix

M
∆
=

(
0 1
1 0

)
arranged along the diagonal. M has two eigenvalues 1 and −1, with corresponding eigen-
vectors uT1 = (1, 1) and uT−1 = (1,−1) (note that 1 6= −1 in F). It will be convenient
to scale these vectors to obtain alternate eigenvectors vT1 = 1√

2
(1, 1) and vT−1 = 1√

2
(i,−i),

where i denotes a square root of −1 in F (note that 2 6= 0 in F and 2 and −1 have square
roots in F). Now,

vT1 Mv1 = vT−1Mv−1 = 1

vT1 Mv−1 = 0

The 2× 2 matrix

N
∆
=

1√
2

(
1 i
1 −i

)
is the change of basis matrix for going from the basis {v1, v−1} of F2 to the standard basis
{(1, 0)T , (0, 1)T} of F2. We define another 2k × 2k matrix B, which consists of k blocks
of the 2× 2 matrix N arranged along the diagonal. B is a change of basis matrix from a
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2.3. Upper bounds

basis of F2k consisting of eigenvectors of A, to the standard basis of F2k. If zj, 1 ≤ j ≤ 2k
are the representations of the vectors yj, 1 ≤ j ≤ 2k in the eigenbasis of A, then

yj = Bzj 1 ≤ j ≤ 2k

Since
BTAB = I2k

where I2k is the 2k × 2k identity matrix, (2.9) now becomes

zTj zj = 0 1 ≤ j ≤ 2k

zTj zl = 1 1 ≤ j < l ≤ 2k

We can write a set of equations equivalent to the above as follows (since 2 6= 0 in F)

zTj zj = 0 1 ≤ j ≤ 2k
(zj − zl)T (zj − zl) = −2 1 ≤ j < l ≤ 2k

}
(2.10)

The second equation above can be thought as finding vectors zj ∈ F2k, 1 ≤ j ≤ 2k such
that the “distance” between any two of them is

√
−2. The following set of vectors meets

this requirement
z′j = iej 1 ≤ j ≤ 2k

where ej, 1 ≤ j ≤ 2k are the standard basis vectors in F2k. We now have to ensure that the

“length” of each vector is 0. For this shift the origin to a point p
∆
= (w,w, . . . , w), where w

will be determined later. Note that this operation does not change the “distance” between
any pair of vectors. To determine w we have to solve the following equation

(i− w)2 + (2k − 1)w2 = 0

which can be solved whenever 2k − 1 has a square root in the field. We now define

zj
∆
= z′j − p 1 ≤ j ≤ 2k

The vectors zj, 1 ≤ j ≤ 2k are a solution to (2.10) which in turn implies a solution to (2.9)
which proves the existence of a homogeneous circuit for the polynomial S2

2k(X1, . . . , X2k)
using k multiplication gates.

Using Lemmas 2.6 and 2.7, we can prove our upper bound results for complex numbers
and for finite fields of odd characteristic.

Complex numbers

Theorem 2.5 S2
n(X1, . . . , Xn) can be computed by a homogeneous ΣΠΣ circuit using dn

2
e

multiplication gates over the field of complex numbers.

Proof: Follows directly from Lemmas 2.6 and 2.7.

GF(pr), r even, p odd and GF(pr), r odd, p ≡ 1 mod 4
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Theorem 2.6 Let p be an odd prime. S2
n(X) can be computed by a homogeneous ΣΠΣ

circuit using
⌈
n
2

⌉
multiplication gates over GF(pr), r even. Over GF(pr), r odd, p ≡

1 mod 4, S2
n(X) can be computed using

⌈
n
2

⌉
multiplication gates if n is odd, n

2
multiplication

gates for infinitely many even n, and n
2

+ 1 multiplication gates for all even n.

Proof: If p ≡ 1 mod 4 then −1 and 2 have square roots in GF(p) (see e.g. [NZM91,
Chapter 3]). Hence using Lemmas 2.6 and 2.7, over GF(pr), r odd, p ≡ 1 mod 4 S2

n(X)
can be computed using

⌈
n
2

⌉
multiplication gates if n is odd, and using n

2
multiplication

gates for even n such that n − 1 has a square root in GF(pr), which holds for infinitely
many even n. For all even n, S2

n(X) can be computed using n
2

+ 1 multiplication gates by
taking a circuit with that many gates for S2

n+1(X1, . . . , Xn+1), and setting Xn+1 to 0. Over
GF(pr), r even every element of GF(p) has a square root (see e.g. [Art91, Chapter 13]).
Hence, using Lemmas 2.6 and 2.7 again, S2

n(X) can be computed using
⌈
n
2

⌉
multiplication

gates for all n.

GF(pr), r odd, p ≡ 3 mod 4

Theorem 2.7 Let p ≡ 3 mod 4 be a prime. For infinitely many even and odd n, S2
n(X)

can be computed by a homogeneous ΣΠΣ circuit using
⌈
n
2

⌉
multiplication gates over GF(pr),

r odd.

Proof: Such fields do not have a square root of −1. Hence we cannot use either of
the Lemmas 2.6 and 2.7. To get upper bounds of

⌈
n
2

⌉
for infinitely many even and odd

n, we have to make use of the fact that upper bounds for the 1 mod p cover problem
(Theorem 2.4) give us upper bounds for computing S2

n(X) in the homogeneous circuit
model.

2.4 Lower bounds

2.4.1 Preliminaries

In this subsection, we develop a framework for proving lower bounds for computing S2
n(X)

in the inhomogeneous ΣΠΣ model, based on the method of substitution [SW99, Shp01].
Suppose that over a field F

S2
n(X) =

r∑
i=1

si∏
j=1

Lij(X) (2.11)

where each Lij(X) is a linear form over X1, . . . , Xn, not necessarily homogeneous. We wish
to show that r must be large. Following the proof of the Graham-Pollack theorem that
was sketched in the introduction, we could try to force some of the Lij’s to zero by setting
the variables to appropriate field elements. There are two difficulties with this plan. First,
since the Lij’s are not necessarily homogeneous, we may not be able to set all of them
to zero; we can do so if the linear forms have linearly independent homogeneous parts.
The second difficulty arises from the nature of the underlying field: as remarked in the
introduction, S2

n(X) might vanish on non-trivial subspaces of Fn.
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In this subsection, our goal is to first show that if r is small, then S2
n(X) must be zero

over a linear subspace of Fn of large dimension. Similar observations have been used by
Shpilka and Wigderson [SW99, Lemma 3.3] and Shpilka [Shp01, Claim 4.6]. Our second
goal is to examine linear subspaces of Fn over which S2

n(X) is forced to be zero. We
derive conditions on such subspaces, and relate them to the existence of a certain family
of vectors. Later on, we will exploit these equations based on the field in question, and
derive our lower bounds for r.

Goal 1: Obtaining the subspace.

Lemma 2.8 If S2
n(X) can be written in the form of (2.11) over a field F, then there exist

homogeneous linear forms `1, `2, . . . , `r in variables X1, X2, . . . , Xn−r such that

S2
n(X1, X2, . . . , Xn−r, `1, `2, . . . , `r) = 0 (2.12)

Proof: We implement the idea discussed at the beginning of Section 2.4.1. Given an
expression of the form (2.11), we collect a maximal consistent set of equations of the form
Lij(X) = 0, with at most one equation for each i. We write these equations in the form

AX = b (2.13)

where A is an r′×n matrix and b ∈ Fr′ for some r′ ≤ r. Since (2.13) has a solution, and the
rank of A is at most r, there is an affine subspace of solutions Γ of dimension n− r in Fn.
(If the actual solution set is an affine subspace of dimension greater than n− r, then we let
Γ be an affine subspace of the solution space of dimension exactly n−r.) We can view this
set of solutions as follows (see e.g. [Art91, Chapter 1]): there are n− r ‘free variables,’ and
the values of the remaining r variables are given by (possibly inhomogeneous) linear forms
in these n − r variables. Since S2

n(X) is symmetric, we may assume that the n − r ‘free
variables’ are X1, X2, . . . , Xn−r; for i = 1, 2, . . . , r, let ˜̀

i be the (possibly inhomogeneous)
linear form in X1, X2, . . . , Xn−r that determines the value of Xn−r+i once the values for
X1, X2, . . . , Xn−r are fixed.

Observe that S2
n(X) is constant over Γ. To see this, consider the right hand side of

(2.11). If for some i an Lij participates in (2.13), then that product contributes zero to the
sum. Otherwise, since the chosen set of equations is maximal, for this i, the homogeneous
part of each Lij is in the row span of the matrix A. That is, once AX has been fixed to
b, the homogeneous part, and hence the entire linear form, is fixed. We conclude that

S2
n(X1, X2, . . . , Xn−r, ˜̀

1, ˜̀
2, . . . , ˜̀

r) = constant

Now comparing the coefficients of monomials of degree two on both sides of the above
equation, we see that

S2
n(X1, X2, . . . , Xn−r, `1, `2, . . . , `r) = 0

where `i is the homogeneous part of ˜̀
i.
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Goal 2: The nature of the subspace. Our goal now is to understand the alge-
braic structure of the coefficients that appear in the linear forms `1, `2, . . . , `r promised
by Lemma 2.8. Let `i =

∑n−r
j=1 `ijXj, `ij ∈ F, and let L be the r × (n − r) matrix (`ij).

Let y1, y2, . . . , yn−r ∈ Fr be the n − r columns of L. We will obtain conditions on the
columns by computing the coefficients of monomials X2

j for 1 ≤ j ≤ n − r, and XiXj for
1 ≤ i < j ≤ n − r, in equation (2.12). For X2

j (1 ≤ j ≤ n − r), we obtain the following
equation over F.

r∑
k=1

`kj +
∑

1≤k<k′≤r

`kj`k′j = 0 1 ≤ j ≤ r (2.14)

For monomials of the form XiXj (1 ≤ i < j ≤ n − r), we obtain the following equation
over F.

1 +
r∑

k=1

`ki +
r∑

k=1

`kj +
∑

1≤k<k′≤r

(`ki`k′j + `k′i`kj) = 0 1 ≤ i < j ≤ n− r (2.15)

For a positive integer m, let 1m be the all 1’s column vector and 0m be the all 0’s
column vector of dimension m. Let Um be the m×m matrix with 1’s above the diagonal
and zero elsewhere. Let Jm be the m ×m matrix with all 1’s, and let Im be the m ×m
identity matrix. Using this notation, we can rewrite (2.14) and (2.15) as follows.

1Tr yj + yTj Uryj = 0 1 ≤ j ≤ n− r (2.16)

1 + 1Tr yi + 1Tr yj + yTi (Jr − Ir)yj = 0 1 ≤ i < j ≤ n− r (2.17)

If the characteristic of F is not two, we may rewrite (2.16) as

21Tr yj + yTj (Jr − Ir)yj = 0 1 ≤ j ≤ n− r (2.18)

With this, we are now ready to prove lower bounds. We will exploit (2.16), (2.17) and
(2.18) (if the characteristic is not 2) to derive lower bounds for various fields.

2.4.2 Lower bounds for GF(2)

Let Z stand for the integers. For y ∈ Zr, let |y| denote the number of odd components in

y. For y, y′ ∈ Zr, let y · y′ ∆
=
∑r

m=1 ymy
′
m be the dot product of y and y′ over Z.

Lemma 2.9 Suppose `1, . . . , `r are homogeneous linear forms in variables X1, . . . , Xn−r
such that S2

n(X1, . . . , Xn−r, `1, . . . , `r) = 0 over GF(2). Then r ≥
⌊
n
2

⌋
. If n ≡ 3 mod 4,

then r ≥
⌈
n
2

⌉
.

Proof: We use the arguments of Section 2.4.1. If there exist homogeneous linear forms
`1, . . . , `r over variables X1, . . . , Xn−r so that S2

n(X1, . . . , Xn−r, `1, . . . , `r) = 0 over GF(2),
we have, from (2.16) and (2.17), vectors yj ∈ GF(2)r, 1 ≤ j ≤ n− r such that the following
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2.4. Lower bounds

equations hold over GF (2) (recall that Jr denotes the r × r all 1’s matrix, and Ir denotes
the r × r identity matrix).

1Tr yj + yTj Uryj = 0 1 ≤ j ≤ n− r (2.19)

1 + 1Tr yi + 1Tr yj + yTi (Jr − Ir)yj = 0 1 ≤ i < j ≤ n− r (2.20)

Instead of thinking of the above equations as holding over GF (2), it will help for this proof
to treat the vectors yj as elements of Zr and the equations (2.19) and (2.20) as equivalences
over the integers mod2.

By counting the number of odd components (i.e. 1’s) on the left and right hand side
of (2.19), we obtain

|yj|+
(
|yj|
2

)
≡ 0 (mod 2) 1 ≤ j ≤ n− r

From this it follows that

|yj| ≡ 0 or 3 (mod 4) 1 ≤ j ≤ n− r (2.21)

Since yTi (Jr − Ir)yj = |yi| |yj| − yi · yj over Z, by counting the number of odd components
(i.e. 1’s) on both sides of (2.20), we get

|yi|+ |yj|+ |yi| |yj|+ yi · yj ≡ 1 (mod 2) 1 ≤ i < j ≤ n− r

In other words,

yi · yj ≡ (1 + |yi|)(1 + |yj|) (mod 2) 1 ≤ i < j ≤ n− r (2.22)

Let w1, . . . , ws be the vectors among y1, . . . , yn−r with |yj| odd, and let e1, . . . , et be the
remaining t = n− r − s vectors, with |yj| even.

Claim If y1, y2, . . . , yn−r are not linearly independent over GF(2), then the only depen-
dency over GF(2) among them is

∑t
k=1 ek = 0r. Also, in that case, t is odd.

Proof: Let
s∑
i=1

αiwi +
t∑

k=1

βkek ≡ 0r (mod 2)

In the above equation, we think of wi, ek as vectors in Zr, αi, βk as integers, and the equality
as an equivalence over the integers mod2. We take dot products of the two sides above
with wi and conclude, using (2.22), that αi ≡ 0 mod 2, for 1 ≤ i ≤ s. Similarly, taking
dot products with ek, we obtain the system of equations (Jt − It)β ≡ 0t mod 2, where
β ∈ Zt and the kth component of β is βk. If t is even, (Jt − It) is full-rank over GF(2), so
β ≡ 0t mod 2. So the yj’s are linearly independent over GF(2), which is a contradiction.

Now, if the yj’s are not linearly independent, then t must be odd, and the only depen-
dency among them corresponds to β such that (Jt−It)β ≡ 0t mod 2. The only non–trivial
solution mod2 for this equation is β ≡ 1t mod 2.
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By the claim above, we see that there are at least n−r−1 linearly independent vectors
over GF(2) among the yj’s. Since the yj’s are r-dimensional vectors, we get r ≥ n− r − 1
i.e. r ≥

⌊
n
2

⌋
. This proves the first part of the lemma.

To obtain a better bound for r when n ≡ 3 mod 4, we make better use of our equations,
especially (2.21), which we have neglected so far. So suppose n = 2r+ 1 and n ≡ 3 mod 4.
We shall derive a contradiction.

If n = 2r + 1, then n − r > r, and since the yj are r-dimensional vectors, yj are not
linearly independent over GF(2). Then by the claim above, t is odd,

∑t
k=1 ek ≡ 0r mod 2,

and w1, . . . , ws, e1, . . . , et−1 are linearly independent over GF(2). Since s+t−1 = n−r−1 =
r, these vectors form a basis (over GF(2)) of the vector space GF(2)r; in particular 1r is
in their span, that is

s∑
i=1

αiwi +
t−1∑
k=1

βkek ≡ 1r (mod 2)

for some αi, βk ∈ Z. Taking dot products with wi and ek, we conclude (using (2.22))
that αi ≡ 1 mod 2 for 1 ≤ i ≤ s, and (Jt−1 − It−1)β ≡ 0t−1 mod 2, where β ∈ Zt−1 and
the kth component of β is βk. Since t is odd, Jt−1 − It−1 is full rank over GF(2), and
β ≡ 0t−1 mod 2. Thus

s∑
i=1

wi ≡ 1r (mod 2) (2.23)

It is easy to verify that for all integer vectors y

|y| ≡ y · y (mod 4) (2.24)

Using (2.23) and (2.24), (
∑s

i=1wi) · (
∑s

i=1wi) ≡ |
∑s

i=1wi| ≡ r mod 4, that is

s∑
i=1

wi · wi + 2
∑

1≤i<j≤s

wi · wj ≡ r (mod 4)

By (2.21) and (2.24), wi · wi ≡ |wi| ≡ 3 mod 4, and by (2.22), wi · wj ≡ 0 mod 2 for
i 6= j. Thus

s∑
i=1

3 +
∑

1≤i<j≤s

0 ≡ r (mod 4)

⇒ 3s ≡ r (mod 4) (2.25)

Similarly, starting with
∑t

k=1 ek ≡ 0r mod 2 and using (2.24) we get, (
∑t

k=1 ek) ·
(
∑t

k=1 ek) ≡ |
∑t

k=1 ek| ≡ 0 mod 4, that is

t∑
i=1

ei · ei + 2
∑

1≤i<j≤t

ei · ej ≡ 0 (mod 4)

36



2.4. Lower bounds

By (2.21) and (2.24), ei · ei ≡ 0 mod 4, and by (2.22), ei · ej ≡ 1 mod 2 for i 6= j. Thus

t∑
i=1

0 +
∑

1≤i<j≤t

2 ≡ 0 (mod 4)

⇒ t(t− 1)

2
2 ≡ 0 mod 4

Since t is odd, we conclude that t ≡ 1 mod 4. But then, using (2.25),

n ≡ r + s+ t ≡ 3s+ s+ 1 ≡ 1 (mod 4)

which is a contradiction.
Since r ≥

⌊
n
2

⌋
holds for all n, we have shown that if n ≡ 3 mod 4, then r ≥

⌈
n
2

⌉
.

Using Lemmas 2.8 and 2.9, we can now prove the following theorem.

Theorem 2.8 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over GF(2) requires at least
⌈
n
2

⌉
multiplication gates if n ≡ 0, 2, 3 mod 4, and at least

⌊
n
2

⌋
multiplication gates if n ≡ 1 mod 4.

2.4.3 Fields of characteristic different from 2

In this subsection, we give the proofs of our lower bounds for computing S2
n(X) using

(not necessarily homogeneous) ΣΠΣ arithmetic circuits over various fields of characteristic
different from 2. Lemma 2.10 proves an upper bound on the dimension of a subspace over
which S2

2k(X1, . . . , X2k) vanishes. The proof uses Nisan and Wigderson’s method of partial
derivatives.

Lemma 2.10 If k 6= 0 in the field F then S2
2k(X1, . . . , Xk+1, `1, . . . , `k−1) 6= 0 for any k−1

homogeneous linear forms `1, . . . , `k−1 in the variables X1, . . . , Xk+1 over F.

Proof: This lemma is in fact a special case of a more general result due to Shpilka [Shp01].
We give a short proof of it here, which is essentially Shpilka’s proof restricted to our special
case. We have the identity

S2
2k(X1, . . . , Xk+1, `1, . . . , `k−1) = S2

k+1(X1, . . . , Xk+1) +

(X1 + · · ·+Xk+1)(`1 + · · ·+ `k−1) +

S2
k−1(`1, . . . , `k−1)

Assuming for the sake of contradiction that the left hand side of the above equation is
zero, we get

S2
k+1(X1, . . . , Xk+1)

= −(X1 + · · ·+Xk+1)(`1 + · · ·+ `k−1)− S2
k−1(`1, . . . , `k−1)
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2.4. Lower bounds

We take the first order partial derivatives with respect to X1, . . . , Xk+1 of both the sides
of the above equation. Since k 6= 0 in F, the vector space spanned by the set of first-order
partial derivatives of S2

k+1(X1, . . . , Xk+1) is of dimension k + 1. This follows from the fact
that the matrix Jk+1− Ik+1 is of full rank if k 6= 0 in F, where Jk+1 is the (k+ 1)× (k+ 1)
all 1’s matrix and Ik+1 is the (k + 1)× (k + 1) identity matrix. The vector space spanned
by the first order partial derivatives of the right hand side of the above equation lies in the
span of the linear forms (X1 + · · ·+Xk+1) and `1, . . . , `k−1. Hence its dimension is at most
k, which results in a contradiction. This proves the lemma.

Lemma 2.11 also proves upper bounds on the dimension of a subspace over which
S2

2k(X1, . . . , X2k) vanishes, but the proof does not use partial derivatives.

Lemma 2.11 Suppose k 6= −1 in the field F and F is not of characteristic 2. Then
S2

2k(X1, . . . , Xk+1, `1, . . . , `k−1) 6= 0 for any k − 1 homogeneous linear forms `1, . . . , `k−1 in
the variables X1, . . . , Xk+1 over F.

Proof: Using the arguments of Section 2.4.1 (in particular (2.17) and (2.18)), we assume
(using the notation of that section) for the sake of contradiction that there exist vectors
yj ∈ Fk−1, 1 ≤ j ≤ k+1, such that the following equations hold (note that the characteristic
of F is not 2).

〈yj, yj〉+ 21Tk−1yj = 0 1 ≤ j ≤ k + 1
〈yj, yl〉+ 1Tk−1yj + 1Tk−1yl = −1 1 ≤ j < l ≤ k + 1

}
(2.26)

where 〈v, w〉 ∆
= vT (Jk−1 − Ik−1)w is a symmetric bilinear form on vectors in Fk−1.

From the above equation, we get

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1 (2.27)

We can think of equation (2.27) as placing k + 1 points with pairwise “distance”
√

2 in
Fk−1. We now show that if k 6= −1 in F, this is impossible.

We have, for 1 < j < l ≤ k + 1

2 = 〈yj − yl, yj − yl〉 . . . using (2.27)

= 〈(yj − y1)− (yl − y1), (yj − y1)− (yl − y1)〉
= 〈yj − y1, yj − y1〉 − 2〈yj − y1, yl − y1〉+ 〈yl − y1, yl − y1〉
= 2 + 2− 2〈yj − y1, yl − y1〉 . . . using (2.27)

Hence, since 2 6= 0 in F,

〈yj − y1, yl − y1〉 = 1 1 < j < l ≤ k + 1 (2.28)

Now define a k × k matrix A where

ajl
∆
= 〈yj+1 − y1, yl+1 − y1〉 1 ≤ j, l ≤ k
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2.4. Lower bounds

Using (2.27) and (2.28), we see that the matrix A has 2’s on the main diagonal and 1’s
in other places. Since k 6= −1 in F, A is of full rank. This implies that the vectors
y2 − y1, y3 − y1, . . . , yk+1 − y1 are linearly independent. In fact we have shown that the
vectors y1, . . . , yk+1 are affinely independent. Since these vectors lie in Fk−1, we have arrived
at a contradiction. Hence the lemma is proved.

We can now prove the following lemma. This lemma allows us to prove lower bounds
for computing S2

n(X) using (not necessarily homogeneous) ΣΠΣ arithmetic circuits over F
when F is not of characteristic 2 and n is even.

Lemma 2.12 S2
2k(X1, . . . , Xk+1, `1, . . . , `k−1) 6= 0 for any k− 1 homogeneous linear forms

`1, . . . , `k−1 in the variables X1, . . . , Xk+1 over a field F, if F is not of characteristic 2.

Proof: Follows from Lemmas 2.10 and 2.11.
We also prove the following lemma. This lemma allows us to prove lower bounds for

computing S2
n(X) using (not necessarily homogeneous) ΣΠΣ arithmetic circuits over F

when F is not of characteristic 2 and n is odd.

Lemma 2.13 Suppose k 6= 0,±1 in the field F and F is not of characteristic 2. Then
S2

2k+1(X1, . . . , Xk+1, `1, . . . , `k) 6= 0 for any k homogeneous linear forms `1, . . . , `k in the
variables X1, . . . , Xk+1 over F.

Proof: Using the arguments of Section 2.4.1 (in particular (2.17) and (2.18)), we assume
(using the notation of that section) for the sake of contradiction that there exist vectors
yj ∈ Fk, 1 ≤ j ≤ k+ 1, such that the following equations hold (note that the characteristic
of F is not 2).

〈yj, yj〉+ 21Tk yj = 0 1 ≤ j ≤ k + 1
〈yj, yl〉+ 1Tk yj + 1Tk yl = −1 1 ≤ j < l ≤ k + 1

}
(2.29)

where 〈v, w〉 ∆
= vT (Jk − Ik)w is a symmetric bilinear form on vectors in Fk.

We can similarly show, as in the proof of Lemma 2.11, that the vectors y2 − y1, y3 −
y1, . . . , yk+1 − y1 are linearly independent (since k 6= −1 and 2 6= 0 in F). Also

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1 (2.30)

Since k 6= 1 in F, let us define a vector c ∈ Fk, c ∆
= −1

k−1
1k. Now (Jk − Ik)c = −1k and

cT (Jk − Ik)c = k
k−1

. Hence we have, for 1 ≤ j ≤ k + 1

〈yj − c, yj − c〉 = 〈yj, yj〉 − 2〈yj, c〉+ 〈c, c〉

= 〈yj, yj〉+ 21Tk yj +
k

k − 1

Using the first equation in (2.29) and above equation, we get the following equation

〈yj − c, yj − c〉 =
k

k − 1
1 ≤ j ≤ k + 1 (2.31)
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2.4. Lower bounds

Shifting the origin to the vector c and using (2.30) and (2.31) we have (using the same
letters yj, 1 ≤ j ≤ k + 1 to denote the new vectors)

〈yj, yj〉 = k
k−1

1 ≤ j ≤ k + 1

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1

}
(2.32)

We can think of equations (2.32) as placing k + 1 points of pairwise “distance”
√

2 on the

surface of a sphere of “radius”
√

k
k−1

in Fk. We now show that if k 6= 0,±1 in F, this is

impossible.
Using (2.32) we get, for 1 ≤ j < l ≤ k + 1

2 = 〈yj − yl, yj − yl〉
= 〈yj, yj〉 − 2〈yj, yl〉+ 〈yl, yl〉

=
2k

k − 1
− 2〈yj, yl〉

Since 2 6= 0 in F, we get

〈yj, yl〉 =
1

k − 1
1 ≤ j < l ≤ k + 1 (2.33)

Using (2.32) and (2.33) we have, for 1 < j ≤ k + 1

〈
k+1∑
i=1

yi, yj − y1〉 = 〈
k+1∑
i=1

yi, yj〉 − 〈
k+1∑
i=1

yi, y1〉

= 0

Since y2 − y1, y3 − y1, . . . , yk+1 − y1 are k linearly independent vectors in Fk, we conclude
that

k+1∑
i=1

yi = 0 (2.34)

as only the zero vector is orthogonal to all vectors in Fk under the bilinear map induced
by the full rank matrix Jk − Ik (since k 6= 1 in F, Jk − Ik is of full rank). Using (2.32),
(2.33) and (2.34) and the fact that 2 6= 0 in F, we get

0 = 〈
k+1∑
j=1

yj,
k+1∑
j=1

yj〉

=
k+1∑
j=1

〈yj, yj〉+ 2
∑

1≤j<l≤k+1

〈yj, yl〉

= (k + 1)
k

k − 1
+ 2

(k + 1)k

2

1

k − 1

=
2k(k + 1)

k − 1
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2.4. Lower bounds

We have thus come to a contradiction since k 6= 0,±1 and 2 6= 0 in F. Hence the lemma
is proved.

We can now prove our lower bound results for complex numbers and for finite fields of
odd characteristic.

Complex numbers

Theorem 2.9 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over the field of complex numbers requires at least
⌈
n
2

⌉
multiplication gates.

Proof: Since S2
3(X1, X2, X3) is an irreducible polynomial, any ΣΠΣ circuit computing it

should have at least 2 multiplication gates. For larger values of n, we invoke Lemmas 2.8,
2.12 and 2.13 to complete the proof.

GF(pr), p odd

Theorem 2.10 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X) over

GF(pr) where p is an odd prime, requires at least

1.
⌈
n
2

⌉
multiplication gates if n is even

2.
⌈
n
2

⌉
multiplication gates if n is odd and n 6≡ ±1, 3 mod p

3.
⌊
n
2

⌋
multiplication gates if n is odd and n ≡ ±1, 3 mod p

Thus, as long as p is an odd prime, we have a lower bound of
⌊
n
2

⌋
for all n. If p > 3, we

have a
⌈
n
2

⌉
lower bound for all even and infinitely many odd n.

Proof: The lower bounds in parts 1 and 2 follow from Lemmas 2.8, 2.12 and 2.13. Suppose
n is odd. Since a ΣΠΣ circuit computing S2

n(X1, . . . , Xn) also gives us a ΣΠΣ circuit
computing S2

n−1(X1, . . . , Xn−1) for which we have a lower bound of n−1
2

, we get the lower
bound in part 3.

Rational and real numbers
Finally, we show that the n − 1 lower bound of Graham and Pollack also extends to
inhomogeneous ΣΠΣ circuits over rational and real numbers.

Theorem 2.11 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X) over

reals or rationals requires at least n− 1 multiplication gates.

Proof: As observed in Section 2.1

T 2
n(X1, . . . , Xn) = (

n∑
j=1

Xj)
2 − 2S2

n(X1, . . . , Xn)

Hence, any ΣΠΣ circuit computing S2
n(X1, . . . , Xn) with less than n − 1 multiplication

gates gives us a ΣΠΣ circuit computing T 2
n(X1, . . . , Xn) with less than n multiplication

gates. This implies, from the ideas of Section 2.4.1, that there are n − 1 homogeneous
linear forms `1, . . . , `n−1 in the variable X1 such that T 2

n(X1, `1, . . . , `n−1) = 0. This is
clearly impossible over rationals and reals, since the coefficient of X2

1 will not vanish.
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Chapter 3

The static membership problem

In this chapter, we outline our results on the set membership problem (defined in Sec-
tion 1.2) in the quantum bit probe model. We also give simplified proofs of lower bounds
for set membership in the classical bit probe model. We then discuss the set member-
ship problem in the quantum cell probe model with implicit storage schemes, and prove a
Ω(log n) lower bound on the number of queries, generalising a result of Yao [Yao81].

The main new results in the chapter are

• A tradeoff between space s and number of probes t in the exact quantum bit probe
model, for the static membership problem with universe size m and size of stored
subset at most n. The tradeoff is captured by the following inequality (Theorem 3.2).

n∑
i=0

(
m

i

)
≤

nt∑
i=0

(
s

i

)
We also give a simplified proof (Theorem 3.6) of the above inequality for classical
deterministic bit probe schemes for static membership.

• For quantum bit probe schemes with two-sided error at most ε, storing subsets of
size at most n from a universe of size m, and answering membership queries using p
quantum probes, the following lower bound (Theorem 3.5) on the space s.

s = Ω

(
n log(m/n)

δ1/6 log(1/δ)

)
Above, δ

∆
= ε1/p. For classical randomised schemes with two-sided error at most ε,

we prove a slightly improved lower bound on the space s (Theorem 3.9).

• An Ω(log n) lower bound for bounded error implicit storage quantum cell probe
schemes for static membership (Theorem 3.10), if the size of the universe (m) is
sufficiently large as compared to the size of the stored set (n), the size of the ‘pointer
space’, and the number of cells of storage used.
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3.1. Definitions and notations

3.1 Definitions and notations

In this section we give an alternate, but for our purposes more useful, definition of the
quantum bit probe model and then give some formal definitions and notations which will
be used in the proofs of the lower bounds on set membership in the quantum bit probe
model.

3.1.1 The quantum bit probe model

A quantum (s, t)-bit probe scheme for a static data structure problem f : D × Q → A is
basically a quantum (s, t, 1)-cell probe scheme for f . It has two components: a classical
deterministic storage scheme that stores the data d ∈ D using s bits, and a quantum query
scheme that answers queries q ∈ Q by ‘quantumly probing a bit at a time’ at most t times.

For the set membership problem, the data to be stored is a subset S of a universe U
(|S| ≤ n, |U| = m). Let x(S) ∈ {0, 1}s be the bit string that is stored by the storage
scheme for recording S. The storage scheme is classical deterministic. The difference now,
is that this bit string is made available to the query algorithm in the form of an oracle
unitary transform OS. To define OS formally, we represent the basis states of the quantum
query circuit as |j, b, z〉, where j ∈ [s] is a binary string of length log s (‘address qubits’), b
is a single bit (‘data qubit’), and z is a binary string of some fixed length (‘work qubits’).
Let x(S)j be the bit stored at the jth location in the string x(S). The action of OS on a
basis state is described below.

OS : |j, b, z〉 7→ (−1)b·x(S)j |j, b, z〉

Remark: The oracle described in Section 1.2 mapped |j, b, z〉 to |j, b⊕x(S)j, z〉. It is known
that the oracle OS defined above is equivalent in power to this oracle.

Thus, information about the string x(S) appears in the phase of the basis states in the
output, and OS is represented by a diagonal matrix (in the standard computational basis):
the ith diagonal entry, where i ≡ |j, b, z〉, is

(OS)i,i = (−1)b·x(S)j

For T ⊆ [s] and x ∈ {0, 1}s, define [x]T
∆
=
∑

i∈T xi (mod 2). In particular, [x]∅ = 0. Thus,

(OS)i,i = (−1)[x(S)]li , where li is some subset of [s] of size 1 (when b = 1, li = {j}) or 0
(when b = 0, li = ∅).

The query scheme can be exact or have error; the error can be one-sided or two-sided.
When the query scheme is exact, the measurement of the final state gives the correct
answer with probability 1. If one-sided error ε is allowed, the measurement produces a 0
with probability 1 when the answer is 0, but when the answer is 1, is required to produce
a 1 with probability only at least 1− ε. If two-sided error ε is allowed, the answer can be
wrong, with probability at most ε, for both positive and negative instances.
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3.2. Quantum bit probe schemes

3.1.2 Framework for the lower bound proofs in the quantum bit
probe model

We now describe the general framework in which the various proofs of lower bounds in
the quantum bit probe model are presented, and also give some definitions and notations
which will be used in those proofs.

For a query q ∈ U, define |φq〉
∆
= |q〉|0〉. The set of vectors |φq〉, q ∈ U form an

orthogonal system of vectors. They are independent of the set S stored.
Define two Hilbert spaces, A0 and A1, where Ai is the space of all state vectors that

can be spanned by basis states having an i at the rightmost bit (i.e. if the state vector
lies in Ai, then on measuring the rightmost bit at the output, one gets i with probability
1). Then the entire state space V decomposes as an orthogonal direct sum of the spaces
A0, A1.

Define the unitary transformations {WS}S⊆U,|S|≤n as follows.

WS
∆
= UtOSUt−1OSUt−2OS · · ·U2OSU1OSU0

Thus when a set S is stored, in the exact quantum case, WS|φi〉, i ∈ S lie in A1,
and WS|φi〉, i 6∈ S lie in A0. In the one-sided ε-error case, WS|φi〉, i 6∈ S lie in A0, but
WS|φi〉, i ∈ S may not lie entirely in A1, but in fact may have a projection on A0 of length
at most

√
ε. In the two-sided ε-error case, WS has to send the vector |φi〉 “approximately”

to the correct space, i.e. the projection of WS|φi〉 on the correct space is of length more
than

√
1− ε.

Notation: In the proofs we have to take tensor products of vectors and matrices. For
any vector v or matrix M , we have the following notation,

v⊗t
∆
= v ⊗ · · · ⊗ v︸ ︷︷ ︸

t times

M⊗t ∆
= M ⊗ · · · ⊗M︸ ︷︷ ︸

t times

We note that since the entire state space V is the orthogonal direct sum of A0 and A1,

V ⊗t = A⊗t0 ⊕ (A⊗t−1
0 ⊗ A1)⊕ · · · ⊕ A⊗t1

and the 2t vector spaces in the above direct sum are pairwise orthogonal.
Below, A4 B stands for the symmetric difference of sets A and B; M † stands for the

conjugate transpose of the matrix M .

3.2 Quantum bit probe schemes

We illustrate the linear algebraic approach to proving space-time tradeoffs for set mem-
bership in the quantum bit probe model by giving a simple proof of the fact that if the
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3.2. Quantum bit probe schemes

quantum query scheme is exact and makes only one probe, then the characteristic vector
representation of the stored set is optimal.

Theorem 3.1 Suppose there exists a scheme for storing subsets S of size at most n, n ≥ 1,
from a universe U of size m that uses s bits of storage and answers membership queries,
with zero error probability, with only one quantum probe. Then, s ≥ m.

Proof: We use the notation of Section 3.1. For any subset S ⊆ U, |S| ≤ n, let us define

WS
∆
= U1OSU0

Claim 3.1 {(OS)S⊆U:|S|≤1} are linearly independent.

Proof: Since WS
∆
= U1OSU0 where U1 and U0 are unitary, it suffices to show that

{(WS)S⊆U:|S|≤1 are linearly independent. Suppose there is a nontrivial linear combina-
tion ∑

S⊆U:|S|≤1

αSWS = 0

Consider the situation when the singleton set {i}, i ∈ [m] is stored. Applying |φ{i}〉 to the
linear combination above, we have∑

S⊆U:|S|≤1,S 6={i}

αSWS|φ{i}〉+ α{i}W{i}|φ{i}〉 = 0

In the above equation, WS|φ{i}〉 ∈ A0 for S 6= {i} and W{i}|φ{i}〉 ∈ A1. Hence α{i} = 0 for
all i ∈ [m]. This implies that α∅ = 0 as well, leading to a contradiction.

Hence, the claim is proved.
We also prove the following claim.

Claim 3.2 {(OS)S⊆U:|S|≤1} lie in a vector space of dimension at most s+ 1.

Proof: OS is completely determined by the bit string x(S) stored by the storage scheme
for set S i.e.

OS =
∑
j∈[s],z

(−1)x(S)j |j, 1, z〉〈j, 1, z|+
∑
j∈[s],z

|j, 0, z〉〈j, 0, z|

Define linear operators A{j}, j ∈ [s]

A{j}
∆
=
∑
z

|j, 1, z〉〈j, 1, z|

Also define a linear operator A∅

A∅
∆
=
∑
j∈[s],z

|j, 0, z〉〈j, 0, z|
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3.2. Quantum bit probe schemes

Then
OS = A∅ +

∑
j∈[s]

(−1)x(S)jA{j}

Hence we see that A{j}, j ∈ [s] and A∅ together span {(OS)S⊆U:|S|≤1}. So, {(OS)S⊆U:|S|≤1}
lie in a vector space of dimension at most s+ 1.

From the above two claims, s+ 1 ≥ m+ 1 i.e. s ≥ m. This proves the theorem.
The proofs for quantum schemes making more than one probe are refinements of the

basic idea of the proof of Theorem 3.1.

Theorem 3.2 Suppose there exists a scheme for storing subsets S of size at most n from
a universe U of size m that uses s bits of storage and answers membership queries, with
zero error probability, with t quantum probes. Then,

n∑
i=0

(
m

i

)
≤

nt∑
i=0

(
s

i

)
Proof: We use the notation of Section 3.1. For any subset S ⊆ U, |S| ≤ n, let us define

WS
∆
= UtOSUt−1OSUt−2OS · · ·U2OSU1OSU0

Claim 3.3 {W⊗n
S }S∈( U

≤n) are linearly independent.

Proof: Suppose there is a nontrivial linear combination∑
S∈( U

≤n)

αSW
⊗n
S = 0

Let T be a set of largest cardinality such that αT 6= 0 and let T = {i1, . . . , ik}, k ≤ n. We
define a vector

|φT 〉
∆
= |φi1〉⊗(n−k+1) ⊗ |φi2〉 ⊗ · · · ⊗ |φik〉

Applying |φT 〉 to the linear combination above, we have∑
S∈( U

≤k),S 6=T

αSW
⊗n
S |φT 〉+ αTW

⊗n
T |φT 〉 = 0 (3.1)

For any set S,

W⊗n
S |φT 〉 = (WS|φi1〉)⊗(n−k+1) ⊗WS|φi2〉 ⊗ · · · ⊗WS|φik〉

• If S = T , WT |φil〉 ∈ A1 for all l, 1 ≤ l ≤ k Hence W⊗n
T |φT 〉 ∈ A

⊗n
1 .

• If S 6= T , there exists an element ij in T − S (by choice of T ). WS|φij〉 ∈ A0. Hence
W⊗n
S |φT 〉 6∈ A

⊗n
1 . In fact, W⊗n

S |φT 〉 is orthogonal to A⊗n1 .
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3.2. Quantum bit probe schemes

Hence, in the above linear combination (equation 3.1), the only vector which has a
nontrivial projection along A⊗n1 is W⊗n

T |φT 〉. Hence, αT = 0 leading to a contradiction.

Claim 3.4 {W⊗n
S }S∈( U

≤n) lie in a vector space of dimension at most
∑nt

i=0

(
s
i

)
.

Proof: By definition, for any set S, |S| ≤ n,

WS
∆
= UtOSUt−1OSUt−2OS · · ·U2OSU1OSU0

where U0, . . . , Ut are unitary transformations (matrices) independent of the set stored.
For any pair of indices (i, j),

(WS)i,j =
∑

kt−1,...,k0

(Ut)i,kt−1(OS)kt−1,kt−1(Ut−1)kt−1,kt−2(OS)kt−2,kt−2

· · · (U1)k1,k0(OS)k0,k0(U0)k0,j

=
∑

kt−1,...,k0

(Ut)i,kt−1(−1)
[x(S)]lkt−1 (Ut−1)kt−1,kt−2(−1)

[x(S)]lkt−2

· · · (U1)k1,k0(−1)
[x(S)]lk0 (U0)k0,j

where, recalling the notation of Section 3.1, x(S) is the string stored by the storage scheme
for set S and li is either the single location in the string corresponding to index i or the
empty set.

Therefore, if we define Tkt−1,...,k0

∆
= lkt−1 4 lkt−2 4 · · · 4 lk0 and [x(S)]T to be the parity

of the bits stored in x(S) at the locations of T , we have

(WS)i,j =
∑

kt−1,...,k0

(−1)
[x(S)]Tkt−1,...,k0 (Ut)i,kt−1(Ut−1)kt−1,kt−2 · · · (U1)k1,k0(U0)k0,j

=
∑

T∈([s]
≤t)

(−1)[x(S)]T
∑

kt−1,...,k0
Tkt−1,...,k0

=T

(Ut)i,kt−1(Ut−1)kt−1,kt−2 · · · (U1)k1,k0(U0)k0,j

Let us define for every set T ⊆ [s], |T | ≤ t, a matrix AT as follows:

(AT )i,j
∆
=

∑
kt−1,...,k0

Tkt−1,...,k0
=T

(Ut)i,kt−1(Ut−1)kt−1,kt−2 · · · (U1)k1,k0(U0)k0,j

Then we have,

WS =
∑

T∈([s]
≤t)

(−1)[x(S)]TAT (3.2)

Hence,

(WS)⊗n =

 ∑
T1∈([s]

≤t)

(−1)[x(S)]T1AT1

⊗ · · · ⊗
 ∑
Tn∈([s]

≤t)

(−1)[x(S)]TnATn
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=
∑

Ti∈([s]
≤t)

1≤i≤n

(−1)[x(S)]T1 · · · (−1)[x(S)]Tn (AT1 ⊗ · · · ⊗ ATn)

=
∑

T̃∈( [s]
≤nt)

(−1)[x(S)]T̃BT̃

where for T̃ ∈
(

[s]
≤nt

)
,

BT̃
∆
=

∑
T14···4Tn=T̃

Ti∈([s]
≤t),1≤i≤n

AT1 ⊗ · · · ⊗ ATn

Hence, we see that {BT̃}T̃∈( [s]
≤nt)

span {W⊗n
S }S∈( U

≤n). So, {W⊗n
S }S∈( U

≤n) lie in a vector space

of dimension at most
∑nt

i=0

(
s
i

)
.

Now the theorem is an easy consequence of the above two claims.

Remark: Equation 3.2 in the proof of Claim 3.4 above is similar to the statement of a
lemma of Shi.

Lemma 3.1 ([Shi00, Lemma 2.4] rephrased) Consider a quantum query algorithm,
having initial state vector |0〉, with the black box unitary transformation representing a bit
string x = x1, . . . , xs. Let |φ〉 be the state vector of the circuit after t queries to the black
box. Then,

|φ〉 =
∑

T∈([s]
≤t)

φ̂T (−1)[x]T

where the φ̂T are independent of x.

Shi proved his lemma using the observation by Beals et al. (see [BBC+98, Lemma 4.1])
that the amplitudes of the basis states in the state vector |φ〉 are multilinear polynomials
of degree at most t in x1, . . . , xs.

The space-time tradeoff equation for the exact quantum case holds for the one-sided
error case too, as shown below.

Theorem 3.3 The tradeoff result of Theorem 3.2 also holds for a quantum scheme where
the query scheme may err with probability less than 1 on the positive instances (i.e. if an
element is present it may be erroneously reported absent), but not on the negative instances
(i.e. if an element is absent it has to be reported absent).

Proof: (Sketch) Essentially, the same proof of Theorem 3.2 goes through. Since the
query scheme can make an error only if the element is present, we observe that the only
vector in the linear combination (equation 3.1) that has a non-zero projection on the space
A⊗n1 , is the vector W⊗n

T |φT 〉. Hence αT = 0, and the operators {WS}S⊆U,|S|≤n continue to
be linearly independent. Hence, the same tradeoff equation holds in this case too.

We now prove the lower bound on the space used by a two-sided ε-error 1-probe quantum
bit probe scheme for the static membership problem.
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Theorem 3.4 Let n/m < ε < 1/8. Suppose there is a scheme which stores subsets S of
size at most n from a universe U of size m that answers membership queries, with two-sided
error at most ε, using one quantum probe. It must use space

s = Ω

(
n log(m/n)

ε1/6 log(1/ε)

)
Proof: Since we are looking at a one probe quantum scheme, WS = U1OSU0. We start by
picking a family F of sets, F = {S1, . . . , Sk}, Si ⊆ U, |Si| = n and |Si ∩ Sj| ≤ n/2 for all
i 6= j. By picking the sets greedily [EFF85, NW94], one obtains a family F with

|F | ≥
(
m
n

)(
n
n
2

)(m−n
2

n
2

) ≥ m
n
m−1
n−1
· · · m−n/2+1

n−n/2+1

2n
≥
(
m
n

)n/2
2n

=
(m

4n

)n/2
(3.3)

Let t
∆
=
⌈

4 log |F |
n log(1/(4ε))

⌉
. Since, m/n ≥ 1/ε,

4 log |F |
n log(1/(4ε))

≥ 4n log(m/(4n)

2n log(1/(4ε))
≥ 2

Hence,
4 log |F |

n log(1/(4ε))
≤ t ≤ 4 log |F |

n log(1/(4ε))
+ 1 ≤ 6 log |F |

n log(1/(4ε))
(3.4)

Claim 3.5 {W⊗nt
S }S∈F are linearly independent.

Proof: Suppose there is a non-trivial linear combination∑
S∈F

αSW
⊗nt
S = 0

Fix a T ∈ F . Let T = {i1, . . . , in}. Define

|φT 〉
∆
= (|φi1〉 ⊗ |φi2〉 ⊗ · · · ⊗ |φin〉)⊗t

Applying φT to the above linear combination, we get∑
S∈F

αSW
⊗nt
S |φT 〉 = 0

⇒
∑
S∈F

αS(WS|φi1〉 ⊗ · · · ⊗WS|φin〉)⊗t = 0

Taking inner product of the above combination with the vector

W⊗nt
T |φT 〉 = (WT |φi1〉 ⊗ · · · ⊗WT |φin〉)⊗t
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we get ∑
S∈F

αS〈(WS|φi1〉 ⊗ · · · ⊗WS|φin〉)⊗t|(WT |φi1〉 ⊗ · · · ⊗WT |φin〉)⊗t〉 = 0

⇒
∑
S∈F

αS(〈φi1|W
†
SWT |φi1〉 · · · 〈φin|W

†
SWT |φin〉)t = 0 (3.5)

• For any ij ∈ S ∩ T , |〈φij |W
†
SWT |φij〉| ≤ 1.

• For any ij ∈ T , WT |φij〉 = v0 + v1 where 1 ≥ ‖v1‖ ≥
√

1− ε and ‖v0‖ ≤
√
ε, v0 ∈ A0

and v1 ∈ A1. For any ij ∈ T − S, WS|φij〉 = u0 + u1 where 1 ≥ ‖u0‖ ≥
√

1− ε and
‖u1‖ ≤

√
ε and u0 ∈ A0 and u1 ∈ A1. Hence,∣∣∣〈φij |W †

SWT |φij〉
∣∣∣ = |〈u0|v0〉+ 〈u1|v1〉|

≤ ‖u0‖‖v0‖+ ‖u1‖‖v1‖
≤ 2

√
ε

∆
= δ

We now note that for every T ∈ F , we have a linear combination as in equation 3.5
above. We can write the linear combinations in the matrix form as αM = 0, where
α = (αS)S∈F and M is a |F |×|F | matrix whose rows and columns are indexed by members
of F . For S, T ∈ F ,

M(S, T ) = (〈φi1 |W
†
SWT |φi1〉 · · · 〈φin |W

†
SWT |φin〉)t

where T = {i1, . . . , in}. The diagonal entries of M , M(T, T ), are 1. The non-diagonal
entries satisfy |M(S, T )| ≤ (δ)(n−|S∩T |)t ≤ δnt/2.

Using the lower bound on t from (3.4), we get

|F |δtn/2 = |F |(4ε)tn/4 ≤ 1

Hence (|F | − 1)(δ)tn/2 < 1. This implies that M is non-singular. [Suppose not. Let y be
a vector such that My = 0. Let i be the location of the largest coordinate of y. We can
assume without loss of generality that yi = 1. Now, the ith coordinate of the vector My
is at least 1− (|F | − 1)(δ)tn/2 > 0 in absolute value, which is a contradiction.] So, αS = 0
for all S ∈ F . Hence {W⊗nt

S }S∈F are linearly independent.

Claim 3.6
{
W⊗nt
S

}
S∈F lie in a vector space of dimension at most

∑nt
j=0

(
s
j

)
.

Proof: Similar to proof of Claim 3.4 in Theorem 3.2.
Using the two claims above,

|F | ≤
nt∑
j=0

(
s

j

)
≤
(
s+ nt

nt

)
≤
(

(s+ nt)e

nt

)nt
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Using the upper bound on t from (3.4), we get(
1

4ε

)nt/6
≤ |F | ≤

(
(s+ nt)e

nt

)nt

⇒ s ≥ nt

e

((
1

4ε

)1/6

− e

)
For values of ε such that (1/4ε)1/6 > 2e, that is ε < 4−1(2e)−6, using (3.3) and the lower

bound on t from (3.4), we get

s ≥ nt

2e

(
1

4ε

)1/6

≥ 2 log |F |
e(4ε)1/6 log(1/4ε)

≥ n log(m/4n)

e(4ε)1/6 log(1/4ε)

⇒ s = Ω

(
n log(m/n)

ε1/6 log(1/ε)

)
For 4−1(2e)−6 ≤ ε < 1/8, we recall the fact that Ω(n log(m/n)) is always a lower bound
(the information-theoretic lower bound) for the storage space. Thus, for these values of ε
too

s = Ω

(
n log(m/n)

ε1/6 log(1/ε)

)
Hence, the theorem is proved.
We now show how to extend the above argument for 2-sided ε-error quantum schemes

which make p probes.

Theorem 3.5 For any p ≥ 1 and n/m < ε < 2−3p, suppose there is a scheme which stores
subsets S of size at most n from a universe U of size m that answers membership queries,

with two-sided error at most ε, using p quantum probes. Define δ
∆
= ε1/p. The scheme must

use space

s = Ω

(
n log(m/n)

δ1/6 log(1/δ)

)
Proof: (Sketch) The proof of this theorem is similar to the proof of Theorem 3.4. Pick
a family F of sets, F = {S1, . . . , Sk}, Si ⊆ U, |Si| = n, |Si ∩ Sj| ≤ n/2 for all i 6= j,

such that |F | ≥ (m/4n)n/2. One can prove that
{
W⊗nt
S

}
S∈F , t

∆
=
⌈

4 log |F |
n log(1/(4ε))

⌉
, are linearly

independent in exactly the same fashion as Claim 3.5 in Theorem 3.4 was proved. The
difference is that

{
W⊗nt
S

}
S∈F lie in a vector space of dimension at most

∑pnt
j=0

(
s
j

)
instead

of
∑nt

j=0

(
s
j

)
. This statement can be proved just as Claim 3.4 in Theorem 3.2 was proved.

Therefore, by a argument similar to that at the end of the proof of Theorem 3.4, we get a
lower bound

Ω

(
n log(m/n)

δ1/6 log(1/δ)

)
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3.3 Classical bit probe schemes

We now give a simpler proof for the space v/s probes tradeoff equation for classical deter-
ministic bit probe schemes solving the static membership problem.

Theorem 3.6 Suppose there exists a classical deterministic scheme for storing subsets S
of size at most n from a universe U of size m which uses s bits of storage and answers
membership queries with t classical bit probes. Then,

n∑
i=0

(
m

i

)
≤

nt∑
i=0

(
s

i

)
Proof: For 1 ≤ i ≤ m, let fi : {0, 1}s → R denote the function for query i, which maps
bit strings of length s to {0, 1} ⊂ R i.e. fi maps x ∈ {0, 1}s to 1 iff the query scheme given
query i and bit string x evaluates to 1. Consider a mapping Φ :

(
U
≤n

)
→ ({0, 1}s → R) i.e.

Φ takes a subset of the universe of size at most n to a function from bit strings of length
s to the reals. Φ is defined as follows

Φ({}) ∆
= constant 1 function

Φ(S)
∆
= fi1fi2 · · · fik , S = {i1, · · · ik}, S 6= {}

Claim 3.7 {Φ(S)}S∈( U
≤n) are linearly independent over R.

Proof: Suppose there exists a non-trivial linear combination∑
S∈( U

≤n)

αSΦ(S) = 0

Pick a set T of smallest cardinality such that αT 6= 0. Let x(T ) ∈ {0, 1}s be the string
stored by the storage scheme. Applying x(T ) to the above linear combination, we get∑

S∈( U
≤n)

αSΦ(S)x(T ) = 0

If S 6= T , there exists an element i ∈ U such that i ∈ S − T . Then, fi(x(T )) = 0, and
hence, Φ(S)(x(T )) = 0. If S = T , then Φ(S)(x(T )) = Φ(T )(x(T )) = 1. Hence, αT = 0
which is a contradiction. Hence the claim is proved.

Claim 3.8 {Φ(S)}S∈( U
≤n) lie in a vector space of dimension at most

∑nt
i=0

(
s
i

)
.

Proof: Since the query scheme is deterministic and makes at most t (classical) bit probes,
given a query i, 1 ≤ i ≤ m, the function fi is modelled by a decision tree of depth at most
t. Hence fi can be represented over R as a sum of products of at most t linear functions,
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where the linear functions are either yj (representing the value stored at location j in the
bit string) or 1−yj (representing the negation of the value stored at location j). Note that
for any y ∈ {0, 1}s, at most one of these products evaluates to 1. Such a function can be
represented as a multilinear polynomial in y1, y2, . . . , ys of degree at most t. A product of
at most n such functions can be represented as a multilinear polynomial of degree at most
nt. Hence, {Φ(S)}S∈( U

≤n) lie in the span of at most
∑nt

i=0

(
s
i

)
functions from {0, 1}s to R.

From this, the claim follows.
From the above two claims, the theorem follows.
In fact, the tradeoff result can be extended to the one-sided error classical case too.

Theorem 3.7 The tradeoff result of Theorem 3.6 also holds for classical schemes where
the query scheme may err with probability less than 1 on the positive instances (i.e. if an
element is present it might report it to be absent), but not on the negative instances (i.e, if
an element is absent it has to be reported as absent). In fact, the tradeoff result holds for
nondeterministic query schemes too.

Proof: (Sketch) A proof very similar to that of Theorem 3.6 goes through. We just
observe that now the query scheme is a logical disjunction over a family of deterministic
query schemes. If the query element is present in the set stored, there is a decision tree in
this family that outputs 1. If the query element is not present in the set stored, then all
the decision trees output 0. Let us denote by Fi the family of decision trees corresponding
to query element i, 1 ≤ i ≤ m. For any decision tree D in Fi, let gD : {0, 1}s → {0, 1} be
the function it evaluates.

Let us now define fi
∆
=
∑

D∈Fi
gD. Then

fi(x[T ])

{
≥ 1 if i ∈ T
= 0 otherwise

With this choice of fi, the rest of the proof is the same as in the deterministic case.
Now we give a simple proof of the lower bound for the space used by a classical ran-

domised scheme which answers membership queries with two-sided error at most ε and
uses only one bit probe.

Theorem 3.8 Let 1/18 > ε > 1/m1/3 and m1/3 > 18n. Any classical scheme which stores
subsets S of size at most n from a universe U of size m and answers membership queries,
with two-sided error at most ε, using one bit probe must use space

Ω

(
n logm

ε2/5 log(1/ε)

)
Proof: Suppose there is a classical scheme which stores subsets of size n from a universe
of size m using s bits of storage, and answers membership queries using one bit probe
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with two-sided error at most ε. Define k
∆
=
⌈

4 log(27m)
3 log(1/4eε)

⌉
. Since m1/3 > 1/ε, 4 log(27m)

3 log(1/4eε)
≥ 4.

Therefore,
4 log(27m)

3 log(1/4eε)
≤ k ≤ 4 log(27m)

3 log(1/4eε)
+ 1 ≤ 5 log(27m)

3 log(1/4eε)
(3.6)

We repeat the query scheme k times and accept only if more than 3k/4 trials accept.
Then the probability of making an error on a positive instance (i.e. the query element is
present in the set stored) is bounded by(

k

k/4

)
εk/4 ≤ (4e)k/4εk/4 = (4eε)k/4

The probability of making an error on a negative instance (i.e. the query element is not
present in the set stored) is bounded by(

k

3k/4

)
ε3k/4 ≤

(
4eε

3

)3k/4

≤ (4eε)3k/4

From lower bound on k from (3.6), we get

Pr[Error on a positive instance] ≤ (4eε)k/4 ≤ 1
(27m)1/3 ≤ 1

3n

Pr[Error on a negative instance] ≤ (4eε)3k/4 ≤ 1
27m

Hence, the probability that a random sequence of coin tosses gives the wrong answer on
some query q ∈ U and a particular set S stored, is at most

1

3n
× n+

1

27m
× (m− n) <

1

2

Call a sequence of coin tosses bad for a set S, if when S is stored, there is one query
q ∈ U for which the query scheme with these coin tosses gives the wrong answer. Thus, at
most half of the coin toss sequences are bad for a fixed set S. By an averaging argument,
there exists a sequence of coin tosses which is bad for at most half of the sets S ∈

(
U
n

)
. By

setting the coin tosses to that sequence, we now get a deterministic scheme which answers
membership queries correctly for at least half the sets S ∈

(
U
n

)
, and uses k bit probes.

From the proof of Theorem 3.6, we have that

1

2

(
m

n

)
≤

nk∑
i=0

(
s

i

)
≤
(
s+ nk

nk

)
≤
(
e(s+ nk)

nk

)nk

⇒ 1

2

(m
n

)n
≤
(
e(s+ nk)

nk

)nk
Using the upper bound on k in (3.6) and the fact that m1/3 > 18n, we get((

1

4eε

)3k/5
)2n/3

≤ (27m)2n/3 =
(
9m2/3

)n ≤ 1

2

(
18m2/3

)n ≤ 1

2

(m
n

)n
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⇒
(

1

4eε

)2nk/5

≤
(
e(s+ nk)

nk

)nk
⇒ s ≥ nk

e

((
1

4eε

)2/5

− e

)
Arguing as in the last part of the proof of Theorem 3.4, and recalling that since m1/3 > 18n,
Ω(n logm) is always a lower bound (the information-theoretic lower bound) for the storage
space, we get

s = Ω

(
n logm

ε2/5 log(1/ε)

)

We can extend the classical randomised two-sided error space lower bound above to the
case of multiple bit probes.

Theorem 3.9 Let p ≥ 1, 18−p > ε > 1/m1/3 and m1/3 > 18n. Define δ
∆
= ε1/p. Any

classical scheme which stores subsets S of size at most n from a universe U of size m and
answers membership queries, with two-sided error at most ε, using at most p bit probes
must use space

Ω

(
n logm

δ2/5 log(1/δ)

)
Proof: (Sketch) The proof of this theorem is similar to the proof of Theorem 3.8 above.

We repeat the query scheme k
∆
=
⌈

4 log(27m)
3 log(1/4eε)

⌉
times and accept only if more than 3k/4

trials accept. We “derandomise” the new query scheme in a manner similar to what was
done in the proof of Theorem 3.8. We thus get a deterministic query scheme making kp
bit probes and answering membership queries correctly for at least half the sets S ∈

(
U
n

)
.

The rest of the proof now follows in the same fashion as the proof of Theorem 3.8.

3.4 Quantum cell probe model with implicit storage

schemes

In this section, we show that for universe sizes m that are ‘large’ compared to n, p, q,
Ω(log n) is a lower bound on the number of quantum probes t required to solve the static
membership problem with (p, q, t) implicit storage quantum cell probe schemes. We start
with the following lemma. We only a sketch the proof of the lemma. A complete proof of
a weaker version of the lemma, which nevertheless illustrates the main idea of a “logical
interval” (defined below), is given in the appendix.

Lemma 3.2 Suppose S is an n element subset of the universe [m], where m ≥ 2n. If the
storage scheme is implicit, always stores the same ‘pointer’ values in the same locations,
and in the remaining locations, stores the elements of S in a fixed order (repetitions of an
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element are allowed, but all elements have to be stored) based on their relative ranking in
S, then Ω(log n) probes are needed by any bounded error quantum cell query strategy to
answer membership queries.

Proof: (Sketch) The proof follows by modifying Ambainis’s lower bound proof for quan-
tum ordered searching [Amb99]. There, it was shown that if S is stored in sorted order in
a table T then, given any query element q, Ω(log n) probes are required by any quantum
search strategy to find out the smallest index i, 1 ≤ i ≤ n, such that q ≤ T (i). We observe
that the lemma above does not follow directly from the result of Ambainis, since we only
need to decide if q is present in the table or not, and this is a weaker requirement. To
prove the lemma, we follow the adversary strategy of [Amb99] with some minor changes.
We study the behaviour of the quantum query scheme with query element n. The proof of
Ambainis is based on a clever strategy of subdividing “intervals” (an interval is a contigu-
ous set of locations in the sorted table). We work instead with “logical intervals”, where a
logical interval denotes the set of locations in the table where elements contiguous in the
natural ordering are stored (as determined by the fixed storing order). After this definition,
one can easily show that the same subdivision strategy as in [Amb99] goes through. In
Ambainis’s proof, the adversary constructs inputs by padding with zeros from the begin-
ning up to the left of an interval, and with ones from the end up to the right of the interval.
Instead, we pad with small numbers (1, 2, 3, . . .) from the logical beginning up to the logical
left of a logical interval, and with large numbers (m,m− 1,m− 2, . . .) from the logical end
up to the logical right of the logical interval. We store the appropriate ‘pointer values’ in
the ‘pointer locations’ (predetermined by the storing strategy). After doing this, one can
easily show that the same error analysis of [Amb99] goes through. Thus, the adversary
finally can produce two inputs, one of them containing n and the other not, such that the
behaviour of the query scheme is very similar on both. This is a contradiction.

Remark: Høyer et al. also prove an Ω(log n) lower bound for quantum ordered search-
ing [HNS01]. But their approach, which is based on “distinguishing oracles”, does not
seem to be suitable for proving lower bounds for boolean valued functions. Hence to prove
Lemma 3.2, we modify the older Ω(log n) lower bound of Ambainis for quantum ordered
searching.

Theorem 3.10 For every n, p, q, there exists an N(n, p, q) such that for all m ≥ N(n, p, q),
the following holds: Consider any bounded error (p, q, t) implicit storage quantum cell probe
scheme for the static membership problem with universe size m and size of the stored subset
at most n. Then the quantum query scheme must make t = Ω(log n) probes.

Proof: (Sketch) Our proof follows from the Ramsey theoretic arguments of Yao [Yao81]
together with Lemma 3.2. The details are omitted.
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Chapter 4

Static predecessor: Classical case

In this chapter, we present our lower bound for the query complexity of the static predeces-
sor problem (defined in Section 1.2) in the classical cell probe model with randomised query
schemes. We first recall the approach of Miltersen, Nisan, Safra and Wigderson for proving
lower bounds for the predecessor problem via their round elimination lemma [MNSW98]
in Sections 4.1 and 4.2. In Section 4.3, we discuss how improving the round elimination
lemma improves the lower bound for predecessor. After that, we discuss some preliminaries
from (classical) information theory in Section 4.4, which will be required in the proof of our
improved (classical) round elimination lemma. We present the proof of a technical lemma
in Section 4.5, which is required in the proof of our improved round elimination lemma.
Finally, we present our improved round elimination lemma in Section 4.6, and use it to
prove lower bounds for the predecessor problem matching the classical deterministic upper
bounds of Beame and Fich [BF99] in Section 4.7. We also use our round elimination lemma
to prove improved rounds versus communication tradeoffs for the ‘greater-than’ problem
in Section 4.8. Sections 4.6, 4.7 and 4.8 contain new results.

The main new results in this chapter are

• An improved round elimination lemma (Lemma 4.5) for classical communication
protocols. This improves on the earlier round elimination lemma (Lemma 4.3) of
Miltersen, Nisan, Safra and Wigderson [MNSW98].

• Optimal lower bound of

t = Ω

(
min

(
log logm

log log logm
,

√
log n

log log n

))

on the number of queries t required to solve the static predecessor problem with
universe size m and size of stored subset at most n, in the classical cell probe model
with randomised query schemes, with word size (logm)O(1) and number of cells nO(1).
The reason the above lower bound is optimal is because Beame and Fich [BF99] have
shown matching classical cell probe solutions for predecessor. In fact, in their solution
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4.1. Cell probe complexity and communication: The classical case

the query schemes are deterministic. Our lower bound improves the previous lower
bound of

t = Ω
(

min
(√

log logm, (log n)1/3
))

of Miltersen et al. [MNSW98] in the classical cell probe model with randomised
query schemes. In the case of the classical cell probe model with deterministic query
schemes, Beame and Fich [BF99] had already proved an optimal lower bound; how-
ever, our lower bound proof is substantially simpler than the lower bound proof of
Beame and Fich.

• Improved lower bound of Ω(n1/tt−2) for the t round public coins classical randomised
communication complexity of the ‘greater-than’ problem on n bit integers. The
previous lower bound was Ω(n1/t2−O(t)) by Miltersen et al. [MNSW98]. A t-round
private coin O(n1/t log n) classical randomised protocol is known for this problem.
Thus, for a fixed number of rounds, our lower bound is optimal to within logarithmic
factors.

4.1 Cell probe complexity and communication: The

classical case

In this section, we describe a connection between the classical cell probe complexity of a
static data structure problem and the classical communication complexity of an associated
communication game. This connection is the standard approach for showing lower bounds
for static data structure problems in the classical cell probe model. It was first observed
by Miltersen [Mil94].

Definition 4.1 A [t, l1, . . . , lt]
A ([t, l1, . . . , lt]

B) classical communication protocol is a pro-
tocol where Alice (Bob) starts the communication, the ith message is li bits long, and the
communication goes on for t rounds. A (t, a, b)A ((t, a, b)B) classical communication pro-
tocol is a protocol where Alice (Bob) starts the communication, each message from Alice to
Bob is a bits long, each message from Bob to Alice is b bits long, and the communication
goes on for t rounds.

Let f : D ×Q→ A be a static data structure problem. Consider a two-party commu-
nication problem where Alice is given a query q ∈ Q, Bob is given data d ∈ D, and they
have to communicate and find out the answer f(d, q). We have the following lemma.

Lemma 4.1 ([Mil94]) Suppose there is a classical (s, w, t) cell probe solution with ran-
domised query schemes for the static data structure problem f . Then there is a private coin
(2t, log s, w)A classical randomised protocol for the corresponding communication problem.
The error probability of the communication protocol is the same as that of the cell probe
scheme.

58



4.2. Predecessor: Earlier round elimination approach

Proof: (Sketch) The communication protocol just simulates the cell probe solution.
In many natural data structure problems log s is much smaller than w. This asymmetry

in message lengths is crucial in proving non-trivial lower bounds on the number of rounds
t, as we shall see below.

4.2 Predecessor: Earlier round elimination approach

In this section, we recall the approach of Miltersen, Nisan, Safra and Wigderson [MNSW98]
for proving lower bounds for the query complexity of the static predecessor problem in the
classical cell probe model with randomised query schemes. Their main technical tool was
a round elimination lemma for public coin classical randomised communication protocols.

Definition 4.2 (Rank parity communication games, [MNSW98]) In the rank par-
ity communication game PARp,q, Alice is given a bit string x of length p, Bob is given a
set S of bit strings of length p, |S| ≤ q, and they have to communicate and decide whether
the rank of x in S (treating the bit strings as integers) is odd or even. By the rank of x
in S, we mean the cardinality of the set {y ∈ S | y ≤ x}. In the game PAR(k),A

p,q , Alice is
given k bit strings x1, . . . , xk each of length p, Bob is given a set S of bit strings of length
p, |S| ≤ q, an index i ∈ [k], and a copy of x1, . . . , xi−1; they have to communicate and
decide whether the rank of xi in S is odd or even. In the game PAR(k),B

p,q , Alice is given a
bit string x of length p and an index i ∈ [k], Bob is given k sets S1, . . . , Sk of bit strings of
length p, |Sj| ≤ q; they have to communicate and decide whether the rank of x in Si is odd
or even.

Proposition 4.1 ([MNSW98]) Let there be a (nO(1), (logm)O(1), t) classical cell probe
solution with randomised query schemes to the static predecessor problem, where the uni-
verse size is m and the subset size is at most n. Then there is a private coin (and hence,

public coin)
(
2t+O(1), O(log n), (logm)O(1)

)A
classical randomised protocol for the rank

parity communication game PARlogm,n. The error probability of the communication protocol
is the same as that of the cell probe scheme.

Proof: Consider the static rank parity data structure problem where the storage scheme
has to store a set S ⊆ [m], |S| ≤ n, and the query scheme, given a query x ∈ [m], has to
decide whether the rank of x in S is odd or even. Fredman, Komlós and Szemerédi [FKS84]
have shown the existence of two-level perfect hash tables containing, for each member y
of the stored subset S, y’s rank in S, and using O(n) cells of word size O(logm) and
requiring only O(1) deterministic cell probes. Combining a (nO(1), (logm)O(1), t) classical
cell probe solution to the static predecessor problem with such a perfect hash table, gives
us a (nO(1) + O(n),max((logm)O(1), O(logm)), t + O(1)) classical cell probe solution to
the static rank parity problem. The error probability of the cell probe scheme for the
rank parity problem is the same as the error probability of the cell probe scheme for the
predecessor problem. By Lemma 4.1, we get a (2t + O(1), O(log n), (logm)O(1))A private
coin classical randomised protocol for the rank parity communication game PARlogm,n. The
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4.2. Predecessor: Earlier round elimination approach

error probability of the communication protocol is the same as that of the cell probe scheme
for the predecessor problem.

Proposition 4.2 ([MNSW98]) Suppose k divides p. A communication protocol with

Alice starting for PARp,q, gives us a communication protocol with Alice starting for PAR
(k),A
p/k,q ,

with the same message complexity, number of rounds and error probability.

Proof: Consider the problem PAR
(k),A
p/k,q . Alice, who is given x1, . . . , xk, computes the

concatenation x̂
∆
= x1 · x2 · · · xk. Bob, who is given S, i and x1, . . . , xi−1, computes

Ŝ
∆
=
{
x1 · x2 · · ·xi−1 · y · 0p(1−i/k) | y ∈ S

}
After this, Alice and Bob run the protocol for PARp,q on inputs x̂, Ŝ to solve the problem

PAR
(k),A
p/k,q .

Proposition 4.3 ([MNSW98]) Suppose k divides q, and k is a power of 2. A com-
munication protocol for PARp,q with Bob starting, gives us a communication protocol for

PAR
(k),B
p−log k−1,q/k with Bob starting, with the same message complexity, number of rounds

and error probability.

Proof: Consider the problem PAR
(k),B
p−log k−1,q/k. Alice, given x and i, computes x̂

∆
= (i− 1) ·

0 · x. Bob, given S1, . . . , Sk, computes the sets S ′1, . . . , S
′
k where

S ′j
∆
=

{
{(j − 1) · 0 · y | y ∈ Sj} if |Sj| is even
{(j − 1) · 0 · y | y ∈ Sj}

⋃{
(j − 1) · 1p−log k

}
if |Sj| is odd

Above, the integers (i− 1), (j − 1) are to be thought of as bit strings of length log k. Bob

also computes Ŝ
∆
=
⋃k
j=1 S

′
j. Alice and Bob then run the protocol for PARp,q on inputs x̂,

Ŝ to solve the problem PAR
(k),B
p−log k−1,q/k.

We now state the round elimination lemma of Miltersen et al. in the ‘fixed error’ form.

Lemma 4.2 (Round elimination, fixed error form, [MNSW98]) Let C = 99 and
R = 4256. Suppose f : E × F → G is a function. Suppose there is a [t, l1, . . . , lt]

A public
coin classical randomised protocol with worst case error less than 1/3 for the communication
game f (Rl1). Then there is a [t− 1, Cl2, . . . , Clt]

B public coin classical randomised protocol
for f with worst case error less than 1/3.

We now prove Miltersen et al.’s lower bound for the classical query complexity of static
predecessor.

Theorem 4.1 Suppose we have a (nO(1), (logm)O(1), t) bounded error classical cell probe
solution to the static predecessor problem, where the universe size is m and the subset size
is at most n. Then the number of queries t is at least Ω

(√
log logm

)
as a function of m,

and at least Ω
(
(log n)1/3

)
as a function of n.
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4.2. Predecessor: Earlier round elimination approach

Proof: By Proposition 4.1, it suffices to consider communication protocols for the rank
parity communication game PARlogm,n. Let n = 2(log logm)2

. Let R,C be as in Lemma 4.2.
For constants c2, c3 ≥ 1, define

a
∆
= c2 log n b

∆
= (logm)c3 t

∆
= (R + C + c2 + c3)−1

√
log logm

We shall show that PARlogm,n does not have bounded error (2t, a, b)A public coin classical
randomised communication protocols, thus proving the desired lower bounds on the query
complexity of static predecessor.

Given a (2t, a, b)A bounded error public coin classical protocol for PARlogm,n, we get a
(2t, a, b)A bounded error public coin classical protocol for

PAR
(Ra),A
log m
Ra

,n

by Proposition 4.2. Using Lemma 4.2, we get a (2t−1, Ca, Cb)B bounded error public coin
classical protocol for

PAR log m
Ra

,n

Using the reduction of Proposition 4.3, we get a (2t − 1, Ca, Cb)B bounded error public
coin classical protocol for

PAR
(RCb),B
log m
Ra
−log(RCb)−1, n

RCb

From the given values of the parameters, we see that

logm

(2RCt−1a)t
≥ log(RC2t−1b) + 1

This implies that we also have a (2t − 1, Ca, Cb)B bounded error public coin classical
protocol for

PAR
(RCb),B
log m
2Ra

, n
RCb

Using Lemma 4.2 again, we get a (2t − 2, C2a, C2b)A bounded error public coin classical
protocol for

PAR log m
2Ra

, n
RCb

We do the above steps repeatedly. After applying the above steps i times, we get a
(2t− 2i, C2ia, C2ib)A bounded error public coin classical protocol for

PAR log m

(2RCi−1a)i
, n

(RCib)i

By applying the above steps t times, we finally get a (0, C2ta, C2tb)A bounded error
public coin classical protocol for

PAR log m

(2RCt−1a)t
, n
(RCtb)t
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4.3. Improving lower bounds for predecessor

From the given values of the parameters, we see that

logm

(2RCt−1a)t
≥ (logm)Ω(1) n

(RCtb)t
≥ nΩ(1)

Thus we get a bounded error zero round protocol for a rank parity problem on a non-trivial
domain, which is a contradiction.

In the above proof, we are tacitly ignoring “rounding off” problems. We remark that
this does not affect the correctness of the proof.

4.3 Improving lower bounds for predecessor

There is a gap between the lower bound for static predecessor proved in Theorem 4.1 and
the upper bound of Beame and Fich [BF99]. Beame and Fich describe (nO(1), O(logm), t)
classical cell probe solutions with deterministic query schemes for predecessor where

t = O

(
min

(
log logm

log log logm
,

√
log n

log log n

))
(4.1)

Beame and Fich [BF99] also prove a lower bound matching their upper bound to within
constant factors, but their lower bound holds only if the query scheme is deterministic.
The lower bound of Theorem 4.1 holds even if the query scheme is randomised. The round
elimination lemma for fixed error (Lemma 4.2) is not strong enough to prove a lower bound
matching (4.1), unless one can make C = 1 in that lemma. Such a statement looks unlikely
to be true, though we have no counterexample for it as yet.

Miltersen et al. [MNSW98] prove the ‘fixed error’ form of their round elimination lemma
(Lemma 4.2) by first proving a ‘variable error’ form of the round elimination lemma. We
state the ‘variable error’ round elimination lemma below.

Lemma 4.3 (Round elimination, variable error form, [MNSW98]) Let ε, δ > 0 be
such that δ ≤ ε2(100 ln(8/ε))−1. Suppose f : E × F → G is a function. Suppose the
communication game f (n) has a [t, l1, . . . , lt]

A public coin classical randomised protocol with
worst case error less than δ. Also suppose that n ≥ 20(l1 ln 2 + ln 5)ε−1. Then there is a
[t− 1, l2, . . . , lt]

B public coin classical randomised protocol for f with worst case error less
than ε.

Lemma 4.3 is also not strong enough to prove a lower bound matching (4.1). This is
because the dependence between δ and ε in Lemma 4.3 is quadratic.

Suppose one can prove a variable error round elimination lemma where the error of
the new protocol is within a additive term of the error of the old protocol. Also sup-
pose that the additive term is bounded by a polynomial in l1/n (refer the notation of
Lemma 4.3). Then one can prove a lower bound for predecessor matching Beame and
Fich’s upper bound, even though one still does not prove a fixed error round elimination
lemma with C = 1. In the remaining part of this chapter, we prove just such a lemma.
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Our proof of the improved variable error round elimination lemma uses some results from
(classical) information theory. We believe that the information-theoretic approach brings
out naturally the intuition behind why such a result should be true. The advantages of
using an improved round elimination lemma to prove lower bounds for predecessor are that
the lower bounds obtained hold for the classical cell probe model with randomised query
schemes, are optimal, and also, the proofs are substantially simpler than the lower bound
proofs of Beame and Fich.

4.4 Information theoretic preliminaries

In this section, we discuss the information theoretic lemmas which will be used in the
proof of our improved classical round elimination lemma. For a good account of (classical)
information theory, see the book by Cover and Thomas [CT91].

Let A be a classical random variable taking values in a finite set S. Let A take the

value x ∈ S with probability px. Then, the Shannon entropy of A is defined as S(A)
∆
=

−
∑

x∈S px log px. Let A,B be classical random variables. Then, their mutual information

is defined as I(A : B)
∆
= S(A) + S(B)− S(AB).

Suppose X,M are classical random variables taking values in finite sets S, T respec-
tively. For x ∈ S,m ∈ T , let σ(m | x) denote the conditional probability that T = m given
that X = x. In what follows, we shall sometimes think of M as a classical randomised
encoding x 7→ σx of X, where σx denotes the conditional distribution of M given that

X = x. We shall define σ
∆
=
∑

x pxσx to be the distribution of the average encoding. Then,
S(XQ) = S(X) +

∑
x pxS(σx), and hence, I(X : Q) = S(σ)−

∑
x pxS(σx).

Let X, Y,M be classical random variables taking values in finite sets. Define the random

variable Z
∆
= XY . Let pxy denote the (marginal) probability that (X, Y ) = (x, y). We

shall sometimes think of M to be a classical randomised encoding (x, y) 7→ σxy of Z, where
σxy is the conditional distribution of M given that (X, Y ) = (x, y). Define qxy to be the
(conditional) probability that Y = y given that X = x. y 7→ σxy can be thought of as a
classical randomised encoding Mx of Y given that X = x. We let I((Y : Q)|X = x) denote
the mutual information of this encoding.

The following proposition has been observed by Klauck et al. [KNTZ01].

Proposition 4.4 Suppose M is a classical randomised encoding of a classical random
variable X. Suppose X = X1X2 . . . Xn, where the Xi are classical independent random
variables. Then, I(X1 . . . Xn : M) =

∑n
i=1 I(Xi : MX1 . . . Xi−1).

Proof: We use the following information theoretic identity, which follows easily from the
definitions.

I(A : BC) = I(A : B) + I(AB : C)− I(B : C)

The proof of the proposition now follows by induction on n, using the above identity
repeatedly. We also use the fact that I(Xi : Xi+1 . . . Xn) = 0 for 1 ≤ i < n, since
X1, . . . , Xn are independent classical random variables.
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4.4. Information theoretic preliminaries

We shall also require the following property of mutual information.

Proposition 4.5 Let X, Y be classical random variables and M be a classical randomised
encoding of (X, Y ). Then, I(Y : MX) = I(X : Y ) + EX [I((Y : M)|X = x)].

Proof: Let σxy be the distribution of M when X, Y = x, y. Let px be the (marginal)
probability that X = x and qxy the (conditional) probability that Y = y given X = x.

Define σx
∆
=
∑

y q
x
yσxy. We now have

I(Y : MX) = S(Y ) + S(MX)− S(MXY )

= S(Y ) + S(X) +
∑
x

pxS(σx)− (S(XY ) +
∑
x,y

pxq
x
yS(σxy))

= I(X : Y ) +
∑
x

px(S(σx)−
∑
y

qxyS(σxy))

= I(X : Y ) +
∑
x

pxI((Y : M)|X = x)

= I(X : Y ) + EX [I((Y : M)|X = x)]

We will need the following “average encoding theorem” of Klauck et al. [KNTZ01].
Klauck et al. actually prove a quantum version of this theorem in their paper, but we will
use the classical version in the proof of the classical round elimination lemma. Intuitively
speaking, the theorem says that if the mutual information between a (classical) random
variable and its (classical) encoding is small, then the various probability distributions on
the codewords are close to the average probability distribution on the codewords.

Definition 4.3 (Total variation distance) Let P,Q be probability distributions on the
same finite sample space Ω. Let px (qx) denote the probability of the sample point x ∈ Ω
under P (Q). The total variation distance (also known as the `1-distance) between P and
Q, denoted by ‖P −Q‖1, is defined as

‖P −Q‖1
∆
=
∑
x∈Ω

|px − qx|

Theorem 4.2 (Average encoding, classical version, [KNTZ01]) Let X be a classi-
cal random variable which takes value x with probability px, and M be a classical randomised
encoding x 7→ σx of X, where σx is a probability distribution over the sample space of code-

words. The probability distribution of the average encoding is σ
∆
=
∑

x pxσx. Then∑
x

px‖σx − σ‖1 ≤
√

(2 ln 2)I(X : M)

A proof of this theorem can be found in the appendix.
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4.5. A classical round reduction lemma

4.5 A classical round reduction lemma

In this section, we prove a classical round reduction lemma (Lemma 4.4), which will be
required to prove the classical round elimination lemma. The proof of Lemma 4.4 is
somewhat similar to the proof of Lemma 4.4 in Klauck et al. [KNTZ01], but much simpler
since we are in the classical setting. Intuitively speaking, the lemma says that if the
first message of Alice carries little information about her input, under some probability
distribution on inputs, then it can be eliminated, giving rise to a protocol where Bob starts,
with one less round of communication, and the same message complexity and similar error
probability, with respect to the same probability distribution on inputs.

Consider communication protocols computing a function f : E×F → G. For an input
(x, y) ∈ E × F , we define the error εPx,y of the protocol P on (x, y), to be the probability
that the result of P on input (x, y) is not equal to f(x, y). For a protocol P , given a
probability distribution D on E × F , we define the average error εPD of P with respect to
D as the expectation over D of the error of P on inputs (x, y) ∈ E × F . We define εP to
be worst case error of P on inputs (x, y) ∈ E × F .

Lemma 4.4 (Classical round reduction lemma) Suppose f : E × F → G is a func-
tion. Let D be a probability distribution on E × F , and P be a [t, l1, . . . , lt]

A private coin
classical randomised protocol for f . Let X stand for the classical random variable denoting
Alice’s input (under distribution D), M be the first message of Alice in the protocol P , and
I(X : M) denote the mutual information between X and M under distribution D. Then
there exists a [t− 1, l2, . . . , lt]

B classical deterministic protocol Q for f , such that

εQD ≤ εPD +
1

2
((2 ln 2)I(X : M))1/2

Proof: We first give an overview of the plan of the proof, before getting down to the
details. The proof proceeds in stages.

Stage 1: Starting from P , we construct a [t, l1, . . . , lt]
A private coin protocol P ′, where

the first message is independent of Alice’s input, and εP
′

D ≤ εPD+(1/2)((2 ln 2)I(X : M))1/2.
The important idea in this step is to first generate Alice’s message using a new private
coin without “looking” at her input, and after that, to adjust Alice’s old private coin in a
suitable manner so as to be consistent with her message and input.

Stage 2: Since the first message of P ′ is independent of Alice’s input, Bob can generate
it himself. Doing this and setting coin tosses appropriately, gives us a [t − 1, l2, . . . , lt]

B

deterministic protocol Q such that εQD ≤ εP
′

D .
The protocol Q of Stage 2 is our desired [t−1, l2, . . . , lt]

B classical deterministic protocol
for f . We have

εQD = εP
′

D ≤ εPD +
1

2
((2 ln 2)I(X : M))1/2
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- -

εP
′

D ≤ εP+
(1/2)((2l1 ln 2)/n)1/2

[t, l1, . . . , lt]
A [t, l1, . . . , lt]

A [t− 1, l2, . . . , lt]
B

Stage 1 Stage 2

εPD εQD = εP
′

D

First mesg. ind.
of Alice’s inp.

P P ′ Q

Figure 4.1: The various stages in the proof of Lemma 4.4.

We now give the details of the proof. Let σx be the probability distribution of the first
message M of protocol P when Alice’s input X = x. Let Y denote Bob’s input register.

Define σ
∆
=
∑

x pxσx, where px is the (marginal) probability of x under distribution D.
σ is the probability distribution of the average first message under distribution D. By
Theorem 4.2, we get that ∑

x

px‖σx − σ‖1 ≤
√

(2 ln 2)I(X : M)

For x ∈ E and an instance m of the first message of Alice, let qxmr denote the (condi-
tional) probability that the private coin toss of Alice results in r, given that Alice’s input
is x and her first message in protocol P is m. Let σ(m | x) denote the probability that the
first message of Alice in P is m, given that her input is x. Let σ(m) denote the probability
of m occurring in the average first message of Alice. Then, σ(m) =

∑
x pxσ(m | x).

Stage 1: We construct a [t, l1, . . . , lt]
A private coin classical randomised protocol P ′

for f with average error under distribution D, εP
′

D ≤ εPD + (1/2)((2 ln 2)I(X : M))1/2, and
where the probability distribution of the first message is independent of the input to Alice.
Suppose Alice is given x ∈ E and Bob is given y ∈ F . Alice tosses a fresh private coin
to pick m with probability σ(m). She then sets her old private coin to r with probability
qxmr . (If in P , message m cannot occur when Alice’s input is x, we say that protocol P ′

gives an error if such a thing happens.) After this, Alice and Bob behave as in protocol P
(henceforth, Alice ignores the new private coin which she had tossed to generate her first
message m). Hence in P ′, the probability distribution of the first message is independent
of Alice’s input.

Let us now compare the situations in protocols P and P ′ when Alice’s input is x, Bob’s
input is y, Alice has finished tossing her private coins, but no communication has taken
place as yet. In protocol P , the probability that Alice’s private coin toss results in r is∑

m

σ(m | x)qxmr
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In protocol P ′, the probability that Alice’s (old) private coin toss results in r is∑
m

σ(m)qxmr

Thus, the `1 distance between the probability distributions on Alice’s (old) private coin
toss is

∑
r

∣∣∣∣∣∑
m

qxmr (σ(m | x)− σ(m))

∣∣∣∣∣
≤

∑
r

∑
m

qxmr |σ(m | x)− σ(m)|

=
∑
m

(
|σ(m | x)− σ(m)|

∑
r

qxmr

)
=

∑
m

|σ(m | x)− σ(m)|

= ‖σx − σ‖1

Hence, the error probability of P ′ on input x, y

εP
′

x,y ≤ εPx,y +
1

2
‖σx − σ‖1

Let qxy be the probability that (X, Y ) = (x, y) under distribution D. Then, the average
error of P ′ under distribution D, εP

′
D , is bounded by

εP
′

D =
∑
x,y

qxyε
P ′

x,y

≤
∑
x,y

qxy

(
εPx,y +

1

2
‖σx − σ‖1

)
= εPD +

1

2

∑
x

px‖σx − σ‖1

≤ εPD +
1

2
((2 ln 2)I(X : M))1/2

The last inequality follows from the “average encoding theorem” (Theorem 4.2).

Stage 2: We now construct our desired [t− 1, l2, . . . , lt]
B classical deterministic protocol

Q for f with εQD ≤ εP
′

D . Suppose all the coin tosses of Alice and Bob in P ′ were done
publicly before any communication takes place. Now there is no need for the first message
from Alice to Bob, because Bob can reconstruct the message by looking at the public coin
tosses. This gives us a [t − 1, l2, . . . , lt]

B public coin protocol Q′, such that εQ
′

x,y = εP
′

x,y for
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every (x, y) ∈ E × F . By setting the public coin of Q′ to an appropriate value, we get a

[t− 1, l2, . . . , lt]
B deterministic protocol Q such that εQD ≤ εQ

′

D = εP
′

D . We have

εQD = εP
′

D ≤ εPD +
1

2
((2 ln 2)I(X : M))1/2

This completes the proof of Lemma 4.4.

4.6 The classical round elimination lemma

We now prove the improved classical round elimination lemma (for the communication
game f (n)). The round elimination lemma is stated for public coin classical randomised
protocols only. Since a public coin protocol can be converted to a private coin protocol at
the expense of an additive increase in the communication complexity by at most logarithm
of the total bit size of the inputs [New91], we also get a similar round elimination lemma for
private coin protocols. But since the statement of the round elimination lemma is cleanest
for public coin protocols, we give it below for such protocols only.

Lemma 4.5 (Classical round elimination lemma) Suppose f : E×F → G is a func-
tion. Suppose the communication game f (n) has a [t, l1, . . . , lt]

A public coin classical ran-
domised protocol with worst case error less than δ. Then there is a [t − 1, l2, . . . , lt]

B

public coin classical randomised protocol for f with worst case error less than ε
∆
= δ +

(1/2)(2l1 ln 2/n)1/2.

Proof: Suppose the given protocol for f (n) has worst case error δ̃ < δ. Define ε̃
∆
=

δ̃ + (1/2)(2l1 ln 2/n)1/2. To prove the classical round elimination lemma it suffices to give,
by the harder direction of the minimax lemma, for any probability distribution D on E×F ,
a [t−1, l2, . . . , lt]

B classical deterministic protocol P for f with average distributional error
εPD ≤ ε̃ < ε. To this end, we will first construct a probability distribution D∗ on En×[n]×F
as follows. Choose i ∈ [n] uniformly at random. Choose independently, for each j ∈ [n],
(xj, yj) ∈ E × F according to distribution D. Set y = yi and throw away yj, j 6= i. By
the easier direction of the minimax lemma, we get a [t, l1, . . . , lt]

A classical deterministic
protocol P ∗ for f (n) with distributional error, εP

∗
D∗ ≤ δ̃ < δ. In P ∗, Alice gets x1, . . . , xn ∈ E,

Bob gets i ∈ [n], y ∈ F and a copy of x1, . . . , xi−1. We shall construct the desired protocol
P from the protocol P ∗.

Let M be the first message of Alice in P ∗. Let the input to Alice be denoted by
the classical random variable X = X1X2 . . . Xn where Xi is the classical random variable
corresponding to the ith input to Alice. Let the classical random variable Y denote the
input y of Bob. Define εP

∗
D∗;i;x1,...,xi−1

to be the average error of P ∗ under distribution D∗

when i is fixed and X1, . . . , Xi−1 are fixed to x1, . . . , xi−1. Using Propositions 4.4, 4.5 and
the fact that under distribution D∗, X1, . . . , Xn are independent classical random variables,
we get that

l1
n
≥ I(X:M)

n

= Ei[I(Xi : MX1, . . . , Xi−1)]
= Ei,X [I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1)]

(4.2)
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Also
δ̃ ≥ εP

∗

D∗ = Ei,X

[
εP
∗

D∗;i;x1,...,xi−1

]
(4.3)

The expectations above are under distribution D∗.
For any i ∈ [n], x1, . . . , xi−1 ∈ E, define the [t, l1, . . . , lt]

A private coin classical ran-
domised protocol P ′i;x1,...,xi−1

for the function f as follows. Alice is given x ∈ E and Bob is
given y ∈ F . Bob sets i to the given value, and both Alice and Bob set X1, . . . , Xi−1 to the
values x1, . . . , xi−1. Alice tosses her private coin to choose Xi+1, . . . , Xn ∈ E, where each
Xj, i + 1 ≤ j ≤ n is chosen independently according to the (marginal) distribution on E
induced by D. Alice sets Xi = x and Bob sets Y = y. Then they run protocol P ∗ on these

inputs. The probability that P ′i;x1,...,xi−1
makes an error for an input (x, y), ε

P ′i;x1,...,xi−1
x,y , is

the average probability of error of P ∗ under distribution D∗ when i is fixed to the given
value, X1, . . . , Xi−1 are fixed to x1, . . . , xi−1, and Xi, Y are fixed to x, y. Hence, the average
probability of error of P ′i;x1,...,xi−1

under distribution D

ε
P ′i;x1,...,xi−1

D = εP
∗

D∗;i;x1,...,xi−1
(4.4)

Let M ′ denote the first message of P ′i;x1,...,xi−1
and X ′ denote the register Xi holding the

input x to Alice. Then

I(X ′ : M ′) = I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1) (4.5)

Using Lemma 4.4 and equations (4.4) and (4.5), we get a [t − 1, l2, . . . , lt]
B classical

deterministic protocol Pi;x1,...,xi−1
for f with

ε
Pi;x1,...,xi−1

D ≤ ε
P ′i;x1,...,xi−1

D + 1
2
((2 ln 2)I(X ′ : M ′))1/2

= εP
∗

D∗;i;x1,...,xi−1
+ 1

2
((2 ln 2)I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1))1/2

(4.6)

We have that (note that the expectations below are under distribution D∗)

Ei,X

[
ε
Pi;x1,...,xi−1

D

]
≤Ei,X

[
εP
∗

D∗;i;x1,...,xi−1

]
+

Ei,X

[
1
2

((2 ln 2)I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1))1/2
]

≤Ei,X
[
εP
∗

D∗;i;x1,...,xi−1

]
+

(1/2) ((2 ln 2)Ei,X [I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1)])1/2

≤ δ̃ + 1
2

(
2l1 ln 2
n

)1/2

= ε̃

(4.7)

The first inequality follows from (4.6), the second inequality follows from the concavity of
the fourth root function and the last inequality from from (4.2) and (4.3).

From (4.7), we see that there exist i ∈ [n] and x1, . . . , xi−1 ∈ E such that ε
Pi;x1,...,xi−1

D ≤ ε̃.

Let P
∆
= Pi;x1,...,xi−1

. P is our desired [t − 1, l2, . . . , lt]
B classical deterministic protocol for

f with εPD ≤ ε̃, thus completing the proof of the classical round elimination lemma.
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4.7 Predecessor: Optimal classical lower bounds

In this section, we prove our (optimal) lower bounds on the query complexity of static
predecessor in the classical cell probe model with randomised query schemes.

Theorem 4.3 Suppose we have a (nO(1), (logm)O(1), t) bounded error classical cell probe
solution to the static predecessor problem, where the universe size is m and the subset size

is at most n. Then the number of queries t is at least Ω
(

log logm
log log logm

)
as a function of m,

and at least Ω
(√

logn
log logn

)
as a function of n.

Proof: The proof is similar to the proof of Theorem 4.1, but with different parameters,
and using the stronger round elimination lemma (Lemma 4.5).

By Proposition 4.1, it suffices to consider communication protocols for the rank parity

communication game PARlogm,n. Let n = 2(log logm)2/ log log logm. Let c1
∆
= (2 ln 2)62. For any

given constants c2, c3 ≥ 1, define

a
∆
= c2 log n b

∆
= (logm)c3 t

∆
=

log logm

(c1 + c2 + c3) log log logm

We shall show that PARlogm,n does not have bounded error (2t, a, b)A public coin classical
randomised communication protocols, thus proving the desired lower bounds on the query
complexity of static predecessor.

Given a (2t, a, b)A public coin protocol for PARlogm,n with error probability δ (δ < 1/3),
we get a (2t, a, b)A public coin protocol for

PAR
(c1at2),A
log m

c1at2
,n

with the same error probability δ, by Proposition 4.2. Using Lemma 4.5, we get a (2t −
1, a, b)B public coin protocol for

PAR log m

c1at2
,n

but the error probability increases to at most δ+ (12t)−1. Using the reduction of Proposi-
tion 4.3, we get a (2t− 1, a, b)B public coin protocol for

PAR
(c1bt2),B
log m

c1at2
−log(c1bt2)−1, n

c1bt2

with error probability at most δ + (12t)−1. From the given values of the parameters, we
see that

logm

(2c1at2)t
≥ log(c1bt

2) + 1

This implies that we also have a (2t− 1, a, b)B public coin protocol for

PAR
(c1bt2),B
log m

2c1at2
, n
c1bt2
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4.8. The ‘greater-than’ problem

with error probability at most δ+ (12t)−1. Using Lemma 4.5 again, we get a (2t− 2, a, b)A

public coin protocol for
PAR log m

2c1at2
, n
c1bt2

but the error probability increases to at most δ + 2(12t)−1.
We do the above steps repeatedly. After applying the above steps i times, we get a

(2t− 2i, a, b)A public coin protocol for

PAR log m

(2c1at2)i
, n

(c1bt2)i

with error probability at most δ + 2i(12t)−1.
By applying the above steps t times, we finally get a (0, a, b)A public coin protocol for

PAR log m

(2c1at2)t
, n
(c1bt2)t

with error probability at most δ+2t(12t)−1 < 1/2. From the given values of the parameters,
we see that

logm

(2c1at2)t
≥ (logm)Ω(1) n

(c1bt2)t
≥ nΩ(1)

Thus we get a zero round protocol for a rank parity problem on a non-trivial domain with
error probability less than 1/2, which is a contradiction.

In the above proof, we are tacitly ignoring “rounding off” problems. We remark that
this does not affect the correctness of the proof.

4.8 The ‘greater-than’ problem

We illustrate another application of the round elimination lemma to communication com-
plexity by proving improved rounds versus communication tradeoffs for the ‘greater-than’
problem.

Theorem 4.4 The t round bounded error classical randomised communication complexity
of GTn is Ω(n1/tt−2).

Proof: We recall the following reduction from GT
(k)
n/k to GTn (see [MNSW98]): In GT

(k)
n/k,

Alice is given x1, . . . , xk ∈ {0, 1}n/k, Bob is given i ∈ [k], y ∈ {0, 1}n/k, and copies of

x1, . . . , xi−1, and they have to communicate and decide if xi > y. To reduce GT
(k)
n/k to GTn,

Alice constructs x̃ ∈ {0, 1}n by concatenating x1, . . . , xk, Bob constructs ỹ ∈ {0, 1}n by
concatenating x1, . . . , xi−1, y, 1

n(1−i/k). It is easy to see that x̃ > ỹ iff xi > y.
Suppose there is a t round bounded error public coins protocol for GTn with commu-

nication complexity l. We can think of the protocol as a [t, l, . . . , l]A public coin protocol
with worst case error probability less than 1/3. Suppose

n ≥ (Ct2l)t
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where C
∆
= (2 ln 2)32. Define k

∆
= Ct2l. For 1 ≤ i ≤ t, define

ni
∆
=
n

ki
εi

∆
=

1

3
+
i

2

(
(2 ln 2)l

k

)1/2

Also define n0
∆
= n and ε0

∆
= 1/3. Then

εt =
1

3
+
t

2

(
(2 ln 2)l

k

)1/2

= 1/2

and
nt =

n

kt
=

n

(Ct2l)t
≥ 1

We now apply the above self-reduction and Lemma 4.5 alternately. Before the ith
stage, we have a [t− i + 1, l, . . . , l]Z public coin protocol for GTni−1

with worst case error
probability less than εi−1. Here Z = A if i is odd, Z = B otherwise. For the ith stage,

we apply the self-reduction to get a [t− i+ 1, l, . . . , l]Z public coin protocol for GT
(k)
ni with

the same error probability. We then apply Lemma 4.5 to get a [t− i, l, . . . , l]Z′ public coin
protocol for GTni

with worst case error probability less than εi. Here Z ′ = B if Z = A and
Z ′ = A if Z = B. This completes the ith stage.

Applying the self-reduction and the round elimination lemma alternately for t stages
gives us a zero round protocol for the ‘greater-than’ problem on a domain of size nt ≥ 1
with worst case error probability less than εt = 1/2, which is a contradiction.

In the above proof, we are tacitly ignoring “rounding off” problems. We remark that
this does not affect the correctness of the proof.

This proves the classical lower bound of Ω(n1/tt−2) on the message complexity.

Remark: In the above proof, we think of a t round public coin protocol with communi-
cation complexity l as a [t, l, . . . , l]A public coin protocol. But, suppose we are promised
that every run of the public coin protocol uses li bits in the ith round, l1 + · · · + lt = l,
where li depends only on n. In other words, we are promised a [t, l1, . . . , lt]

A public coin
protocol. Then one can do a more refined argument, where in the ith stage one does the
self-reduction with k = Ct2li, to show a stronger lower bound of l = Ω(n1/tt−1). Such a
refined argument, but for quantum protocols, is given in the proof of the quantum ver-
sion of the above theorem (Theorem 5.5). Notice that the definition of quantum protocols
requires that li be a function of n only.

Miltersen et al. [MNSW98] also use their round elimination lemma (Lemma 4.2) to prove
(classical) lower bounds for other static data structure and communication complexity
problems. We remark that all those results can be improved by using Lemma 4.5 in place
of Lemma 4.2.
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Chapter 5

Static predecessor: Quantum case

In this chapter, we present our lower bound for the query complexity of the static predeces-
sor problem (defined in Section 1.2) in the bounded error address-only quantum cell probe
model. The arguments in this chapter can be largely viewed as quantum generalisations
of the arguments of Chapter 4.

We first discuss the connection between quantum cell probe complexity and quantum
communication, paying special attention to address-only quantum cell probe schemes, in
Section 5.1. We then delve into some results from quantum information theory in Sec-
tion 5.2, which will be required in the proof of our quantum round elimination lemma. In
Section 5.3, we prove a technical lemma which will be used in the proof of the quantum
round elimination lemma. Finally, we present our quantum round elimination lemma in
Section 5.4, and use it to prove lower bounds for the predecessor problem in the address-
only quantum cell probe model in Section 5.5. Our lower bounds match the classical
deterministic upper bounds of Beame and Fich [BF99], thus showing that Beame and
Fich’s scheme is optimal all the way up to address-only quantum. We also use the quan-
tum round elimination lemma to prove the first rounds versus communication tradeoffs for
the ‘greater-than’ problem in the quantum setting, in Section 5.6. Sections 5.4, 5.5 and
5.6 contain new results.

The main new results in this chapter are

• A round elimination lemma (Lemma 5.4) for quantum communication protocols.

• Optimal lower bound of

t = Ω

(
min

(
log logm

log log logm
,

√
log n

log log n

))
on the number of queries t required to solve the static predecessor problem with
universe size m and size of stored subset at most n, in the bounded error address-
only quantum cell probe model, with word size (logm)O(1) and number of cells nO(1).
The reason the above lower bound is optimal is because Beame and Fich [BF99] have
shown matching classical deterministic cell probe solutions for predecessor.
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5.1. Cell probe complexity and communication: The quantum case

• A lower bound of Ω(n1/tt−3) for t round bounded error quantum communication
protocols for the ‘greater-than’ problem on n bit integers. These bounds are the first
rounds versus communication tradeoffs for the ‘greater-than’ problem in the quantum
setting.

5.1 Cell probe complexity and communication: The

quantum case

The lower bounds for the static membership problem in the quantum bit probe model,
proved in Chapter 3, relied on linear algebraic techniques. Unfortunately, these techniques
appear to be powerless in the quantum cell probe model. To prove a lower bound for
the predecessor problem, we use a connection between the quantum cell probe complex-
ity of a static data structure problem and the quantum communication complexity of an
associated communication game. This connection can be thought of as a quantum ana-
logue of Lemma 4.1. Below, the notation (t, c, a, b)A ((t, c, a, b)B) denotes a [t, c, l1, . . . , lt]

A

([t, c, l1, . . . , lt]
B) safe quantum protocol, where the per round message lengths of Alice and

Bob are a and b qubits respectively i.e. if Alice (Bob) starts, li = a for i odd and li = b
for i even (li = b for i odd and li = a for i even).

Let f : D ×Q→ A be a static data structure problem. Consider a two-party commu-
nication problem where Alice is given a query q ∈ Q, Bob is given data d ∈ D, and they
have to communicate and find out the answer f(d, q). We have the following lemma.

Lemma 5.1 Suppose we have a quantum (s, w, t) cell probe solution to the static data
structure problem f . Then we have a (2t, 0, log s + w, log s + w)A safe coinless quantum
protocol for the corresponding communication problem. If the query scheme is address-only,
we can get a (2t, 0, log s, log s + w)A safe coinless quantum protocol. The error probability
of the communication protocol is the same as that of the cell probe scheme.

Proof: Given a quantum (s, w, t) cell probe solution to the static data structure problem f ,
we can get a (2t, 0, log s+w, log s+w)A safe coinless quantum protocol for the corresponding
communication problem by just simulating the cell probe solution. If in addition, the query
scheme is address-only, the messages from Alice to Bob need consist only of the ‘address’
part. This can be seen as follows. Let the state vector of the data qubits before the ith
query be |θi〉. |θi〉 is independent of the query element and the stored data. Bob keeps t
special ancilla registers in states |θi〉, 1 ≤ i ≤ t at the start of the protocol P . These special
ancilla registers are in tensor with the rest of the qubits of Alice and Bob at the start of
P . Protocol P simulates the cell probe solution, but with the following modification. To
simulate the ith query of the cell probe solution, Alice prepares her ‘address’ and ‘data’
qubits as in the query scheme, but sends the ‘address’ qubits only. Bob treats those
‘address’ qubits together with |θi〉 in the ith special ancilla register as Alice’s query, and
performs the oracle table transformation on them. He then sends these qubits (both the
‘address’ as well as the ith special register qubits) to Alice. Alice exchanges the contents
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of the ith special register with her ‘data’ qubits (i.e. exchanges the basis states), and
proceeds with the simulation of the query scheme. This gives us a (2t, 0, log s, log s+ w)A

safe coinless quantum protocol with the same error probability as that of the cell probe
query scheme.

In many natural data structure problems log s is much smaller than w and thus, in the
address-only quantum case, we get a (2t, 0, log s,O(w))A safe protocol. This asymmetry in
message lengths is crucial in proving non-trivial lower bounds on t. The concept of a safe
quantum protocol helps us in exploiting this asymmetry. The reason, intuitively speaking,
is as follows. In the previous quantum round reduction arguments (e.g. those of Klauck et
al. [KNTZ01]), the complexity of the first message in the protocol increases quickly as the
number of rounds is reduced and the asymmetry gets lost. This leads to a problem where
the first message soon gets big enough to potentially convey substantial information about
the input of one player to the other, destroying any hope of proving strong lower bounds
on the number of rounds. But in a safe quantum protocol one can show through a careful
quantum information theoretic analysis of the round reduction process, that though the
complexity of the first message increases a lot, this increase is confined to the safe overhead
and so, the information content does not increase much. This is the key property which
allows us to prove a round elimination lemma for safe quantum protocols.

To prove lower bounds for the query complexity of data structure problems in the
address-only quantum cell probe model via communication complexity, we need to define
public coin quantum protocols and make use of Yao’s minimax lemma. The reason is as
follows. The minimax lemma is the main tool which allows one to convert ‘average case’
round reduction arguments to ‘worst case’ arguments. But this conversion is at the expense
of a ‘public coin’. We need ‘worst case’ round reduction arguments to prove lower bounds
for the rounds complexity of communication games arising from data structure problems.
This is because many of these lower bound proofs use some notion of “self-reducibility”
arising from the original data structure problem which fails to hold in the ‘average case’,
but holds for the ‘worst case’. The quantum round reduction arguments of Klauck et
al. [KNTZ01] are ‘average case’ arguments, and this is one of the reasons why they do not
suffice to prove lower bounds for the rounds complexity of communication games arising
from data structure problems.

Let us see what happens for the particular example of the rank parity communication
game which is used to prove lower bounds for static predecessor. Recall the notation of
Theorem 4.1 and its proof. Suppose we have a (2t, a, b)A communication protocol for the
rank parity problem with small worst case error. Suppose we apply the self-reduction
of Proposition 4.2, and then an ‘average case’ round reduction argument (e.g. a round
reduction argument à la Klauck et al). After this, we get a (2t−1, a′, b′) protocol, for some
a′, b′, for the rank parity problem on a smaller domain. But now we can only guarantee
that the average error of this protocol, for the uniform distribution on inputs, is small.
In particular, when we try to apply the self-reduction of Proposition 4.3 next, we cannot
guarantee that the average error, under the uniform distribution, on the kinds of inputs
constructed in the proof of Proposition 4.3 is small. Hence, one needs ‘worst case’ round
reduction arguments to prove lower bounds for the rounds complexity of the rank parity
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communication game. ‘Average case’ round reduction arguments do not suffice.
Finally, note that Yao’s minimax lemma is traditionally used in the context of public

coin versus deterministic classical protocols. But it holds in the context of bounded error
public coin versus coinless quantum protocols too.

5.2 Quantum information theoretic preliminaries

In this section, we discuss some basic facts from quantum information theory that will
be used in the proof of the quantum round elimination lemma. We follow the notation
of Klauck, Nayak, Ta-Shma and Zuckerman’s paper [KNTZ01]. For a good account of
quantum information theory, see the book by Nielsen and Chuang [NC00].

If A is a quantum system with density matrix ρ, then S(A)
∆
= S(ρ)

∆
= −Tr ρ log ρ is

the von Neumann entropy of A. If A,B are two disjoint quantum systems, their mutual

information is defined as I(A : B)
∆
= S(A)+S(B)−S(AB). We now state some properties

about von Neumann entropy and mutual information which will be useful later. The
proofs follow easily from the definitions, using basic properties of von Neumann entropy
like subadditivity and triangle inequality (see e.g. [NC00, Chapter 11]).

Lemma 5.2 Suppose A,B,C are disjoint quantum systems. Then

I(A : BC) = I(A : B) + I(AB : C)− I(B : C)

0 ≤ I(A : B) ≤ 2S(A)

If the Hilbert space of A has dimension d, then

0 ≤ S(A) ≤ log d

Suppose X,Q are disjoint quantum systems with finite dimensional Hilbert spaces H,K
respectively. For every computational basis state |x〉 ∈ H, suppose σx is a density matrix in
K. Suppose the density matrix of (X,Q) is

∑
x px|x〉〈x|⊗σx, where px > 0 and

∑
x px = 1.

Thus X is in a mixed state {px, |x〉}, and we shall say that X is a classical random variable

and that Q is a quantum encoding |x〉 7→ σx of X. Define σ
∆
=
∑

x pxσx. σ is the reduced
density matrix of Q, and we shall say that σ is the the density matrix of the average
encoding. Then, S(XQ) = S(X)+

∑
x pxS(σx), and hence, I(X : Q) = S(σ)−

∑
x pxS(σx).

Let X, Y,Q be disjoint quantum systems with finite dimensional Hilbert spaces H,K,L
respectively. Let x ∈ H, y ∈ K be computational basis vectors. For every |x〉|y〉 ∈ H ⊗K,
suppose σxy is a density matrix in L. Let Z refer to the quantum system (X, Y ). Suppose
(X, Y, Z) has density matrix

∑
x,y pxy|x〉〈x|⊗ |y〉〈y|⊗σxy, where pxy > 0 and

∑
x,y pxy = 1.

Thus, X and Y are classical random variables, and Z = XY is in a mixed state {pxy, |x〉|y〉}.
Q is a quantum encoding |xy〉 7→ σxy of Z. Define qxy to be the (conditional) probability
that Y = y given that X = x. |y〉 7→ σxy can be thought of as a quantum encoding Qx

of Y given that X = x. The joint density matrix of (Y,Qx) is
∑

y q
x
y |y〉〈y| ⊗ σxy. We let

I((Y : Q)|X = x) denote the mutual information of this encoding.
We now prove the following propositions.
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Proposition 5.1 Let M1,M2 be disjoint finite dimensional quantum systems. Suppose

M
∆
= (M1,M2) is a quantum encoding |x〉 7→ σx of a classical random variable X. Suppose

the density matrix of M2 is independent of X i.e. TrM1 σx is the same for all x. Let M1

be supported on a qubits. Then, I(X : M) ≤ 2a.

Proof: By Lemma 5.2, I(X : M) = I(X : M1M2) = I(X : M2) + I(XM2 : M1) − I(M2 :
M1). But since the density matrix of M2 is independent of X, I(X : M2) = 0. Hence, by
again using Lemma 5.2, we get that I(X : M) ≤ I(XM2 : M1) ≤ 2S(M1) ≤ 2a.

Remark: This proposition is the key observation allowing us to “ignore” the size of
the “safe” overhead M2 in the round elimination lemma. It will be very useful in the
applications of the round elimination lemma, where the complexity of the first message in
the protocol increases quickly, but the blow up is confined to the “safe” overhead. Earlier
round reduction arguments were unable to handle this large blow up in the complexity of
the first message.

The next proposition has been observed by Klauck et al. [KNTZ01].

Proposition 5.2 Suppose M is a quantum encoding of a classical random variable X.
Suppose X = X1X2 . . . Xn, where the Xi are classical independent random variables. Then,
I(X1 . . . Xn : M) =

∑n
i=1 I(Xi : MX1 . . . Xi−1).

Proof: (Sketch) Similar to that of Proposition 4.4.

Proposition 5.3 Let X, Y be classical random variables and M be a quantum encoding
of (X, Y ). Then, I(Y : MX) = I(X : Y ) + EX [I((Y : M)|X = x)].

Proof: (Sketch) Similar to that of Proposition 4.5.
For a linear operator A on a finite dimensional Hilbert space, the trace norm of A is

defined as ‖A‖t
∆
= Tr

√
A†A. The following fundamental theorem (see [AKN98]) shows

that the trace distance between two density matrices ρ1, ρ2, ‖ρ1 − ρ2‖t, bounds how well
one can distinguish between ρ1, ρ2 by a measurement.

Theorem 5.1 ([AKN98]) Let ρ1, ρ2 be two density matrices on the same Hilbert space.
LetM be a general measurement (i.e. a POVM), andMρi denote the probability distribu-
tions on the (classical) outcomes ofM got by performing measurementM on ρi. Let the `1

distance (total variation distance) between Mρ1 and Mρ2 be denoted by ‖Mρ1 −Mρ2‖1.
Then

‖Mρ1 −Mρ2‖1 ≤ ‖ρ1 − ρ2‖t
In fact the above upper bound is tight, and measuring in the orthonormal eigenbasis of
ρ1 − ρ2 attains equality above.
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5.3. A quantum round reduction lemma

Remark: This theorem will be used in the proof of the quantum round reduction lemma
(Lemma 5.3). In the proof of the classical round reduction lemma (Lemma 4.4), we tacitly
used the argument that if the total variation distance between the global states of Alice
and Bob in two protocols is close, then the error probabilities of the two protocols have to
be close. The above theorem can be thought of as the quantum version of this argument.

We will also need the following “local transition theorem” of Klauck et al. [KNTZ01].

Theorem 5.2 (Local transition, [KNTZ01]) Let ρ1, ρ2 be two mixed states with sup-
port in a Hilbert space H, K any Hilbert space of dimension at least the dimension of H,
and |φi〉 any purifications of ρi in H⊗K. Then, there is a local unitary transformation U

on K that maps |φ2〉 to |φ′2〉
∆
= (I ⊗ U)|φ2〉 (I is the identity operator on H) such that

‖|φ1〉〈φ1| − |φ′2〉〈φ′2|‖t ≤ 2
√
‖ρ1 − ρ2‖t

Remark: In the proof of the classical round reduction lemma (Lemma 4.4), we created
an intermediate protocol where the first message of Alice was independent of her input.
This was done by generating Alice’s message using a new private coin without “looking”
at her input, and after that, adjusting Alice’s old private coin in a suitable manner so as
to be consistent with her message and input. In the proof of the quantum round reduction
lemma (Lemma 5.3), we have to do a similar “blind” generation and “adjusting” procedure.
The above theorem will be used in the “adjusting” procedure.

And finally, we will need the “average encoding theorem” of Klauck et al. [KNTZ01].
Intuitively speaking, it says that if the mutual information between a classical random
variable and its quantum encoding is small, then the various quantum “codewords” are
close to the “average codeword”.

Theorem 5.3 (Average encoding, quantum version, [KNTZ01]) Suppose that X,
Q are two disjoint quantum systems, where X is a classical random variable, which takes
value x with probability px, and Q is a quantum encoding x 7→ σx of X. Let the density

matrix of the average encoding be σ
∆
=
∑

x pxσx. Then∑
x

px‖σx − σ‖t ≤
√

(2 ln 2)I(X : Q)

A proof of this theorem can be found in the appendix.

5.3 A quantum round reduction lemma

In this section, we prove a quantum round reduction lemma (Lemma 5.3), which will be
required to prove the quantum round elimination lemma. The proof of Lemma 5.3 is similar
to the proof of Lemma 4.4 in Klauck et al. [KNTZ01], but with a careful accounting of
“safe” overheads in the messages communicated by Alice and Bob. Intuitively speaking,
the lemma says that if the first message of Alice carries little information about her input,
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under some probability distribution on inputs, then it can be eliminated, giving rise to a
protocol where Bob starts, with one less round of communication, and the same message
complexity and similar error probability, with respect to the same probability distribution
on inputs. We observe, in the lemma below, that though there is a overhead of l1 +c qubits
on the first message of Bob, it is a “safe” overhead.

For an input (x, y) ∈ E × F , we define the error εPx,y of the protocol P on (x, y), to be
the probability that the result of P on input (x, y) is not equal to f(x, y). For a protocol
P , given a probability distribution D on E × F , we define the average error εPD of P with
respect to D as the expectation over D of the error of P on inputs (x, y) ∈ E × F . We
define εP to be worst case error of P on inputs (x, y) ∈ E × F .

Lemma 5.3 (Quantum round reduction lemma) Suppose f : E × F → G is a func-
tion. Let D be a probability distribution on E×F , and P be a [t, c, l1, . . . , lt]

A safe coinless
quantum protocol for f . Let X stand for the classical random variable denoting Alice’s in-
put (under distribution D), M be the first message of Alice in the protocol P , and I(X : M)
denote the mutual information between X and M under distribution D. Then there exists
a [t− 1, c+ l1, l2, . . . , lt]

B safe coinless quantum protocol Q for f , such that

εQD ≤ εPD + ((2 ln 2)I(X : M))1/4

Proof: We first give an overview of the plan of the proof, before getting down to the
details. The proof proceeds in stages. We remark on the similarities between the stages in
the quantum proof, and the stages in the classical proof (Lemma 4.4). Stages 1A and 1B
of the quantum proof together correspond to Stage 1 of the classical proof, and Stages 2A
and 2B of the quantum proof together correspond to Stage 2 of the classical proof.

Stage 1A: Starting from the [t, c, l1, . . . , lt]
A safe coinless protocol P , we construct a

[t, c, l1, . . . , lt]
A safe coinless protocol P̃ with εP̃x,y = εPx,y for every (x, y) ∈ E × F . P̃

contains an extra “secure” copy of Alice’s input x ∈ E, but is otherwise the same as P .

Stage 1B: Starting from P̃ , we construct a [t, c, l1, . . . , lt]
A safe coinless protocol P ′,

where the first message is independent of Alice’s input, and εP
′

D ≤ εP̃D+((2 ln 2)I(X : M))1/4.
The important idea in this step is to first generate Alice’s average message (which is
independent of her input), and after that, use the extra “secure” copy of Alice’s input x
to apply a unitary transformation Ux on some of her qubits without touching her message.
Ux is used to adjust Alice’s state in a suitable manner so as to be consistent with her input
and message. This “adjustment” step requires the use of the “local transition theorem”
(Theorem 5.2).

Stage 2A: Since in P ′ the first message is independent of Alice’s input, Bob can generate
it himself. But it is also necessary to achieve the correct entanglement between Alice’s
qubits and the first message (This is a uniquely quantum problem; in the classical setting
we got away by requiring that the coin toss be done in public; the quantum solution to this
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Figure 5.1: The various stages in the proof of Lemma 5.3.

problem lies in the “safe” overhead instead). Bob does this by first sending a safe message
of l1 +c qubits. Alice then applies a unitary transformation Vx on some of her qubits, using
the extra “secure” copy of her input x, to achieve the correct entanglement. The existence
of such a Vx follows from Theorem 5.2. Doing all this gives us a [t+1, c+ l1, 0, 0, l2, . . . , lt]

B

safe coinless protocol Q′, such that εQ
′

x,y = εP
′

x,y for every (x, y) ∈ E × F .

Stage 2B: Since the first message of Alice in Q′ is zero qubits long, Bob can concatenate
his first two messages, giving us a [t − 1, c + l1, l2, . . . , lt]

B safe coinless protocol Q, such
that εQx,y = εQ

′
x,y for every (x, y) ∈ E × F . The technical reason behind this is that unitary

transformations on disjoint sets of qubits commute.
The protocol Q of Stage 2B is our desired [t−1, c+ l1, l2, . . . , lt]

B safe coinless quantum
protocol for f . We have

εQD = εQ
′

D = εP
′

D ≤ εP̃D + ((2 ln 2)I(X : M))1/4 = εPD + ((2 ln 2)I(X : M))1/4

We now give the details of the proof. Let σx be the density matrix of the first message
M of protocol P when Alice’s input X = x. Let Y denote Bob’s input register. Define

σ
∆
=
∑

x pxσx, where px is the (marginal) probability of x under distribution D. σ is the
density matrix of the average first message under distribution D. By the “secureness” of
P , σ is also the density matrix of the first message when |ψ〉 is fed to Alice’s input register
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X, where |ψ〉 ∆
=
∑

x

√
px|x〉. By Theorem 5.3, we get that∑

x

px‖σx − σ‖t ≤
√

(2 ln 2)I(X : M)

Stage 1A: We first construct a [t, c, l1, . . . , lt]
A safe coinless quantum protocol P̃ for f

such that εP̃x,y = εPx,y, for every (x, y) ∈ E × F . Let X be Alice’s input register in P . In P̃ ,
Alice has an additional register C, and the input x to Alice is fed to register C, instead of
X. X is initialised to |0〉 in P̃ . In protocol P̃ , Alice first copies the contents of C to X.
After that, things in P̃ proceed as in P . Register C is not touched henceforth, and thus,
C holds an extra “secure” copy of x throughout the run of protocol P̃ .

Stage 1B: We now construct a [t, c, l1, . . . , lt]
A safe coinless quantum protocol P ′ for f

with average error under distribution D, εP
′

D ≤ εP̃D + ((2 ln 2)I(X : M))1/4, and where the
density matrix of the first message is independent of the input x to Alice. Alice is given
x ∈ E and Bob is given y ∈ F . Consider the situation in P̃ after the first message has
been prepared by Alice, but before it is sent to Bob. Let register A denote Alice’s qubits
excluding the message qubits M and the qubits of the “secure” copy C (in particular, A
includes the qubits of register X). Without loss of generality, one can assume that register
A has at least l1 + c qubits, because one can initially pad up A with ancilla qubits set to
|0〉. Let |x〉C⊗|θx〉AM be the state vector of CAM in P̃ at this point, where the subscripts
denote the registers. |θx〉AM is a purification of σx. We note that |θx〉 is also the state
vector of AM in protocol P at this point. P ′ is similar to P̃ except for the following. Alice
puts |ψ〉 in register X (instead of copying C to X as in P̃ ) to create the first message in
register M with density matrix σ. AM now contains a purification |θ〉 of σ. Then Alice
applies a unitary transformation Ux depending upon x (which is available “securely” in

register C) on A, so that |θ′x〉AM
∆
= (Ux ⊗ I)|θ〉AM is “close” to |θx〉AM . Here I stands

for the identity transformation on M . Theorem 5.2 tells us that there exists a unitary
transformation Ux on A such that

‖|θx〉〈θx| − |θ′x〉〈θ′x|‖t ≤ 2
√
‖σx − σ‖t

Thus, |x〉C ⊗ |θ′x〉AM is the state vector of CAM in P ′ after the application of Ux. Alice
then sends register M to Bob and after this, Alice and Bob behave as in P̃ . Application
of Ux does not affect the density matrix of register M , which continues to be σ. Hence in
P ′, the density matrix of the first message is independent of Alice’s input.

Let us now compare the situations in protocols P̃ and P ′ when Alice’s input is x, Bob’s
input is y, Alice has prepared her first message, but no communication has taken place
as yet. At this point, in both protocols P̃ and P ′, the state vector of Bob’s qubits is the
same, and in tensor with the state vector of Alice’s qubits. Let B denote the register of
Bob’s qubits (including his input qubits Y ) and let |η〉B denote the state vector of B at
this point. Hence the global state of protocol P̃ at this point is |x〉C ⊗ |θx〉AM ⊗ |η〉B, and

81



5.3. A quantum round reduction lemma

the global state of P ′ is |x〉C ⊗ |θ′x〉AM ⊗ |η〉B. Therefore, the global states of protocols P̃
and P ′ at this point differ in trace distance by the quantity

‖|x〉〈x|⊗|θx〉〈θx|⊗|η〉〈η|−|x〉〈x|⊗|θ′x〉〈θ′x|⊗|η〉〈η|‖t = ‖|θx〉〈θx|−|θ′x〉〈θ′x|‖t ≤ 2
√
‖σx − σ‖t

Using Theorem 5.1, we see that the error probability of P ′ on input x, y

εP
′

x,y ≤ εP̃x,y +
1

2
‖|x〉〈x| ⊗ |θx〉〈θx| ⊗ |η〉〈η| − |x〉〈x| ⊗ |θ′x〉〈θ′x| ⊗ |η〉〈η|‖t ≤ εP̃x,y +

√
‖σx − σ‖t

Let qxy be the probability that (X, Y ) = (x, y) under distribution D. Then, the average
error of P ′ under distribution D, εP

′
D , is bounded by

εP
′

D =
∑
x,y

qxyε
P ′

x,y

≤
∑
x,y

qxy

(
εP̃x,y +

√
‖σx − σ‖t

)
≤ εP̃D +

√∑
x,y

qxy‖σx − σ‖t

= εP̃D +

√∑
x

px‖σx − σ‖t

≤ εP̃D + ((2 ln 2)I(X : M))1/4

For the second inequality above, we use the concavity of the square root function. The
last inequality follows from the “average encoding theorem” (Theorem 5.3).

Stage 2A: We now construct a [t+1, c+l1, 0, 0, l2, . . . , lt]
B safe coinless quantum protocol

Q′ for f with εQ
′

x,y = εP
′

x,y, for all (x, y) ∈ E × F . Alice is given x ∈ E and Bob is given
y ∈ F . The protocol Q′ will be constructed from P ′. The input x is fed to register C of
Alice, and the input y is fed to register Y of Bob. Let register G denote all the qubits
of register A, except the last l1 + c qubits. In protocol Q′ the registers initially in Alice’s
possession are C and G, and the registers initially in Bob’s possession are B, M , and a
new register R, where R is l1 + c qubits long. The qubits of G are initially set to |0〉.
Bob first prepares the state vector |η〉 in register B as in protocol P ′. He then constructs
a canonical purification of σ in registers MR. The density matrix of M is σ. Bob then
sends R to Alice. The density matrix of R is independent of the inputs x, y (in fact, if
the canonical purification in MR is the Schmidt purification, then the density matrix of
R is also σ). After receiving R, Alice treats GR as the register A in the remainder of the
protocol. AM now contains a purification of σ. Alice applies a unitary transformation
Vx depending upon x (which is available “securely” in register C) on A, so that the state
vector of AM becomes |θ′x〉AM . The existence of such a Vx follows from Theorem 5.2. At
this point, the global state vector (over all the qubits of Alice and Bob) in Q′ is the same
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as the global state vector in P ′ viz. |x〉C ⊗ |θ′x〉AM ⊗ |η〉B. Bob now treats register M as if
it were the first message of Alice in P ′, and proceeds to compute his response N of length
l2. Bob sends N to Alice and after this protocol Q′ proceeds as in P ′. In Q′ Bob starts the
communication, the communication goes on for t + 1 rounds, the first message of Bob of
length l1 + c (i.e. register R) is a safe message, and the first message of Alice is zero qubits
long.

Stage 2B: We finally construct a [t− 1, c+ l1, l2, . . . , lt]
B safe coinless quantum protocol

Q for f with εQx,y = εQ
′

x,y, for all (x, y) ∈ E × F . In protocol Q, Bob (after doing the same
computations as in Q′) first sends as a single message register RN of length (l1 +c)+l2, and
after that Alice applies Vx on A followed by her appropriate unitary transformation on AN
(the unitary transformation of Alice in Q′ on her qubits AN after she has received the first
two messages of Bob). At this point, the global state vector (over all the qubits of Alice
and Bob) in Q is the same as the global state vector in Q′, since unitary transformations
on disjoint sets of qubits commute. After this, things in Q proceed as in Q′. In protocol Q
Bob starts the communication, the communication goes on for t− 1 rounds, and the first
message of Bob of length (l1 + c) + l2 contains a safe overhead (the register R) of l1 + c
qubits.

This completes the proof of Lemma 5.3.

5.4 The quantum round elimination lemma

We now prove the quantum round elimination lemma (for the communication game f (n)).
The proof of this lemma is similar to the proof of its classical twin (Lemma 4.5), but using
the quantum round reduction lemma (Lemma 5.3) instead of the classical one (Lemma 4.4).

The round elimination lemma is stated for safe public coin quantum protocols only.
Since a public coin quantum protocol can be converted to a coinless quantum protocol at
the expense of an additional “safe” overhead in the first message, we also get a similar round
elimination lemma for coinless protocols. We can decrease the overhead to logarithmic
in the total bit size of the inputs by a technique similar to the public to private coins
conversion for classical randomised protocols [New91]. But since the statement of the
round elimination lemma is cleanest for safe public coin quantum protocols, we give it
below for such protocols only.

Lemma 5.4 (Quantum round elimination lemma) Suppose f : E × F → G is a
function. Suppose the communication game f (n) has a [t, c, l1, . . . , lt]

A safe public coin
quantum protocol with worst case error less than δ. Then there is a [t− 1, c+ l1, l2, . . . , lt]

B

safe public coin quantum protocol for f with worst case error less than ε
∆
= δ+(4l1 ln 2/n)1/4.

Proof: Suppose the given protocol for f (n) has worst case error δ̃ < δ. Define ε̃
∆
=

δ̃ + (4l1 ln 2/n)1/4. To prove the quantum round elimination lemma it suffices to give, by
the harder direction of the minimax lemma, for any probability distribution D on E×F , a
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[t− 1, c+ l1, l2, . . . , lt]
B safe coinless quantum protocol P for f with average distributional

error εPD ≤ ε̃ < ε. To this end, we will first construct a probability distribution D∗ on
En × [n] × F as follows. Choose i ∈ [n] uniformly at random. Choose independently, for
each j ∈ [n], (xj, yj) ∈ E × F according to distribution D. Set y = yi and throw away
yj, j 6= i. By the easier direction of the minimax lemma, we get a [t, c, l1, . . . , lt]

A safe
coinless quantum protocol P ∗ for f (n) with distributional error, εP

∗
D∗ ≤ δ̃ < δ. In P ∗, Alice

gets x1, . . . , xn, Bob gets i, y and x1, . . . , xi−1. We shall construct the desired protocol P
from the protocol P ∗.

Let M be the first message of Alice in P ∗. By the definition of a safe protocol, M
has two parts: M1 l1 qubits long, and the “safe” overhead M2, c qubits long. Let the
input to Alice be denoted by the classical random variable X = X1X2 . . . Xn where Xi

is the classical random variable corresponding to the ith input to Alice. Let the classical
random variable Y denote the input y of Bob. Define εP

∗
D∗;i;x1,...,xi−1

to be the average error
of P ∗ under distribution D∗ when i is fixed and X1, . . . , Xi−1 are fixed to x1, . . . , xi−1.
Using Propositions 5.1, 5.2, 5.3 and the fact that under distribution D∗, X1, . . . , Xn are
independent classical random variables, we get that

2l1
n
≥ I(X:M)

n

= Ei[I(Xi : MX1, . . . , Xi−1)]
= Ei,X [I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1)]

(5.1)

Also
δ̃ ≥ εP

∗

D∗ = Ei,X

[
εP
∗

D∗;i;x1,...,xi−1

]
(5.2)

The expectations above are under distribution D∗.
For any i ∈ [n], x1, . . . , xi−1 ∈ E, define the [t, c, l1, . . . , lt]

A safe coinless quantum
protocol P ′i;x1,...,xi−1

for the function f as follows. Alice is given x ∈ E and Bob is given
y ∈ F . Bob sets i to the given value, and both Alice and Bob set X1, . . . , Xi−1 to the
values x1, . . . , xi−1. Alice puts an independent copy of a pure state |ψ〉 (defined below)
for each of the inputs Xi+1, . . . , Xn. She sets Xi = x and Bob sets Y = y. Then they

run protocol P ∗ on these inputs. Here |ψ〉 ∆
=
∑

x∈E
√
px|x〉, where px is the (marginal)

probability of x under distribution D. Since P ∗ is a safe coinless quantum protocol, so is
P ′i;x1,...,xi−1

. Because P ∗ is a secure protocol, the probability that P ′i;x1,...,xi−1
makes an error

for an input (x, y), ε
P ′i;x1,...,xi−1
x,y , is the average probability of error of P ∗ under distribution

D∗ when i is fixed to the given value, X1, . . . , Xi−1 are fixed to x1, . . . , xi−1, and Xi, Y are
fixed to x, y. Hence, the average probability of error of P ′i;x1,...,xi−1

under distribution D

ε
P ′i;x1,...,xi−1

D = εP
∗

D∗;i;x1,...,xi−1
(5.3)

Let M ′ denote the first message of P ′i;x1,...,xi−1
and X ′ denote the register Xi holding the

input x to Alice. Because of the “secureness” of P ∗, the density matrix of (X ′,M ′) in
protocol P ′i;x1,...,xi−1

is the same as the density matrix of (Xi,M) in protocol P ∗ when
X1, . . . , Xi−1 are set to x1, . . . , xi−1. Hence

I(X ′ : M ′) = I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1) (5.4)
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Using Lemma 5.3 and equations (5.3) and (5.4), we get a [t − 1, c + l1, l2, . . . , lt]
B safe

coinless quantum protocol Pi;x1,...,xi−1
for f with

ε
Pi;x1,...,xi−1

D ≤ ε
P ′i;x1,...,xi−1

D + ((2 ln 2)I(X ′ : M ′))1/4

= εP
∗

D∗;i;x1,...,xi−1
+ ((2 ln 2)I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1))1/4

(5.5)

We have that (note that the expectations below are under distribution D∗)

Ei,X

[
ε
Pi;x1,...,xi−1

D

]
≤ Ei,X

[
εP
∗

D∗;i;x1,...,xi−1

]
+

Ei,X

[
((2 ln 2)I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1))1/4

]
≤ Ei,X

[
εP
∗

D∗;i;x1,...,xi−1

]
+

((2 ln 2)Ei,X [I((Xi : M)|X1, . . . , Xi−1 = x1, . . . , xi−1)])1/4

≤ δ̃ +
(

4l1 ln 2
n

)1/4

= ε̃

(5.6)

The first inequality follows from (5.5), the second inequality follows from the concavity of
the fourth root function and the last inequality from from (5.1) and (5.2).

From (5.6), we see that there exist i ∈ [n] and x1, . . . , xi−1 ∈ E such that ε
Pi;x1,...,xi−1

D ≤ ε̃.

Let P
∆
= Pi;x1,...,xi−1

. P is our desired [t−1, c+ l1, l2, . . . , lt]
B safe coinless quantum protocol

for f with εPD ≤ ε̃, thus completing the proof of the quantum round elimination lemma.

5.5 Static predecessor: Optimal address-only quan-

tum lower bounds

In this section, we prove our (optimal) lower bounds on the query complexity of static
predecessor in the address-only quantum cell probe model.

Theorem 5.4 Suppose we have a (nO(1), (logm)O(1), t) bounded error quantum address-
only cell probe solution to the static predecessor problem, where the universe size is m and

the subset size is at most n. Then the number of queries t is at least Ω
(

log logm
log log logm

)
as a

function of m, and at least Ω
(√

logn
log logn

)
as a function of n.

Proof: The proof is very similar to the proof of Theorem 4.3, but using the quantum
round elimination lemma (Lemma 5.4).

By Proposition 4.1 (which continues to hold in the quantum setting by virtue of
Lemma 5.1, it suffices to consider communication protocols for the rank parity communi-

cation game PARlogm,n. Let n = 2(log logm)2/ log log logm. Let c1
∆
= (4 ln 2)124. For any given

constants c2, c3 ≥ 1, define

a
∆
= c2 log n b

∆
= (logm)c3 t

∆
=

log logm

(c1 + c2 + c3) log log logm
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5.5. Static predecessor: Optimal address-only quantum lower bounds

We shall show that the rank parity communication game PARlogm,n does not have bounded
error (2t, 0, a, b)A safe public coin quantum protocols, thus proving the desired lower bounds
on the query complexity of static rank parity (and hence, static predecessor) by Lemma 5.1.

Given a (2t, 0, a, b)A safe public coin quantum protocol for PARlogm,n with error prob-
ability δ (δ < 1/3), we get a (2t, 0, a, b)A safe public coin quantum protocol for

PAR
(c1at4),A
log m

c1at4
,n

with the same error probability δ, by Proposition 4.2. Using the quantum round elimination
lemma (Lemma 5.4), we get a (2t− 1, a, a, b)B safe public coin quantum protocol for

PAR log m

c1at4
,n

but the error probability increases to at most δ+ (12t)−1. Using the reduction of Proposi-
tion 4.3, we get a (2t− 1, a, a, b)B safe public coin quantum protocol for

PAR
(c1bt4),B
log m

c1at4
−log(c1bt4)−1, n

c1bt4

with error probability at most δ + (12t)−1. From the given values of the parameters, we
see that

logm

(2c1at4)t
≥ log(c1bt

4) + 1

This implies that we also have a (2t− 1, a, a, b)B safe public coin quantum protocol for

PAR
(c1bt4),B
log m

2c1at4
, n
c1bt4

with error probability at most δ + (12t)−1. Using the quantum round elimination lemma
(Lemma 5.4) again, we get a (2t− 2, a+ b, a, b)A safe public coin quantum protocol for

PAR log m

2c1at4
, n
c1bt4

but the error probability increases to at most δ + 2(12t)−1.
We do the above steps repeatedly. After applying the above steps i times, we get a

(2t− 2i, i(a+ b), a, b)A safe public coin quantum protocol for

PAR log m

(2c1at4)i
, n

(c1bt4)i

with error probability at most δ + 2i(12t)−1.
By applying the above steps t times, we finally get a (0, t(a+ b), a, b)A safe public coin

quantum protocol for
PAR log m

(2c1at4)t
, n
(c1bt4)t
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5.6. The ‘greater-than’ problem

with error probability at most δ+2t(12t)−1 < 1/2. From the given values of the parameters,
we see that

logm

(2c1at4)t
≥ (logm)Ω(1) n

(c1bt4)t
≥ nΩ(1)

Thus we get a zero round protocol for a rank parity problem on a non-trivial domain with
error probability less than 1/2, which is a contradiction.

In the above proof, we are tacitly ignoring “rounding off” problems. We remark that
this does not affect the correctness of the proof.

5.6 The ‘greater-than’ problem

We illustrate another application of the quantum round elimination lemma to quantum
communication complexity by proving the first rounds versus communication tradeoffs for
the ‘greater-than’ problem in the quantum setting.

Theorem 5.5 The t round bounded error quantum communication complexity of GTn is
Ω(n1/tt−3).

Proof: We recall the following reduction from GT
(k)
n/k to GTn (see [MNSW98]): In GT

(k)
n/k,

Alice is given x1, . . . , xk ∈ {0, 1}n/k, Bob is given i ∈ [k], y ∈ {0, 1}n/k, and copies of

x1, . . . , xi−1, and they have to communicate and decide if xi > y. To reduce GT
(k)
n/k to GTn,

Alice constructs x̃ ∈ {0, 1}n by concatenating x1, . . . , xk, Bob constructs ỹ ∈ {0, 1}n by
concatenating x1, . . . , xi−1, y, 1

n(1−i/k). It is easy to see that x̃ > ỹ iff xi > y.
Suppose GTn has a [t, 0, l1, . . . , lt]

A safe public coin quantum protocol with worst case
error probability less than 1/3. Suppose

n ≥
(
Ct3(l1 + · · ·+ lt)

)t
where C

∆
= (4 ln 2)64. For 1 ≤ i ≤ t, define

ki
∆
= Ct4li ni

∆
=

n∏i
j=1 kj

εi
∆
=

1

3
+

i∑
j=1

(
(4 ln 2)lj

kj

)1/4

Also define n0
∆
= n and ε0

∆
= 1/3. Then

εt
∆
=

1

3
+

t∑
j=1

(
(4 ln 2)lj

kj

)1/4

=
1

3
+

t

6t
= 1/2

and

nt =
n∏t
j=1 kj

=
n

(Ct4)tl1 · · · lt
≥ ntt

Ctt4t(l1 + · · ·+ lt)t
≥ 1
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5.6. The ‘greater-than’ problem

We now apply the above self-reduction and the quantum round elimination lemma
(Lemma 5.4) alternately. Before the ith stage, we have a [t− i+ 1,

∑i−1
j=1 lj, li, . . . , lt]

Z safe
public coin quantum protocol for GTni−1

with worst case error probability less than εi−1.
Here Z = A if i is odd, Z = B otherwise. For the ith stage, we apply the self-reduction
with k = ki. This gives us a [t− i+1,

∑i−1
j=1 lj, li, . . . , lt]

Z safe public coin quantum protocol

for GT
(ki)
ni with the same error probability. We then apply the quantum round elimination

lemma (Lemma 5.4) to get a [t− i,
∑i

j=1 lj, li+1, . . . , lt]
Z′ safe public coin quantum protocol

for GTni
with worst case error probability less than εi. Here Z ′ = B if Z = A and Z ′ = A

if Z = B. This completes the ith stage.
Applying the self-reduction and the round elimination lemma alternately for t stages

gives us a zero round quantum protocol for the ‘greater-than’ problem on a domain of size
nt ≥ 1 with worst case error probability less than εt = 1/2, which is a contradiction.

In the above proof, we are tacitly ignoring “rounding off” problems. We remark that
this does not affect the correctness of the proof.

This proves the quantum lower bound of Ω(n1/tt−3) on the message complexity.
Miltersen et al. [MNSW98] also use their round elimination lemma (Lemma 4.2) to prove

lower bounds for other static data structure and communication complexity problems in
the classical setting. We remark that all those results can be extended to the quantum
setting by using the quantum round elimination lemma (Lemma 5.4).

88



Chapter 6

Conclusions and open problems

In this thesis, we have studied some problems in computational complexity in models of
computation with an algebraic flavour. We have investigated the complexity of computing
the degree two elementary symmetric polynomial S2

n(X) using ΣΠΣ arithmetic circuits. We
have studied the complexity of static membership and static predecessor in the quantum
bit probe and quantum cell probe models. In the process, we have obtained a round
elimination lemma in quantum communication complexity, which has implications to the
complexity of some quantum communication problems, like the ‘greater-than’ problem. In
this chapter, we conclude with a brief discussion of the results obtained and point out some
open problems which arise naturally out of this work.

6.1 Computing S2
n(X) using ΣΠΣ arithmetic circuits

6.1.1 Results

• We show an exact bound of dn/2e, for infinitely many n, for the odd cover problem.
We also show similar bounds on the number of multiplication gates in ΣΠΣ arithmetic
circuits computing S2

n(X) over GF(2).

• For any odd prime p, we show an upper bound of dn/2e, for infinitely many n, for
the 1 mod p cover problem.

• We show an exact bound of dn/2e, for all n, on the number of multiplication gates in
ΣΠΣ arithmetic circuits computing S2

n(X) over C. We also show similar, but weaker,
bounds on the number of multiplication gates in ΣΠΣ arithmetic circuits computing
S2
n(X) over finite fields of odd characteristic.

6.1.2 Open problems

• In most of the cases, our exact bounds for computing S2
n(X) hold only for infinitely

many n, but not for all n. Can this shortcoming be removed?
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6.2. Static membership problem

• Give tight bounds for computing the degree k elementary symmetric polynomial,
Skn(X), in the ΣΠΣ model, for k > 2, and over various fields. In particular, can one
prove a quadratic lower bound for Skn(X) over C when k =

√
n?

• Give super polynomial lower bounds for inhomogeneous ΣΠΣ circuits computing an
explicit polynomial (e.g. determinant, permanent) over fields of characteristic zero.

6.2 Static membership problem

6.2.1 Results

• We show a tradeoff between space and the number of probes for any exact quantum
bit probe scheme solving the static membership problem. The lower bounds obtained
from this tradeoff match, within polynomials, to known upper bounds in the classical
deterministic bit model.

• We show lower bounds on the storage space used by any two-sided ε-error quantum bit
probe schemes making p probes. These bounds are almost matched by upper bounds
in the classical bit probe model with two-sided error randomised query schemes.

• We show a Ω(log n) lower bound on the number of probes made by any quantum
cell probe solution of the static membership problem, with implicit storage schemes.
This generalises a result of Yao [Yao81] to the bounded error quantum setting.

6.2.2 Open problems

• Buhrman et al. [BMRV00] consider classical schemes for the static membership prob-
lem where the error is bounded and restricted only to negative instances (i.e. when
the query element is not a member of the stored set). For such schemes, which make
only one bit probe, they give almost matching upper and lower bounds. But for
negative one-sided error quantum schemes, we can only prove similar lower bounds
as for two-sided error quantum schemes. Also, we do not know if there are negative
one-sided error quantum schemes better than the classical ones in [BMRV00]. Thus
there is a gap between the upper and lower bounds here, and resolving it is an open
problem.

6.3 Static predecessor problem

6.3.1 Results

• We prove a lower bound for the static predecessor problem in the bounded error
address-only quantum cell probe model, matching the upper bound of Beame and
Fich [BF99] for this problem in the classical deterministic cell probe model.
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6.4. Quantum communication complexity

6.3.2 Open problems

• Our lower bound for static predecessor holds only in the address-only quantum cell
probe model. Extending this result to the general quantum cell probe model, or
showing that there are efficient schemes in this model, is an important open prob-
lem. The naive connection between quantum cell probe data structure problems and
quantum communication complexity does not give us any hope for proving strong
lower bounds in the general quantum cell probe model. Maybe, a new lower bound
technique in quantum black box complexity is required for this.

6.4 Quantum communication complexity

6.4.1 Results

• We prove a round elimination lemma in classical communication complexity similar,
but stronger, than the round elimination lemma of Miltersen et al. [MNSW98].

• We also prove a round elimination lemma in quantum communication complexity.
The quantum round elimination lemma too is stronger than the round elimination
lemma of Miltersen et al. [MNSW98].

• We use our round elimination lemmas to prove rounds versus communication tradeoffs
for the ‘greater-than’ problem, in both quantum and classical settings. The quan-
tum round elimination lemma should find application to other problems in quantum
communication complexity as well.

6.4.2 Open problems

• The quantum round elimination lemma allows us to prove rounds-communication
tradeoffs for various quantum communication complexity problems. Pointer chas-
ing is a popular communication complexity problem to show rounds-communication
tradeoffs. Optimal (or nearly optimal) rounds-communication tradeoffs are known
for this problem in the classical deterministic and randomised setting, for both the
full pointer and the bit versions [PRV01]. Recently, Klauck, Nayak, Ta-Shma and
Zuckerman [KNTZ01] have shown a lower bound for the quantum communication
complexity of pointer chasing, with the wrong player starting the communication.
This bound is stronger than what can be proved using the quantum round elimina-
tion lemma (which is the bound Klauck et al. [KNTZ01] prove as their ‘tree pointer
jumping’ result). But the lower bound of Klauck still does not match the classical
upper bound. Also, the best quantum upper bound known is nothing but the clas-
sical upper bound. Thus, there is a gap here, and resolving it is an important open
problem.
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6.4. Quantum communication complexity

• Improve the rounds-communication tradeoffs for other problems in quantum com-
munication complexity e.g. set disjointness. Rounds-communication tradeoffs for
pointer chasing imply lower bounds on the bounded round communication complex-
ity of set disjointness (see [KNTZ01]), but this method is insufficient to give lower
bounds matching the best quantum upper bound of O(

√
nclog∗ n) by Høyer and de

Wolf [HdW01] for this problem. Høyer and de Wolf [HdW01] have also shown an
Ω(
√
n) lower bound for a restricted class of bounded error quantum protocols for

the set disjointness problem. This restricted class of protocols encompasses their
protocol and the protocol of Buhrman, Cleve and Wigderson [BCW98]. For general
bounded error quantum protocols, the best lower bound known is Ω(log n), arising
from Kremer’s result [Kre95] that the bounded error quantum communication com-
plexity of a function is lower bounded (up to constant factors) by the logarithm of
the one round (classical) deterministic communication complexity. Improving either
the upper bound or the lower bound for set disjointness seems to require new ideas.
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Appendix A

A weaker version of Lemma 3.2

In this chapter, we give a complete proof of a weaker version of Lemma 3.2. In this version,

we only get an Ω
(

logn
log logn

)
lower bound, instead of the Ω(log n) lower bound claimed in

Lemma 3.2. The proof of the weaker version is given to illustrate the idea of using “logical
intervals”. By using “logical intervals”, one can similarly modify Ambainis’s Ω(log n) lower
bound for ordered searching [Amb99] to prove Lemma 3.2.

Remark: Combining the weaker version of Lemma 3.2 with the Ramsey theoretic argu-

ments of Yao [Yao81], gives us a weaker Ω
(

logn
log logn

)
version of Theorem 3.10.

A.1 A folklore proposition

We will require the following folklore proposition in what follows.

Proposition A.1 Suppose |φ〉, |ψ〉 are two state vectors. Suppose there is a boolean valued
measurement M which gives 1 with probability at least 1− ε if the state vector is |φ〉, and
with probability at most ε if the state vector is |ψ〉. Then

‖|φ〉 − |ψ〉‖ ≥
√

2(1− 2ε)

Proof: Let V1, V0 denote the orthogonal subspaces for M corresponding to measurement
outcomes 1, 0 respectively. Let |φ1〉, |ψ1〉 denote the projections of |φ〉, |ψ〉 respectively
onto V1. Let |φ0〉, |ψ0〉 denote the respective projections onto V0. Then ‖|φ0〉‖, ‖|ψ1〉‖ ≤

√
ε.

Hence

|〈φ|ψ〉| = |〈φ0|ψ0〉+ 〈φ1|ψ1〉|
≤ ‖|φ0〉‖‖|ψ0〉‖+ ‖|φ1〉‖‖|ψ1〉‖
≤ 2

√
ε
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A.2. Proof of the weaker version of Lemma 3.2

Therefore

‖|φ〉 − |ψ〉‖2 = ‖|φ〉‖2 + ‖|ψ〉‖2 − 〈φ|ψ〉 − 〈ψ|φ〉
= 2− 2 · Re (〈φ|ψ〉)
≥ 2− 2 · |〈φ|ψ〉|
≥ 2− 4

√
ε

A.2 Proof of the weaker version of Lemma 3.2

We now prove the weaker version of Lemma 3.2.

Lemma 3.2 (weak version) Suppose S is an n element subset of the universe [m], where
m ≥ 2n. If the storage scheme is implicit, always stores the same ‘pointer’ values in the
same locations, and in the remaining locations, stores the elements of S in a fixed order
(repetitions of an element are allowed, but all elements have to be stored) based on their

relative ranking in S, then Ω
(

logn
log logn

)
probes are needed by any bounded error quantum

cell query strategy to answer membership queries.
Proof: The proof is via a ‘hybrid’ adversary argument. Consider the behaviour of the
quantum query scheme with query element n. Suppose the query scheme uses less than

t
∆
= logn

2 log logn
cell queries. The adversary shall construct two sets A,B ⊆ [m], |A| = |B| = n,

such that n ∈ A, n 6∈ B, but the query scheme gives the same answer for A and B, which
is a contradiction.

The adversary’s strategy is as follows. In the first stage, he partitions the “logical

interval” I0
∆
= [1, . . . , n] into log2 n “logical subintervals” of length n/ log2 n each. He

simulates the query scheme up to the first query. Let |φ0〉 be the state vector of the query
scheme before the first query. There is a “logical subinterval”

I1
∆
=

[
(l − 1)n

log2 n
+ 1, . . . ,

ln

log2 n

]
where 1 ≤ l ≤ log2 n, that is queried by |φ0〉 with probability at most 1/ log2 n. The
adversary answers the first query according to the oracle for the set

T1
∆
=

{
1, . . . ,

(l − 1)n

log2 n

}⋃{
m− n+

(l − 1)n

log2 n
+ 1, . . . ,m

}
In the second stage, the adversary splits the “logical interval” I1 into log2 n “logical subin-
tervals” of length n/ log4 n each. He simulates the query scheme up to the second query.
Let |φ1〉 be the state vector of the query scheme before the second query. There is a “logical
subinterval”

I2
∆
=

[
(l − 1)n

log2 n
+

(k − 1)n

log4 n
+ 1, . . . ,

(l − 1)n

log2 n
+

kn

log4 n

]
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where 1 ≤ k ≤ log2 n, that is queried by |φ1〉 with probability at most 1/ log2 n. The
adversary answers the second query according to the oracle for the set

T2
∆
=

{
1, . . . ,

(l − 1)n

log2 n
+

(k − 1)n

log4 n

}⋃{
m− n+

(l − 1)n

log2 n
+

(k − 1)n

log4 n
+ 1, . . . ,m

}
The adversary repeats the splitting in this fashion until the “logical interval” is smaller

than log2 n in length. This means that he can do up to t
∆
= logn

2 log logn
splittings. Let |φi−1〉

denote the state vector of the query scheme before the ith query, and Ti be the set according
to whose oracle the adversary answers the ith query, in this simulation.

Let [i+1, . . . , j] be the final “logical interval”, at the end of the adversary’s simulation.
Define two sets A,B ⊆ [m] as follows.

A
∆
= {1, . . . , i} ∪ {n} ∪ {m− n+ i+ 2, . . . ,m}

B
∆
= {1, . . . , i} ∪ {n+ 1} ∪ {m− n+ i+ 2, . . . ,m}

We have that |A| = |B| = n, n ∈ A and n 6∈ B.
We now do a standard ‘hybrid’ argument. The quantum query scheme is a sequence of

unitary transformations

U0 → OS → U1 → OS → . . . Ut−1 → OS → Ut

where Uj’s are arbitrary unitary transformations that do not depend on the set stored
(representing the internal computations of the query algorithm), and OS represents the
oracle for the stored set S. Define |αi−1〉, |βi−1〉 to be the state vectors of the query scheme
before the ith query when sets A, B respectively are stored. We shall show that

‖|φi〉 − |αi〉‖ ≤
2i

log n
‖|φi〉 − |βi〉‖ ≤

2i

log n
(A.1)

The proof of (A.1) is by induction on i. It is true for i = 0, since |φ0〉 = |α0〉 = |β0〉.
Suppose it is true for i− 1. We prove it for i as follows. Let OTi

, OA be the oracle unitary
transformations for sets Ti, A respectively.

‖|φi〉 − |αi〉‖ = ‖UiOTi
|φi−1〉 − UiOA|αi−1〉‖

= ‖OTi
|φi−1〉 −OA|αi−1〉‖

≤ ‖OTi
|φi−1〉 −OA|φi−1〉‖+ ‖OA|φi−1〉 −OA|αi−1〉‖

≤ 2

log n
+ ‖|φi−1〉 − |αi−1〉‖

≤ 2

log n
+

2(i− 1)

log n

=
2i

log n
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The second inequality above follows from the fact that Ti and A differ only in the “logical
interval” Ii, which is queried with probability at most 1/ log2 n by |φi−1〉. The third
inequality follows from the induction hypothesis. Thus, we have proved the first inequality
in (A.1). The proof of the second inequality in (A.1) is similar.

By plugging in i = t in (A.1) we get

‖|αt〉 − |βt〉‖ ≤ ‖|αt〉 − |φt〉‖+ ‖|φt〉 − |βt〉‖

≤
(

2

log n

)(
log n

2 log log n

)
+

(
2

log n

)(
log n

2 log log n

)
=

2

log log n

Since the quantum query scheme errs with probability at most 1/3, by Proposition A.1,
we also get that ‖|αt〉 − |βt〉‖ ≥

√
2/3, which is a contradiction. This finishes the proof of

the lemma.
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Appendix B

The average encoding theorem

In this chapter, we give a proof of the quantum average encoding theorem (Theorem 5.3).
We also show how one can prove the classical average encoding theorem (Theorem 4.2)
without appealing to quantum mechanics.

B.1 The classical average encoding theorem

We require a non-trivial theorem from classical information theory. To state the theorem,
we need the following definition of information divergence. A proof of the theorem can be
found in the book by Cover and Thomas [CT91].

Definition B.1 (Information divergence) Let P,Q be probability distributions on the
same finite sample space Ω. Let px (qx) denote the probability of the sample point x ∈ Ω
under P (Q). The information divergence between P and Q, denoted by D(P : Q), is
defined as

D(P : Q)
∆
=
∑
x∈Ω

px log

(
px
qx

)
Theorem B.1 ([CT91, Lemma 12.6.1]) Let P and Q be probability distributions on
the same finite sample space Ω. Then

D(P : Q) ≥ 1

2 ln 2
‖P −Q‖2

1

We can now prove the classical average encoding theorem.

Theorem 4.2 (Average encoding, classical version, [KNTZ01]) Let X be a classical
random variable which takes value x with probability px, and M be a classical randomised
encoding x 7→ σx of X, where σx is a probability distribution over the sample space of

codewords. The probability distribution of the average encoding is σ
∆
=
∑

x pxσx. Then∑
x

px‖σx − σ‖1 ≤
√

(2 ln 2)I(X : M)

103



B.2. The quantum average encoding theorem

Proof: Let S, T be the (finite) ranges of random variables X, M respectively. We define
two probability distributions P , Q on S×T . In distribution P , the probability of (x,m) ∈
S×T is px · σ(m | x), where σ(m | x) is the probability that M = m given that X = x. In
distribution Q, the probability of (x,m) ∈ S×T is px ·σ(m), where σ(m) is the probability

of message m in the average encoding i.e. σ(m)
∆
=
∑

x pxσ(m | x).
One can easily check that

D(P : Q) = I(X : M) ‖P −Q‖1 =
∑
x

px‖σx − σ‖1

The result now follows by applying Theorem B.1 to P and Q.

B.2 The quantum average encoding theorem

To prove the quantum average encoding theorem, we need to define the quantum analogue
of information divergence, called the relative von Neumann entropy.

Definition B.2 (Relative von Neumann entropy) Let ρ, σ be density matrices on the
same finite dimensional Hilbert space. The relative von Neumann entropy between ρ and
σ, denoted by S(ρ|σ), is defined as

S(ρ|σ)
∆
= Tr (ρ(log ρ− log σ))

We also need a quantum analogue of Theorem B.1, which has been proved by Klauck
et al. [KNTZ01].

Theorem B.2 ([KNTZ01]) Let ρ, σ be density matrices over the same finite dimensional
Hilbert space H. Then

S(ρ|σ) ≥ 1

2 ln 2
‖ρ− σ‖2

t

Proof: Let M be a measurement operator measuring in the orthonormal eigenbasis of
ρ− σ. Then, by Theorem 5.1

‖Mρ−Mσ‖1 = ‖ρ− σ‖t

whereMρ,Mσ denote the probability distributions on the (classical) outcomes ofM got
by performing measurement M on ρ, σ respectively. By the Lindblad-Uhlmann mono-
tonicity theorem (see e.g. [NC00, Theorem 11.17])

S(ρ|σ) ≥ D(Mρ :Mσ)

We complete the proof by invoking Theorem B.1.
We can now prove the quantum average encoding theorem in a similar fashion as its

classical twin.
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Theorem 5.3 (Average encoding, quantum version, [KNTZ01]) Suppose that X,
Q are two disjoint quantum systems, where X is a classical random variable, which takes
value x with probability px, and Q is a quantum encoding x 7→ σx of X. Let the density

matrix of the average encoding be σ
∆
=
∑

x pxσx. Then∑
x

px‖σx − σ‖t ≤
√

(2 ln 2)I(X : Q)

Proof: Let the joint density matrix of (X,Q) be ρ1
∆
=
∑

x px|x〉〈x| ⊗ σx. Define another

density matrix ρ2
∆
= (
∑

x px|x〉〈x|)⊗ σ.
One can easily check that

S(ρ1|ρ2) = I(X : M) ‖ρ1 − ρ2‖t =
∑
x

px‖σx − σ‖t

The result now follows by applying Theorem B.2 to ρ1 and ρ2.
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