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Abstract

We show that every language in NP has a probabilistically checkable proof of proximity (i.e.,
proofs asserting that an instance is “close” to a member of the language), where the verifier’s
running time is polylogarithmic in the input size and the length of the probabilistically checkable
proof is only polylogarithmically larger that the length of the classical proof. (Such a verifier
can only query polylogarithmically many bits of the input instance and the proof. Thus it needs
oracle access to the input as well as the proof, and cannot guarantee that the input is in the
language — only that it is close to some string in the language.) If the verifier is restricted
further in its query complexity and only allowed q queries, then the proof size blows up by
a factor of 2(log n)c/q

where the constant c depends only on the language (and is independent
of q). Our results thus give efficient (in the sense of running time) versions of the shortest
known PCPs, due to Ben-Sasson et al. (STOC ’04) and Ben-Sasson and Sudan (STOC ’05),
respectively. The time complexity of the verifier and the size of the proof were the original
emphases in the definition of holographic proofs, due to Babai et al. (STOC ’91), and our work
is the first to return to these emphases since their work.

Of technical interest in our proof is a new complete problem for NEXP based on constraint
satisfaction problems with very low complexity constraints, and techniques to arithmetize such
constraints over fields of small characteristic.
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1 Introduction

The study of efficient probabilistic methods for verifying proofs was initiated in the works of Babai
et al. [BFL+91] and Feige et al. [FGL+96] with very different motivation and emphases. The work
of Babai et al. considered the direct motivation of verifying proofs, and especially computations,
highly efficiently. Their motivation led them to emphasize the time taken by the verifier and the
length of the proof in the new format. In contrast, Feige et al. established a dramatic connection
between efficient probabilistically checkable proofs (PCPs) and the inapproximability of optimiza-
tion problems. This led them to focus on the amount of randomness used by the verifier, and the
number of bits of the proof that the verifier queries. Most succeeding works have focused on the
latter choice of parameters, or variants thereof, and derived many strong inapproximability results
for a wide variety of optimization problems (while often introducing improved PCP constructions).
In contrast there has been little subsequent work on the parameters highlighted by Babai et al.
Only a few works, specifically [PS94, HS00, GS02, BSV+03, BGH+04a, BS05], have focused on
the length of the PCP, while no later work seems to have returned to the question of the extreme
efficiency of the verifier. This is unfortunate because the latter efficiency parameters are significant
in the context of proof-verification, and are also important in some of the applications of PCPs.

In this work we revisit the study of efficient PCP verifiers. Our work is motivated by two recent
developments. First is a technical one: The original result of Babai et al. [BFL+91] required the
PCP to be larger than the classical proof by a factor of Ω(nε) for arbitrarily small but positive
ε, where n denotes the length of a classical proof. Recent constructions of PCPs have, however,
obtained a much smaller proof length. Notably the blowup in the proof-length in the work of
Ben-Sasson et al. [BGH+04a] is only 2(log n)ε

where the verifier is allowed to query O(1/ε) bits of
the proof. And if the verifier is allowed to make more queries, polylogarithmic in the length of the
proof, then the blowup in the proof-length is only a polylogarithmic factor (cf. Ben-Sasson and
Sudan [BS05]). These improvements in the proof length raise the question as to whether these can
be accompanied with efficient verifiers, which would lead to the first strict improvements on the
work of [BFL+91]; that is, reducing one of the parameters (i.e., the length) without increasing the
other (i.e., verification time).

A second motivation to study efficient verifiers is an aesthetic one. To motivate this, we recall
the main result of [BFL+91].

There exists a probabilistic verifier that makes oracle access to an “encoded assertion”,
and a “purported proof”, and whose running time is only polylogarithmic in the length
of the assertion and its proof, such that the proper encoding of any valid assertion has
a proof that is accepted with probability one, while if a supposedly “encoded assertion”
is not close to the proper encoding of a valid assertion, then no proof is accepted with
probability more than half.

One might contend that the power of this result is somewhat diminished by the technical nature
of the statement and in particular the need to encode theorems in error-correcting codes. Such a
notion appears necessary due to the sublinear running time of the verifier. However a recent notion,
proposed independently by Ben-Sasson et al. [BGH+04a] and Dinur and Reingold [DR04], suggests
a more elegant characterization to capture the power of efficient verifiers — one that is similar
to work in property testing [GGR98, RS96]. We describe this notion, termed “probabilistically
checkable proofs of proximity” (by [BGH+04a] and “assignment testers” by [DR04]) below.
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PCPs of Proximity. A PCP of Proximity verifier accesses a pair of oracles, one for a string x
(representing the assertion “x ∈ L”) and one for a proof π, and probabilistically produces a Boolean
verdict with the property that true assertions x have a proof π that is always accepted while for an
assertion x that is far (in relative Hamming distance) from any valid statement has no proof that
is accepted with high probability (say greater than half).

On the one hand, PCPs of Proximity do not specify an error-correcting code, making a potential
result less cumbersome to state. On the other hand, a universal result of the form, “every language
L in NP has efficient PCPs of Proximity”, does subsume the result of [BFL+91], since such a
result includes languages that only contain (a subset of) codewords of an error-correcting code.
In principle, the techniques of [BFL+91] could be converted to get such a result (i.e., providing a
PCP of proximity (for NP) whose running time is polylogarithmic and where the proofs are only
n1+ε-bits long), but such a statement is not explicit in the previous literature.

Our results. In this work, we derive PCPs of Proximity for every NP language. These PCP
systems have highly efficient verifiers that match other parameters of some of the best-known PCPs.
Specifically, one of our main results (see Theorem 2.5) gives a PCP of Proximity for any language
L ∈ NTIME(T (n)), with poly log(T (n)) verification time for proofs of length T (n) · poly log(T (n)).
This PCP matches the query complexity and proof length of the system of [BS05], which was proved
only for NP and uses a polynomial-time verification procedure. Our second main result focuses on
the case where the query complexity of the verifier is further restricted (to, say, a constant) and gives
a polylogarithmic time verifier making O(1/ε) queries into a theorem and proof, whose proof length
is T (n) · 2(log T (n))ε

, again for verifying membership in L ∈ NTIME(T (n)). This PCP matches the
query complexity and proof length of the system of [BGH+04a], which was proved only for NP and
uses a polynomial-time verification procedure. Both results improve over [BFL+91] (and [PS94]),
which obtains proofs of length T (n)1+ε, for any constant ε > 0.

In terms of the length of the proof, a polylogarithmic factor is perhaps the best one can hope
for, given our current inability to get tighter completeness results for non-deterministic computa-
tion: E.g., even in a classical reduction to SAT, one loses a polylogarithmic factor in the length of
the proof. Thus, our first result achieves this “limit” in the length of the proof, while maintaining
the smallest possible running time (i.e., a verifier examining a proof of length T (n) needs at least
log T (n) time to index a random location of the proof). Thus, with respect to the original pa-
rameters of [BFL+91], our first result achieves limits of qualitative significance. Our second result
(which also improves upon [BFL+91]) is significant when query complexity is also considered and
then it matches the best known PCP constructions, while maintaining efficient verification.

Techniques. Naturally, our efficient PCPs of Proximity are based upon the prior works of
[BGH+04a] and [BS05]. However, we stress that efficiency (i.e., fast verification time, let alone
polylogarithmic verification time) is not an immediate corollary of having low query complexity.
Indeed the FGLSS verifier [FGL+96] invests polynomial time to compute low-degree extensions of
its input. The Polishchuk-Spielman verifier [PS94] invests polynomial time routing a permutation
from n sources to n sinks in a sorting network. And most known PCP constructions use recur-
sive composition, where the time to compose PCPs is lower-bounded by the query complexity of
the ingredient PCPs, which can be prohibitively large too. Such operations abound in the recent
constructions of PCPs including those of [BGH+04a] and [BS05] leading to several barriers in any
immediate translation. These complications force us to tackle some new problems and our solutions
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yield some new ingredients that may be of independent interest.
First, we give a new problem that is NEXP-complete under nearly linear-time reductions.

This problem may be described as a generalized graph coloring problem (color the vertices of a
graph subject to arbitrary constraints on the color of a vertex given its name and the colors of its
neighbors). We show that it is NEXP hard to color an (exponentially large) deBruijn graph with
a constant number of colors, where the coloring constraint function (determining the validity of
the coloring of a vertex and its neighbors, depending on the name of the vertex) is described by
an extremely low-complexity function; namely, an NC1 circuit. Moreover, the reduction from an
instance of NTIME(T (n)) yields a deBruijn graph of size T (n) · logO(1) T (n). Both the construction
of such a low-complexity function (of the coloring constraint) and such an efficient reduction may be
of independent interest. At a high level, our reduction works by embedding the nearly linear-time
oblivious Turing machine simulation of Pippenger and Fischer [PF79] on a deBruijn graph.

Next, we describe a general arithmetization technique that converts low-complexity functions
into their low-degree extensions that are computable by small algebraic circuits, even when the
degree of the extension is very large. This part uses heavily the structure of large finite fields
of small characteristic, and may be of independent interest. Applying the arithmetization to our
NEXP-complete coloring problem gives a family of nearly linear-time reductions from NTIME(T )
to algebraic problems.

Finally, we extend standard notions of compositions to verifiers that are specified implicitly, so
as to obtain by composition, efficient verifiers whose running time complexity can be much smaller
than the query complexity of some of the ingredients in the composition.

Organization of this paper: In Section 2 we present the main definitions underlying our work,
and provide a formal statement of our main results. In Section 3 we provide an overview of
the proofs of our main results. The proof themselves appear in the rest of the paper, and their
organization is described in Section 3.3.

2 Definitions and Main Results

We follow the general formulation of PCPs of Proximity (PCPPs), as appearing in [BGH+04a,
DR04]. In this formulation, the input comes in two parts (x, y), where x is given explicitly to the
verifier and y is given as an oracle. (In addition, the verifier is given access to a proof oracle.) The
verifier is allowed to read x in its entirety, but its queries to y are counted as part of its query
complexity (i.e., together with the queries to the proof oracle). Natural special cases, where either
y = λ or x = |y| (i.e., x is the length of y in binary), will be discussed below.

Definition 2.1 (Restricted PCPP) Let r, q : Z+ → Z+ and t : Z+ × Z+ → Z+. An (r, q, t)-
restricted PCPP verifier is a probabilistic machine that, given a string x (called the explicit input)
and a number K (in binary) as well as oracle access to an implicit input y ∈ ΣK and to a proof
oracle π ∈ Σ∗, tosses r(|x|+K) coins, queries the oracles (y, π) for a total of q(|x|+K) symbols,
runs in time t(|x|,K), and outputs a Boolean verdict in {accept, reject}.

We stress that we deviate from the standard treatments in not requiring the verifier to run in
polynomial time, but rather considering an explicit time bound, denoted t. Furthermore, this time
bound is expressed as a function of two parameters: the length of the explicit part of the input (i.e.,
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x) and the length of the implicit part of the input (i.e., y). The reason for separating the effect
of the two parts is that, by definition, the verifier must read the entire explicit input x and hence
takes time at least linear in its length but it can run for time that is polylogarithmic in |y| = K
(just K is needed for reading |y| and indexing into y). In fact, obtaining such running-time is the
focus of the current work. Other complexity measures (and parameters) are expressed (as usual) as
a function of the sum of these two parts (i.e., the length of the entire input (x, y)). Recall that our
interest in the randomness complexity stems from its effect on the proof length: the (“effective”)
length of the proof oracle of a (r, q, ·)-restricted PCPP verifier is at most `(m) = 2r(m) · q(m).

In view of the above, PCPPs refer to languages consisting of pairs of strings (where the elements
in these pairs refer to the two parts of the input in Definition 2.1). Thus, we define a pair language
to be subset of Σ∗ × Σ∗. For a pair language L and x ∈ Σ∗, we define Lx , {y ∈ Σ∗ : (x, y) ∈ L}.
We usually use the notations n = |x|, K = |y| and m = n+K.

We will be interested in PCPP verifiers that cannot afford to read their implicit input y in its
entirety. Such verifiers will not be able to exactly verify membership of (x, y) in a language L,
but will rather test that y is “close” to Lx. Unless stated otherwise, we use the relative Hamming
distance as our distance measure between x, x′ ∈ Σn, denoted δ(x, x′) = |{i : xi 6= x′i}|/n. For
x ∈ Σn and S ⊆ Σn, we define δ(x, S) = minx′∈S{δ(x, x′)}. The string x is said to be δ-far from
(resp., δ-close to) S if δ(x, S) > δ (resp., δ(x, S) ≤ δ).

Definition 2.2 (PCPP for Pair Languages) For functions r, q : Z+ → Z+, t : Z+×Z+ → Z+,
s, δ : Z+ → [0, 1], a pair language L ⊆ Σ∗ × Σ∗ is in PCPPs,δ[r, q, t] if there exists an (r, q, t)-
restricted verifier V with the following properties:

− Completeness: If (x, y) ∈ L then there exists a π such that PrR[V y,π(x, |y|;R) accepts] = 1,
where V y,π(x, |y|;R) denotes the decision of V on input (x, |y|), oracle access to (y, π) and
coin tosses R.

− Soundness: If (x, y) is such that y is δ(|x| + |y|)-far from Lx ∩ Σ|y|, then for every π it holds
that PrR[V y,π(x, |y|;R) accepts] ≤ s(|x|+ |y|).

If we specialize Definition 2.2 to pair languages where the implicit input is the empty string λ (and
constrain the verifier to polynomial time), then we obtain the standard definition of PCPs.

Definition 2.3 (PCP) A language L is in PCPs[r, q] if there exists a function t(n,K) = t(n, 0) =
nO(1) and a constant δ < 1 such that the pair language L′ = L× {λ} is in PCPPs,δ[r, q, t].

On the other hand, if we specialize Definition 2.2 to pair languages where the explicit input only
specifies the length of the implicit input (and constrain the verifier again to polynomial time), then
we obtain verifiers that can check, in polylogarithmic time, whether a string given as oracle is close
to being in some (“pure”) language. The special case where this language contains error-correcting
encodings of some NP-set was studied in [BFL+91]. We generalize their definition as follows:

Definition 2.4 (Efficient PCPP for pure languages) A language L is in eff-PCPPs,δ[r, q] if
there exists a function t(n,K) = t(0,K) = (logK)O(1) such that the pair language L′ = {λ} × L is
in PCPPs,δ[r, q, t].

4



More generally, we may define efficient PCPP as ones having a verifier that runs in time polynomial
in |(x,K)|; that is, having time complexity t(n,K) = (n logK)O(1).

Recall that most PCP results (only) refer to NP, but many of them can be scaled up to
NTIME(T ) for any T : Z+ → Z+ such that T (m) < exp(poly(n)). Note that such a scaling requires,
as per Definition 2.3, that the verifier run in polynomial-time (rather than in time polynomial in
T ). The few works [PS94, HS00, GS02, BSV+03, BGH+04a, BS05] that focus on the length of
the PCP are an exception: their result refers to NP and do not extend to NTIME(T ), because
the resulting verifiers run in time polynomial in T (rather than polynomial in its input length).
Obtaining such (polynomial-time) extensions is the goal of the current paper.

Our results: The first main result of this paper is a PCP verifier for NTIME(T ) with query and
randomness complexities analogous to those in [BS05]. Essentially, for every L ∈ NTIME(T ), where
T (n) < exp(poly(n)), we present a PCP for L using proof length T (n) · poly log T (n) verifiable in
time poly log T , generalizing the results in [BS05] which refers to the case T (n) = poly(n). We
stress that our verifier runs in time polynomial in n, logK and log T , and this should be contrasted
with the poly(T )-time verifier implicit in works as [GS02, BSV+03, BGH+04a, BS05] (as well as
in [PS94, HS00]) which refer explicitly only to the case T (n) = poly(n). More generally, we have:

Theorem 2.5 (Efficient PCPPs with short proofs) Suppose that L is a pair language in
NTIME(T ) for some non-decreasing function T : Z+ → Z+. Then, for every constant s > 0, we
have L ∈ PCPPs,δ[r, q, t], for

• Proximity parameter δ(m) = 1/poly log T (m),

• Randomness complexity r(m) = log2 T (m) +O(log log T (m)),

• Query complexity q(m) = poly log T (m),

• Verification time t(n,K) = poly(n, logK, log T (n+K)).

In particular, we obtain PCPPs for pure languages in NP (i.e., L′ = {λ}×L) that meet the query and
randomness complexities of [BS05], while using a verifier that runs in time that is polylogarithmic
in its (implicit) input. Likewise, we obtain PCPs for languages in NEXP, with a randomness and
query complexities that generalize the PCPs of [BS05] (which refer only to languages in NP).

Our second main result provides similar efficiency improvements to the PCPs of [BGH+04a].
The proofs are somewhat longer than in Theorem 2.5, but the number of queries is much smaller.

Theorem 2.6 (Efficient PCPPs with small query complexity]) Suppose that L is a pair
language in NTIME(T ) for some non-decreasing function T : Z+ → Z+. Then, for every function
ε : Z+ → (0, 1) such that ε(m) ≥ log log log T (m)/2 log log T (m) and every two constants s, δ > 0,
we have L ∈ PCPPs,δ[r, q, t], for

• Randomness complexity r(m) = log2 T (m) + Aε(m), where m = n + K and Aε(m) =
O

(
log T (m)2ε(m)

)
+

(
1

ε(m) + log T (m)ε(m)
)
· log log T (m),

• Query complexity q(m) = O(1/ε(m)),

• Verification time t(n,K) = poly(n, logK, log T (n+K)).
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In particular, we obtain PCPPs for pure languages in NP (i.e., L′ = {λ} × L) that meet the
query and randomness complexities of [BGH+04a], while using a verifier that runs in time that is
polylogarithmic in its (implicit) input. Likewise, we obtain PCPs for languages in NEXP, with a
randomness–query complexity trade-off that generalize the PCPs of [BGH+04a] (which refer only
to languages in NP).

Two special cases of interest are:

1. Letting ε(m) be an arbitrarily small constant, yields query complexityO(1/ε(m)) and random-
ness complexity log2 T (m)+log2ε T (m), which in turn means proof length T (m)·exp(log2ε T (n)).

2. Setting ε(m) = log log log T (m)/2 log log T (m), yields query complexity o(log log T (m)) and
randomness complexity is log2 T (m) + o((log log T (m))2), which in turn means proof length
T (m) · exp(o(log log T (m))2).

3 Overview of our proofs

Our main results are obtained by applying a common collection of ideas to two previous PCP
constructions. Specifically, Theorem 2.5 is obtained by constructing an efficient verifier that is pat-
terned after the verifier of [BS05], while Theorem 2.6 is obtained based on the work of [BGH+04a].
Here we describe the main ideas used to get our improvements.

For starters, we focus on the construction of PCPP for pure languages (i.e., PCPP that only
refer to an implicit input, and no explicit input). In both the aforementioned constructions, there
is a main construct (a “robust” PCPP) that is composed with itself (double-logarithmically) many
times. Two issues arise. The first issue is to obtain such a main construct (i.e., a robust PCPP
with adequate query and randomness complexities) that supports polylogarithmic time (rather than
polynomial-time) verification. Loosely speaking, this requires a more efficient reduction from NP (or
NTIME(T )) to an algebraic constraint satisfaction problem (CSP) (of the type used in [BGH+04a]
and [BS05], resp.). In particular, we obtain a succinct representation (of polylogarithmic length)
of the constraints. The second issue is the use of the proof composition paradigm in a context
(indeed ours) where one cannot afford verification time that is as high as the query complexity of
the intermediate verifiers used in the construction. (Needless to say, the verification time will be
lower-bounded by the query complexity of the final verifier.) Loosely speaking, addressing this issue
requires working with succinct representations of the sequence of queries and decision predicate of
the intermediate verifiers. When proving Theorem 2.6 we introduce a general formulation (of so-
called “verifier specifications”) supporting this process, whereas the proof of Theorem 2.5 capitalizes
on properties of the special algebraic problem used in [BS05]. Below, we present more detailed
overviews of the two proofs, starting with the proof of Theorem 2.5.

Let us start by justifying our focus on PCPPs for pure languages (or, equivalently, PCPPs
without explicit inputs). Recall that our final goal is to obtain PCPPs for general languages (e.g.,
PCPPs for circuit-value where the circuit is given as explicit input and the assignment is an implicit
input). Instead, for sake of simplicity, we wish to carry out the construction when only referring to
PCPPs that have no explicit input. We cannot just move the explicit input x to the implicit part
(i.e., replace the implicit input y by (x, y)), because this will not maintain the desired guarantees
(i.e., that y is close to some ŷ such that (x, ŷ) that is in the language since soundness only guarantees
that (x, y) is close to some (x̂, ŷ) is in the language, where it may be that x 6= x̂..) Instead, we
should incorporate in the implicit input an error correcting encoding of the explicit input, That
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is, for a language L, rather than verifying that the implicit input y is close to some ŷ such that
(x, ŷ) ∈ L, we verify that the implicit input (ECC(x), y) is close to some ECCx̂, ŷ) where ECC
is an error-correcting code and the two components ECC(x) and y are given equal weight when
measuring Hamming distance. (For details, see Lemma 7.5.)

3.1 Proof of Theorem 2.5

The proof modifies the construction of Ben-Sasson and Sudan [BS05]. We thus start by describing
the verifier of [BS05], hereafter referred to as the BS-verifier.

The BS-Verifier. The first step in the construction of the BS-verifier reduces the problem at
hand to an instance of a “Constraint Satisfaction Problem on a De-Bruijn graph”: that is, a
problem where the goal is to color the vertices of a DeBruijn graph such that the coloring of any
single vertex is “consistent” with the coloring of its neighbors. Consistency is given by a list of legal
values for every neighborhood, and varies from neighborhood to neighborhood. Thus, an instance
of the problem is represented by such a sequence of sets (or constraints), where each set represents
the legal values for a given vertex and its neighbors. The second step in the construction of the
BS-verifier consists of an arithmetization of the DeBruijn-CSP, resulting in a “univariate algebraic
CSP”: a problem where the goal is to determine if there exists a low-degree univariate polynomial
A over a finite field F such that applying a given “local” operator C to A results in a polynomial
B = C(A) that is zero on a prespecified set H ⊆ F. Thus, the operator C specifies an instance
of this problem, and is determined from the constraints of the DeBruijn-CSP by a straightforward
univariate interpolation. The third step in the construction of the BS-verifier is designing a verifier
for the univariate algebraic CSP. A special ingredient in this verifier is a recursive procedure to
verify whether a low-degree (univariate) polynomial B, given by a (possibly slightly corrupted)
table of its values, is zero on every α ∈ H. This recursive verification constitutes a special-purpose
proof composition technique. (It is special-purpose in the sense that it refers to PCPPs for a specific
language rather than all of NP.)

It turns out each of these three steps relies on the fact that the resulting BS-verifier is allowed
polynomial-time computations. For example, given an instance y (of the original problem), the
constraints in the DeBruijn-CSP are determined in poly(|y|)-time, and each constraint depends on
the entire y. Seeking polylogarithmic verification time, we need to find an alternative reduction
and an adequate arithmetization.

Getting an efficient BS-type verifier. Recall that given an implicit input y and we need to
verify membership in some (adequate universal) language L. Referring to the first step in the
construction, we wish to transform y into a succinct representation of an instance of DeBruijn-
CSP, but need to do so without knowing the entire y. In such a succinct DeBruijn-CSP, the
constraint associated with a vertex v (i.e., placing conditions on the coloring of v and its neighbors)
can be computed in time poly(|v|) possibly using oracle access to y. Furthermore, for subsequent
arithmetization, even such efficient computation is not sufficient; we require the constraint to be
computed extremely efficiently, e.g., by an NC1 circuit (applied to the vertex name). To this end,
we define Succinct DeBruijn-CSP (see Definition 4.3 (where we use the term generalized coloring))
in a way that makes such efficient computation a requirement; and reduce the universal problem
to this problem (see Theorem 4.4). This reduction revisits a classical reduction of general Turing
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machine computations to Turing machine computations on oblivious machines due to Pippenger
and Fischer [PF79]. This replaces the first step in the BS-construction.

Next we jump to the third step of the BS-construction, namely of verifying that a univariate
polynomial B, given by a (slightly corrupted) table of the associated function B : F → F, is
zero on a given set S ⊆ F. In order to perform this verification, the BS-verifier considers the
polynomial ZS(x) ,

∏
e∈S(x − e), and evaluates ZS(r) at a random r ∈ F. The BS-verifier

performs this computation in the straightforward way, taking O(|S|) field operations, which turns
out to be polynomially related to the length of the (implicit) input (i.e., y). For our purposes
such running-time is too expensive; recall, we need a verifier running in polylogarithmic (in |y|)
time. In particular, we wish to evaluate ZS in poly log |F| time. To this end we exploit the fact
that we (as designers of the PCP) have (almost full) control on the choice of the set S for which
the verifier needs to evaluate the polynomial ZS . We now use the fact that if F has small (i.e.,
constant) characteristic (e.g., two), and S is a linear subspace of F (where we view F as a vector
space), then the polynomial ZS is log |S|-sparse (i.e., has only log |S| terms) and thus ZS can be
evaluated in poly log |S| field operations. (The relevant algebraic facts are described and proved
in Section 5.1.) We mention that the computational advantages of working with linear subspaces
of finite fields is one of the main contributions of this work (even though the underlying algebraic
facts are well-known and were used, though not computationally, in [BS05, BGH+04a]).

Finally we move to the second step of the BS-construction, where we transform DeBruijn-graph
CSP to (univariate) algebraic CSPs. It is shown in [BS05] how to embed1 the DeBruijn graph
into a Cayley-like graph over any sufficiently large field of characteristic two (where the vertices
of the Cayley-like graph are elements of the field and adjacency is given by a constant number
of affine functions over the field). We use the same embedding, and arithmetize the constraint
function over the same embedding. For this part, we need to transform the “constraint” function
C, where C(v, · · · ) describes the constraint on the neighborhood of the vertex v, into a polynomial
of moderately low-degree that can be computed by a very small circuit over F. More specifically,
if we let S ⊆ F be the image of the embedding, then we would like the polynomials to have degree
Õ(|S|), while the size of the circuits should be poly log |S|. This is a non-trivial challenge, since
all we know about the function C is that it is a small depth circuit when its input is viewed as a
sequence of bits, whereas now we want to view the input as an element of S ⊆ F and perform only
F operations on it.

Once again we bring in the fact that S is selected to be a linear subspace of F. We also use the
fact that the bits of the natural representations of v ∈ S are projection functions, which in turn
are linear maps of S to F. We prove and use the fact that, when S is a linear subspace of F, any
linear map f : S → F can be represented by a (log |S|)-sparse polynomial f̂ : F → F of degree |S|
that extends f (see Proposition 5.1). This implies that any bit in the natural representation of
v ∈ S can be computed efficiently by a small algebraic circuit of low-degree. We conclude that any
small-depth small-size circuit can be arithmetized naturally to get a small-degree small-algebraic
circuit (see Theorem 5.5). Thus, we get a low-degree polynomial that is computed by a small
algebraic circuit that represents, for every v ∈ S, the constraint associated with v’s neighborhood.

1The notion of embedding used here is that of an injective homomorphism, where a vertex u is mapped to f(u)
such that the existence of a directed edge u → v in the image graph implies that f(u) → f(v) is an edge of the graph
used for embedding. Note that f is not necessarily surjective and that non-edges need not map to non-edges.

8



3.2 Proof of Theorem 2.6

The proof modifies the construction of Ben-Sasson et al. [BGH+04a]. We thus start by describing
the verifier of [BGH+04a], hereafter referred to as the BGHSV-verifier. Recall that the BGHSV-
verifier has lower query complexity than the BS-verifier, though it utilizes slightly longer proofs.
These features are inherited by Theorem 2.6 (as compared to Theorem 2.5).

The BGHSV verifier. The BGHSV-verifier is built by repeated composition of an atomic ver-
ifier, which we’ll call the Basic-Verifier. The ingredients going into the Basic-Verifier are similar to
the ingredients of the BS-verifier: i.e., there is a reduction of SAT to DeBruijn-CSP; a reduction of
DeBruijn-CSP to an algebraic problem (though this time, the reduction is to problems involving
multivariate polynomials), and finally a construction of a (robust) PCPP verifier for the algebraic
problem.

Getting an efficient BGHSV-type verifier. Employing similar (and sometimes, the same)
ideas as those described in Section 3.1, we can improve the running time of this verifier also, and
make it comparable to its query complexity. Unfortunately this falls (well) short of our goals of
polylogarithmic time verification. This is because we later employ composition to reduce the query
complexity of the PCP system. However the query complexity at the Basic-verifier could be as
large as

√
K, for theorems of size K. The problem is that composition does not reduce the running

time of the composed verifier: the running time of the composed verifier is the sum of the running
times of the ingredient verifiers.

Thus the main additional challenge in reducing the time-complexity of the BGHSV-verifier is
in redesigning the ingredients of PCP composition such that the verifiers used in composition have
significantly smaller running times than their query complexity! We do so in the usual spirit of
“implicit” computations: Rather than building a circuit that describes the computations of the
Basic-verifier, we describe its computations by Turing machines. Rather than listing all the queries
that the Basic-verifier would make, we describe a function that when given an index i, returns
the ith query that the verifier would make (if allowed to run fully). Put together this gives a
specification of a verifier rather than the actual verifier itself. This idea of a verifier specification
is defined formally in Section 7 (see Definition 7.1). We then describe how composition works for
verifier specifications (see Lemma 7.3). Finally, we show how to construct an adequate verifier
specification based on the techniques described above. Combining all of these gives a proof of
Theorem 2.6.

3.3 Organization of the presentation of the proofs

In Section 4 we show how to reduce any language in NTIME(T ), for T (m) ≤ exp(poly(m)), to a
generalized coloring problem referring de-Brujin graphs. (In the above overview, we have referred
to this generalized coloring problem as to a Constraint Satisfaction Problem, where constraints are
applied only to local neighborhoods consisting of a vertex and its neighbors.) In Section 6, following
adequate algebraic complexity preliminaries presented in Section 5, we present arithmetizations of
the generalized de-Brujin coloring problem. Specifically, Section 6.2 presents an Multivariate arith-
metization, which is used in the proof of Theorem 2.6, whereas Section 6.1 presents an Univariate
arithmetization, which is used in the proof of Theorem 2.5. The complexity bounds for the arith-
metizations follow from facts that are proven in Section 5. As mentioned in the overview, proving
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Theorem 2.6 requires a general proof composition technique that supports implicit specifications
of verifiers. The adequate techniques for this are developed in Section 7.

4 A Universal Graph Coloring Problem

Our universal problem refers to a family of graphs that are related to deBruijn graphs. Let ⊕ denote
the bitwise exclusive-or operation. We use commas to denote concatenation of binary strings.

Definition 4.1 The extended deBruijn graph DBk,l is a directed graph with l layers each containing
2k nodes, which are represented by k-bit strings. The layers are numbered 0, 1, . . . , l− 1. The node
represented by v = (b0, . . . , bi∗ , . . . , bk−1) in layer i has edges pointing to the nodes represented by
Γi,0(v) = (b0, . . . , bi∗ , . . . , bk−1) and Γi,1(v) = (b0, . . . , bi∗ ⊕ 1, . . . , bk−1) in layer i+ 1 mod l, where
i∗ , i mod k.

Let M be any fixed Turing machine (later we will fix M to be the universal Turing machine
described in Lemma 7.5 . The bounded halting problem BHM for machine M , is defined as below.

Definition 4.2 (Bounded Halting Problem) The bounded halting problem for the Turing ma-
chine M , indicated by BHM has instances of the form (y, t) where y is an instance of the language
recognised by M and t is any positive integer. The instance (y, t) ∈ BHM iff the machine M accepts
the instance y within 2t steps.

We show how to reduce the bounded-halting problem for M to the following constraint satisfaction
problem on (extended) deBruijn graphs. Following [VL88], we actually prefer to present the local
constraints as a generalized coloring problem.2

Definition 4.3 (Generalized deBruijn Graph Coloring) The problem is defined with respect
to the infinite family of extended deBruijn graphs, {Gt = DBt+3,(t+3)2 = (Vt, Et)}t∈N, from Defini-
tion 4.1, and is parameterized by five (fixed) finite objects:

1. a finite color-set C,

2. an extraction function fextract : C → {0, 1} ∪ {⊥},

3. a finite vertex-type set V,

4. a type-coloring constraint fcolor : V × C3 → {0, 1}, and

5. a uniform NC1 family of type-assignments fv−type = {fv−type
(t) : Vt → V}t∈N; (that is, a

logspace machine that on input 1t, outputs a boolean formula computing fv−type
(t)),

Given an input y ∈ {0, 1}∗, the problem is to determine whether, for t = dlog2 |y|e, there exists a
coloring C : Vt → C such that the following two conditions hold

2We mention that the generalized coloring problem used in [VL88] was defined over the grid, and its universality
followed by a reduction from the standard tableau associated with the computation of a TM. On the other hand,
in [VL88] only one type of vertices is used (i.e., |V| = 1).
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1. for all vertices v in Gt, we have fcolor(fv−type(v), C(v), C(Γi,0(v)), C(Γi,1(v))) = 0.

In such a case, we say that C satisfies the coloring constraints, which are induced by fv−type

and fcolor.

2. for all 1 ≤ i ≤ K = |y|, we have yi = fextract(C(vi)), where vi is vertex number 2 · 2t + i in
layer 0 of Gt.

In such a case, we say that C is consistent with the input (or with y).

We show that for any Turing machine M , there exist a setting of the five finite parameters of the
Generalized deBruijn Graph Coloring problem that makes it universal. That is:

Theorem 4.4 (Universality of Generalized deBruijn Graph Coloring) For any Turing
machine M , there exist finite parameters C, fextract, V, fcolor and fv−type, such that the bounded-
halting problem for M is reducible via the identity mapping3 to the corresponding Generalized
deBruijn Graph Coloring problem. Furthermore, for every y ∈ {0, 1}K , where K < 2t, machine M
halts on y within 2t steps if and only if there exists a coloring C : Vt → C that satisfies the coloring
constraints and is consistent with y.

Note that the size of Gt is (t+3)2 ·2t+3, which is O(T ·log2 T ), where T = 2t bounds the running time
of M . Theorem 4.4 is stronger than the related result of Polishchuk and Spielman [PS94] in the
sense that the coloring problem uses a fixed set of coloring constraints, which can be generated very
efficiently (i.e., it admits a succinct description by uniform NC1 circuits). In contrast, the reduction
of [PS94] uses constraints that are computed in time poly(T ) based on the original instance.

Our proof of Theorem 4.4 combines the ideas of [PS94] with the oblivious TM simulation of
Pippenger and Fischer [PF79]. Actually, it is simpler to bypass oblivious Turing machines and
rather just show how to describe valid computations of M in a recursive manner (which is indeed
the basis for the oblivious simulation). For simplicity, we only show how to do this for a 1-tape
TM, but the proof is easily extended to handle multi-tape TMs (which is needed, because we will
eventually work with a 2-tape universal Turing machine).

Proof of Theorem 4.4: Unlike [PS94], we reduce from the computation of a (universal) Turing
Machine rather than from a computation of a non-uniform circuit (which is given as explicit input
in [PS94]). Indeed, we can emulate a TM computation by a circuit. Considering the straight-
foward circuit that emulates the computation of the TM, we obtain a quadratic blow-up, which
will propagate to the size of the graph on which we “route” this circuit (following [PS94]). But,
as is well-known (e.g., [PF79]), there exists a more efficient emulation; that is, a T -step TM com-
putation can be emulated by a (T log T )-size circuit, which in turn can be routed on a graph of
size Õ(T ). The problem is that we need to find the relevant routing (which will be encoded as
the coloring constraints) very efficiently — it should be described by a uniform NC1 circuit of size
poly log T (c.f., Definition 4.3). In a sense, manage to do so by capitalizing on the simple structure
of the emulation in [PF79]. however, it turns out to be more convenient to take a direct approach
and work with TM computations, rather than reducing back and forth to the evaluation of some
highly-uniform circuits.

3We say that a problem A is reducible to another problem B via the identity mapping if the following holds:
For every instance x of the problem A, x is an YES-instance (similarly NO-instance) of A iff x is an YES-instance
(NO-instance) of B.
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Say M has state set Q, containing a start state qstart and an accept state qaccept, tape alphabet
Γ = {0, 1}∪{t}, and transition function δM : Q×Γ→ Q×Γ×{−1, 0,+1}. Assuming that ⊥6∈ Q,
we represent configurations of machine M by sequences over Λ = Γ×({⊥}∪Q), where each symbol
in Λ represents a tape symbol, and indicates whether or not the head of M is in that position, and
if so the state of M . A (partial) configuration of length L is a function σ : [0, L−1]→ Λ, representing
a L-cell window of M ’s computation. Specifically, σ(i) = (σs(i), σq(i)) says that σs(i) ∈ Γ is the
tape symbol in the ith cell of the window, σq(i) =⊥ indicates that the head of M is not in the ith

cell, whereas σq(i) 6=⊥ indicates that the head of M is in the ith cell and that state of M is σq(i).
We say that σ is a valid configuration if there is exactly one cell i such that the second component
of σ(i) is in Q, and we denote this cell by head(σ) = i. For configurations σ and σ′ both of length
L, we call σ′ the successor of σ if σ′ is obtained from σ by one step of M and this step does not move
the head outside the specified window. In particular, if 0 < head(σ) < L, then σ has a (unique)
successor. Similarly, σ′ is the tth successor of σ if σ′ is obtained from σ by t steps of M , none of
which leave the tape window of length L.

We say that a valid 8L-symbol long configuration σ is safe if the head is in the “middle half” of
σ; that is, head(σ) ∈ [2L, 6L−1]. A triple of 8L-symbol long configurations (σI , σM , σF ) (where the
subscripts stand for “initial,” “middle,” and “final”) is defined to be good if σI is a safe configuration
of length 8L, configuration σM is the Lth successor of σI , and σF is the Lth successor of σM . (Note
that the fact that σI ’s head is in the middle half implies that the head cannot move outside the
window within 2L steps, so σM and σF are well-defined.)

The key observation underlying the Pippenger–Fischer oblivious TM simulation is that compu-
tations of 2L steps in a window of size 8L can be recursively simulated by two computations of L
steps each in windows of size 4L. The following lemma formulates this idea in a way convenient
for our purposes.

Lemma 4.5 (implicit in [PF79]) Let (σI , σM , σF ) be a triple of 8L-symbol long configurations,
and suppose that σI is safe. The triple (σI , σM , σF ) is good if and only if there exist numbers
h, h′ ∈ [0, 4] and two good triples of 4L-symbol long configurations, (σ′I , σ

′
M , σ

′
F ) and (σ′′I , σ

′′
M , σ

′′
F ),

such that the following holds:

1. For every i ∈ [0, 4L− 1],

• σ′I(i) = σI(h · L+ i),

• σ′F (i) = σM (h · L+ i),

• σ′′I (i) = σM (h′ · L+ i), and

• σ′′F (i) = σF (h′ · L+ i).

2. σM (i) = σI(i) for every i ∈ [0, 8L− 1] \ [h · L, h · L+ 4L− 1], and

3. σF (i) = σM (i) for every i ∈ [0, 8L− 1] \ [h′ · L, h′ · L+ 4L− 1].

The forward direction of the the lemma implies that during the first L steps succeeding σI the head
remains in the interval [hL, hL + 4L], and the during the next L steps it remains in the interval
[h′L, h′L+ 4L].
Proof Sketch: For the forward direction we set h = bhead(σI)/Lc − 2, implying that h ∈ [0, 3]
(because head(σI) ∈ [2L, 6L−1]) and 〈σ′I(i)〉

4L−1
i=0 = 〈σI(h · L+ i)〉4L−1

i=0 is safe (because head(σI) ∈
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[hL+2L, hL+3L−1] and so head(σ′I) ∈ [2L, 3L−1] ⊂ [L, 3L−1]). Let b′ = bhead(σM )/Lc ∈ [1, 6]
(because head(σM ) ∈ [L, 7L − 1]), and set h′ = b′ − 1 if b′ < 5 and h′ = b′ − 2 otherwise. Thus,
h′ ∈ [0, 4] and 〈σ′′I (i)〉4L−1

i=0 = 〈σM (h′ · L+ i)〉4L−1
i=0 is safe (because head(σM ) ∈ [b′L, b′L+ L− 1] ⊂

[h′L+L, h′L+3L−1] and so head(σ′′I ) ∈ [L, 3L−1]). It follows that (σ′I , σ
′
M , σ

′
F ) and (σ′′I , σ

′′
M , σ

′′
F )

are good. The opposite direction is straightforward.
We now use this to express M ’s acceptance criterion as a constraint satisfaction problem (using

an instance of size Õ(2t) to encode 2t steps). Our focus is on the simplicity of the rule determining
the unknowns that are considered in each constraint.

In the following lemma, T0 represents the initial contents of M ’s tape as well as its contents
after 2t and 2 · 2t steps. The other Ti’s represent numerous partial configurations that arise in the
computation. Specifically, Ti(j, ·) represents some window of length 2t−i after j · 2t−i (as well as
after (j + 1) · 2t−i and (j + 2) · 2t−i) computation steps. The correspondances between the various
Ti’s are given by the functions Hi’s that correspond to the h’s used in Lemma 4.5. The fixed
Boolean functions ψ0, ψ1, ψ2 and ψ3 will capture the straightforward conditions that should hold
for the aforementioned variable functions to encode a possible computation of M .

Lemma 4.6 (Reduction to a CSP) For every Turing machine M , there exist fixed functions
ψ0, ψ1 : Λ(5+1)·3 × [0, 4]2 → {0, 1}, and ψ2 : Λ3 × [0, 4]2 → {0, 1} and ψ3 : Λ8·3 → {0, 1} such that
for every t ∈ N and K < 2t, machine M accepts the input y ∈ {0, 1}K within 2t steps if and only
if there exist functions T0, . . . ,Tt and H0, . . . ,Ht satisfying the following conditions:

1. Ti : {0, ..., 2i − 1} × {0, ..., 8 · 2t−i − 1} → Λ3,for every i = 0, . . . , t.

The 3 components will be indexed by I,M and F .

2. Hi : {0, ..., 2i − 1} → [0, 4]2, for every i = 0, . . . , t.

3. T0(0, ·)I encodes the initial configuration with input y. That is, T0(0, 2 · 2t)I = (t, qstart),
T0(0, 2 · 2t + k)I = (yk,⊥) for k = 1, . . . ,K, and T0(0, k)I = (t,⊥) for all other values of k.

4. T0(0, ·)F encodes an accepting configuration. That is, T0(0, 2 · 2t)F = (·, qaccept).

5. For every i = 0, . . . , t− 1, j = 0, . . . , 2i − 1 and k = 0, . . . , 4 · 2t−i − 1,

ψ0

(
〈Ti(j, k + h · 2t−i)〉h∈[0,4],Ti+1(2j, k),Hi(j)

)
= 1,

and

ψ1

(
〈Ti(j, k + h · 2t−i)〉h∈[0,4],Ti+1(2j + 1, k),Hi(j)

)
= 1.

In other words, For every i = 0, . . . , t − 1 and j = 0, . . . , 2i − 1, the functions Ti(j, ·)I and
Ti(j, ·)M fit Ti+1(2j, ·)I and Ti+1(2j, ·)F , whereas Ti(j, ·)M and Ti(j, ·)F fit Ti+1(2j + 1, ·)I

and Ti+1(2j, ·)F , where the fitting is with respect to adequate shifts in Ti, which in turn are
given by Hi.

6. For every i = 0, . . . , t − 1 and j = 0, . . . , 2i − 1, the “unfitted” portions of Ti(j, ·) remain
unchanged. That is, for every i = 0, . . . , t− 1, j = 0, . . . , 2i − 1, and k = 0, . . . , 8 · 2t−i − 1,

ψ2(Ti(j, k),Hi(j)) = 1.
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7. Tt(j, ·) encodes single computation steps of M . That is, for every i = 0, 2t − 1, it holds that
ψ3({Tt(x, k) : k ∈ [0, 7]}) = 1.

Note that Lemma 4.6 asserts a reduction, via the identity transformation, from the Bounded Halting
(BHM ) problem (of M) to a Constraint Satisfaction Problem (CSP). Indeed, the instance (y, t) of
BHM (representing the question of whether M accepts y within 2t steps) is mapped to the instance
(y, t) of CSP (representing the question of whether there exist functions that satisfy some set of
conditions that depend on t and y).
Proof Sketch: For any i ∈ {0, ..., t − 1} and j ∈ {0, ..., 2i − 1}, the triple Ti(x, ·) represents a
triple of 8 · 2t−i-long configurations, denoted (σI , σM , σF ), whereas Ti+1(2j, ·) and Ti+1(2j + 1, ·)
represent the two “children” configurations as in Lemma 4.5, with Hi(j) representing the pair (h, h′)
(asserted in Lemma 4.5). (Indeed, as indicated below, T0(·)I is safe.)

Item 3 specifies that the initial configuration of length 8 · 2t has the TM head in the start state
on tape position 2 · 2t followed by the input y, and the rest of the tape has blank cells. (Thus,
T0(·)I is safe.) Item 4 specifies that the final configuration has the TM head in the accept state
(on tape position 2 · 2t). Note that there is a T0 that satisfies these two constraints and constitutes
a good configuration-triple if and only if M accepts y within 2t steps.

Items 5 and 6 (when coupled with suitable functions ψ0, ψ1 and ψ2) capture the recursive
characterization of a good configuration-triple Ti(j, ·) in terms of its “children” Ti+1(2j, ·) and
Ti+1(2j+1, ·), as given in Lemma 4.5 (using the pair (h, h′) = Hi(x)). Item 7 (when coupled with a
suitable function ψ3) verifies that each leaf (in the recursion tree) Tt(j, ·) = (σI , σM , σF ) constitutes
a good configuration-triple, which in turn means that σM (resp., σF ) is the (direct) successor of σI

(resp., σM ). Indeed, ψ3 depends on the transition function of the TM M .
We now show how the above CSP can be embedded in a extended deBruijn graph, establishing

Theorem 4.4. Recall that the extended deBruijn graph has (t+ 3)2 layers, each with 8 · 2t vertices
represented by bit-strings in {0, 1}t+3. We will only use the first (t+1) · (t+3) layers, which we will
view as being numbered (0, 0), . . . , (0, t+ 2), . . . , (t, 0), . . . , (t, t+ 2). We will interpret a coloring of
vertex in layer (i, 0) as giving the functions Ti and Hi. Specifically, viewing a vertex v ∈ {0, 1}t+3

in layer (i, 0) as a pair (j, k), where j ∈ {0, ..., 2i − 1} and k ∈ {0, ..., 8 · 2t−i − 1}, we interpret v’s
color as a pair (Ti(j, k),Hi(j, k)) ∈ Λ3× [0, 4]2. Note, however, that in Lemma 4.6, the function Hi

only depends on j. Thus, in addition to the conditions listed in Lemma 4.6, we will need to enforce
the condition Hi(j, k) = Hi(j, k′) for all k, k′. To enforce all of these conditions, we will use the
intermediate layers between layer (i, 0) and layer (i+ 1, 0). Specifically, we will route information
between layer (i, 0) and layer (i+ 1, 0), using easily constructible routes. We will use the coloring
constraints to guarantee proper routing of information (through the intermediate vertices) as well
as to enforce the conditions listed in Lemma 4.6 (at the end vertices, i.e., at layers (·, 0)). Actually,
to allow for this routing, we use a larger set of color such that each intermediate vertex is colored
by a O(1)-long sequence of “basic colors” (i.e., of the type used for vertices at layers (·, 0)). Indeed,
the coloring constraints will depend on the vertex, and typically most conspiciously on the layer of
the vertex.

Lemma 4.7 (Reducing CSP to deBrujin Coloring) For every quadruple of functions (ψ0, ψ1, ψ2, ψ3),
there exist finite parameters C, fextract, V, fcolor and fv−type, such that the following holds: For ev-
ery t ∈ N, K < 2t, and y ∈ {0, 1}K there exist functions T0, . . . ,Tt and H0, . . . ,Ht satisfying the
conditions of Lemma 4.6 if and only if there exists a coloring C : Vt → C that satisfies the coloring
constraints and is consistent with y.
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Lemma 4.7 reduces the CSP (of Lemma 4.6) to the Generalized deBruijn Graph Coloring. Again,
the reduction is by the identity mapping (applied to the instance (y, t)).
Proof Sketch: Referring to the aforementioned correspondance between colors and the functions
T0, ...,Tt and H0, ...,H0, we need to show how the parameters of the coloring problem can enforce
the conditions of the CSP. Recall that we need to deal with conditions of three types:

1. The CSP conditions listed in Lemma 4.6, which typically refer to Ti(j, k + h · 2t−i) and
Ti(2j + h, k) for a constant number of values of h as well as to Hi(j, k).

2. The auxiliary conditions Hi(j, k) = Hi(j, k′), for all j, k, k′.

To enforce all of these conditions, we will use the intermediate layers between layer (i, 0) and layer
(i+1, 0). Specifically, we will “route” the (Ti,Hi) values assigned to vertices in layer (i, 0) through
these intermediate layers so that each of the constraints can be checked by a coloring condition
that refers to the values that reach each vertex of layer (i + 1, 0): For each vertex v = (j, k) in
layer (i+ 1, 0) we check (via a coloring condition) its value (i.e., color) against the values assigned
to vertices (bj/2c, k), ..., (bj/2c, k + 4 · 2t−i) of layer (i, 0). This is done by ensuring that only a
constant number of values are routed through any intermediate vertex and that the routing is
simple enough. It suffices to consider each of the above five required routings seperately. That is,
for some h ∈ [0, 4], we wish to determine a set of simple routes such that each vertex v = (j, k) of
layer (i+ 1, 0) is reached from the corresponding vertex u = (bj/2c, k + h · 2t−i) of layer (i, 0).

Let us take a closer look at these two (generic) vertices. Denoting by bin`(q) the `-bit long
binary representation of the integer q ∈ {0, ..., 2` − 1}, we observe that v = bini+1(j)bint−i+2(k)
whereas u = bini(bj/2c)bint−i+3(k + h · 2t−i), where j ∈ {0, ..., 2i+1 − 1} and k ∈ {0, ..., 2t−(i+1) −
1}. Thus, letting α = bini(bj/2c) and τ = j mod 2, we have v = ατ03bint−(i+1)(k) and u =
αbin3(h)bint−(i+1)(k). We infer that v and u differ only in a constant number of positions, and
furthermore these positions are easy to determine (because they depend merely on h and the
(i+1)st most significant bit of v, which is the least significant bit of j). Thus for any n, there exists
a constant number of patterns p ∈ {0, 1}t+3 (in our case two) such that routing each u to u⊕ p, for
each pattern p, will serve all routes we need. We note that for each destination vertex, only one
of the two incoming routes will be relevant. But we can ignore the information coming from the
irrelevant route. Determining which route is relevant can be done by just looking at the (i + 1)th

most significant bit of v and thus, certainly by a uniform NC1 of the vertex name (i+ 1, v). The
destination vertex (of layer (i + 1, 0)) also needs to apply the relevant ψq’s (from Lemma 4.6) to
the values contained in the colors available to it. This can be done by a fixed coloring constraint
(which will be applied at vertices of layer (i+ 1, 0)).

For any fixed p, routing u of layer (i, 0) to u⊕ p of layer (i+ 1, 0) is done in a straightforward
manner. That is, each intermediate vertex w = w1 · · ·wt+3 in layer (i, i′) routes to vertex w′ =
w′

1 · · ·w′
t+3 such that w′

i′ = wi′ ⊕ pi′ and w′
t = wt for all other t, where p = p1 · · · pt+3. This routing

can be enforced by a fixed coloring constraint (which will be applied at vertices of intermediate
layers).

We still need to impose the (auxiliary) constraint Hi(j, k) = Hi(j, k′) for all k, k′. It suffices to
impose this constraint for all k, k′ that differ in one bit position; that is, it suffices to verify that,
for every string α ∈ {0, 1}t−i+3 of Hamming weight one, Hi(j, k) = Hi(j, int(bint−i+3(k)⊕ α)), for
every (j, k), where int(β) is the integer represented by β. This can be achieved by routing Hi(j, k)
(from vertex (j, k) of layer (i, 0)) to vertex (j, k) of layer (i + 1, 0), via the “identity route” (i.e.,
without flipping bits), and letting vertex (j, k) of layer (i + 1, i + i′) compare Hi(j, k) (which is
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routed through it) to Hi(j, int(bint−i+3(k) ⊕ 0i′−110t+3−i−i′)), which can be obtained from one of
its neighbors. Again, this only blows up our sets of colors and vertex types by a constant, and the
vertex types can be specified by a uniform NC1 circuit.

The above refers to the Items 5, 6 and 7 of Lemma 4.6. Dealing with Items 3 and 4, is much
easier. In particular, for Item 3, we should require that the color of vertex (0, 2 · 2t + k) of layer
(0, 0) corresponds to the kth bit of y. Recall that the aforementioned color encodes T0(0, 2 ·2t +k)I ,
which is required to equal (yk,⊥). This correspondence is enforced by an adequate choice of the
function fextract.
Combining Lemmas 4.6 and 4.7, Theorem 4.4 follows.

5 Linear Maps and Efficient Algebraic Computation

In this section, we show that linear maps over GF(2)-vector spaces can be expressed as sparse
polynomials over some extension field of GF(2). We then show how the sparsity of these polynomials
can be used to construct small-sized algebraic circuits from small-sized boolean circuits (for the
corresponding functions).

Motivation: As hinted above, we do not need sparse polynomial representation per se, but rather
use it to provide small circuits for computations that arise in our PCPP constructions. Specifically,
the work of [BS05] refers to univariate polynomails of degree K (and [GS02, BGH+04a] refers
to multivariate polynomials of degree 2

√
log K or so). Some of the PCPP verification relies on the

ability to evaluate such polynomial at a given input, and in our context we wish to perform this task
in time poly logK. For a large degree d (e.g., d > 2

√
log K), this is possible in case the polynomial

is sparse. Specifically, if a polynomial of degree d has t terms (with all coefficients being known),
then it can be evaluated in time t · poly log d.

5.1 Linear Maps are Sparse Polynomials

We first prove some general results about the sparse polynomial representation of linear maps over
vector spaces over any finite field (not necessarily GF(2)). These will be specialized to GF(2) and
used in Section 5.2 (to obtain efficient algebraic circuits).

For an elaborate discussion of linear maps over vector spaces over finite fields, refer the excellent
book on finite fields by Lidl and Niederreiter [LN94, Chapter 3.4]. The results presented in this
section can be proven using the techniques mentioned in [LN94]. For the sake of completeness, we
(re)state and prove the results in a form that is convenient for us.

Let B ⊂ F be two fields of sizes |B| = q and |F| = qf respectively. Let H ⊆ F be a vector space
of dimension h over the (smaller) field B; that is, H is a vector space B-spanned by h elements
of F, i.e., there exists a basis {e1, . . . , eh} of h elements in F such that every element of H can
be expressed as

∑h
i=1 ciei with c1, ..., ch ∈ B. (For example, we may take H = F (in which case

h = f).) A B-linear map of H to F is a function f : H → F that satisfies f(ax+ by) = af(x)+ bf(y)
for every x, y ∈ H and a, b ∈ B.

The following result shows that any linear map has a sparse polynomial representation.
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Proposition 5.1 Let H ⊆ F be a vector space of dimension h over the (smaller) field B, and
f : H → F be B-linear map. Then there exists a unique polynomial f̂ : F→ F of the form

f̂(x) =
h−1∑
i=0

cix
qi
, where c0, . . . , ch−1 ∈ F

such that f̂ agrees with f on all of H. Moreover, given the evaluations of f on any basis for H,
the coefficients c0, . . . , ch−1 can be found with poly(h, log q) arithmetic operations over F.

Since f̂ is of degree at most |H|/q, we call f̂ the low-degree extension (LDE) of the linear map f .
Proof: Let LH→F

B denote the set of B-linear maps from H to F. For a, a′ ∈ F and L,L′, defining
(aL+a′L′)(z) = aL(z)+a′L′(z), establishes LH→F

B as a vector space over the field F. Observe that
any L ∈ LH→F

B is uniquely determined by its values on any basis {e1, . . . , eh} of H, because for
any λ1, ..., λh it holds that L(

∑h
i=1 λiei) =

∑h
i=1 λiL(ei). On the other hand, any choice for values

v1, ..., vh for the points e1, ..., eh can be extended to a linear map (i.e., L(
∑h

i=1 λiei) =
∑h

i=1 λivi).
Thus, the number of linear maps in LH→F

B is exactly |F|h, and so LH→F
B is an h-dimensional vector

space over F.
We observe that, for any i ≥ 1, the mapping x 7→ xqi

, denoted πi, is a B-linear mapping (of H to
F). Indeed, note that for x, y ∈ H and a, b ∈ B it holds that (ax+ by)q = (ax)q +(by)q = axq + byq,
and so πi(ax + by) = (ax + by)qi

= axqi
+ byqi

= aπi(x) + bπi(y). We claim that π0, ..., πh−1

constitutes a basis for LH→F
B . This is shown by noting that the πi’s are linearly independent

(over F); that is
∑h−1

i=0 ciπi(x) =
∑h−1

i=0 cix
qi

is the all-zero mapping if and only if all ci’s are zero.
(The latter holds because

∑h−1
i=0 cix

qi
has degree at most qh−1 < |H| and therefore cannot vanish

on H unless it is the all-zero polynomial.) Since the dimension of LH→F
B over B is h, the maps

πi, i = 0, . . . , h− 1 constitute a basis for LH→F
B over the field B. It follows that every linear map f

can be represented as a unique linear combination of the πi’s.
The corresponding coefficients, denoted c0, ..., ch−1, can be found by solving (for the ci’s) the

linear system {
∑h−1

i=0 ciπi(ej) = f(ej) : j = 1, . . . , h}, where e1, ..., eh ∈ F is a basis for H. This
involves computing the elements πi(ej) = eq

i

j , i, j ∈ {0, 1 . . . , h − 1} and then solving the linear
system. The former can be done by repeated squaring in poly(h log q) arithmetic operations over
F while the latter requires O(h3) arithmetic operations over F. The uniqueness of the solution
follows, because otherwise there exist non-all-zero coefficients c0, ..., ch−1 such that

∑h−1
i=0 ciπi is the

all-zero mapping (from H to F), which contradicts the (established) fact that π0, ..., πh−1 is a basis
for LH→F

B .
We will be particularly interested in the following “S-vanishing polynomial”, which can be

defined for any S ⊆ F = GF(qf ), but we will focus on the case that S is a vector space over the
base field B.

Definition 5.2 (The S-Vanishing Polynomial) Consider an arbitrary subset of F, denoted S.
The S-vanishing polynomial is defined to be the polynomial whose zeros are precisely the elements
of S. That is:

ZS(x) =
∏
s∈S

(x− s).

Proposition 5.3 If S is a vector space over the base field B then ZS : F → F is a B-linear map;
that is:
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(a) For all u, v ∈ F, ZS(u+ v) = ZS(u) + ZS(v).

(b) For all a ∈ B, v ∈ F, ZS(av) = a · ZS(v).

Proof:

(a) Consider the bivarite polynomial p : F2 → F defined as p(x, y) , ZS(x+ y)−ZS(x)−ZS(y).
Clearly, the total degree of p is strictly less than |S| (note that the highest degree terms in
x and y get cancelled) . Furthermore, for any two elements u ∈ S and v ∈ F, we have that
ZS(v) = Z{s−u:s∈S}(v) = ZS(u + v), because S is a linear subspace of F. Hence, if either
u ∈ S or v ∈ S, we have p(u, v) = 0. Thus, the fraction of zeros of p in F2 is at least
(2|S| · |F| − |S|2)/|F|2 ≥ |S|/|F|, because |S| ≤ |F|. This quantity is strictly greater than
deg(p)/|F|. Hence, it follows from the Schwartz-Zippel Lemma that the polynomial p is the
zero polynomial.

(b) If a = 0, then ZS(av) = ZS(0) = 0 = a ·ZS(v), because S (as a vector space over B) contains
0. Otherwise (i.e., a 6= 0),

ZS(av) =
∏
s∈S

(av − s) = a|S| ·
∏
s∈S

(v − a−1s) = a|S| ·
∏
s∈S

(v − s)

= a|S| · ZS(v) = a · ZS(v)

Proposition 5.4 If S is a d-dimensional vector space over the base field B then there exist c0, . . . , cd−1inF
such that

ZS(x) = xqd
+

d−1∑
i=0

cix
qi

Moreover, the coefficients c0, . . . , cd−1 can be computed with poly(d, log q) arithmetic operations
over F, when given as input a basis for S.

Proof: If S = F, then ZS(x) = x|F|−x = x|S|−x = xqd −x and is of the required form. Suppose
S ( F. By Proposition 5.3, we have that ZS : F→ F is a B-linear map. Hence, by Proposition 5.1
(as applied to H = F), there exists a polynomial ẐS : F→ F of the form ẐS(x) =

∑f−1
i=0 cix

qi
that

agrees with ZS on all of F. Since S ( F, the degree of ZS is |S| < |F|, whereas the degree of ẐS is
q(f−1) < |F|. Thus, both ZS and ẐS are polynomials of degree less than |F|, and since they agree
on all of the field F, they must be the same polynomial. Since ZS is a monic polynomial of degree
|S| = qd, it follows that ZS(x) =

∑f−1
i=0 cix

qi
, with cd = 1 and cj = 0 for every j > d, and the first

part of the proposition follows.
The second part follows since the coefficients of ẐS (and hence that of ZS) can be computed

with poly(d, log q) arithmetic operations over F (c.f., Proposition 5.1).
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5.2 Efficient Algebraic Computation

For the purpose of this section, we will interpret the results of the earlier section (Section 5.1) for
the case when the smaller field is B = GF(2). Hence, in the notation of the earlier section, q = 2.
Recall that the larger field F, which is an extension field of GF(2), can be viewed as a vector space
over GF(2). Let H be an h-dimensional subspace of F, spanned by the vectors {e1, . . . , eh}.

Define bin : H → {0, 1}h to be the function that provides the representation of elements
in H in terms of the aforementioned basis; that is, for any x =

∑h
i=1 λiei ∈ H, it holds that

bin(x) = (λ1, . . . , λh). Note that bin is a one-to-one function, as so referring to it as a representation
of elements in H is indeed justified. The function bin can be naturally generalized to multiple
inputs; that is, bin : Hm → {0, 1}mh satisfies bin(x1, . . . , xm) = bin(x1) ◦ bin(x2) ◦ · · · ◦ bin(xm),
where ◦ is the concatenation operator.

It is natural to call bin(x) a binary representation of x ∈ H. Our main theorem shows that
any small-depth, small-size Boolean circuit operating on the binary representation of Hm can be
converted into an equivalent arithmetic circuit of small size and moderate degree (exponential in
the depth) over F. In particular it says that any bit of the binary representation of an element of
Hm can be computed efficiently.

Theorem 5.5 Let B,F,H and bin be as above. For any Boolean function f : {0, 1}mh → {0, 1}
computed by a circuit C of size s and depth d, there exists a polynomial f̂ : Fm → F of degree at
most |H| · 2d computable by an F-algebraic circuit C ′ of size O(s+mh2) such that

∀(x1, . . . , xm) ∈ Hm, bit(f̂(x1, . . . , xm)) = f(bin(x1, . . . , xm)),

where bit : F → {0, 1,⊥} is defined such that bit(0) = 0, bit(1) = 1 and bit(x) = ⊥ for every
x ∈ F \ B. Moreover, C ′ can be constructed in polynomial-time, when given C, m, and a basis
{e1, . . . , eh} for H.

Recall that |H| = 2h. Thus, although the degree of f̂ may blow-up by a factor of 2h+d, the size of the
algebraic circuit remains almost unchanged if s > mh2 (which will be the case in our applications).
Proof: For simplicity, we will abuse notation and omit the application of bit to the output of
f̂ . We start by considering the special case when the function f is a projection function to a bit.
In this case, we will show that there exists a polynomial f̂ of degree |H|/2 that agrees with f on
Hm, and is computed by an F-algebraic circuit of size O(h).

We first prove this special case for m = 1. Without loss of generality, suppose f : {0, 1}h →
{0, 1} is the projection to the first bit function x 7→ x1. Consider the function f̃ : H → F defined
by f̃(x) = f(bin(x)) (or rather satisfying bit(f̃(x)) = f(bin(x))). Thus, actually f̃ : H → B.
Furthermore, f̃ is a GF(2)-linear map, because for any x =

∑h
i=1 λiei and x′ =

∑h
i=1 λ

′
iei it holds

that f(bin(x+ x′)) = λ1 + λ′1 = f(bin(x)) + f(bin(x′)). Hence, by Proposition 5.1, there exists a
unique low-degree extension f̂ : F → F of f̃ that agrees with f̃ on all of H and has the following
form

f̂(x) =
h−1∑
i=0

cix
2i

for some c0, ..., ch−1 ∈ F. Observe that f̂ can be computed by an F-algebraic circuit of size O(h):
the circuit first computes the powers x, x2, . . . , x2h−1

, by repeated squaring, and then computes the
appropriate linear combination. Also note that the degree of f̂ is at most 2h−1 = |H|/2. This
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proves the result for projections when m = 1 (because, for all x ∈ H, it holds that f̂(x) = f̃(x) =
f(bin(x))).

The case for larger m is identical. The algebraic circuit only works with that component of Fm

in which the projected bit is present, and ignores the remaining components of Fm.
The above special case shows that any individual bit can be extracted by a polynomial of

degree at most |H|/2 that is computable by a F-algebraic circuit of size at most O(h). The general
claim (of the theorem) is then obtained by constructing an arithmetic circuit that first extracts all
individual bits, and then applies (to them) a straightforward arithmetization of the original circuit
C. For example, the arithmetization of the and and not gates is performed as follows:

not(x) = 1− x
and(x, y) = x · y

where the result maintains the intended value for x, y ∈ B. (More generally, any binary gate G(x, y)
is replaced by an appropriate multilinear polynomial x and y, which extends the corresponding
mapping B × B → B.) Thus, the size of the resulting F-algebraic circuit is at most a constant
factor larger than the size of original circuit C plus the size of the algebraic circuits extracting the
individual bits, resulting in a total size of O(s)+mh ·O(h). The degree of the polynomial computed
by this circuit is at most 2d times the degree of the algebraic circuit extracting the individual bits.
The theorem follows.

6 Algebraic Constraint Satisfaction Problems

In this section, we arithmetize the universal graph coloring problem (Theorem 4.4) to obtain an
algebraic constraint satisfaction problem that is easily amenable to PCP constructions. Recall
that we desire to construct efficient (wrt to running time) versions of the short PCPs of [BS05,
BGH+04a]. The PCP constructions of [BS05] require a univariate algebraic CSP with just one
constraint polynomial while that of [BGH+04a] require a multivariate algebraic CSP involving
a logarithmic number of constraint polynomials. For this purpose, we construct two different
(univariate and multivariate) algebraic constraint satisfaction problems for which PCPs can be
constructed along the lines of [BS05] and [BGH+04a]. The key difference between the algebraic
CSPs constructed in this paper and the ones in [BGH+04a, BS05] (as well as those of [PS94,
HS00, BSV+03]) is that the constraint polynomials in the CSPs constructed here can be obtained
very efficiently. More specifically, the verifier can evaluate the constraint polynomial (at any point
it wishes) in time polylogarithmic in the proof size. Verifiers in earlier constructions of nearly
linear-sized PCPs required polynomial time for the same task.

We first arithmetize the graph coloring problem to a univariate algebraic CSP (Section 6.1)
and then perform another arithmetization on the graph coloring problem to obtain a multivariate
algebraic CSP (Section 6.2).

6.1 Univariate Algebraic CSP

The arithmetization to a univariate algebraic CSP is performed along the lines of [BS05]. Specif-
ically, we can reduce via the identity mapping the Generalized deBruijn Graph Coloring to the
following univariate algebraic CSP.
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Definition 6.1 (Univariate Algebraic CSP) The Univariate Algebraic CSP (UniAlgCSPt) of
size t > m is parametized by two natural numbers α, d and seven (fixed) objects that are constructible
in uniform poly(t)-time. The parameters are

1. A family of fields Ft = GF(2f ), where f = t+O(log t), specified by an irreducible polynomial
of degree f .

2. A family of linear spaces Ht ⊂ Ft of dimension h = t + O(1), each specified by a basis that
spans it.

3. A family of affine (neighborhood) maps Ln = 〈`it : Ft → Ft〉i=1,...,d, each specified in the
straightforward manner (i.e., `it(x) = aix+ bi for some ai, bi ∈ Ft).

4. A family of (constraint) polynomials Ct : Fd+1
t → Ft that have degree at most 2f−10 in the

first variable and constant degree in the remaining variables, each specified by an algebraic
circuit (of size poly(t)).

5. A family of affine subspace of St ⊆ Ht of dimension t, each specified by a basis and an offset.

6. A family of bijections It : [2t] → St, specified by polynomial-time procedures for computing
and inverting them.

7. A family of (extraction) functions f t
extract : Ft → {0, 1} ∪ {⊥}, specified by a polynomial-time

procedure for computing them.

Given an input y ∈ {0, 1}K , for K < 2t, the problem is to determine whether there exists a
assignment polynomial A : Ft → Ft of degree at most 2h such that the following two conditions hold

1. For all x ∈ Ht, it holds that Ct(x,A(x), A(`1(x)), . . . , A(`d(x))) = 0. In this case, we say that
the assignment polynomial A satisfies the constraint polynomial Ct.

2. For all 1 ≤ k ≤ K we have yk = f t
extract(A(It(k))). In this case, we say that the assignment

polynomial A is consistent with the input y.

Theorem 6.2 (Universality of Univariate Algebraic CSP) For every Turing machine M ,
there exist a setting of the parameters for the Univariate Algebraic CSP (of Definition 6.1) such
that the bounded-halting problem for M is reducible via the identity mapping to the corresponding
Univariate Algebraic CSP (i.e., the reduction is by the identity mapping). Furthermore, for every
m < t and y ∈ {0, 1}K , where K < 2t, machine M halts on y within 2t steps if and only if there
exists an assignment polynomial A, of degree at most 2h, that satisfies the constraint polynomials
and is consistent with y.

The above arithmetization is performed along the lines of [BS05]. This arithmetization is
performed in 2 steps: First, we embed the extended de Bruijn graph in an affine graph, and then
we arithmetize the coloring constraints to efficiently-computable low-degree polynomials.
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6.2 Multivariate Algebraic CSP

The arithmetization to a multivariate algebraic CSP is similarto the one performed in [BGH+04b].
Hence, we omit the details of the proof and mention only the differences between the original
arithmetization and the one done here. We observe that the Generalized deBruijn Graph Col-
oring specified in Definition 4.1 is identical to the Structured-CktSAT problem described in
[BGH+04b, Definition 6.4], except for the following two differences:

1. An instance of Structured-CktSAT is specified by a table of vertex types, which is given
as an explicit input, and the verifier starts by constructing a low-degree extension of this
table,4 where the construction is done in polynomial-time (i.e., polynomial in the size of the
table). In contrast, the vertex types in the universal graph coloring problem are specified by
a fixed uniform NC1 circuit fv−type, and we need to compute a low-degree extension of it in
polylogarithmic time (i.e., polylogarithmic in the length of the actual input, denoted y).

Using the fact that the vertex type is specified by a NC1 circuit (applied to the vertex name)
and using Theorem 5.5, we obtain the desired low-degree extension. Specifically, Theorem 5.5
asserts that the low-degree extension of any function specified by a circuit of size s (and depth
d) can be computed by an arithmetic circuit of size polynomial in s (and logarithmic in the
field size), and that the circuit transformation can be effecting in polynomial-time. Thus, the
size of the arithmetic circuit (as well as the time needed to construct it) is polylogarithmic
in the length of the aforementioned input y.

We will also use the fact that this low-degree extension has degree at most 2d · |H|, where
the vertex set is associated with Hm ⊂ Fm (for some adequate m). Note that that 2d · |H| =
poly(m log |F|) · |H|, because d = O(log log |F|m), whereas in [BGH+04a] the degree bound
is m|H|. This means that we have to increase the field size by a factor of poly(m log |F|),
which yields an additive increase of m · log poly(m log |F|) = O(m logm) + O(m log log |F|)
in the randomness complexity of the verifier specification , which is dominated by the terms
O(m logm) +O(m log log |F|) that appear in it anyhow.

2. The description of graph coloring problems involves an extraction function fextract, whereas
that of Structured-CktSAT does not have one. The extraction function fextract allows for
checking the consistency of the input y against the coloring function C. A function similar to
this extraction function is added later in the PCP constructions of [BGH+04a], when building
PCPs of proximity [BGH+04b, Section 7].

We can arithmetize the extraction function fextract as follows: We first observe that the
extraction function is a constant sized sized circuit and hence a low-degree extension f t

extract

of it can be easily obtained in time polynomial in the logarithm of the field size (again using
Theorem 5.5). Then, we need to know which portion of the space Hm corresponds to the
input y. For this we note that the kth bit of the input is supposed to be encoded in the (color
of the) node numbered 2 · 2t + k in layer 0 = (0, 0) of the DBk,l graph. The arithmetization
suggested in [BGH+04b] maps these vertices to a subset St of Hm whose membership can
be easily checked. Furthermore, there exist efficiently computable an invertible maps It :
{1, ..., |y|} → St.

4Actually, the table consists of a sequence of tables T0, . . . , Tl−1, not to be confused with the unknown functions
T0, ..., Tt appearing in Lemma 4.6. Thus, the BGHSV-verifier constructs low-degree extensions of the l functions.
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Performing the arithmetization along the lines of [BGH+04b] with the above modifications, we
can reduce via the identity mapping the Generalized deBruijn Graph Coloring to the following
multivariate algebraic CSP.

Definition 6.3 (Multivariate Algebraic CSP) The Multivariate Algebraic CSP (MultiAlgCSPt,m)
of dimension m and size t > m is parametized by a constant number α and seven (fixed) objects
that are constructible in uniform poly(t)-time.5 The parameters are

1. A family of fields, Ft = GF(2f ), where f = d(t+ 3)/me + α log2 t, each specified by an
irreducible polynomial of degree f .

2. A family of GF(2)-linear spaces Ht ⊂ Ft of dimension h , d(t+ 3)/me, each specified by a
basis that spans it.

3. A family of affine (neighborhood) maps Lt = 〈Γi,b : Fm
t → Fm

t 〉i=0,...,(t+3)2−1 , b∈{0,1} such that
Γi,0 is the identity function, for all i, whereas Γi,1 flips the ith bit in the binary representation
of its input.6

4. A family of (type-assignment) polynomials Tt = 〈Ti : Fm → F〉i=0,...,(t+3)2−1, each of degree at
most tα−1 · 2h, specified by algebraic circuits (of size poly(t)).

5. A family of (constraint) polynomials ψt : F4
t → F2

t of constant degree κ. The polynomials ψt

are specified by an algebraic circuit.

6. A family of (extraction) functions f t
extract : Ft → {0, 1} ∪ {⊥} specified by a polynomial-time

evaluation procedure.

7. A family of bijections It : [2t]→ Ht specified by polynomial-time procedures for evaluating It
and its inverse.

Given an input y ∈ {0, 1}K , for K < 2t, the problem is to determine whether there exists a sequence
of assignment polynomials Ai : Fm

t → Ft, for i = 0, . . . , (t+ 3)2 − 1, each of degree at most m · 2h

such that the following two conditions hold

1. For all i ∈ {0, . . . , (t+ 3)2 − 1} and x ∈ Hm
t ,

ψt

(
Ti(x), Ai(x), Ai+1(Γi,0(x)), Ai+1(Γi,1(x))

)
= (0, 0).

In this case, we say that the assignment polynomials A = {Ai} satisfy the constraint polyno-
mials ψt.

2. For all 1 ≤ k ≤ K we have yk = f t
extract(A0(It(k))). In this case, we say that the assignment

polynomials A are consistent with the input y.
5In each case, there exists a uniform poly(t)-time that given (m, t) produces the corresponding output.
6Since Ft = GF(2)f , we can view Fm

t as mf -dimensional space over GF(2). Hence, any vector (z0, . . . , zm−1) ∈ Fm
t

can be written as b = (b0,0, ..., b0,f−1, ..., bm−1,0, ..., bm−1,f−1). Then Γi,1(b) = (b′0,0, ..., b
′
m−1,f−1), where b′j,k = bj,k +1

if j = bi/hc and k = i mod m and b′j,k = bj,k otherwise.
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Note that the above definition of MultiAlgCSP is identical to that of AS-CktSAT in [BGH+04b]
except for the following: (a) The constraint polynomials in MultiAlgCSP can be efficiently
specified as a small sized algebraic circuit unlike a list of coefficients as in AS-CktSAT and (b)
the MultiAlgCSP incorporates a proximity test while the AS-CktSAT did not.

Theorem 6.4 (Universality of Multivariate Algebraic CSP) For every Turing machine M ,
there exist a setting of the parameters for the Multivariate Algebraic CSP (of Definition 6.3) such
that the bounded-halting problem for M is reducible via the identity mapping to the corresponding
Multivariate Algebraic CSP (i.e., the reduction is by the identity mapping). Furthermore, for every
m < t and y ∈ {0, 1}K , where K < 2t, machine M halts on y within 2t steps if and only if there
exists a set of assignment polynomials A = {Ai}, each of degree at most m ·2d(t+3)/me, that satisfies
the constraint polynomials and is consistent with y.

Proof Sketch: Using Theorem 4.4, it suffices to reduce the Generalized deBruijn Graph Coloring
problem to the Multivariate Algebraic CSP. The constant α is determined by the depth of the NC1

circuit computing fv−type (used in Theorem 4.4): specifically, α = c + 4, where the aforemention
circuit for inputs of length ` has depth c log2 `.

The constructions of the first three objects is straightforward, using the fact that an irreducible
polynomial of degree f over GF(2) can be found in time polynomial in f [LN94]. Specifically, we
set h = d(t+ 3)/me, which guarantees that |Ht|m = 2hm ≥ 8 · 2t.

The other objects are obtained by low-degree extension of the corresponding objects in the
Generalized deBruijn Graph Coloring problem. The bounds on the size of circuits and the degree of
the polynomials computed by them (especially, the polynomials Tt) are obtained using Theorem 5.5.

7 Verifier Specifications, Composition, and Simplifying Conven-
tions

The standard approach for reducing the query complexity of PCP verifiers is the paradigm of “proof
composition” [AS98]. Instead of actually making the queries generated by the initial, “outer”
verifier, an “inner” verifier is used to check (with the help of some auxiliary proofs) that the outer
verifier would have accepted had it made its queries. The benefit is that the query complexity of
the composed verifier equals that of the inner verifier (which is typically verifying a much shorter
statement than the outer verifier). Note, however, that the running time of the composed verifier
is the sum of the running times of the two verifiers.

According to the traditional formalism for verifiers, the running time of a verifier is at least
its query complexity (in order to specify the queries). Most of the constructions of nearly-linear
sized PCPs, such as [PS94, HS00, GS02, BSV+03, BGH+04a, BS05], obtain their savings in proof
length by constructing initial verifiers of fairly large query complexity, such as nΩ(1), and reducing
the query complexity via composition. But, as described above, the running time of the composed
verifier will remain large.

To overcome this difficulty, in this section, we present a formalism that allows a verifier’s
queries (and decision predicate) to be specified implicitly, e.g. by a small circuit. Producing this
specification can then potentially be done in time that is polylogarithmic in the query complexity
of the verifier. We show how such verifier specifications can be composed to reduce the query
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complexity, ultimately allowing us to construct standard verifiers with polylogarithmic running
time (and short proof length, and small query complexity).

Verifier Specifications. Let M be a (deterministic) two-tape Turing Machine whose compu-
tations we wish to verify. (We will eventually apply the results to a universal Turing machine
M = MU which we define later.) We will be constructing PCPP verifiers that aim to verify that
a pair (x, y) is accepted by M within T steps. Such a verifier gets as explicit input (x,K, T ), and
expects oracle access to (y, π) for some (implicit input) y ∈ ΣK and proof (oracle) π. A standard
verifier would toss some coins R, generate a sequence Q = (i1, . . . , ik) of queries into the oracles
(y, π) and then apply a decision predicate D : {0, 1}k → {0, 1} to the received answers. We will
allow both the queries and decision predicate to be specified implicitly. The queries will simply be
specified by a circuit Q : [k] → Z+. We cannot use a circuit for D itself, because such a circuit
would have to be at least as large as its input length, which is k. Thus, instead we would like to
specify D by an input x′ (and a time bound T ′) to some fixed Turing machine M ′ (which should
halt within T ′ steps).

Later, for composability we will take M ′ = M , but the more general formulation below is useful
en route to our results. Also to facilitate composition, following [BGH+04a] we insist on robust
soundness; that is, instead of merely requiring that (with high probability) the verifier rejects false
assertions, we require that (with high probability) the answers (obtained from the queried locations)
are far from satisfying the decision predicate.

Define LM,x(T ) = {y:M accepts (x, y) in T steps}. We view strings as functions/oracles. So
y ∈ Σn may be viewed as a function/oracle y : [n]→ Σ. We use (y, z) to denote the concatenation
of strings y and z, and y|Q to denote the restriction of y to Q : [k]→ [n], i.e., y|Q[j] = y[Q[j]].

Actually, it will be convenient for us to allow our query circuit Q to sometimes output alphabet
symbols from Σ instead of an index into the proof. Intuitively, Q(i) = σ ∈ Σ means that the answer
to the i’th query is always treated as σ (and thus no actual query needs to be made to the oracle).
Thus for Q : [k]→ [n] ∪ Σ and y ∈ Σn, we define y|Q ∈ Σk by

y|Q[j] =

{
y[Q[j]] if Q[j] ∈ [n]
Q[j] if Q[j] ∈ Σ.

Intuitively, a verifier specification for M (w.r.t M ′), takes as input a triple (x, T,K), and
randomly produces a quadruple (x′, T ′, k,Q) such that Q : [k]→ Z+∪Σ and the following condition
holds: If y ∈ LM,x(T )∩ΣK (i.e., M accepts (x, y) in T steps) then there exists (an auxilary proof)
π such that M ′ accepts (x′, (y, π)|Q) in T ′ steps (i.e., (y, π)|Q ∈ LM ′,x′(T ′)). That is, M ′(x′, ·)
represents the decision predicate to be applied to answers obtained from the queries Q[1], ..., Q[k]
addressed to the oracle (y, π).

Definition 7.1 (Verifier Specification) A verifier specification (or verifier or specification) V for
M with respect to M ′ takes as input a triple (x, T,K), where x ∈ Σ∗ and T,K are nonnegative
integers given in binary such that T ≥ |x|+K, and picks a random string R ∈ {0, 1}∗ and outputs
a quadruple (x′, T ′, k,Q) = V (x, T,K;R) where x′ ∈ Σ∗, T ′, k are non-negative integers given in
binary and Q is a circuit specifying a function from [k] → Z+ ∪ Σ. (If M ′ = M , then we simply
call V a verifier specification for M .)
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Complexity (limitations): For functions r, q, d, ` : Z+ → Z+ and τ : Z+ × Z+ → Z+ we say that a
verifier V is said to be (r, q, `, d, τ)-restricted if V (x, T,K) runs in time τ(T, |x|), tosses r(T )
random coins, and outputs a quadruple (x′, T ′, k,Q) such that T ′ ≤ d(T ), k ≤ q(T ) and the
range of Q is [K + `(T )].

We call r the randomness complexity, q the query complexity, d the decision complexity, ` the
proof-size, and τ the running time of the specification V .

Guarantees (as a proof system): For ρ, s, δ : Z+ → [0, 1], the specification V is said to be (δ, s, ρ)-
sound if the following two conditions hold:

Completeness: For every y ∈ LM,x(T ) ∩ ΣK , there exists a π ∈ Σ`(T ) such that for every
random string R, it holds that M ′ accepts (x′, (y, π)|Q) in T ′ steps. where (x′, T ′, k,Q) =
V (x, T,K;R).

Robust Soundness: If y ∈ ΣK is δ(T )-far from LM,x(T ) ∩ ΣK then, with probability at least
1 − s(T ), it holds that (y, π)|Q is ρ(T )-far from LM ′,x′(T ′) ∩ Σq, where (x′, T ′, k,Q) ←
V (x, T,K).

We call δ the proximity parameter, s the soundness error, and ρ the robustness parameter of V .

The universal machine and its corresponding pair language for which we will construct a verifier
specification is the following: Let MU be a (deterministic two-tape) universal TM that on input
((M,w), z) simulates M on (w, z), with T steps of M being simulated using poly(|M |) · T steps
of MU . The following proposition shows that verifier specifications for MU imply robust PCPP
verifiers.

Proposition 7.2 For any monotonically non-decreasing functions r, q, `, d, τ and monotonically
non-increasing functions δ, s, ρ, if the universal Turing Machine MU has a verifier specification V
that is (r, q, `, d, τ)-restricted and (δ, s, ρ)-sound for some ρ < 1, then, for every pair language L
in NTIME(T ), there is a constant c such that L ∈ PCPPs′,δ′ [r′, q′, t′], where s′(m) = s(c · T (m)),
δ′(m) = 2δ(c · T (m)), r′(m) = r(c · T (m)), q′(m) = q(c · T (m)), and

t′(n,K) = q (c · T (n+K)) · Õ (τ (c · T (n+K), n+ c)) + d (c · T (n+K)) .

Furthermore, this verifier utilizes proofs of length `′(m) = `(2T (m) +m) + T (m).

Proof: The actual contents of the proof is that we can transform a verifier specification into
a real verifier: The real verifier starts by computing the description of the queries to be made
and the predicate to be evaluated, then makes the actual queries and applies the predicate to the
answers obtained. But before doing this, we must address two techinal problems. Firstly, we are
given a verifier specification for the computation of a single machine, whereas we need to provide
real verifiers for a set of machines corresponding to a complexity class. This gap is minor, because
the former machine is universal. However, a more serious problem is that the universal machine is
deterministic (hence able to emulate deterministic machines) whereas we need to emulate a non-
deterministic class. The obvious solution is to incorporate the non-deterministic choices as part of
the implicit input, and (implicitly) obtain this part from the proof oracle. But when we do so, we
should make sure that the length of the original implicit input dominates the length of the new
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implicit input (so that assertions regarding the distance of the new implicit input from some set will
yield bounds on the distance of the original implicit input from the relevant set). Details follow.

We start with a nondeterministic TM, denoted M0, that recognizes the pair language L within
time complexity T . Let M1 be the corresponding deterministic machine (i.e., M1 accepts the
pair ((x, y), z) if and only if M0 accepts the input (x, y) ∈ L when taking the nondeterministic
choices described in z). Aiming to incorporate z and y in a new (implicit) input such that y
dominates the length of the latter, we conside a machine M2 such that M(x, (y1, . . . , yt), z) = 1 if
and only if y1 = y2 = · · · = yt and M1((x, y1), z) = 1.7 Note that y ∈ LM0,x(T (|x| + K)) ∩ ΣK

if and only if ((y1, . . . , yt), z) ∈ LM,x(2T (|x| + K)) ∩ ΣtK+T (|x|+K), which in turn holds if and
only if ((y1, . . . , yt), z) ∈ LMU ,(M,x)(c · T (|x| + K)) ∩ ΣtK+T (|x|+K), where c = poly(|M0|). Thus,
verifying that (x, y) ∈ L (or that y is close to ỹ such that (x, ỹ) ∈ L) reduces to verifying that
(yt, z) ∈ LMU ,(M,x)(c · T (|x|+K)) ∩ ΣtK+T (|x|+K), where K = |y| and t = d|z|/|y|e. Such a verifier
may utilize a proof, denoted π.

Recall that we are given a verifier specification V for MU , and we are going to construct a real
verifier, denoted V ′, for L. The verifier V ′ proceeds as follows, when given explicit input (x,K),
an implicit input y ∈ ΣK , and a proof oracle π′ ∈ Σ`′(|x|+K):

Let m = |x|+K, TU = cT (m), and t = dT (m)/Ke.

1. The verifier V ′ invokes V ((M,x), TU , 2T (m)) to obtain (x′, T ′, k,Q).

Note that T ′ ≤ d(TU )), k ≤ q(TU ) and Q : [k] → [2T (m) + `(TU )]. Futhermore, the size of
the description of Q is upperbounded by τ(TU , c+ |x|).

V ′ parses π′ as (z, π), where z ∈ ΣT (m) and π ∈ Σ`(c+|x|+2T (m))

2. V ′ computes y′ = ((yt, z), π)|Q, via q evaluations of the circuit Q, and making queries to the
oracle (y, π′) = (y, (z, π)).

3. V ′ emulates MU on (x′, y′) for T ′ steps, and accept if MU accepts.

Note that the verifier’s computation consists of one evaluation of V , taking time TV = τ(TU , c+|x|),
followed by k ≤ q(TU ) evaluations of the circuit Q, which is of size at most TV , and simulating MU

for T ′ ≤ d(TU ) steps. Since a circuit of size S can be evaluated in time Õ(S), we obtain a total
running-time of at most TV + k · Õ(TV ) + T ′, which is upper-bounded by q(TU ) · Õ(τ(TU , c+ |x|) +
d(TU ), as required.

Most of the other parameters can be verified by inspection. For soundness, note that if (yt, z)
is δ-close to some (ŷt, ẑ) in LMU ,(M,x)(TU ), then y is 2δ-close to ŷ and M accepts (x, ŷt, ẑ) in
2T (|x|+ |y|) steps. This implies that M0 (non-deterministically) accepts (x, ŷ) in T (|x|+K) steps,
where K = |y|. Thus, y is 2δ-close to Lx, as desired.

Composition. The next lemma shows how verifier specifications compose. This composition is
similar to proof compositions as presented in prior works and in particular to that of [BGH+04a],
except that the time complexity of the composed verifier specification may be much smaller than
the query complexity of the associated (real) verifiers.

7The above description assumes some fixed parsing rule used by M to parse its input into the form
(x, (y1, . . . , yt), z), for some t.
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Lemma 7.3 Suppose M has a verifier specification V1 that is (r1, q1, `1, d1, τ1)-restricted and (δ1, 1−
ε1, ρ1)-sound, and a verifier specification V2 that is (r2, q2, `2, d2, τ2)-restricted and (δ2, 1 − ε2, ρ2)-
sound. Further, suppose that for every T it holds that δ2(d2(T )) ≤ ρ1(T ). Then M has a verifier
specifdication V = V1◦V2 that is (r′, q′, `′, d′, τ ′)-restricted and (δ′, s′, ρ′)-sound, for

• randomness complexity r′(T ) = r1(T ) + r2(d1(T )),

• query complexity q′(T ) = q1(d1(T )),

• proof length `′(T ) = `1(T ) + 2r1(T ) · `2(d1(T )),

• decision complexity d′(T ) = d2(d1(T )),

• specification running time τ ′(T, n) = O(τ1(T, n) + τ2(d1(T ), τ1(T, n))) + poly log `′(T ),

• robustness parameter ρ′(T ) = ρ2(d1(T )),

• proximity parameter δ′(T ) = δ1(T ),

• soundness error s′(T ) = 1− ε1(T ) · ε2(d1(T )), and

Proof: The composed verifier V1 ◦ V2 does the following on input (x, T,K): choose random
coin tosses R1 ∈ {0, 1}r1(T ) and runs V1(x, T,K;R1) to obtain (x1, T1, k1, Q1), and then runs
V2(x1, T1, k1) to obtain (x2, T2, k2, Q2). It constructs a circuit Q′ : [k2] → [K + `′(T )] that op-
erates as follows.

Q′(i): Compute j = Q2(i). If j ≤ k1, then output Q1(j). Otherwise (i.e., if j > k1), output
K + `1(T ) + R1 · `2(d1(T )) + (j − k1), where here R1 is viewed as the binary representation
of an integer in [0, 2r1(T ) − 1].

That is, the circuit Q′ consists of the the circuits Q1 and Q2, as well as small circuits for
doing the additional arithmetics.

The output of the verifier V1 ◦ V2 is (x2, T2, k2, Q
′).

Note that the computation of the composed verifier specification consists of one execution of
V1 on time bound T and an explicit input of length n = |x|, one execution of V2 on time bound
T1 ≤ d1(T ) and an explicit input of length |x1| ≤ τ1(T, n), and the construction of the circuit Q′,
which involves simple manipulations of the two circuits Q1 and Q2 and some arithmetic on numbers
of length at most log `′(T ). Thus, obtaining (x1, T1, k1, Q1) and (x2, T2, k2, Q2) is done in upto
τ , τ1(T, n)+τ2(d1(T ), τ1(T, n)) steps, and constricting Q′ can be done within O(τ)+poly log `′(T )
additional steps.

The rest of the analysis of the verifier is almost identical to the Composition Theorem of
[BGH+04a].

In the analysis above, we pay a constant factor in the running time of the composed verifier
specification (compared to the sums of the running times of the two specifications), for the overhead
in combining the two query circuits Q1 and Q2. If we compose k times, this gives a factor of
exp(O(k)). We are able to afford this (because we only compose for a double-logarithmic number
of times), but we note that a more efficient way of doing multiple compositions exists: Specifically,
rather than constructing the itermediate (query) circuits, we may just keep record of them and
combine all of them together once we are done. Indeed, we rely on the fact that the (inner) verifier
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specification does not need to know the query circuit of the (outer) verifier specification with whom
it is composed. Thus, the running time of the final composed verifier specification can be linear in
the sum of the running times of the verifier specifications being composed, regardless of the number
of compositions, plus a term that is polylogarithmic in the proof length (and hence also accounts
for the number of compositions).

Simplifying Conventions. Finally, it will be convenient for us to not deal with any explicit
input in our basic constructions, and in addition assume that that the implicit input is of length
K = Ω(T ), where T is the running time bound on the machine whose computations we wish to
verify. That is, we will initially construct verifier specifications of the following form.

Definition 7.4 A simplified verifier specification V for M (with respect to some TM M ′) is defined
in the same way as a verifier specification, except it is not given any explicit input x and the length
K of the implicit input is set to K = T/100.8 That is, V takes an input consisting of a nonnegative
integer T in binary and outputs a quadruple (x′, T ′, k,Q). The running time τ is measured as
a function of only T , and the completeness and soundness now refer to the distance of strings
y ∈ ΣT/100 from LM (T ) = {y:M accepts y in T steps}.

We now argue that such a simplified verifier specification can be converted into a standard
verifier specification with similar parameters.

Lemma 7.5 For every TM M , there is a TM M̂ such that if M̂ has a simplified verifier spec-
ification (with respect to some TM M ′) that is (r̂, q̂, ̂̀, d̂, τ̂)-restricted and (δ̂, ŝ, ρ̂)-sound, then
M has a (standard) verifier specification (with respect to M ′) that is (r, q, `, d, τ)-restricted and
(δ, s, ρ)-sound, where r(T ) = r̂(Õ(T )), q(T ) = q̂(Õ(T )), d(T ) = d̂(Õ(T )), s(T ) = ŝ(Õ(T )),
ρ(T ) = ρ̂(Õ(T )), δ(T ) = 12δ̂(Õ(T )), and τ(T, n) = τ̂(Õ(T )) + Õ(n+ log T ).

Proof: We begin with some intuition. In doing so, we will blur the distinction between PCPP
verifiers and verifier specifications, and also focus on how to eliminate the explicit input x (and
not how to make K = Ω(T )). We want to construct a verifier V for M that is given explicit
inputs (x, T,K) and oracles (y, π) and is able to verify that M accepts (x, y) in T steps. But we
only have a verifier V̂ that can verify such statements (for a TM M̂ of our choosing) when there
is no explicit input x given. A natural idea is to take M̂ = M and have V (y,π)(x, T,K) simulate
V̂ ((x,y),π)(T,K+ |x|). Note that if M accepts (x, y) in T steps, then by the completeness of V̂ , there
is π that makes the verifier accept. However, we run into a problem with soundness. If V̂ accepts
with high probability, we only know that (x, y) is close to some string (x′, y′) such that M accepts
(x′, y′) in T steps. But we need to obtain the stronger conclusion that y alone is close to some y′

such that M accepts (x, y′). That is, we need to ensure that x′ = x. The solution is to encode x
in an error-correcting code ECC, and define M̂ so that on input (w, y), it first checks that w is a
valid codeword, then computes x = ECC−1(w), and finally simulates M on (x, y). This ensures
that if (ECC(x), y) is close to some (w, y′) that makes M̂ accept, then by the distance property of
the code we have w = ECC(x), and also M accepts (x, y), as desired.

Several technical issues come up in implementing this idea. First, we need the error-correcting
code to be nearly linear time in order to closely maintain the efficiency parameters of our verifier.

8We have not attempted to optimize constants.
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Second, since we are working with verifier specifications rather than PCPP verifiers, the transfor-
mation for the oracle (y, π) into the oracle ((ECC(x), y), π) will have to be carried out entirely
by manipulation of the query circuits for the specifications. Third, in order for closeness of pairs
(ECC(x), y) and (w, y′) to translate into closeness in each of the two components, the components
have to be of nearly equal length. We achieve this by repetition, i.e. replacing (ECC(x), y) with
(ECC(x)`, y`′) for an appropriate k, and having M̂ check that the input is indeed of this form. Thus
we need to ensure that the error-correcting code’s distance and decoding properties are maintained
under repetition (even when the length of the message and number of repetitions are not known).
This repetition technique is also what allows us to ensure that K = Ω(T ).

Now we proceed with the actual proof. We assume without loss of generality that {0, 1} ⊆ Σ.
We will need an error-correcting code ECC : Σ∗ → Σ∗ with the following properties:

1. For every u, |ECC(u)| = c · |u|, for a constant c ∈ N.

2. On inputs u of length m, ECC(u) can be evaluated in time Õ(m).

3. For every two strings u ∈ Σm, u′ ∈ Σm′
, and every t ≥ max{cm, cm′}, the strings

ECC(u)dt/cme02t−dt/cme·cm and ECC(u′)dt/cm′e02t−dt/cm′e·cm′

are (1/5)-far.

4. There is an algorithm that given a string v ∈ Σ2t for some t ∈ N, runs in time 100t and finds
an u such that v = ECC(u)dt/cme02t−dt/cme·cm where m = |u| ≤ t/ logc t, if such a u exists. If
no such u exists, then the algorithm rejects.

Such codes can be obtained by modifications to the nearly linear-time codes of [?]; we defer the
tedious details to the appendix.

Now, given a TM M , we define the following TM M̂ .

Turing machine M̂(Input):

1. Check that Input is of length 4t for some t ∈ N (reject if not), and let v ∈ Σ2t be the first half
of the input.

2. Using the algorithm from Property 4 of ECC, find a u such that v = ECC(u)dt/cme02t−dt/cme·cm

and m = |u| ≤ t/ logc t, if such a u exists. If no such u exists, then immediately reject.

3. Parses u as a pair u = (x,K, T ).

4. Check that the second half of Input is of the form ydt/Ke02t−dt/Ke·K for some y ∈ ΣK , rejecting
immediately if not.

5. Run M on (x, y) for T steps and accept or reject as M does.

Now, suppose we have a simplified verifier specification V̂ for M̂ . We construct a verifier
specification V ′ for M as follows.
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Verifier specification V (x, T,K;R):

1. Let t = d2T · logc T e, K̂ = 4t, and T̂ = 400t.

2. Let u = (x, T,K), and compute w = ECC(u).

3. Let m = |u|, ` = dt/me, `′ = dt/Ke.

4. Let (x′, T ′, k, Q̂) = V̂ (T̂ , K̂;R).

5. Let Q : [k]→ Z+ ∪ Σ be a circuit defined as follows:

Q[i] =



w[Q̂[i] mod cm] if Q̂[i] ≤ cm · `
0 if cm · ` < Q̂[i] ≤ 2t
(Q̂[i]− 2t) mod K if 2t < Q̂[i] ≤ 2t+K · `′

0 if 2t+K · `′ < Q̂[i] ≤ 4t = K̂

Q̂[i]− K̂ +K if K̂ < Q̂[i].

6. Output (x′, T ′, k,Q).

The complexity parameters can be verified by inspection, so we focus on completeness and
soundness.

Completeness. Suppose y ∈ LM,x(T ) ∩ ΣK . We claim that if u,w,m, `, `′ are computed as in
the definition of V above, then M̂ accepts w`02t−`·cmy`′02t−`′·K in time T̂ = 400t. This follows
from the definitions of V and M̂ , provided we verify that m ≤ t/ logc t and that T̂ is enough time
for M̂ to complete all of its steps. We bound on m as follows:

m = |u| ≤ n+O(log T ) ≤ T +O(log T ) ≤ 2T · logc T

(log T + c log log T + 1)c
=

t

logc t
.

For the running time of M̂ , we note that Step 2 takes at most 100t steps by Property 4 of ECC.
Steps 1, 3, and 4 are all simple linear-time parsing steps and can certainly be done in a total of
200t steps. Step 5 takes T ≤ t steps. The total number of steps is at most 301t < T̂ .

Therefore there exists a π such that with probability 1 over the random string R, it holds
that (w`02t−`·cmy`′02t−`′·K , π)| bQ ∈ LM ′,x′(T ′). By the construction of Q, this is equivalent to
(y, π)| bQ ∈ LM ′,x′(T ′), as desired.

Robust Soundness. We prove this by the contrapositive. Let y ∈ ΣK , and suppose that with
probability greater than s(T ) over the random string R, it holds that (y, π)|Q is ρ(T )-close to
LM ′,x′(T ′). By the construction of Q, this means that with probability greater than s(T ), it holds
that (Input, π) is ρ(T )-close to LM ′,x′(T ′), for Input = w`02t−`·cmy`′02t−`′·K . By setting s(T ) = ŝ(T̂ )
and ρ(T ) = ρ̂(T̂ ) and applying the robust soundness of V̂ , we deduce that Input is δ̂(T̂ )-close to
some string Input in LcM (T̂ ) ∩ Σ bK .

By the definition of M̂ , we have Input = w`02t−`·cmy`′02t−`′·K , where w = ECC(u), u =
(x,K, T ), m = |(x,K, T )|, ` = dt/cme, `′ = dt/Ke, and M accepts (x, y) within T steps.
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Since Input and Input are δ̂-close (for δ̂ = δ̂(T̂ )), it follows that w`02t−`·cm and w`02t−`·cm are
γ-close for γ = (K̂/(2t)) · δ̂ = 2δ̂ < 1/5. By Property 3 of ECC, it follows that u = u; that is,
x = x, K = K, and T = T . Similarly, y and y are ε-close for ε = (K̂/(`′ ·K)) · δ̂ ≤ 4δ̂ ≤ δ. We
conclude that y is δ-close to LM,x(T ), as desired.
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