
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

DISTRIBUTED PROCESSING IN AUTOMATA∗

KAMALA KRITHIVASAN

M. SAKTHI BALAN

and

PRAHLADH HARSHA

Department of Computer Science and Engineering, Indian Institute of Technology, Madras,
Chennai - 600036, India, E-mail : kamala@iitm.ernet.in

ABSTRACT

With distributed computing beginning to play a major role in modern Computer
Science, the theory of grammar systems and distributed automata has been developed
in order to model distributed computing. In this paper, we introduce the notion of

distributed automata in the sequential sense. Distributed Automata are a group of

automata working in unison to accept one language. We build the theory of distributed
automata for FSA and PDA in different modes of acceptance like the t-mode, *-mode,

= k-mode, ≤ k-mode and ≥ k-mode. We then analyze the acceptance power of each
automata in all the above modes. We present proofs that distributed FSA do not have

any additional power over “centralized” FSAs in any of the modes, while distributed

PDA with only two components is as powerful as Turing Machines in all of the modes.
We give proofs for the equivalence of all modes in the case of PDAs. We also study a

restricted version of distributed PDA called k-turn distributed PDA.

Keywords: Grammar systems, distributed computing, distributed automata, modes of

acceptance.

1. Introduction

In classic Formal Language and Automata theory, grammars and automata
model classic computing devices. These devices are “centralized” - the compu-
tation is accomplished by one “central” agent. Hence in classic Formal Language
Theory, a language is generated by one grammar or accepted by one automaton.
In modern Computer Science, distributed computation plays a major role. Ana-
lyzing such computations in computer networks, distributed databases, etc., leads
to notions such as distribution parallelism, concurrency and communication. The
theory of grammar systems is a grammatical model for distributed computation
where these notions could be defined and analyzed.
∗This research work was partially supported by the project from Department of Science and

Technology

1

A grammar system is a set of grammars working in unison, according to a
specified protocol, to generate one language. There are many reasons to consider
such a generative mechanism: to model distribution, to increase the generative
power, to decrease the complexity, etc. These distributed grammar systems can be
either sequential or parallel in nature.

A comprehensive treatment of grammar systems and a survey of the recent
developments in this area can be found in [1]. The study of sequential grammar
systems(also called Cooperating Distributed(CD)Grammar Systems) was initiated
by Csuhaj-Varju and Dassow [2]. The explicit notion of CD grammar systems was
introduced by Meersman et.al. [3]. Gh.Paun et.al. [4] introduced a problem solving
architecture parallel in nature similar to parallel operating grammar systems(also
called Parallel Communicating(PC) Grammar Systems). They also discuss many
relationships of CD and PC Grammar Systems to issues related to distribution,
co-operation, parallelism in artificial intelligence, cognitive psychology, robotics,
complex systems study etc.

In this paper, the notion of sequential grammar systems is extended to automata
and the increase in acceptance power of this system is analyzed. Distributed Au-
tomata is a set of automata working together, according to specific rules, to accept
one language. Distributed FSAs and Distributed PDAs in t-mode, *-mode, = k-
mode, ≤ k-mode, and ≥ k-mode are discussed. We show that under this notion
of distributed automata, distributed FSAs in all the above modes are no powerful
than “centralized” FSAs whereas in the case of PDAs in all modes the distributed
counterparts are as powerful as Turing Machines. We also consider a restricted
version of distributed PDA and show that it also has the same power as that of a
Turing Machine.

In the next section we give some definitions and notations needed. In section 3
we consider distributed FSA and in section 4 we consider distributed PDA. Section
5 deals with the restricted version of a PDA and the paper concludes with section
6.

2. Formal Language and Automata Theory Prerequisites

For an alphabet V , we denote by V ∗ the free monoid generated by V under the
operation of concatenation; the empty string is denoted by λ. Moreover V + = V ∗−
{λ} and |x| is the length of x ∈ V ∗. If U ⊆ V , then the morphism prU : V ∗ → U∗

defined by prU (a) = a if a ∈ U and prU (a) = λ if a ∈ V − U , is called a projection.
FIN,REG,LIN,CF andRE denote the families of finite, regular, linear, context-

free and recursively enumerable languages respectively. For further information in
formal language and automata theory the reader is directed to some excellent ma-
terial in this field.[6, 7, 8]

A grammar (N,T, P, S) is called non-terminal bounded if there exists an integer
k such that for every word w ∈ N∗ if S ⇒∗ w, then w has atmost k occurrences
of non-terminals. A language is said to be non-terminal bounded if there exists a
non-terminal bounded grammar that generates it.

FSA,PDA and TM denote finite state automaton, push-down automaton and

2

Turing-machine respectively. A PDA is said to perform a turn if the stack goes
up and down respectively in two consecutive descriptions of the automata. If the
number of turns the PDA can perform to accept a string is bounded by k, then this
restricted version of the PDA is called a k-turn PDA. One can easily observe that
the family of languages accepted by 1-turn PDAs is LIN. It is known that the family
of languages that is accepted by k-turn PDAs, k ≥ 1 is the family of non-terminal
bounded languages.

3. Distributed Finite State Automata

In this section we define distributed FSA and consider the language accepted in
different modes. We find that the power of distributed FSA is not different from
the power of a single “centralized” FSA. Distributed FSA in different modes of
acceptance accept only regular sets.
Definition 1 An n-FSA is a 5-tuple Γ = (Q,V,∆, q0, F) where,

1. Q is a n-tuple (Q1, Q2, · · · , Qn) where each Qi is a set of states of the ith

component

2. V is the finite set of alphabet

3. ∆ is an n-tuple (δ1, δ2, · · · , δn) of state transition functions where each δi :
Qi × (V ∪ {λ}) −→ 2∪iQi , 1 ≤ i ≤ n

4. q0 ∈ ∪iQi is the initial state

5. F ⊆ ∪iQi is the set of final accepting states.

Each of the component FSAs of the n-FSA is of the form
Mi = (Qi, V, δi), 1 ≤ i ≤ n. Note that here Q′is need not be disjoint. In this
system, we can consider many modes of acceptance depending upon the number
of steps the system has to go through in each of the n components. The different
modes of acceptance are t-mode, *-mode, ≤ k-mode, ≥ k-mode, and = k-mode.
Description of each of the above modes of acceptance is as follows:
t-mode acceptance: Initially, the automaton which has the initial state begins
the processing of input string. Suppose that the system starts from the component
i. In component i the system follows its transition function as any “stand alone”
FSA. Suppose in the component i the system arrives at a state q where q 6∈ Qi
i.e. outside the domain of the transition function of the component i. Then the
automaton goes to the jth component (1 ≤ j ≤ n) provided q ∈ Qj . If q belongs
to more than one Qj any one of them can be chosen nondeterministically. The
jth component acts until it arrives at a state outside its domain for its transition
function and the above procedure is repeated. The automaton accepts the string
if it reaches any one of the final states. It does not matter which component the
system is in.
If for some i(1 ≤ i ≤ n) Qi = Q then by no way the system can go out of the ith
component. In that case ith component acts like a “sink”.

3

Definition 2 The instantaneous description of the n-FSA (ID) is given by a 3-
tuple (q, w, i) where q ∈ Q, w ∈ V ∗, 1 ≤ i ≤ n.

In this ID of the n-FSA, q denotes the current state of the whole system, w the
portion of the input string yet to be read and i the index of the component in which
the system is currently in.

The transition between the ID’s is defined as follows:

1. (q, aw, i) ` (q′, w, i) iff q′ ∈ δi(q, a) where q, q′ ∈ Qi, a ∈ V ∪ {λ}, w ∈ V ∗, 1 ≤
i ≤ n

2. (q, w, i) ` (q, w, j) iff q ∈ Qj −Qi

Let `∗ be the reflexive and transitive closure of `.
Definition 3 The language accepted by the n-FSA Γ = (Q,V,∆, q0, F) is defined
as follows,

L(Γ) = {w ∈ V ∗ | (q0, w, i) ` (qf , λ, j) for some qf ∈ F 1 ≤ j, i ≤ n and q0 ∈ Qi}

*-mode acceptance: Initially, the automaton which has the initial state begins
the processing of the input string. Suppose the system starts the processing from
the component i. Unlike the termination mode, here there is no restriction. The
automaton can transfer the control to any of the component at any time if possible.
i.e. if there is some j such that q ∈ Qj then the system can transfer the control to
the component j. The selection is done nondeterministically if there is more than
one j.

The instantaneous description and the language accepted by the system in *-
mode can be defined analogously.
Theorem 1 For any n-FSA Γ in t-mode, we have L(Γ) ∈ REG.
Proof. Let Γ = (Q,V,∆, q0, F) be a n-FSA in t-mode where ∆ = (δ1, δ2, · · · , δn)
and the components have states Q1, Q2, · · · , Qn.
Consider the FSA M = (Q′, V, δ, q′0, F

′) where,

Q′ = {[q, i] | q ∈ ∪iQi, 1 ≤ i ≤ n} ∪ {q′0}

F ′ = {[qf , i] | qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions:
for each qk ∈ δi(qj , a), qj ∈ Qi, a ∈ V ∪ {λ}, 1 ≤ i ≤ n,

1. [q0, i
′] ∈ δ(q′0, λ) such that q0 ∈ Qi′

2. if qk ∈ Qi then [qk, i] ∈ δ([qj , i], a)

3. if qk ∈ Qj −Qi, 1 ≤ i ≤ n then [qk, j] ∈ δ([qj , i], λ), 1 ≤ j ≤ n

This construction of FSA clearly shows that,

L(M) = L(Γ)

So, L(Γ) ∈ REG

2

4

Theorem 2 For any n-FSA Γ in *-mode, we have L(Γ) ∈ REG.
Proof. Let Γ = (Q,V,∆, q0, F) be a n-FSA in *-mode where ∆ = (δ1, δ2, · · · , δn)
and the components have states Q1, Q2, · · · , Qn.
Consider the FSA M = (Q′, V, δ, q′0, F

′) where,

Q′ = {[q, i] | q ∈ ∪iQi, 1 ≤ i ≤ n} ∪ {q′0}

F ′ = {[qf , i] | qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions:

1. [q0, i
′] ∈ δ(q′0, λ) such that q0 ∈ Qi′

2. for each qy ∈ δi(qs, a), qs ∈ Qi, a ∈ V ∪ {λ}, 1 ≤ i ≤ n,
{[qy, i], [qy, j]} ⊆ δ([qs, i], a), 1 ≤ j ≤ n and qy ∈ Qj′ .

This construction of FSA clearly shows that,

L(M) = L(Γ)

So, L(Γ) ∈ REG

2

=k-mode acceptance: Initially, the component which has the initial state begins
the processing of the input string. Suppose the system starts the processing from
the component i. The system transfers the control to the other component j only
after the completion of exactly k number of steps in the component i i.e. if there
is a state q ∈ Qj then the transition from component i to the component j takes
place only if the system has already completed k steps in component i. If there is
more than one choice for j the selection is done nondeterministically.
≤ k-mode acceptance: Initially, the automaton which has the initial state begins
the processing of the input string. Suppose the system starts the processing from
the component i. The system transfers the control to another component j only
after the completion of some k′(k′ ≤ k) steps in component i i.e. if there is a state
q ∈ Qj then the transition from component i to component j takes place only if the
system has already completed some k′(1 ≤ k′ ≤ k) steps in component i. If there
is more than one choice for j the selection is done nondeterministically.
≥ k-mode acceptance: Initially, the automaton which has the initial state begins
the processing of strings. Suppose the system starts the processing from the com-
ponent i. The system transfers the control to another component j only after the
completion of some k′(k′ ≥ k) steps in the component i i.e. if there is a state q ∈ Qj
then the transition from component i to component j takes place only if the system
has already completed some k′(k′ ≥ k) steps in the component i. If there is more
than one choice for j the selection is done nondeterministically.

The instantaneous description of n-PDA in the above three modes of derivations
and the language generated by the them are defined as follows,
Definition 4 The instantaneous description of the n-FSA (ID) is given by a 4-
tuple (q, w, i, j) where q ∈ Q, w ∈ V ∗ , 1 ≤ i ≤ n, j is a non negative integer.

5

In this ID of the n-FSA, q denotes the current state of the whole system, w the
portion of the input string yet to be read and i the index of the component in which
the system is currently in, and j denotes the number of steps for which the system
has been in, in the ith component.
Theorem 3 For any n-FSA Γ in = k-mode, we have L(Γ) ∈ REG.
Proof. Let Γ = (Q,V,∆, q0, F) be a n-FSA in = k-mode where ∆ = (δ1, δ2, · · · , δn)
and the components have states Q1, Q2, · · · , Qn.
Consider the FSA M = (Q′, V, δ, q′0, F

′) where,

Q′ = {[q, i, j] | q ∈ ∪iQi, 1 ≤ i ≤ n, 0 ≤ j ≤ k}

F ′ = {[qf , i, k] | qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions:
for each qy ∈ δi(qs, a), qs ∈ Qi, a ∈ V ∪ {λ}, 1 ≤ i ≤ n, 0 ≤ j ≤ k

1. [q0, i
′, 0] ∈ δ(q′0, λ) such that q0 ∈ Q′i

2. if j < k then [qy, i, j] ∈ δ([qs, i, j − 1], a)

3. if j = k then [qs, j′, 0] ∈ δ([qs, i, k], λ), 1 ≤ j′ ≤ n and qs ∈ Q′j .

This construction of FSA clearly shows that,

L(M) = L(Γ)

So, L(Γ) ∈ REG

2

In a similar manner we can prove,

Theorem 4 For any n-FSA Γ in ≤ k-mode, we have L(Γ) ∈ REG.
Theorem 5 For any n-FSA Γ in ≥ k-mode, we have L(Γ) ∈ REG.

Thus we find for n-FSA the different modes of acceptance are equivalent and
n-FSA accept only regular set. Basically, the model we have defined is nondetermin-
istic in nature. Restricting the definition to deterministic n-FSA will not decrease
the power as any regular set can be accepted by a 1-DFA.

4. Distributed Push Down Automata

In this section we define distributed PDA and consider the language accepted
in different modes. We find that the power of distributed PDA is more than the
power of a single “centralized” PDA. Distributed PDA with different modes of ac-
ceptance have equal power. In the case of PDA usually two types of acceptance viz.
acceptance by empty store and acceptance by finite state are considered. Initially
we consider only acceptance by final state. Towards the end of the section we show
the equivalence to acceptance by empty store.
Definition 5 An n-PDA is a 7-tuple M = (Q,V,Γ,∆, q0, Z, F) where,

6

1. Q is an n-tuple (Q1, Q2, · · · , Qn) where each Qi are the set of states for com-
ponent i

2. V is the finite set of input alphabet.

3. Γ is an n-tuple (Γ1,Γ2, · · · ,Γn).

4. ∆ is an n-tuple (δ1, δ2, · · · , δn) of state transition functions where each δi :
Qi × (V ∪ {λ}) × Γi −→ 2∪iQi × Γ∗i , 1 ≤ i ≤ n

5. q0 ∈ ∪iQi is the initial state.

6. Z is an n-tuple (Z1, Z2, · · · , Zn) where each Zi ∈ Γi (1 ≤ i ≤ n) is the start
symbol of stack for the ith component.

7. F ⊆ ∪iQi is the set of final accepting states.

Each of the component PDAs of the n-PDA is of the form
Mi = (Qi, V,Γi, δi, Zi), 1 ≤ i ≤ n. Here Q′is need not be disjoint. As in the case
of distributed Finite State Automata we can have several modes of acceptance.

t-mode acceptance: Initially, the component which has the initial state begins
the processing of the input string. Suppose the component i has the start state.
The ith component starts the processing with the stack having the start symbol Zi.
The processing proceeds in the component i as in a stand alone PDA. Suppose in
the component i the system arrives at a state q where q 6∈ Qi the system goes to
the jth component (1 ≤ j ≤ n) provided q ∈ Qj . If there is more than one choice
for j we choose any one of them nondeterministically. After choosing a particular
jth component the automaton remains in that component until it reaches a state
outside the domain of its transition function and the above procedure is repeated.
The string is accepted if the automaton reaches any one of the final states. It does
not matter which component the system is in or the stacks of the components are
empty or not. The presence of multi-stacks increases the generative capacity of the
whole system.

Note: As t-mode derivations, we can have other kind of derivations such as *-
mode, = k-mode, ≤ k-mode, and ≥ k-mode. Definitions for them is analogous to
the definitions of n-FSA in the respective modes.

Definition 6 The instantaneous description (ID) of the n-PDA is given by a n+3-
tuple (q, w, α1, α2, · · · , αn, i) where q ∈ Q, w ∈ V ∗, αk ∈ Γ∗k , 1 ≤ i, k ≤ n.

In this ID of the n-PDA, q denotes the current state of the whole system, w
the portion of the input string yet to be read and i the index of the component in
which the system is currently in and α1, α2, · · · , αn the contents of the stacks of the
components respectively.
The transition between the ID’s is defined as follows:

(q, aw, α1, α2, · · · , Xαi, · · · , αn, i) ` (q′, w, α1, α2, · · · , βαi, · · · , αn, i)

7

iff

(q′, β) ∈ δi(q, a,X)

where

q ∈ Qi, q′ ∈ Q, a ∈ V ∪ {λ}, w ∈ V ∗, 1 ≤ i ≤ n, α1, α2, · · · , αn, β ∈ Γ∗, X ∈ Γi

(q, w, α1, α2, · · · , αn, i) ` (q, w, α1, α2, · · · , αn, j)

iff

q ∈ Qj −Qi,

w ∈ V ∗, 1 ≤ i, j ≤ n, αi ∈ Γ∗i

Let `∗ be the reflexive and transitive closure of `.
Definition 7 The language accepted by the n-PDA M = (Q,V,Γ,∆, q0, Z, F) is
defined as follows,

L(M) = {w ∈ V ∗ | (qo, w, Z1, Z2, · · · , Zn, i′) `∗ (qf , λ, α1, α2, · · · , αn, i)

for some qf ∈ F, 1 ≤ i, i′ ≤ n, αi ∈ Γ∗i and q0 ∈ Qi′}

Note: Similar to n-FSA we can have other modes of acceptance such as as *-
mode, = k-mode, ≤ k-mode, and ≥ k-mode. These definitions are analogous to the
definitions of n-FSA in the respective modes.

The definitions for language acceptance in other modes can be defined in a
similar manner. There will be one more component denoting the number of steps
in the instantaneous description in the case of = k-mode, ≤ k-mode and ≥ k-mode.
Example 1 : Consider the =2-mode 2-PDA

M = ((Q1, Q2), V, (Γ1,Γ2), (δ1, δ2), {q0}, (Z1, Z2), {qf})

where

Q1 = {q0, q1, qp, qp′ , qs, qz, qc, qc′}
Q2 = {q1, q2, qc, qb, qf}
V = {a, b, c}
Z1 = Z

Z2 = Z

F = {qf}
Γ1 = {Z, a}
Γ2 = {Z, b}

8

δ1 and δ2 are defined as follows, with the assumption that X ∈ {Z, a} and Y ∈
{Z, b}.

δ1(q0, λ, Z) = {(q1, Z)} (1)

δ1(q1, a,X) = {(q1, aX)} (2)

δ2(q1, λ,X) = {(q2, X)} (3)

δ2(q2, a, Z) = {(qp, Z)} (4)

δ1(qp, λ,X) = {(qp′ , aX)} (5)

δ1(qp′ , λ,X) = {(q1, X)} (6)

δ2(q2, b, Y) = {(qs, bY)} (7)

δ1(qs, λ, a) = {(qz, λ)} (8)

δ1(qz, λ, Z) = {(qc, λ)} (9)

δ1(qz, λ, a) = {(q1, a)} (10)

δ2(qc, c, b) = {(qb, λ)} (11)

δ2(qb, λ, Z) = {(qf , λ)} (12)

δ2(qb, λ, b) = {(qc, b)} (13)

δ1(qc, λ, Z) = {(qc′ , Z)} (14)

δ1(qc′ , λ, Z) = {(qc, Z)} (15)

The above 2-PDA in =2-mode accepts the following language L:

L = {anbncn | n ≥ 1}.

Explanation: The first component starts the processing. When it uses the first
two transitions it should have read an a. Then it switches the control to the second
component where it is in the state q1. After using the λ transition to go to the
state q2, it can either read a a or b . Suppose it reads an a then the system will
be in the state qp. The state qp is used here to put the already read a on to the
first component stack. This task is carried out by fifth and sixth rules. Suppose
when in the second component it reads a b then the system will be in the state qs,
which is used to see whether there is one a for each b. This task is carried out by
eighth, ninth and tenth rules. Immediately after seeing there is no more a’s in the
first component’s stack then it realizes that number of b’s is equal to number of b’s
and it goes to the state qc, which is used to read c’s. This task is carried out by
ninth rule. After reading each and every c through rule eleventh it will erase a b.
When there is no b left in the stack the system will be in the final state qf . If there
are more b’s left in the second component stack then the system will be in the state
qc. Then it uses the last two λ rules in the first component and repeats the above
procedure until it arrives at the state qf .
Example 2 : Consider the t-mode 2-PDA

M = ((Q1, Q2), V, (Γ1,Γ2), (δ1, δ2), {q0}, (Z1, Z2), {qf})

9

where

Q1 = {q0, qa, qb, qT }
Q2 = {qa′ , qb′ , qs, qf}
V = {a, b}
F = {qf}

Γ1 = {Z, a, b}
Γ2 = {Z, a, b}

where δ1 and δ2 are defined as follows, with the assumption that X ∈ {Z1, a, b} and
Y ∈ {Z2, a, b}.

δ1(q0, a, Z1) = {(qa, aZ1)} (1)

δ1(q0, b, Z1) = {(qb, bZ1)} (2)

δ1(qa, b,X) = {(qa, bX)} (3)

δ1(qb, a,X) = {(qb, aX)} (4)

δ1(qa, a,X) = {(qT , X), (qa, aX)} (5)

δ1(qb, b,X) = {(qT , X), (qb, bX)} (6)

δ1(qT , λ, a) = {(qa′ , λ)} (7)

δ1(qT , λ, b) = {(qb′ , λ)} (8)

δ2(qa′ , λ, Y) = {(qT , aY)} (9)

δ2(qb′ , λ, Y) = {(qT , bY)} (10)

δ1(qT , λ, Z1) = {(qe, Z1)} (11)

δ2(qe, λ, {a, b}) = {(qs, λ)} (12)

δ2(qs, a, a) = {(qs, λ)} (13)

δ2(qs, b, b) = {(qs, λ)} (14)

δ2(qs, λ, Z2) = {(qf , Z2)} (15)

The above 2-PDA in t-mode accepts the following language L:

L = {ww | w ∈ {a, b}∗}.

Explanation: From q0 the first component either reads a or b and stores the
information that the first alphabet is a or b by entering the state qa or qb respectively.
It also stacks the first alphabet already read. This is done by the first two rules.
From qa or qb it reads a or b and stacks the read alphabet in the first component
stack. This is done by rules 3,4,5 and 6. In qx(x ∈ {a, b}) if the first component
reads x then it could be the start of the string identical to the string read. So, in
order to check that, the stacked up alphabets in the first component are transfered
to the second component stack. This is done by the rules 7,8,9, and 10. After
transferring the stack, the system will be in the state qe. The second component in
state qe erases the top alphabet, since it has already checked that the first alphabet

10

matches. This is carried out by the rule 12. Rules 13,14,15 checks whether the read
alphabet matches with the top stack alphabet.

We know that a two stack machine can simulate a Turing Machine [8]. Hence a
2-PDA is as powerful as a TM. Thus we have,
Theorem 6 For any L ∈ RE, there is a 2-PDA M such that L = L(M).
Theorem 7 For every distributed PDA in *-mode there is an equivalent distributed
PDA in t-mode and for every distributed PDA in t-mode there is an equivalent
distributed PDA in *-mode.
Proof. First we prove the existence of distributed PDA in t-mode for every

distributed PDA in *-mode. Let M = (Q,V,Γ,∆, q0, Z, F) be a n-PDA in *-
mode. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

Let the language generated be L(M). The required n-PDA M ′ in t-mode is con-
structed as follows: M ′ = (Q′, V,Γ,∆′, q0, Z, F) where Q′ = (Q′1, Q

′
2, · · · , Q′n) is

defined as follows,

1. Q′i = Qi ∪ {qji | ∀q ∈ Qi ∩Qj , 1 ≤ j ≤ n, j 6= i}, 1 ≤ i ≤ n

2. δ′i includes all elements of δi.

3. If q ∈ Qi ∩Qj 1 ≤ i, j ≤ n, i 6= j then

(a) (qij , Y) ∈ δ′i(p, a,X) if (q, Y) ∈ δi(p, a,X), a ∈ V and X ∈ Γ∗i
(b) (q,X) ∈ δ′j(qij , λ,X) X ∈ Γ∗j

The difference between these *-mode and t-mode acceptance arises when there is
a state in more than one component. Suppose there is a state q ∈ Qi∩Qj (1 ≤ i, j ≤
n): the *-mode can change its component either from its present ith component
to jth component or vice versa, but t-mode system will not be able to change its
present component. So, in order to build a t-mode n-PDA accepting the same
language, we add two new states qij and qji for each state such as q of which qji is
added to the component Qi and qij to the component Qj . Suppose the system is
in the component i. Whenever the system arrives at the state s, where s is a state
in the component i from where q ∈ Qi ∩Qj can be arrived at we include the state
qij in the transition function δ′i(s, a,X), thus making it possible for the system to
change the component to j with the state q. It is clear from the construction that
the language generated by the constructed system is nothing but L(M).

Now we prove the other way. Let M = (Q,V,Γ,∆, q0, Z, F) be a n-PDA in
t-mode. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

11

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

Let the language generated be L(M). The required n-PDA M ′ in *-mode is con-
structed as follows: M is modified to M ′ in *-mode by the following procedure:

1. Do for i = 1 to n− 1

2. Do for j = i+ 1 to n
Begin

3. For every q ∈ Qi ∩Qj do the following:

(a) Replace q with qj in Qj and in all its transitions.

(b) If there is some Qk other than Qi and Qj and if q acts as a transition
state to component j then replace q with qj in Qk.

It is straight forward to show that the modified n-PDA accepts the same language
in *-mode. 2

Theorem 8 For every distributed PDA in = k-mode there is an equivalent dis-
tributed PDA in t-mode.
Proof. Let M = (Q,V,Γ,∆, q0, Z, F) be a n-PDA in = k-mode. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

Let the language generated by the system be L(M). The required n-PDA in t-
mode M ′ = (Q′, V,Γ,∆′, [q0, 1], Z, F ′) where Q′ = (Q′1, Q

′
2, · · · , Q′n) and ∆′ =

(δ′1, δ
′
2, · · · , δ′n) is defined as follows:

1. Q′i = {[q, x] | q ∈ Qi and 1 ≤ x ≤ k}∪{qji | q ∈ Qi∩Qj , 1 ≤ j ≤ n and i 6= j}

2. δ′i is defined as follows:

(a) ([s, l + 1], y) ∈ δ′i([p, l], a,X) provided (s, y) ∈ δ′i(p, a,X) and l < k

(b) If l = k then (sij , y) ∈ δ′i([q, l], a,X) if s ∈ Qi ∩ Qj for X ∈ Γi and
(s, y) ∈ δi(q, a,X)

(c) ([q, 1], X) ∈ δ′j(qij , λ,X) for X ∈ Γj

3. F ′ = {[q, k] | q ∈ F}

12

The difference between these = k-mode and t-mode derivations arises in the
number of steps the derivation is carried out in a particular component and when
there is a state in more than one-component. Suppose there is a state q ∈ Qi ∩
Qj (1 ≤ i, j ≤ n): the = k-mode can change its component either from its present
ith component to jth component provided it has completed k steps in the component
i or vice versa, but t-mode system will not be able to change its present component.

Suppose the system is in the component i. Whenever the = k-mode n-PDA M ,
starts the processing from the state q the t-mode n-PDA M ′, starts the processing
from the state [q, 1]. If after the first derivation the = k-mode n-PDA goes to the
state s then correspondingly the t-mode n-PDA goes to the state [s, 2]. If after the
second derivation the = k-mode n-PDA goes to the state s′ then correspondingly
the t-mode n-PDA goes to the state [s′, 3]. This procedure is extended upto k − 1
derivations. So, if after k − 1 derivations the = k-mode n-PDA is in the state r
then the t-mode n-PDA will be in the state [r, k]. It means that after one more
derivation the system has to change its component. So, if from the state r the
= k-mode n-PDA goes to the state q where q ∈ Qi ∩Qj for some j then the t-mode
n-PDA goes to the state qij . The state qij is only in the component j so the system
in t-mode has to change its component to j. From the state qij by λ-transition the
t-mode system goes to the state [q, 1] and the processing proceeds in the component
j.
From the construction itself it should be clear that the language generated by both
the systems are the same. 2

The above construction is explained via an example below.
Example 3 : We take the example 1 and construct the equivalent t-mode n-PDA
as follows:

Q′1 = {[q, x] | 1 ≤ x ≤ k, ∀q ∈ Q1} ∪ {q21
1 , q21

c }
Q′2 = {[q, x] | 1 ≤ x ≤ k, ∀q ∈ Q2} ∪ {q12

1 , q12
c , qf}

where start state is [q0, 1] and final state is qf

The transition functions are defined as follows, on the assumption that X ∈
{Z, a} and Y ∈ {Z, b}.

δ′1([q0, 1], λ, Z) = {([q1, 2], Z)} (1)

δ′1([q1, 2], a,X) = {(q12
1 , aX)} (2)

δ′2([q1, 1], λ, Y) = {([q2, 2], Y)} (3)

δ′2([q2, 2], a, Z) = {([qp, 1], Z)} (4)

δ′1([qp, 1], λ,X) = {([qp′ , 2], aX)} (5)

δ′1([qp′ , 2], λ,X) = {(q12
1 , X)} (6)

δ′2([q2, 2], b, Y) = {([qs, 1], bY)} (7)

δ′1([qs, 1], λ, a) = {([qz, 2], λ)} (8)

δ′1([qz, 2], λ, Z) = {(q12
c , λ)} (9)

13

δ′1([qz, 2], λ, a) = {(q12
1 , a)} (10)

δ′2([qc, 1], c, b) = {([qb, 2], λ)} (11)

δ′2([qb, 2], λ, Z) = {(qf , λ)} (12)

δ′2([qb, 2], λ, b) = {(q21
c , b)} (13)

δ′1([qc, 1], λ, Z) = {([qc′ , 2], Z)} (14)

δ′1([qc′ , 2], λ, Z) = {(q12
c , Z)} (15)

δ′2(q12
1 , λ, Y) = {([q1, 1], Y)} (16)

δ′2(q12
c , λ, Y) = {([qc, 1], Y)} (17)

δ′1(q21
1 , λ,X) = {([q1, 1], X)} (18)

δ′1(q21
c , λ,X) = {([qc, 1], X)} (19)

Theorem 9 For every distributed PDA in t-mode there is an equivalent distributed
PDA in = k-mode.
Proof. Let M = (Q,V,Γ,∆, q0, Z, F) be a n-PDA in t-mode. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

Let the language generated by the system be L(M). Let Q = ∪iQi. The n+2-PDA
M ′ = (Q′, V,Γ′,∆′, q0, Z

′, F ′) in = k-mode is constructed as follows:

Q′ = (Q′1, Q
′
2, · · · , Q′n, Q′n+1, Q

′
n+2)

Γ′ = (Γ′1,Γ
′
2, · · · ,Γ′n,Γ′n+1,Γ

′
n+2)

∆′ = (δ′1, δ
′
2, · · · , δ′n, δ′n+1, δ

′
n+2)

Z ′ = (Z1, Z2, · · · , Zn, Zn+1, Zn+2)

1. Q′i = Qi ∪{[q, s] | 1 ≤ s ≤ k, q ∈ Qi}∪{r′qi | q ∈ Qi}∪{rqx,s | q ∈ QTi , 1 ≤
i ≤ n, qx is the state outside the domain of thecomponent i which can
be arrived from the state q, 1 ≤ s ≤ k, 1 ≤ x ≤ z, where z is a positive
integer} ∪ {pi1 , pi2 , · · · , pik} for 1 ≤ i ≤ n.

2. Q′n+1 = {rqi | q ∈ Qi, 1 ≤ i ≤ n} ∪ {d2, d3, · · · , dk}.

3. Q′n+2 = {f1, f2, · · · , fk}.

4. Γ′i = Γi for 1 ≤ i ≤ n.

5. Γ′n+1 = {Zqi | q ∈ Qi, 1 ≤ i ≤ n} ∪ {Zn+1}.

6. Γ′n+2 = {Zn+2}.

14

Let QTi be the set of all states q in Q − Qi such that q is a transition state
for the component i and let N(QTi) be the set of all states q in Qi such that from
q the system can arrive at a state p ∈ QTi by a single transition. We define the
transistion function δ′i(1 ≤ i ≤ n) as follows,

1. ([q, 1], Y X) ∈ δ′i(q0, a,X) if (q, Y X) ∈ δi(q0, a,X) ∀i s.t q0 ∈ Qi, 1 ≤ i ≤ n.

2. ([q, 1], X) ∈ δ′i(q, λ,X) ∀i, 1 ≤ i ≤ n.

3. ([q, 1], X) ∈ δ′i(r′qi, λ, Y).

4. (pik−s+2 , ZqiX) ∈ δ′i(rqx,s , a,X).

5. (pij−1 , Zqi) ∈ δ′i(pij , λ, Zqi) for 2 ≤ j ≤ k.

6. (q, λ) ∈ δi(pi1 , λ, Zqi).

Case 1 Let q 6∈ F

1. if q ∈ N(QTi) and s < k − 1 then {(rqx,s , X) | x is a finite integer ≥ 1} ∪
{([p, s+ 1], Y X)} ∈ δ′i([q, s], a,X) if (p, Y X) ∈ δi(q, a,X).

2. if q ∈ N(QTi) and s = k − 1 then (p, Y X) ∈ δ′i([q, s], a,X) if (p, Y X) ∈
δi(q, a,X).

3. if q 6∈ N(QTi) and s < k−1 then ([p, s+ 1], Y X) ∈ δ′i([q, s], a,X) if (p, Y X) ∈
δi(q, a,X).

4. if q 6∈ N(QTi) and s = k − 1 then (rqi, X) ∈ δi([q, s], a,X).

Case 2 Let q ∈ F

1. if q ∈ N(QTi) and s < k − 1 then (fk−s+1, X) ∈ δ′i([q, s], a,X).

2. if q ∈ N(QTi) and s = k − 1 then (p, Y X) ∈ δ′i([q, s], a,X) if (p, Y X) ∈
δ′i((q, a,X).

3. if q 6∈ N(QTi) and s < k−1 then {(fk−s+1, X), ([p, s+1], Y X)} ∈ δ′i([q, s], a,X)
if (p, Y X) ∈ δi((q, a,X).

4. if q 6∈ N(QTi) and s = k − 1 then {(f1, X), (rqi, X)} ∈ δ′i([q, s], a,X).

δ′n+1 definition is as follows,

1. (d2, ZqiZn+1) ∈ δ′n+1(rqi, λ, Zn+1).

2. (di+1, Y) ∈ δ′n+1(di, λ, Y) for 2 ≤ i ≤ k − 1.

3. (r′qi, Zn+1) ∈ δ′n+1(dk, λ, ZqiZn+1).

δ′n+2 is defined as,

1. (fi−1, Zn+2) ∈ δ′n+2(fi, λ, Zn+2) for 2 ≤ i ≤ k.

15

The set of final states F ′ is defined as

F ′ = {f1}∪{p ∈ F | ∃q s.t δi([q, k−1], a,X) contains p for some i, a ∈ V andX ∈ Γ′i}

The states {pi1 , pi2 , · · · , pik} are added to the component i to make sure that each
component does not do less than k number of processing before proceeding on to
the next component. The new component Qn+1 is added in order to make sure that
a component does not go beyond k number of steps in a component. Its stack stores
the state with which the system has to carry on processing after being “dummy”
in the component Qn+1. The component Qn+2 make sure that the system goes to
the final state only after k number of processing in the component i.
From the construction itself it should be clear that the language generated by the
constructed n-PDA in = k-mode is nothing but L(M). 2

In a similar manner we can prove.
Theorem 10 For every distributed PDA in ≤ k-mode there is an equivalent dis-
tributed PDA in t-mode.
Theorem 11 For every distributed PDA in ≥ k-mode there is a distributed PDA
in t-mode.

The converse of the above two theorems follows from the equivalence of n-PDA
in = k-mode and t-mode. Upto this we have considered the language accepted by
the “final state acceptance” in a n-PDA. Similarly we can define language accepted
by “empty store”. The language accepted by n-PDA by “empty store acceptance”
is defined as follows,
Definition 8 The language accepted by the n-PDA M = (Q,V,Γ,∆, q0, Z, F) by
“empty store acceptance”is defined as follows,

N(M) = {w ∈ V ∗ | (qo, w, Z1, Z2, · · · , Zn, i′) `∗ (q, λ, λ, λ, · · · , λ(n times), i)

for some q ∈ Qi, 1 ≤ i, i′ ≤ n, and q0 ∈ Qi′}

The equivalence of acceptance by final state and empty store in a n-PDA in
t-mode is proved by the following theorems,
Theorem 12 If L is L(M2) for some n-PDA M2, then L is N(M1) for some n-
PDA M1.
Proof. Let M2 = (Q,V,Γ,∆, q0, Z, F) be a n-PDA in t-mode where the accep-

tance is by final state. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

The n-PDA M1 = (Q′, V,Γ′,∆′, q0, Z
′, φ) in t-mode where the acceptance is

by empty store is constructed as follows: Q′ = (Q′1, Q
′
2, · · · , Q′n) and ∆′ =

(δ′1, δ
′
2, · · · , δ′n)

16

1. Q′i = Qi ∪ {qi}, 1 ≤ i ≤ n

2. Γ′i = Γi ∪ {Z ′i}

3. For each i δ′i includes all elements of δi

4. δ′i(q, λ, Z
′
i) contains (q, ZiZ ′i)

5. For all i(1 ≤ i ≤ n) if q ∈ F ∩Qi then δ′i(q, λ,X) = (q1, X)

6. For 1 ≤ i ≤ n− 1

(a) δ′i(qi, λ,X) contains (qi, λ), X ∈ Γi

(b) δ′i(qi, λ, Zi) contains (qi+1, λ)

7. δ′n(qn, λ, Z ′n) contains (qn, λ)

Whenever the system enters a final state string read by the system should be ac-
cepted by the system. i.e. the stacks of the components should be emptied. For
this, as soon as the system enters the final state it has the possibility of going to
the first component through the state q1. When in the state q1 the system empties
the first component stack and enters the second component through the state q2

and the procedure is repeated. In the state qn the system empties the stack of the
nth component. It is straight forward to prove that L(M2) = N(M1). 2

Theorem 13 If L is N(M1) for some n-PDA M1 in t-mode, then L is L(M2) for
some n+ 1-PDA M2 in t-mode.
Proof. Let M1 = (Q,V,Γ,∆, q0, Z, φ) be a n-PDA in t-mode. Let

Q = (Q1, Q2, · · · , Qn)

Γ = (Γ1,Γ2, · · · ,Γn)

∆ = (δ1, δ2, · · · , δn)

Z = (Z1, Z2, · · · , Zn)

The n+1-PDAM2 = (Q′, V,Γ′,∆′, q0, Z
′, {qf}) whereQ′ = (Q′1, Q

′
2, · · · , Q′n, Q′n+1),

Γ′ = (Γ′1,Γ
′
2, · · · ,Γ′n,Γ′n+1), ∆′ = (δ′1, δ

′
2, · · · , δ′n, δ′n+1) and Z ′ = (Z ′1, Z

′
2, · · · , Z ′n, Z ′n+1)

is constructed as follows:

1. Q′i = Qi ∪ {r′qi | q ∈ Qi} ∪ {qi}, 1 ≤ i ≤ n

2. Q′n+1 = {rqi | q ∈ ∪iQi} ∪ {qf , qg}

3. Γ′i = Γi ∪ {Z ′i}, 1 ≤ i ≤ n

4. Γ′n+1 = {rqi | q ∈ ∪iQi} ∪ {Z ′n+1}

5. δ′i(q, λ, Z
′
i) contains (q, ZiZ ′i)

6. δ′i includes all elements of δi

17

7. For 1 ≤ i ≤ n, δ′i(q, λ, Z
′
i) contains (rqi, Z ′i)

8. δ′n+1(rqi, λ, Z ′n+1) contains (q1, ZqiZn+1)

9. δ′i(qi, λ, Z
′
i) contains (qi+1, Z

′
i), 1 ≤ i ≤ n− 1

10. δ′i(qi, λ,X) contains (qg, X), 1 ≤ i ≤ nX ∈ Γi

11. δ′n(qn, λ, Z ′n) contains (qf , λ)

12. δ′n+1(qg, λ, Zqi) contains (r′qi, λ)

13. δ′i(r
′
qi, λ,X) contains (q,X), 1 ≤ i ≤ n

Whenever the system’s stacks are empty the system enters the new final state qf
included in the newly added component Q′n+1. For this, if the system in the state
q in the component i sees its stack is empty the system enters the state rqi which
is only in the newly added state Q′n+1. In the component Q′n+1 the state rqi is put
into its stack to store the information which state and which component the system
has to go if the system sees that some stacks are non-empty. After stacking the
state rqi, the system uses the states qj to see whether the stack of the component j
is empty or not. If it is empty it goes to the next component to check the emptiness
of the next component. If not, it enters the state qg which is in the component
n+ 1 to get the information from which state and component it has to continue the
processing. This work is done by the state r′qi.

It is straight forward to prove that L(M2) = N(M1). 2

The equivalence of the “empty store acceptance” and the “final state acceptance”
in the other modes can be proved similarly.

5. Distributed k-turn PDA

In this section, we consider a restricted version of the distributed PDA discussed
in the previous section. Here we consider only *-mode acceptance. Also, we take
Q = Q1 = Q2 = · · · = Qn. In this restricted version of distributed PDA, the
stacks of the component PDAs can perform atmost a k number of turns while ac-
cepting a string. A n-PDA in which the stack of each of the components can perform
atmost k turns each is called a k-turn n-pushdown automata (k-turn n-PDA). If n
is not explicitly mentioned, then the system is called k-turn distributed PDA and
is denoted by the symbol k-turn ∗-PDA. The following corollary immediately fol-
lows from this definition of k-turn n-PDA and the fact that the family of languages
accepted by k-turn PDAs is the family of non-terminal bounded languages.
Corollary 1 For every non terminal bounded language L, there exists a k-turn
n-PDA M for some k ≥ 1 such that L(M) = L.

In the case of k-turn n-PDA, we note that each of the k-turn component PDAs of
the entire system can be replaced by k “1-turn component PDA”s (with the order
in which the component PDAs are being used being coded in the state information).
With this observation we have the following theorem.

18

Theorem 14 For any k-turn *-PDA M1, there exists a 1-turn *-PDA M2 such
that L(M1) = L(M2).

This theorem tells us that we can restrict our attention to 1-turn *-PDA as far
as analyzing accepting power is concerned.

It is of interest to note that 1-turn *-PDA accept certain languages which are
not context-free in nature.
Example 4 : Consider

M1 = ({q1, . . . , q6}, {a, b, c}, q1, {q6},
({Z, a, b, c}, δ1, Z), ({Z, a, b, c}, δ2, Z))

where

(r1) : δ1(q1, a,X) = {(q1, aX)}, X ∈ {Z, a}
(r2) : δ1(q1, b, a) = {(q2, λ)}
(r3) : δ2(q2, λ,X) = {(q3, bX)}, X ∈ {Z, b}
(r4) : δ1(q3, b, a) = {(q2, λ)}
(r5) : δ1(q3, c, Z) = {(q4, Z)}
(r6) : δ2(q4, λ, b) = {(q5, λ)}
(r7) : δ2(q5, c, b) = {(q5, λ)}
(r8) : δ2(q5, λ, Z) = {(q6, λ)}

In this automaton, the prefix an is first pushed onto the stack of component 1 by
rule (r1). On encountering bm, rules (r2), (r3), (r4), for each ‘b’ read off a character
from the input string, pop an ‘a’ from the stack of component 1 and push a ‘b’ on
the stack of component 2. Rule (r5) checks whether an exact matching takes place
(ie., n = m). Rules (r6) and (r7) similarly match the substring cp with bm. If an
exact matching occurs (checked by rule (r8)), the final state q6 is entered and the
string anbncn is accepted. Thus

L(M1) = {anbncn | n ≥ 1}

We observe that both the component PDAs perform 1 turn each in this example.
Example 5 : Consider

M2 = ({q10, q11, q20, q2a, q2b, qf}, {a, b, c}, q10, {qf},
({Z, a, b}, δ1, Z), ({Z, a, b}, δ2, Z))

where

(r1) : δ1(q10, p,X) = {(q10, pX)}, X ∈ {Z, a, b}, p ∈ {a, b}
(r2) : δ1(q10, c, a) = {(q2a, λ)}
(r3) : δ1(q10, c, b) = {(q2b, λ)}
(r4) : δ2(q2a, λ,X) = {(q11, aX)}, X ∈ {Z, a, b}
(r5) : δ2(q2b, λ,X) = {(q11, bX)}, X ∈ {Z, a, b}

19

(r6) : δ1(q11, λ, a) = {(q2a, λ)}
(r7) : δ1(q11, λ, b) = {(q2b, λ)}
(r8) : δ1(q11, λ, Z) = {(q20, Z)}
(r9) : δ2(q20, a, a) = {(q20, λ)}

(r10) : δ2(q20, b, b) = {(q20, λ)}
(r11) : δ2(q20, λ, Z) = {(qf , λ)}

In this automaton, rule (r1) pushes the string w(∈ {a, b}∗) onto the stack of
component 1. On encountering a ‘c’ in the input string (rules (r2), (r3)), the string
w is reversed into the stack of component 2 by a series of pops and pushes (rules
(r4), (r5), (r6), (r7)). When the string is completely reversed (indicated by rule
(r8)), the remainder of the input string is matched with the contents of the stack
of component 2 (rules (r9), (r10)). If a perfect match occurs, then the final state
qf is entered and the string wcw,w(∈ {a, b}∗) is accepted. Thus

L(M2) = {wcw | w ∈ {a, b}∗}

As in the previous example, we observe that both the component PDAs perform
1 turn each in this example.

We need the following closure properties of distributed k-turn PDAs to show
their equivalence with TMs
Theorem 15 The family of languages accepted by 1-turn *-PDAs is closed under
the following operations.
(i) Morphism
(ii) Intersection with Regular Sets
(i) Morphism: Let
M = (Q,V1, q0, F, (Γ1, δ1, Z1), . . . , (Γn, δn, Zn)) be any 1-turn n-PDA of and h :
V1 → V2 be any morphism.
Construct a 1-turn n-PDA as shown below:
M ′ = (Q′, V2, q0, F, (Γ1, δ

′
1, Z1), . . . , (Γn, δ′n, Zn))

where

Q′ = Q ∪ {[q, a,X, i, j] | |h(a)| > 1, h(a) = a0a1 . . . ap ∈ V ∗2 , 0 ≤ i < p,

q ∈ Q, a ∈ V1, X ∈ Γj , 1 ≤ j ≤ m}

The rules of M ′ are given by
(1) δ′j(q, λ,X) = δj(q, λ,X), q ∈ Q,X ∈ Γj , 1 ≤ j ≤ m
(2) If (q′, γ) ∈ δj(q, a,X), q ∈ Q, a ∈ V1, X ∈ Γj , γ ∈ Γ∗j

(i) If h(a) = λ, then (q′, γ) ∈ δ′j(q, λ,X)
(ii) If |h(a)| = 1, then (q′, γ) ∈ δj(q, h(a), X)

20

(iii) If |h(a)| > 1, say h(a) = a0a1 . . . ap ∈ V ∗2
([q, a,X, 0, j], X) ∈ δ′j(q, a0, X)
([q, a,X, i, j], X) ∈ δ′j([q, a,X, i− 1, j], ai, X), 1 ≤ i < p

(q′, γ) ∈ δ′j([q, a,X, p− 1, j], ap, X)
M ′ is constructed in such a manner that M ′ responds to h(w), (w ∈ V ∗1) in

exactly the same way as M does to w. Thus we have

L(M ′) = h(L(M))

(ii) Intersection with Regular sets: Let
M = (Q1, V, q10, F1, (Γ1, δ1, Z1), . . . , (Γn, δn, Zn)) be any 1-turn n-PDA and M2 =
(Q2, V, q20, F2, δ) be any FSA.

Consider the 1-turn n-PDA

M ′ = (Q1 ×Q2, V, [q10, q20], F1 × F2, (Γ1, δ
′
1, Z1), . . . , (Γn, δ′n, Zn))

The rules of M ′ are given by:
(1) If (q′1, γ) ∈ δj(q1, λ,X), q1, q

′
1 ∈ Q1, γ ∈ Γ∗j , X ∈ Γj , 1 ≤ j ≤ m, then

([q′1, q2], γ) ∈ δj([q1, q2], λ,X) for all q2 ∈ Q2.
(2) If (q′1, γ) ∈ δj(q1, a,X) and q′2 ∈ δ(q2, a), q1, q

′
1 ∈ Q1, q2, q

′
2 ∈ Q2, a ∈ V, γ ∈

Γ∗j , X ∈ Γj , 1 ≤ j ≤ m, then ([q′1, q
′
2], γ) ∈ δj([q1, q2], a,X).

It can easily be seen by this construction that

L(M ′) = L(M) ∩ L(M2).

2

For two morphisms h1, h2 : V ∗1 → V ∗2 , we define the equality set by

EQ(h1, h2) = {x ∈ V ∗1 |h1(x) = h2(x)}

The following theorem gives a representation of RE in terms of equality sets
[7, 9].
Theorem 16 Each language L ∈ RE, L ⊆ T ∗, can be written in the form L =
prT (EQ(h1, h2) ∩ R), where R ⊆ V ∗1 is a regular language and h1, h2 : V ∗1 → V ∗2
are two λ - free morphisms, T ⊆ V1.

The following theorem shows that equality sets are accepted by 1-turn 2-PDAs.
Theorem 17 For any 2 morphisms h1, h2 : V1 → V2, there exists a 1-turn 2-PDA
M such that L(M) = EQ(h1, h2).
Proof. Construct the 1-turn 2-PDA

M = (Q,V1, q0, {qf}, (V2 ∪ {Z}, δ1, Z), (V2 ∪ {Z}, δ2, Z))

where Q = {q0, q1, qf} ∪ {[a] | a ∈ V1} ∪ {[X ′] | X ∈ V2 ∪ {Z}}

21

The rules of M are given as follows:

(r1) : δ1(q0, a,X) = {[a], h1(a)X)}, a ∈ V1, X ∈ V2 ∪ {Z}
(r2) : δ2([a], λ,X) = {q0, h2(a)X)}, a ∈ V1, X ∈ V2 ∪ {Z}
(r3) : δ1(q0, λ,X) = {[X ′], λ}, X ∈ V2 ∪ {Z}
(r4) : δ1(q1, λ,X) = {[X ′], λ}, X ∈ V2 ∪ {Z}
(r5) : δ2([X ′], λ,X) = {q1, λ}, X ∈ V2

(r6) : δ2([Z ′], λ, Z) = {qf , λ}

On reading the input string w(∈ V ∗1), rules (r1), (r2) push h1(w) and h2(w)
onto the stacks of components 1 and 2 respectively. Rules (r3), (r4), (r5) match the
strings h1(w) and h2(w). On a perfect match, the system enters the final state qf
(rule (r6)). Thus we have

L(M) = EQ(h1, h2)

2

This theorem coupled with the characterization of RE by equality sets (Theo-
rem 16) and the closure properties under morphism and intersection with regular
sets (Theorem 15) proves that the family of languages accepted by 1-turn 2-PDA
includes the whole of RE. We thus have,
Theorem 18 For each L ∈ RE, there exists a 1-turn 2-PDA M such that L(M) =
L and conversely, for each 1-turn 2-PDA M , we have L(M) ∈ RE.
Proof. The first statement in the theorem follows from the discussion above while

the converse is a consequence of the Church-Turing Hypothesis. 2

6. Conclusions

In this paper, we define the notion of distributed automata in the sequential sense
and analyze the increase in acceptance power for FSA and PDA in different modes
like t-mode, *-mode, = k-mode, ≤ k-mode, and ≥ k-mode. In the case of FSA, we
prove that the distributed FSAs are no more powerful than the “centralized” FSAs
in all of the above modes. However in the case of PDAs, we show that a distributed
system with just two components accepts the family RE. In the case of distributed
PDA’s we also analyze the acceptance power in each of the above modes and we
prove they are all equivalent. We also consider a restricted version of distributed
PDA called k-turn distributed PDA and show that 1-turn 2-PDA are as powerful
as Turing Machines.

In [1] Cooperated Distributed Grammars are considered. There it is found that
the different modes of derivations are not equal in power, where as when we define
automata, the different modes of acceptance have equivalent power.

22

There are several extensions worth pursuing. It would be interesting to study
the acceptance power of the distributed PDA in different modes by restricting the
system to be deterministic. The correspondence between distributed grammars
and automata can be investigated. It would also be worthwhile to probe into the
complexity(time and space) of these systems and also parallel communicating dis-
tributed automata.

References

1. J. Dassow, Gh. Paun and G. Rozenberg, “Grammar Systems”, chapter 4 in Vol 2
of Handbook of Formal Languages, springer-verlag, Hieldelberg, pp. 155-213, 1997.

2. E. Csuhaj Varju and J. Dassow, “On cooperating Distributed Grammar Systems”,
J. Inform. Process. Cybern., EIK,26, pp. 49-63, 1990.

3. R. Meersman, G. Rozenberg and D. Vermeir, “Cooperating Grammar Systems”,
Proc. MFCS ’78,LNCS 64, Springer-Verlag,Berlin, pp. 364-374, 1978.

4. Gh. Paun, L. Santaen, Parallel Communicating Grammar Systems: regular case,
Ann. Univ. Buc., Matem-Inform. series, Vol.38, 1989, no. 2, 55-63.

5. E. Csuhaj-Varju, J.Dassow, J.Kleeman and Gh. Paun, Grammar Systems. A Gram-
matical Approach to Distribution and cooperation, Gordon and Breach, London,
1994.

6. G.Rozenberg and A.Salomaa, eds, Handbook of Formal Languages, 3 Volumes,
Springer-Verlag, Hiedelberg, 1997.

7. A.Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville,
Maryland, 1981.

8. J.E.Hopcroft and J.D.Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison Wesley, 1979.

9. K. Cullik II, “A purely homomorphic characterization of recursively enumerable
sets”, Journal of the ACM, 26(1979), 345-350.

23

