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1 Synonyms
Logarithms in groups.

2 Problem definition
Given positive real numbers a 6= 1, b, the logarithm of b to base a is the unique real number s such
that b = as. The notion of discrete logarithm is an extension of this concept to general groups.

Problem 1 (Discrete logarithm)
INPUT: Group G, a, b ∈ G such that b = as for some positive integer s.
OUTPUT: The smallest positive integer s satisfying b = as, also known as the discrete logarithm
of b to the base a in G.

The usual logarithm corresponds to the discrete logarithm problem over the group of positive
reals under multiplication. The most common case of discrete logarithm is when the group G = Z∗p,
the multiplicative group of integers between 1 and p − 1 modulo p, p prime. Another important
case is when the group G is the group of points of an elliptic curve over a finite field.

3 Key results
The discrete logarithm problem in Z∗p, p prime as well as in the group of points of an elliptic curve
over a finite field, is believed to be intractable for randomised classical computers. That is any,
possibly randomised, algorithm for the problem running on a classical computer will take time
that is super-polynomial in the number of bits required to describe an input to the problem. The
best classical algorithm for finding discrete logarithms in Z∗p, p prime is Gordon’s [4] adaptation
of the number field sieve which runs in time exp(O((log p)1/3(log log p)2/3)).
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In a breakthrough result, Shor [9] gave an efficient quantum algorithm for discrete logarithm;
his algorithm runs in time polynomial in the bit-size of the input.

Result 1 ([9]) There is a quantum algorithm solving discrete logarithm on n-bit inputs in time
O(n3) with probability at least 3/4.

3.1 Description of the discrete logarithm algorithm
Shor’s algorithm for discrete logarithm [9] makes essential use of an efficient quantum procedure
for implementing a unitary transformation known as the quantum Fourier transform. His original
algorithm gave an efficient procedure for performing the quantum Fourier transform only over
groups of the form Zr, r a ‘smooth’ integer, but nevertheless, he showed that this itself sufficed to
solve discrete logarithm in the general case. In this article however, a more modern description of
Shor’s algorithm is given. In particular, a result by Hales and Hallgren [5] is used which shows
that the quantum Fourier transform over any finite cyclic group Zr can be efficiently approximated
to inverse exponential precision.

A description of the algorithm is given below. A general familiarity with quantum notation on
the part of the reader is assumed. A good introduction to quantum computing can be found in the
book by Nielsen and Chuang [8]. Let (G, a, b, r̄) be an instance of the discrete logarithm problem,
where r̄ is a supplied upper bound on the order of a in G. That is, there exists a positive integer
r ≤ r̄ such that ar = 1. By using an efficient quantum algorithm for order finding also discovered
by Shor [9], it can be assumed that the order of a in G is known, that is, the smallest positive
integer r satisfying ar = 1. Shor’s order finding algorithm runs in time O((log r̄)3). Let ε > 0.
The discrete logarithm algorithm works on three registers, of which the first two are each t-qubits
long where t := O(log r + log(1/ε)), and the third register is big enough to store an element of G.
Let U denote the unitary transformation

U : |x〉|y〉|z〉 7→ |x〉|y〉|z ⊕ (bxay)〉,

where ⊕ denotes bitwise XOR. Given access to a reversible oracle for group operations in G, U
can be implemented reversibly in time O(t3) by repeated squaring.

Let C[Zr] denote the Hilbert space of functions from Zr to complex numbers. The computa-
tional basis of C[Zr] consists of the delta functions {|l〉}0≤l≤r−1. Let QFTZr

denote the quantum
Fourier transform over the cyclic group Zr defined as the following unitary operator on C[Zr]:

QFTZr
: |x〉 7→ r−1/2

∑
y∈Zr

e−2πixy/r|y〉.

It can be implemented in quantum time O(t log(t/ε) + log2(1/ε)) up to an error of ε using one
t-qubit register [5]. Note that for any k ∈ Zr, QFTZr

transforms the state r−1/2
∑

x∈Zr
e2πikx/r|x〉

to the state |k〉. For any integer l, 0 ≤ l ≤ r − 1, define

|l̂〉 := r−1/2

r−1∑
k=0

e−2πilk/r|ak〉. (1)
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Observe that {|l̂〉}0≤l≤r−1 form an orthonormal basis of C[〈a〉], where 〈a〉 is the subgroup generated
by a in G and is isomorphic to Zr, and C[〈a〉] denotes the Hilbert space of functions from 〈a〉 to
complex numbers.

Algorithm 1 (Discrete logarithm)
INPUT: Elements a, b ∈ G, a quantum circuit for U , the order r of a in G.

OUTPUT: The discrete logarithm s of b to the base a in G.

RUNTIME: A total of O(t3) operations including four invocations of QFTZr
and one of U .

PROCEDURE:

1. Repeat Steps (a)-(e) twice obtaining (sl1 mod r, l1) and (sl2 mod r, l2):

(a) |0〉|0〉|0〉 Initialisation;
(b) 7→ r−1

∑
x,y∈Zr

|x〉|y〉|0〉 Apply QFTZr
to the first two registers;

(c) 7→ r−1
∑

x,y∈Zr
|x〉|y〉|bxay〉 Apply U ;

(d) 7→ r−1/2
∑r−1

l=0 |sl mod r〉|l〉|l̂〉 Apply QFTZr
to the first two registers;

(e) 7→ (sl mod r, l) Measure the first two registers;

2. If l1 is not co-prime to l2, abort;

3. Let k1, k2 be integers such that k1l1 + k2l2 = 1. Then, output s = k1(sl1) + k2(sl2) mod r.

The working of the algorithm is explained below. From equation 1, it is easy to see that

|bxay〉 = r−1/2

r−1∑
l=0

e2πil(sx+y)/r|l̂〉.

Thus, the state in Step 1(c) of the above algorithm can be written as

r−1
∑

x,y∈Zr

|x〉|y〉|bxay〉 = r−3/2

r−1∑
l=0

∑
x,y∈Zr

e2πil(sx+y)/r|x〉|y〉|l̂〉

= r−3/2

r−1∑
l=0

[∑
x∈Zr

e2πislx/r|x〉

] [∑
y∈Zr

e2πily/r|y〉

]
|l̂〉.

Now, applying QFTZr
to the first two registers gives the state in Step 1(d) of the above algorithm.

Measuring the first two registers gives (sl mod r, l) for a uniformly distributed l, 0 ≤ l ≤ r − 1 in
Step 1(e). By elementary number theory, it can be shown that if integers l1, l2 are uniformly and
independently chosen between 0 and l− 1, they will be co-prime with constant probability. In that
case, there will be integers k1, k2 such that k1l1 + k2l2 = 1, leading to the discovery of the discrete
logarithm s in Step 3 of the algorithm with constant probability. Since actually speaking only an
ε-approximate version of QFTZr

can be applied, ε can be set to be a sufficiently small constant,
and this will still give the correct discrete logarithm s in Step 3 of the algorithm with constant
probability. The success probability of Shor’s algorithm for discrete logarithm can be boosted to
at least 3/4 by repeating it a constant number of times.
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3.2 Generalisations of the discrete logarithm algorithm
The discrete logarithm problem is a special case of a more general problem called the hidden
subgroup problem [8]. The ideas behind Shor’s algorithm for discrete logarithm can be generalised
in order to yield an efficient quantum algorithm for hidden subgroups in abelian groups (see e.g. [1]
for a brief sketch). It turns out that finding the discrete logarithm of b to the base a in G reduces to
the hidden subgroup problem in the group Zr ×Zr where r is the order of a in G. Besides discrete
logarithm, other cryptographically important functions like integer factoring, finding the order of
permutations as well as finding self-shift-equivalent polynomials over finite fields can be reduced
to instances of hidden subgroup in abelian groups.

4 Applications
The assumed intractability of the discrete logarithm problem lies at the heart of several cryp-
tographic algorithms and protocols. The first example of public-key cryptography, namely the
Diffie-Hellman key exchange [2], uses discrete logarithms, usually in the group Z∗p for a prime
p. The security of the U. S. national standard Digital Signature Algorithm (see e.g. [7] for details
and more references) depends on the assumed intractability of discrete logarithms in Z∗p, p prime.
The ElGamal public key cryptosystem [3] and its derivatives use discrete logarithms in appropri-
ately chosen subgroups of Z∗p, p prime. More recent applications include those in elliptic curve
cryptography [6], where the group consists of the group of points of an elliptic curve over a finite
field.

5 Cross references
Factoring (00002), Abelian Hidden Subgroup Problem (00004).
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