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Abstract
Most known constructions of probabilistically checkable proofs (PCPs) either blow up the proof-

size by a large polynomial, or have a high (though constant) query complexity. In this thesis we

give a transformation with slightly-super-cubic blowup in proof-size and a low query complexity.

Specifically, the verifier probes the proof in 16 bits and rejects every proof of a false assertion with

probability arbitrarily close to 1
2 , while accepting corrects proofs of theorems with probability one.

The proof is obtained by revisiting known constructions and improving numerous components

therein. In the process we abstract a number of new modules that may be of use in other PCP

constructions.
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CHAPTER 1

Introduction

The notion of proof verification is fundamental in Complexity Theory. One of the basic complexity

classes NP is defined in terms of proof verification. NP is precisely the class of languages for which

there exists a short (polynomially long) proof of membership that can be verified by a polynomial

time deterministic algorithm (called a verifier). While studying proof verification, one comes across

several questions.

• How efficiently can the proof be verified?

• Do all the bits of the proof have to be read to verify it?

• Should the verifier be deterministic?

Attempts to answer these questions lead to the notion of Probabilistically Checkable Proofs (PCP).

It is known today that proofs can be written in such a fashion that the verifier can merely check the

proof at a few selected places and be assured of its validity in the case of correct proofs and find

flaws in case of false proofs. If the verifier were deterministic, it is clear that it must read all the bits

of the proof to convince itself of the validity of the proof. However, this need not be the case if the

verifier adopts a randomized strategy, i.e., the verifier could possibly throw a few random coins,

decide to read the proof at a few selected places and still find flaws in a false proof with fairly high

probability.

1.1 Probabilistically Checkable Proofs

Informally, a PCP system for a language L consists of a verifier which is a probabilistic Turing

Machine that has to check the membership of an input string x in the language L. The verifier has
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oracle access to a (binary) proof π which supposedly contains the proof of the statement “x ∈ L”.

The verifier checks membership by tossing a certain number of random coins, decides to check the

proof at a few bit positions and accepts or rejects the proof π based on a boolean verdict depending

on the input string x, the random coins tossed and the bits read by it.

More formally the verifier in a PCP system is defined as follows:

Definition 1.1.1 For functions r, q : Z+ → Z
+, a probabilistic oracle machine (or verifier) V is called a

(r, q)-restricted verifier if on input x of length n, the verifier V tosses at most r(n) random coins to obtain

the random string R and queries an oracle π for at most q(n) bits. It then computes a Boolean verdict based

on x,R and the bits read from the proof π and accepts or rejects the proof according to the Boolean verdict.

We denote this decision by V π(x;R).

The parameters r(n), q(n) quantify the complexity of the verification procedure and we hence

expect them to be small (compared to n) so that the verification is efficient. We then have to charac-

terize the performance of the verifier by two other parameters (a) Completeness: This is the probabil-

ity with which the verifier accepts correct proofs, when x ∈ L. (b) Soundness: This is the maximum

probability with which the verifier accepts purported proofs when x /∈ L. The choice of these pa-

rameters decides the class of languages accepted by restricted verifiers behaving according to those

parameters. Or more formally,

Definition 1.1.2 A languageL is said to be in the class PCPc,s[r, q] if there exists an (r, q)-restricted verifier

that satisfies the following properties on input x.

Completeness If x ∈ L then there exists π such that V on oracle access to π accepts with probability at

least c (i.e., ∃π such that PrR[V π(x;R) = accept] ≥ c.)

Soundness If x 6∈ L then for every oracle π, the verifier V accepts with probability strictly less than s (i.e.,

∀π, PrR[V π(x;R) = accept] < s.)

In the case when c = 1 and s = 1/2, we omit the subscripts c, s and refer to the corresponding

class as just PCP[r, q].

1.2 PCPs - A Brief History

In this section, we shall give a brief history of the results in the area of PCPs.1

Interactive Proof systems (IP) were introduced independently by Goldwasser, Micali and Rack-

off [17] and Babai [4]. Ben-Or, Goldwasser, Kilian and Wigderson [10] then extended the notion

of interactive proof system to multiple provers and defined the concept of multiprover interactive
1The study of PCPs is very involved and we stress that there are far too many beautiful results for us to do do justice by

citing all of them.

10



proofs (MIP)2. Fortnow, Rompel and Sipser [15] then showed that MIP so defined is exactly equal to

PCP[poly,poly] (using the terminology of PCPs). In fact the model underlying today’s PCP systems

is the “oracle model” introduced by Fortnow, Rompel and Sipser [15].

The central result early in this area is that of Babai, Fortnow and Lund [6]. They showed that

MIP = NEXP (i.e., the class of languages recognizable in non-deterministic exponential time) This

result combined with that of Fortnow, Rompel and Sipser [15] shows that NEXP ⊆ PCP[poly,poly].

This important connection between NEXP and PCPs was scaled down to the NP-level by two

separate groups. Babai, Fortnow, Levin and Szegedy [5] showed that there exist PCPs (called

holographic proofs in their result) for NP in which it is possible to verify the correctness of the

proof in poly-logarithmic time. The seminal result indicating the intricate relationship between

PCP systems and hardness of approximations was made by Feige, Goldwasser, Lovász, Safra

and Szegedy [12]. The definition of PCPs is implicit in their result and they show that NP ⊆

PCP[O(log n log log n), O(log n log log n)]. They also make the remarkable observation that NP ⊆

PCP1,s[r, q] implies that approximating the maximum clique in a 2r(n)+q(n)-vertices graph to within

a factor of 1/s factor is infeasible3 unless NP ⊆DTIME(2O(r+q)).

This hardness connection of PCPs spurred a lot of research into strengthening the parameters of

PCPs to prove stronger hardness assumptions. Arora and Safra [2] set the stage for results in this

direction. They proved that NP = PCP[O(log n), O(
√

log n)]. They also made explicit the definition

of PCPs, the hierarchy of classes PCPc,s[r, q] and their dependence on the parameters r(n), q(n).

Their proof introduced the notion of recursive proof checking (also called proof composition) Proof

Composition has played a vital role in all subsequent constructions of PCPs. They also provide the

first strong NP-hardness result for MaxClique (a factor of 2
√

logn). Arora, Lund, Motwani, Sudan

and Szegedy [1] then showed how to reduce the query complexity to constant while preserving

the logarithmic randomness, i.e., they showed that NP = PCP[O(log n), O(1)]. This result implies

that Max3Sat is NP-hard to approximate within some constant factor and so is any MaxSNP hard

problem. It also implied the NP-hardness of approximating MaxClique within nε, for some ε > 0.

Constant prover proof systems have been very useful both in the construction of PCPs as well as

in the derivation of inapproximability results. There are used in the penultimate step of recursive

proof composition. Informally, a constant prover proof system of one round consists of a verifier

which makes a few random coin tosses, queries a constant number of provers, each of which re-

spond with answers of a certain size (not necessarily a bit long). The verifier then accepts or rejects

based on the responses of the provers. Two-prover proof systems with poly-logarithmic random-

ness and answer size were introduced by Lapidot and Shamir [20] and Feige and Lovász [14].

Arora, Lund, Motwani, Sudan and Szegedy [1] reduced the randomness to logarithmic at the ex-

2We shall formally define MIPs in Chapter 2
3infeasible here means not doable in polynomial time.
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pense of number of provers (still a constant). Bellare, Goldwasser, Lund and Russell [8] attain

the same randomness but reduce answer size to sublogarithmic with just 4 provers. Feige and

Kilian [13] then constructed 2-prover proof systems with logarithmic randomness and constant an-

swer size. A breakthrough result in this area is Raz’ parallel repetition theorem which shows the

existence of 2-prover proof systems with logarithmic randomness and constant answer size [24].

It is to be noted that in the above results, proof-size is not a parameter that has been optimized.

Proof-sizes were considered in Babai, Fortnow, Levin and Szegedy [5] and Polishchuk and Spiel-

man [23]. With respect to proof-size, Polishchuk and Spielman [23, 28] attain the optimal result;

they show how a PCP can be constructed with just a blowup of n1+ε in the proof-size for any ε > 0.

Long Code as an important error-correcting code to be used in the ultimate step of proof composi-

tion was first introduced in Bellare, Goldreich and Sudan [7]. With respect to query complexity, a

sequence of results [6, 5, 12, 2, 1, 8, 13, 9, 24, 7, 18] finally culminated in Håstad’s beautiful result

[19] that every language in NP has a PCP with query complexity 3 and soundness arbitrarily close

to 1/2. This query complexity is tight with respect to soundness 1/2. Håstad in his results also

describes a “Fourier Analysis” technique which can potentially be used to give the tight analysis of

any verifier.

1.3 Our Main Results

Constructions of efficient probabilistically checkable proofs (PCP) have been the subject of active

research in the last ten years. As mentioned in the earlier section, Arora, Lund, Motwani, Sudan

and Szegedy [1] showed that it is possible to transform any proof into a probabilistically checkable

one of polynomial size, such that it is verifiable with a constant number of queries. Valid proofs

are accepted with probability one, while any purported proof of an invalid assertion is rejected

with probability 1/2. Neither the proof-size, nor the query complexity is explicitly described there;

however the latter is estimated to be around 106.

Subsequently much success has been achieved in improving the parameters of PCPs, construct-

ing highly efficient proof systems either in terms of their size or their query complexity. The best

result in terms of the former is a result of Polishchuk and Spielman [23]. They show how any

proof can be transformed into a probabilistically checkable proof with only a mild blowup in the

proof-size, of n1+ε for arbitrarily small ε > 0 and that is checkable with only a constant number

of queries. This number of queries however is of the order of O(1/ε2), with the constant hidden

by the big-Oh being some multiple of the query complexity of [1]. On the other hand, Håstad [19]

has constructed PCPs for arbitrary NP statements where the query complexity is a mere three bits

(for completeness almost 1 and soundness 1/2). However the blowup in the proof-size of Håstad’s

PCPs has an exponent proportional to the query complexity of the PCP of [1]. Thus neither of these
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“nearly-optimal” results provides simultaneous optimality of the two parameters. It is reasonable

to wonder if this inefficiency in the combination of the two parameters is inherent; and this thesis

is motivated by this question.

We examine the size and query complexity of PCPs jointly and obtain a construction with rea-

sonable performance in both parameters. The only previous work that mentions the joint size vs.

query complexity of PCPs is a work of Friedl and Sudan [16], who indicate that NP has PCPs with

nearly quadratic size complexity and in which the verifier queries the proof for 165 bits. The main

technical ingredient in their proof was an improved analysis of the “low-degree test”. Subsequent

to this work, the analysis of low-degree tests has been substantially improved. Raz and Safra [25]

and Arora and Sudan [3] have given highly efficient analysis of different low-degree tests. Further-

more, techniques available for “proof composition” have improved, as also have the construction

for terminal “inner verifiers”. In particular, the work of Håstad [19], has significantly strengthened

the ability to analyze inner verifiers used at the final composition step of PCP constructions.

In view of these improvements, it is natural to expect the performance of PCP constructions to

improve. Our work confirms this expectation. However, our work exposes an enormous number

of complications in the natural path of improvement. We resolve most of these, with little loss in

performance and thereby obtain the following result: Satisfiability has a PCP verifier that makes at

most 16 oracle queries to a proof of size at most n3+o(1), where n is the size of the instance of satisfi-

ability. Satisfiable instances have proofs that are accepted with probability one, while unsatisfiable

instances are accepted with probability arbitrarily close to 1/2. (See Theorem 2.3.1.)

We also raise several technical questions whose positive resolution may lead to a PCP of nearly

quadratic size and query complexity of 6. Surprisingly, no non-trivial limitations are known on the

joint size + query complexity of PCPs. In particular, it is open as to whether nearly linear sized

PCPs with query complexity of 3 exist for NP statements.

While our principal interest is in the size of a PCP and not in the randomness, it is well-known

that the size of a probabilistically checkable proof (or more precisely, the number of distinct queries

to the oracle π) is at most 2r(n)+q(n). Thus the size is implicitly governed by the randomness and

query complexity of a PCP. The main result of this thesis is the following.

Theorem 1.3.1 For every ε, µ > 0,

SAT ∈ PCP1, 12 +µ [(3 + ε) logn, 16] .

Remark: Actually the constants ε and µ above can be replaced by some o(1) functions; but we don’t

derive them explicitly.

It follows from the parameters that the associated proof is of size at most O(n3+ε).

Cook [11] showed that any language in NTIME(t(n)) could be reduced to SAT inO(t(n) log t(n))

time such that instances of size n are mapped to boolean formulae of size at most O(t(n) log t(n)).

13



Combining this with Theorem 2.3.1, we have that every language in NP has a PCP with at most a

slightly super-cubic blowup in proof-size and a query complexity as low as 16 bits.

In the process of proving the above theorem, we present a algebraic problem called the polyno-

mial constraint satisfaction and exhibit the NP-hardness of this problem (see Lemma 3.2.2). We show

that for every ε > 0, it is NP-hard to distinguish between instances of this problem in which all the

constraints are satisfiable and those in which at most ε-fraction of the constraints are satisfiable. We

show that SAT is reducible to this problem with a minimal blowup in the proof-size. This problem

and the accompanying result are neat algebraic formulations and are easily amenable to future PCP

constructions.

Håstad’s PCPs ([19]) have a terminal inner-verifier which convert 2-prover canonical MIPs to

PCPs with 3 queries. We build a similar inner verifier for p prover non-canonical MIPs. This is the

first time that such a verifier has been constructed for MIPs with more than 2 provers. Our analysis

shows surprising complications and forces us to use a large number (seven) of extra bits to effect

the final truncation in the PCP construction.

1.4 Organization of the Thesis

We present the Main Theorem (Theorem 2.3.1) and its proof in Chapter 2. We divide the task of

proving the theorem into 3 lemmas, which we prove in the subsequent chapters. We present the

Polynomial Constraint Satisfaction problem and analyze its hardness in Chapter 3. In Chapter 4, we

work the Low-Degree Test of Raz and Safra [25] into a form that is convenient for us to work with.

In Chapter 5, we construct a 3-prover MIP for SAT which is efficient in terms of randomness. In

Chapter 6, we present a constant bit verifier for MIPs, which is used in the final step of the recursion

in the proof of the Main Theorem. Finally, in chapter 7, we make a few concluding remarks and

suggest possible approaches for improvements in the joint size-query complexity of PCPs.
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CHAPTER 2

Main Theorem

In this chapter, we present the main theorem and its proof, modulo the proof of two lemmas which

we shall prove in the subsequent chapters. As mentioned in Chapter 1, the parameters we seek

are such that no existing proof system achieves them. Hence we work our way through the PCP

construction of Arora, Lund, Motwani, Sudan and Szegedy [1] and make every step as efficient

as possible. The key ingredient in their construction (as well as most subsequent constructions)

is the notion of recursive composition of proofs. Informally, recursive proof composition takes an

”outer verifier” that is efficient in its use of randomness, but inefficient in query complexity; com-

bines it with an ”inner verifier” that is inefficient in its use of randomness but efficient in its query

complexity; and obtains a composed verifier that is efficient in both the query and the random-

ness complexity. The paradigm of recursive composition is best described in terms of multi-prover

interactive proof systems (MIPs).

2.1 MIP and Recursive Proof Composition

Definition 2.1.1 For integer p, and functions r, a : Z+ → Z
+, an MIP verifier (probabilistic oracle ma-

chine) V is called a (p, r, a)-restricted if it interacts with p mutually-non-interacting provers π1, . . . , πp in

the following restricted manner. On input x of length n, V picks a random r(n)-bit string R and generates p

queries q1, . . . , qp and a linear sized circuit C. The verifier then issues query qi to prover πi. The provers re-

spond with answers a1, . . . , ap each of length at most a(n) and the verifier accepts x iff C(a1, . . . , ap) = 1.

We denote this verdict of the verifier by V π1,... ,πp(x;R).

The class of languages accepted by these verifiers is defined as follows:
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Definition 2.1.2 Language L belongs to MIPc,s[p, r, a] if there exists a (p, r, a)-restricted MIP verifier V

such that on input x:

Completeness If x ∈ L then there exist π1, . . . , πp such that V accepts with probability at least c (i.e.,

∃π1, . . . , πp such that PrR[V π1,... ,πp(x;R) = accept] ≥ c).

Soundness If x 6∈ L then for every π1, . . . , πp, V accepts with probability less than s (i.e., ∀π1, . . . , πp,

PrR[V π1,... ,πp(x;R) = accept] < s).

It is easy to see that MIPc,s[p, r, a] is a subclass of PCPc,s[r, pa] and thus it is beneficial to show

that SAT is contained in MIP with nice parameters. However, much stronger benefits are obtained

if the containment has a small number of provers, even if the answer size complexity (a) is not

very small. This is because the verifier’s actions can usually be simulated by a much more efficient

verification procedure, one with much smaller answer size complexity, at the cost of a few more

provers. Results of this nature are termed proof composition lemmas; and the efficient simulators

of the MIP verification procedure are usually called “inner verification procedures”.

2.2 Main Lemmas

The next three lemmas divide the task of proving the Main Theorem into smaller subtasks. The

first gives a starting MIP for satisfiability, with 3 provers, but poly-logarithmic answer size. We

next give the composition lemma that is used in the intermediate stages. The final lemma gives

our terminal composition lemma – the one that reduces answer sizes from some slowly growing

function to a constant.

Lemma 2.2.1 For every ε, µ > 0, SAT ∈MIP1,µ[3, (3 + ε) log n,poly log n].

Lemma 2.2.1 is proven in Chapter 5. This lemma is critical to bounding the proof-size. This

lemma follows the proof of a similar one (the “parallelization” step) in [1]; however various aspects

are improved. We show how to incorporate advances made by Polishchuk and Spielman [23], and

how to take advantage of the low-degree test of Raz and Safra [25]. Most importantly, we show how

to save a quadratic blowup in this phase that would be incurred by a direct use of the parallelization

step in [1].

The first composition lemma we use is an off-the-shelf product due to Arora and Sudan [3].

Similar lemmas are implicit in the works of Bellare, Goldwasser, Lund and Russell [8] and Raz and

Safra [25].

Lemma 2.2.2 ([3]) There exist absolute constants c1, c2, c3 such that for every ε > 0, every p, and every

r, a : Z+ → Z
+,

MIP1,ε[p, r, a] ⊆MIP1,ε1/(2p+2) [p+ 3, r + c1 log a, c2(log a)c3 ].
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The next lemma shows how to truncate the recursion. This lemma is proved in Chapter 6 using

a “Fourier-analysis” based proof, as in [19]. This is the first time that this style of analysis has been

applied to MIPs with more than 2 provers. All previous analyses seem to have focused on com-

position with canonical 2-prover proof systems at the outer level. Our analysis reveals surprising

complications and forces us to use a large number (seven) of extra bits to effect the truncation.

Lemma 2.2.3 For every ε > 0 and p <∞, there exists a γ > 0 such that for every r, a : Z+ → Z
+,

MIP1,γ [p, r, a] ⊆ PCP1, 12 +ε[r +O(2pa), p+ 7].

2.3 Main Theorem and Proof

Theorem 2.3.1 For every ε, µ > 0,

SAT ∈ PCP1, 12 +µ [(3 + ε) logn, 16] .

Proof The proof is straightforward given the three lemmas mentioned in Section 2.2. We first

apply Lemma 2.2.1 to get a 3-prover MIP for SAT, then apply Lemma 2.2.2 twice to get a 6- and then

a 9-prover MIP for SAT. The answer size in the final stage is poly log log log n. Applying Lemma 2.2.3

at this stage we obtain a 16-query PCP for SAT; and the total randomness in all stages remains

(3 + ε) log n.

It follows from the parameters that the associated proof is of size at most O(n3+ε).

Cook [11] showed that any language in NTIME(t(n)) could be reduced to SAT such that in-

stances of size n are mapped to boolean formulae of size at most O(t(n) log t(n)).

Lemma 2.3.2 ([11]) Let L ∈ NTIME(t(n)). Then there is a O(t(n) log t(n)) time and O(log t(n)) space

algorithm that maps inputs x of length n to boolean formulae φ of size O(t(n) log t(n)) such that

x ∈ L⇐⇒ φ ∈ SAT

Combining this Lemma with Theorem 2.3.1, we have that every language in NP has a PCP with

at most a slightly super-cubic blowup in proof-size and a query complexity as low as 16 bits.
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CHAPTER 3

Polynomial Constraint Satisfiability

In this chapter, we prepare the necessary ground for building a randomness efficient MIP for SAT.

For this purpose, we reduce SAT to another NP-hard problem, that is amenable for MIP construc-

tions. In our choice of a NP-hard problem, we are guided by considerations, similar to those in

[23, 28]. We would like our NP-hard problem to satisfy the following properties.

• Problems like SAT, circuit-satisfiability can be “efficiently”1 reduced to this problem.

• It is easy to construct an MIP for this problem.

At this point, it is worth mentioning that problems like SAT, circuit-satisfiability do not directly

satisfy our second requirement. The known algebraic descriptions of these problems usually in-

volve a cubic blowup in the proof-size. The main handicap in these problems that leads to such a

blowup in the proof-size is that to check whether a particular constraint is satisfied, we have to look

in the proof for the values of the variables that participate in the constraint and these values could

appear anywhere in the proof. We design a problem (see Definition 3.2.1), in such a manner that to

check whether a particular constraint is satisfied, we would instantly know where the values of the

variables that participate in the constraint can be found.

Henceforth, we shall use the term “length-preserving reductions”, to refer to reductions in

which the length of the target instance of the reduction is nearly-linear (O(n1+ε) for arbitrarily

small ε) in the length of the source instance. We shall use the term “length-efficient reductions”,

to refer to reductions in which the length of the target instance of the reduction is at most an extra

logarithmic factor off the length of the source instance (i.e., O(n log n)).

1By efficiently, we mean that the reductions are length preserving, a notion we will formalize shortly.
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To prove membership in SAT, we first transform SAT into an algebraic problem. This transfor-

mation comes in two phases. First we transform it to an algebraic problem (that we call AP for lack

of a better name) in which the constraints can be enumerated compactly. Then we transform it to

a promise problem on polynomials, called Polynomial Constraint Satisfaction (PCS), with a large

associated gap. We then show how to provide an MIP verifier for the PCS problem in Chapter 5.

Though most of these results are implicit in the literature, we find that abstracting them cleanly

significantly improves the exposition of PCPs. The first problem, AP, could be proved to be NP-

hard almost immediately, if one did not require length-preserving reductions. We show how the

results of Polishchuk and Spielman [23] imply a length preserving reduction from SAT to this prob-

lem. We then reduce this problem to PCS. This step mimics the sum-check protocol of Lund, Fort-

now, Karloff and Nisan [22]. The technical importance of this intermediate step is the fact that it

does not refer to “low-degree” tests in its analysis. Low-degree tests are primitives used to test if

the function described by a given oracle is close to some (unknown) multivariate polynomial of

low-degree. Low-degree tests have played a central role in the constructions of PCPs. Here we sep-

arate (to a large extent) their role from other algebraic manipulations used to obtain PCPs/MIPs

for SAT .

3.1 A Compactly Described Algebraic NP-hard Problem

Definition 3.1.1 For functions m,h : Z+ → Z
+, the problem APm,h has as its instances (1n,H, T, ψ, ρ1,

. . . , ρ6) where: H is a field of size h(n), ψ : H7 → H is a constant degree polynomial, T is an arbitrary

function from Hm to H and the ρi’s are linear maps from Hm to Hm, for m = m(n). (T is specified

by a table of values, and ρi’s by m × m matrices.) (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h if there exists an

assignment A : Hm → H such that for every x ∈ Hm, ψ(T (x), A(ρ1(x)), . . . , A(ρ6(x))) = 0. (In case

such an assignment A exists, we then say that A satisfies (1n,H, T, ψ, ρ1, . . . , ρ6)).

The above problem is just a simple variant of standard constraint satisfaction problems, the

only difference being that its variables and constraints are now indexed by elements of Hm. The

only algebra in the above problem is in the fact that the functions ρi, which dictate which variables

participate in which constraint, are linear functions. The following statement, abstracted from [23],

gives the desired hardness of AP.

Lemma 3.1.2 There exists a constant c such that for any pair of functions m,h : Z+ → Z
+ satisfying

h(n)m(n)−c ≥ n and h(n)m(n) = O
(
n1+o(1)

)
, SAT reduces to APm,h under length preserving reductions.

Lemma 3.1.2 is a reformulation of the result proved in [23, 28] in a manner that is convenient

for us to work with. The proof, we present, is along the lines of [23, 28]. In the following two
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subsections, we (re)present the machinery required to prove the lemma and finally provide a proof

of the lemma in Section 3.1.3.

3.1.1 De Bruijn Graph Coloring Problem

Definition 3.1.3 The de Bruijn graph Bn is a directed graph on 2n vertices in which each vertex is repre-

sented by a n-bit binary string. The vertex represented by (x1, . . . , xn) has edges pointing to the vertices

represented by (x2, . . . , xn, x1) and (x2, . . . , xn, x1⊕ 1), where a⊕ b denotes the sum of a and b modulo 2.

We then define a wrapped de Bruijn graph to be the product of a de Bruijn graph and a cycle.

Definition 3.1.4 The wrapped de Bruijn graph Bn is a directed graph on 5n·2n vertices in which each vertex

is represented by a pair consisting of an n-bit binary string and a number modulo 5n. The vertex represented

by ((x1, . . . , xn), a) has edges pointing to the vertices ((x2, . . . , xn, x1), a + 1) and ((x2, . . . , xn, x1 ⊕

1), a+ 1), where the addition a+ 1 is performed modulo 5n.

Similarly, one can define the extended de Bruijn graph (on (5n+ 1) · 2n vertices) to be the product

of the de Bruijn graph (on 2n vertices) and a line graph (on 5n + 1 vertices). For ease of notation,

let us define for any vertex v, %1(v) and %2(v) to be the two neighbors of v in the wrapped de Bruijn

graph. [23, 28] show how to reduce SAT to the following coloring problem on the wrapped de

Bruijn graph using standard packet routing techniques (see [21]).

Definition 3.1.5 The problem DE-BRUIJN-GRAPH-COLOR has as its instances (Bn, T ) where Bn is a

wrapped de Bruijn graph on 5n · 2n vertices and T : V (Bn) → C1 is a coloring of the vertices of Bn
(T is specified by a table of values). (Bn, T ) ∈ DE-BRUIJN-GRAPH-COLOR if there exists another coloring

A : V (Bn)→ C2 such that for all vertices v ∈ V (Bn),

ϕ(T (v), A(v), A(%1(v)), A(%2(v))) = 0

where C1, C2 are two sets of colors independent of n and ϕ : C1 ×C3
2 → Z

+ is a function independent of n.

[23, 28] prove the following statement regarding the hardness of the above problem.

Proposition 3.1.6 ([23, 28]) SAT reduces to DE-BRUIJN-GRAPH-COLOR under length-efficient reduc-

tions.

3.1.2 Algebraic Description of De Bruijn Graphs

In this section, we shall give a very simple algebraic description of the de Bruijn graphs.
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Definition 3.1.7 A Galois graph Gn is a directed graph on 2n vertices in which each vertex is node is

identified with an element of GF (2n). Let α be a generator2 of GF (2n). The vertex represented by γ ∈

GF (2n) has edges pointing to the vertices represented by αγ and αγ + 1.

Claim 3.1.8 The Galois graph Gn is isomorphic to the de Bruijn graph Bn.

Proof Recall the standard definition of GF (2n). Let p(α) = αn + c1α
n−1 + . . . + cn−1α + cn be

any irreducible monic polynomial over GF (2) of degree n. Then GF (2n) can be identified with

GF (2)[α]/(p(α)). Addition and multiplication in GF (2n) are simple, they are performed exactly

similar to polynomial addition and multiplication and the result is then reduced modulo p(α).

We shall show that Gn and Bn are isomorphic by exhibiting an isomorphism φ : V (Bn) →

V (Gn), between the vertices of the two graphs, as follows:

φ(b1, . . . , bn) = αn−1b1 + αn−2(b2 + cb1) + . . .+

(
bn +

n−1∑
i=1

cibn−1)

)
To verify that this is an isomorphism, we need to check that (u, v) ∈ E(Bn) ⇐⇒ (φ(u), φ(v)) ∈

E(Gn). Note that in the graph Bn, the edges from the vertex (b1, . . . , bn) are pointed towards the

vertices (b2, . . . , bn, b1) and (b2, . . . , bn, b1 ⊕ 1); while in Gn, the edges from

φ(b1, . . . , bn) = αn−1b1 + αn−1(b2 + cb1) + . . .+

(
bn +

n−1∑
i=1

cibn−1)

)
are towards the vertices

α

(
αn−1b1 + αn−2(b2 + cb1) + . . .+

(
bn +

n−1∑
i=1

cibn−1)

))

= b1(c1αn−1 + cn−1α+ cn) + α

(
αn−2(b2 + cb1) + . . .+

(
bn +

n−1∑
i=1

cibn−1)

))

= αn−1b2 + αn−2(b3 + c1b2) + . . .+ α

(
bn +

n−1∑
i=1

cibn−i

)
+ cnb1

and

αn−1b2 + αn−2(b3 + c1b2) + . . .+ α

(
bn +

n−1∑
i=1

cibn−i

)
+ cnb1 + 1

which we can easily check to be φ(b2, . . . , bn, b1) and φ(b2, . . . , bn, b1 ⊕ 1) (not necessarily in that

order).

Claim 3.1.9 Let m divide n and α be a generator of GF (2n/m). Then the graph on

GF (2n/m)×GF (2n/m)× . . .×GF (2n/m)︸ ︷︷ ︸
m times

2A generator of GF (2n) is an element α ∈ GF (2n) such that α2n−1 = 1 and αk 6= 1 for any 1 ≤ k < 2n − 1. Every

element in GF (2n) can be represented by a unique polynomial in α of degree at most n− 1 with coefficients from {0, 1}.
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in which the vertex represented by (σ1, . . . , σm) has edges pointing to the vertices represented by

(σ2, . . . , σm, ασ1) and (σ2, . . . , σm, ασ1 + 1)

is isomorphic to the de Bruijn graph Bn.

Proof By Claim 3.1.8, the given graph is isomorphic to the graph on binary strings of length n in

which the vertex

(b1, . . . , b nm , b nm+1, . . . , b2 nm , . . . , b(m−1) nm+1, . . . , bn)

has edges pointing to the vertices given by

(b n
m+1, . . . , b2 nm , . . . , b(m−1) nm+1, . . . , bn, b2, . . . , b nm , b1)

and

(b n
m+1, . . . , b2 nm , . . . , b(m−1) nm+1, . . . , bn, b2, . . . , b nm , b1 ⊕ 1)

Shuffling the order of bi’s, we observe that this graph is isomorphic to the graph in which the vertex

represented by

(b1, b nm+1, . . . , b(m−1) nm+1, b2, b nm+2, . . . , b(m−1) nm+2, . . . , bm, b2m, . . . , bn)

has edges pointed towards the vertices

(b n
m+1, . . . , b(m−1) nm+1, b2, b nm+2, . . . , b(m−1) nm+2, . . . , bm, b2m, . . . , bn, b1)

and

(b n
m+1, . . . , b(m−1) nm+1, b2, b nm+2, . . . , b(m−1) nm+2, . . . , bm, b2m, . . . , bn, b1 ⊕ 1)

which is identical to the de Bruijn graph.

Using the above result, we can now give a simple algebraic description of the extended de Bruijn

graphs.

Proposition 3.1.10 Let m divide n and α be a generator of H = GF (2n/m). Let C = {1, α, . . . , α5n} and

C′ = {1, α, . . . , α5n−1}. Then the extended de Bruijn graph on (5n + 1) · 2n vertices is isomorphic to the

graph onHm×C in which each vertex in (x1, . . . , xm, y) ∈ Hm×C′ has edges pointed towards the vertices

(x2, . . . , xm, αx1, αy)

and

(x2, . . . , xm, αx1 + 1, αy)

For ease of notation, if v ∈ Hm × C, then let %1(v) and %2(v) denote the two neighbors of v. Or

even more generally, for any v ∈ Hm+1, define

%1(x1, . . . , xm, y) 7→ (x2, . . . , xm, αx1, αy) (3.1)

%2(x1, . . . , xm, y) 7→ (x2, . . . , xm, αx1 + 1, αy) (3.2)
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3.1.3 Proof of Lemma 3.1.2

Instead of showing that SAT is reducible to APm,h, we shall show that SAT is reducible under

length preserving reductions to another problem AP′m,h. It would then follow from the definition

of AP and AP′ that SAT is reducible to APm,h under length preserving reductions.

Definition 3.1.11 For functionsm,h : Z+ → Z
+, the problem AP′m,h has as its instances (1n,H, T, ψ, ρ1,

. . . , ρ5, ρ) where: H is a field of size h(n), ψ : H7 → H is a constant degree polynomial, T is an arbitrary

function from Hm−1 to H , the ρi’s are linear maps from Hm to Hm−1 and ρ : Hm → H is a linear map

for m = m(n). (T is specified by a table of values, ρi’s by m × (m − 1) matrices and ρ by a m × 1 ma-

trix.) (1n,H, T, ψ, ρ1, . . . , ρ) ∈ AP′m,h if there exists an assignment A : Hm−1 → H such that for every

x ∈ Hm, ψ(T (ρ1(x)), A(ρ1(x)), . . . , A(ρ5(x)), ρ(x)) = 0.

Proposition 3.1.12 For any pair of functionsm,h : Z+ → Z
+ satisfying h(n)m(n)−2 ≥ n and h(n)m(n) =

O
(
n1+o(1)

)
, SAT reduces to AP′m,h under length preserving reductions.

Proof Let φ be any instance of SAT of size n. By Proposition 3.1.6, we have that φ can be reduced

to an instance (Bn′ , T ) of DE-BRUIJN-GRAPH-COLOR. As the reduction is perfect length-efficient,

we have that 5n′ · 2n′ = O(n log n) or N ≈ n where N = 2n
′
. Let m and h be any two functions

satisfying the requisites of Proposition 3.1.12. Letm′(n) = m(n)−2. Let α be a generator of the field

GF (2n/m
′
). Now as h(n)m(n)−2 ≥ n, there exists a fieldH of size h(n) such that the fieldGF (2n/m

′
)

can be embedded in H . Now, as seen from Section 3.1.2, we can view the graph Bn as a graph on

Hm′ and the graphBn as a graph onHm′×C where C = {1, α, . . . , α5n}. As C ⊆ GF (2n/m
′
) ⊆ H , we

can further view Bn as a graph on Hm′+1, where the neighborhood functions %1, %2 are as defined

in (3.1) and (3.2). We can also view the set of colors C1 and C2 as embedded in the field H . With

such an embedding, we can consider the map T : V (Bn′)→ C1 as a map T : Hm′+1 → H .

Consider the following choice of linear transformations ρi : Hm → Hm′+1 (recall m′ = m − 2)

For any (x̄, y, z) ∈ Hm where x̄ ∈ Hm′ , y, z ∈ H

• ρ1 : (x̄, y, z) 7→ (x̄, y).

• ρ2 : (x̄, y, z) 7→ %1(x̄, y).

• ρ3 : (x̄, y, z) 7→ %2(x̄, y).

• ρ4 : (x̄, y, z) 7→ (x̄, 1).

• ρ5 : (x̄, y, z) 7→ (x̄, α5n).

Also define ρ : Hm → H such that ρ6 : (x̄, y, z) 7→ z. Note each of the ρi’s are linear transforma-

tions. Now consider the polynomials defined as follows:
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• ϕ1 : H4 → H satisfying ϕ1

∣∣∣
C1×C3

2

= ϕ. i.e., the restriction of ϕ1 on the subset C1 × C3
2 of the

domain is the same as the function ϕ in the definition of DE-BRUIJN-GRAPH-COLOR.

• ϕ2 : H2 → H such that ϕ2(a, b) = 0 iff a = b. (i.e., ϕ2 checks if its two inputs are equal.)

• ϕ3 : H → H satisfying ϕ3

∣∣∣
C2

≡ 0. (i.e., ϕ3 evaluates to true if its input belongs to the set C2)

• ϕ4 : H → H satisfying ϕ4

∣∣∣
C1

≡ 0. (i.e., ϕ4 evaluates to true if its input belongs to the set C1)

It can easily be seen that the ϕi’s can be defined such that they are all of constant degree where the

degree depends only on the cardinality of the sets C1 and C2.

Now consider the polynomial ψ : H7 → H defined as follows

ψ(a, b, c, d, e, f, t) =



ϕ1(a, b, c, d) if t = 1,

ϕ2(e, f) if t = 2,

ϕ3(b) if t = 3,

ϕ4(a) if t = 4,

arbitrary otherwise.

It can easily be checked that ψ is also a constant degree polynomial. By construction of ψ, we

have that ψ(T (ρ1(z)), A(ρ1(z)), A(ρ2(z)), A(ρ3(z)), A(ρ4(z)), A(ρ5(z)), ρ(z)) = 0,∀z ∈ Hm iff the

corresponding instance (Bn′ , T ) ∈ DE-BRUIJN-GRAPH-COLOR, which happens iff φ ∈ SAT. Note

(1) ϕ1 checks if the condition ϕ is satisfied by vertices of the graph.

(2) ϕ2 checks if the first and last column of the extended graph is the same (and hence the graph

can be viewed as a wrapped graph).

(3) Finally, ϕ3 and ϕ4 checks iff the colors assigned by the function A and T are indeed valid

colors. (i.e., T (v) ∈ C1 and A(v) ∈ C2.)

We have thus shown that (1n,H, T, ψ, ρ1, . . . , ρ5, ρ) ∈ AP′m,h ⇐⇒ φ ∈ SAT. Moreover all the

reductions mentioned are length preserving (since hm = O
(
n1+o(n)

)
). Thus, proved.

3.2 Polynomial Constraint Satisfaction

We next present an instance of an algebraic constraint satisfaction problem. This differs from the

previous one in that its constraints are “wider”, the relationship between constraints and variables

that appear in it is arbitrary (and not linear), and the hardness is not established for arbitrary assign-

ment functions, but only for low-degree functions. All the above changes only make the problem
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harder, so we ought to gain something – and we gain in the gap of the hardness. The problem is

shown to be hard even if the goal is only to separate satisfiable instances from instances in which

only ε fraction of the constraints are satisfiable. We define this gap version of the problem first.

Definition 3.2.1 For ε : Z+ → R
+, and m, b, q : Z+ → Z

+ the promise problem GapPCSε,m,b,q has

as instances (1n, d, k, s,F;C1, . . . , Ct), where d, k, s ≤ b(n) are integers and F is a field of size q(n) and

Cj = (Aj ;x
(j)
1 , . . . , x

(j)
k ) is an algebraic constraint, given by an algebraic circuit Aj of size s on k inputs

and x(j)
1 , . . . , x

(j)
k ∈ Fm, for m = m(n). (1n, d, k, s,F;C1, . . . , Ct) is a YES instance if there exists a

polynomial p : Fm → F of degree at most d such that for every j ∈ {1, . . . , t}, the constraint Cj is satisfied

by p, i.e., Aj(p(x
(j)
1 ), . . . , p(x(j)

k )) = 0. (1n, d, k, s,F;C1, . . . , Ct) is a NO instance if for every polynomial

p : Fm → F of degree at most d it is the case that at most ε(n) · t of the constraints Cj are satisfied.

Lemma 3.2.2 There exist constants c1, c2 such that for every choice of functions ε,m, b, q satisfying

(b(n)/m(n))m(n)−c1 ≥ n, q(n) ≥ c2b(n)/ε(n) and q(n) = O
(
n1+o(1)

)
, SAT reduces to GapPCSε,m,b,q

under length preserving reductions.

(The problem APm,h is used as an intermediate problem in the reduction. However we don’t

mention this in the lemma, since the choice of parameters m,h may confuse the statement further.)

We shall prove the hardness of GapPCSε,m,b,q using another related problem Polynomial Evolu-

tion (PE) as an intermediary problem between AP and GapPCS. In Section 3.2.1, we describe the

problem Polynomial Evolution and analyze its hardness. In Section 3.2.2, we prove Lemma 3.2.2.

3.2.1 Polynomial Evolution

Definition 3.2.3 A polynomial construction rule R over a field F on m variables is a circuit which takes an

oracle for a polynomial p : Fm → F and returns a new polynomial q : Fm → F, defined by q , Rp(x).

Polynomial Evolution involves checking whether there exists a polynomial p : Fm → F such

that when a given sequence of construction rules are composed on this polynomial, the resulting

polynomial is identically zero. More formally,

Definition 3.2.4 For functions b,m, q : Z+ → Z
+, the problem PEm,b,q has as instances (1n, d,F;R1, . . . , Rl)

where d ≤ b(n) are integers, F is a finite field of size q(n) and the Ri’s are polynomial construction rules

over F on m variables. (1n, d,F;R1, . . . , Rl) ∈ PEm,b,q if there exists a polynomial p0 : Fm → F of degree

at most d such that the sequence of polynomials pi defined by pi , Rpi−1 for i = 1 . . . l satisfies pl ≡ 0 (i.e.,

pl is identically zero.)

If qm is polynomial in the description of the instance, then clearly PEm,b,q ∈ NP. We shall prove

the following statement regarding the hardness of PEm,b,q .
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Lemma 3.2.5 There exists a constant c ∈ Z+ such that for functions m,h, q : Z+ → Z
+ satisfying

q ≥ cmh and qm = O(n1+o(1)), APm,h reduces to PEm,mh,q under length-preserving reductions.

Let (1n,H, T, ψ, ρ1, . . . , ρ6) be an instance of APm,h. Let F be a field of size q(n) where q satisfies

the requirements of Lemma 3.2.5 such that H ⊆ F. Let c be the degree of the polynomial ψ : H7 →

H . (Recall that by definition of APm,h, c is a constant.)

Any assignment S : Hm → H can be interpolated to obtain a polynomial Ŝ : Fm → F of degree

at most |H| in each variable (and hence a total degree of at most m|H|) such that Ŝ
∣∣∣
Hm

= S. (i.e.,

the restriction of Ŝ to Hm coincides with the function S.) Conversely, any polynomial Ŝ : Fm → F

can be interpreted as an assignment from Hm to F by considering the function restricted to the

sub-domain Hm.

Based on the instance (1n,H, T, ψ, ρ1, . . . , ρ6), we will construct a sequence of (m + 1) polyno-

mial construction rules which transform a polynomial p0 to the zero polynomial iff the assignment

given by A = p0

∣∣∣
Hm

satisfies the instance (1n,H, T, ψ, ρ1, . . . , ρ6). The first rule takes as input a

polynomial po : Fm → F of degree mh and outputs a polynomial p1 : Fm → F of degree cmh which

is 0 on Hm iff the corresponding assignment p0

∣∣∣
Hm

satisfies the instance (1n,H, T, ψ, ρ1, . . . , ρ6).

The remainingm rules follow the sum-check protocol of Lund, Fortnow, Karloff and Nisan [22] and

“amplify” the zero-set of the polynomial p1 so that the resulting polynomials are zero on larger and

larger sets. The final polynomial pm+1 : Fm → Fwill be identically zero iff the original polynomial

p1 was zero on Hm and hence, iff (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h.

The first polynomial construction rule R1 encodes the polynomial ψ : H7 → H of constant

degree c, the function T : Hm → H and the linear transformations ρi : Hm → H . Let T̂ : Fm → F

be interpolation of T such that the restriction coincides with the function T . Also let ψ̂ : F7 →

F be the extension of the polynomial ψ to the domain Fm. (i.e., If ψ : Hm → H is given by

ψ(x1, . . . , xm) =
∑
ai1,... ,imx

i1
1 . . . ximm , then ψ̂ : Fm → F is the same polynomial ψ(x1, . . . , xm) =∑

ai1,... ,imx
i1
1 . . . ximm .) Note ψ̂ is also of degree c. Also let ρ̂i : Fm → F

m represent the extension

of the linear transformation ρi : Hm → Hm to the domain Fm (i.e., if ρi is the linear map given by

x̄ 7→ Ax̄ where x̄ ∈ Hm and A is a m ×m matrix with elements from H , then ρ̂i is the linear map

given by x 7→ Ax̄ where x̄ ∈ Fm) The rule R1 is defined as follows:

p1(x1, . . . , xm) , ψ̂(T̂ (x1, . . . , xm), p0(ρ̂1(x1, . . . , xm)), . . . , p0(ρ̂6(x1, . . . , xm)))

When p0 = Â for some assignment A : Hm → H , then for (x1, . . . , xm) ∈ Hm,

p1(x1, . . . , xm) = ψ(T (x1, . . . , xm), A(ρ1(x1, . . . , xm)), . . . , A(ρ6(x1, . . . , xm)))

Thus, p1

∣∣∣
Hm
≡ 0 iff the polynomial p0 represents an assignmentA that satisfies the instance (1n,H, T, ψ, ρ1,

. . . , ρ6). Note that if p0 is a polynomial of degree mh, then p1 is a polynomial of degree at most

cmh where c is the degree of the polynomial ψ.
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Now to the remaining rules. It is to be noted that only ruleR1 actually depends on the instance,

the other rules are generic rules which follow the sum-check protocol in [22]. As mentioned earlier,

these rules make the zero-set of the polynomials larger and larger.

For starters, let us first work on a univariate polynomial, p : F → F. Let H = {h1, . . . , h|H|} be

an enumeration of the elements in H . Consider the construction rule that works as follows:

q(r) ,
|H|∑
j=1

p(hj)rj

Clearly, if p(h) = 0 for all h ∈ H , then q ≡ 0 on F. Conversely, if ∃h ∈ H, p(h) 6= 0, then q is a

non-zero polynomial and hence is not identically zero.

Now, for multivariate polynomials, we shall mimic the above construction. Consider the se-

quence of polynomials construction rules defined as follows. For i = 1, . . . ,m, rule Ri+1 works as

follows:

Ri+1 : pi+1

←− r̄ −→︸ ︷︷ ︸
i−1 variables

, ri,←− x̄ −→︸ ︷︷ ︸
m−i variables

 , |H|∑
j=1

pi

(
←− r̄ −→︸ ︷︷ ︸, hj ,←− x̄ −→︸ ︷︷ ︸) rji

By the same reasoning as in the univariate case, we have that

pi+1

∣∣∣
Fi×Hm−i

≡ 0⇐⇒ pi

∣∣∣
Fi−1×Hm−i+1

≡ 0

Thus, pm+1 ≡ 0 iff p1

∣∣∣
Hm

. But p1

∣∣∣
Hm
≡ 0 iff p0

∣∣∣
Hm

satisfies (1n,H, T, ψ, ρ1, . . . , ρ6). Thus, the rules

we have constructed satisfy

(1n,mh,F;R1, . . . , Rm+1) ∈ PEm,mh,q ⇐⇒ (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h

It can easily be checked that the reduction is length preserving. Thus, Lemma 3.2.5 is proved.

We can in fact prove a stronger statement regarding the hardness of the PE instance, we have

created.

Proposition 3.2.6 Suppose, we have an instance (1n, d,F;R1, . . . , Rm+1) of PEm,mh,q constructed from

an instance (1n,H, T, ψ, ρ1, . . . , ρ6) of APm,h as mentioned above.

• [Completeness] If (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h, then there exists a polynomial p0 : Fm →

F of degree at most mh such that the sequence of polynomials constructed by applying the rules

R1, . . . , Rm+1 (i.e., pi = Rpi−1 for i = 1 . . .m + 1) satisfy pm+1 ≡ 0. Moreover, each of the

polynomials p1, . . . , pm+1 are of degree at most cmh.

• [Soundness] If there exist polynomials p0 : Fm → F of degree at mostmh and polynomials p1, . . . , pm+1

of degree at most cmh each, such that

Pr
x̄∈Fm

[pi(x̄) = Rpi−1 ] >
(c+ 1)mh

q
, i = 1, . . . ,m+ 1

Pr
x̄∈Fm

[pm+1(x̄) = 0] >
(c+ 1)mh

q
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then, (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h.

For the proof of this proposition, we shall need Schwartz’s Lemma.

Lemma 3.2.7 (Schwartz Lemma [27]) For any finite field F, if p, q : Fm → F are two distinct polynomials

of degree at most d each, then

Pr
x̄∈Fm

[p(x̄) = q(x̄)] <
d

|F|

Proof of Proposition 3.2.6:

The proof for the Completeness part of the proposition directly follows from the manner in

which the rules are constructed.

For the soundness part, we note that the rule R1 increases the degree of the polynomial by at

most a factor of c and each of the other rules Ri has the effect of changing the degree with respect

to the (i − 1)th variable to at most h and not increasing the degree with respect to any of the other

variables. This implies that each of the polynomials Rpi−1
i have degree at most (c + 1)mh. By

Schwartz’s Lemma, it now follows that pi ≡ R
pi−1
i for i = 1, . . . ,m + 1 and pm+1 ≡ 0. But this

implies that p0

∣∣∣
Hm

satisfies (1n,H, T, ψ, ρ1, . . . , ρ6). Thus, proved.

3.2.2 Hardness of Gap PCS

We first reduce AP to GapPCS

Lemma 3.2.8 There exists a constant c such that for all functions q,m, h, b, ε : Z+ → Z
+ satisfying

q(n) ≥ b(n)/ε(n) and b(n) ≥ 2cm(n)h(n) , APm,h reduces to GapPCSε,m+1,b,q under length preserving

reductions.

Proof Let (1n,H, T, ψ, ρ1, . . . , ρ6) be any instance of APm,h. Using the reduction in the proof of

Lemma 3.2.5, obtain the instance (1n, d,F;R1, . . . , Rm+1). We shall build an instance (1n, d, k, s,F;C1, . . . , Ct)

of GapPCSε,m+1,b,q as specified below.

Let c be the same constant that appears in Lemma 3.2.5. Let p0 be the polynomial of degree

at most mh that occurs in the proof of the statement “(1n, d,F;R1, . . . , Rm+1) ∈ PEm,b,q”. Also let

p1, . . . , pm+1 be the polynomials defined by the rulesR1, . . . , Rm+1 (i.e, pi = R
pi−1
i ). Note pi’s are of

degree at most cmh. We first bundle together the polynomials p0, . . . , pm+1 into a single polynomial

p : Fm+1 → F. Let {f0, . . . , fq−1} be an enumeration of the elements in F. Let Fl = {f0, . . . , fm+1}.

For each i = 0, . . . ,m+1, let δi : F→ F be the unique polynomial of degree at mostm+ 1 satisfying

δi(x) =

1 if x = fi

0 if if x ∈ Fm+1 − fi
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Polynomial p : Fm+1 → F is defined as follows: For (v, x̄) ∈ Fm+1 where v ∈ F and x̄ ∈ Fm,

p(v, x̄) =
m+1∑
i=0

δi(v)pi(x̄)

Since each of the polynomials p0, . . . , pm+1 is of degree at most cmh, the polynomial p is of degree

at most cmh+m ≤ 2cmh ≤ b.

For each x ∈ Fm, construct constraint Cx as follows:

Cx =
(
pm+1(x) = 0

)
∧
m+1∧
i=1

(
pi(x) = R

pi−1
i (x)

)
(This constraint is to be thought of as a constraint on the single polynomial p.)

The circuit associated with each constraint Cx checks the polynomial p at k ≈ (m+2)(h+1) ≤ b

points and has size s which is of the same order as k. Since p is of degree d which is at most b,

we have constructed an instance (1n, d, k, s,F;C1, . . . , Ct) of GapPCSε,m+1,b,q where d, k, s ≤ b and

t = qm. It follows from Proposition 3.2.6, that this instance (1n, d, k, s,F;C1, . . . , Ct) satisfies the

following lemma.

Proposition 3.2.9 Suppose, we have an instance (1n, d, k, s,F;C1, . . . , Ct) of GapPCSε,m+1,b,q constructed

from an instance (1n,H, T, ψ, ρ1, . . . , ρ6) of APm,h as mentioned above.

• [Completeness] If (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h, then there exists a polynomial p : Fm+1 → F

of degree at most d such that p satisfies all the constraints Ci (i.e., Ai(p(x
(i)
1 , . . . , p(x(i)

k ) = 0)

• [Soundness] If there exist polynomial p : Fm+1 → F of degree at most d which satisfies at least ε

fraction of the constraints, then (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h.

The completeness part of this proposition is clear by construction. For the soundness part, it is

to be noted that if at least (c + 1)mh/q fraction of the constraints are satisfied, then the soundness

condition in Proposition 3.2.6 implies that (1n,H, T, ψ, ρ1, . . . , ρ6) ∈ APm,h. The only observation

to be made is that ε ≥ b/q ≥ 2cmh/q ≥ (c+ 1)mh/q.

This proposition completes the proof of the lemma.

Lemma 3.2.2 now follows from Lemma 3.1.2 and Lemma 3.2.8.
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CHAPTER 4

Low Degree Test

Low-degree tests have been a subject of much research in the context of program checking and

PCPs. We use the reduction of SAT to GapPCS described in Chapter 3 to construct MIPs that are

efficient in randomness. The MIPs for GapPCS consists of a proof (or more correctly a prover)

which is a polynomial provided as a table of values. The MIP verifier before checking whether the

polynomial provided by the prover satisfies the constraints of the GapPCS problem, needs to verify

that the table of values supplied by the prover is indeed close to a polynomial. Low-degree tests

are procedures designed to address this verification step ,i.e., to verify that an arbitrary function

f : Fm → F is close to some (unknown) polynomial p of degree d. For our purposes, we need tests

that have very low probability of error. Two such tests with analyses are known, one due to Raz

and Safra [25] and another due to Rubinfeld and Sudan [26] (with low-error analysis by Arora and

Sudan [3]) For our purposes the test of Raz and Safra [25] is more efficient than that of Arora and

Sudan [3] for reasons which we will explain shortly.

4.1 The Plane-Point Test

A plane in Fm is a collection of points parametrized by two variables. Specifically, given a, b, c ∈ Fm

the plane ℘a,b,c = {℘a,b,c(t1, t2) = a + t1b + t2c|t1, t2 ∈ F}. Several parameterizations are possible

for a given plane. We assume some canonical one is fixed for every plane, and thus the plane is

equivalent to the set of points it contains. The low-degree test uses the fact that for any polynomial

p : Fm → F of degree at most d, the function p℘ : F2 → F given by p℘(t1, t2) = p(℘(t1, t2)) is a

bivariate polynomial of degree at most d. The verifier tests this property for a function f by picking

a random plane through Fm and verifying that there exists a bivariate polynomial that has good
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agreement with f restricted to this plane. The verifier expects an auxiliary oracle fplanes that gives

such a bivariate polynomial for every plane. This motivates the test below.

Low-Degree Test (Plane-Point Test)

Input: A function f : Fm → F and an oracle fplanes, which for each plane in Fm gives a

bivariate degree d polynomial.

1. Choose a random point in the space x ∈R Fm.

2. Choose a random plane ℘ passing through x in Fm.

3. Query fplanes on ℘ to obtain the polynomial h℘. Query f on x.

4. Accept iff the value of the polynomial h℘ at x agrees with f(x).

It is clear that if f is a degree d polynomial, then there exists an oracle fplanes such that the above

test accepts with probability 1. It is non-trivial to prove any converse and Raz and Safra give a

strikingly strong converse. Below we work their statement into a form that is convenient for us.

First some more notation. Let LDTf,fplanes(x, ℘) denote the outcome of the above test on oracle

access to f and fplanes. Let f, g : Fm → F have agreement δ if Prx∈Fm [f(x) = g(x)] = δ.

Theorem 4.1.1 ([25]) There exist constants c0, c1, c2, c3 such that for every positive real δ, integers m, d

and field F satisfying |F| ≥ c0d(m/δ)c1 , the following holds: Let f : Fm → F be any function. If there

exists an oracle fplanes satisfying Prx,℘[LDTf,fplanes(x, ℘) = accept] ≥ δ, then there exists a polynomial

p : Fm → F of degree at most d such that p and f agree on at least δc2/c3 fraction of the points.

The above theorem statement of Raz and Safra [25] relates the probability of a function f passing

the low degree test with the agreement of f with some polynomial of low degree. The form of the

statement which will be most convenient for us to work with is one which states that the probability

of the low degree test passing on points at which f does not agree with any of the polynomials it

has high agreement with is very low. We work the above statement of Raz and Safra into the

following form. We present the proof of Theorem 4.1.2 starting from the statement of Raz and Safra

(Theorem 4.1.1) in the subsequent section.

Theorem 4.1.2 There exist constants c, c′ such that for every positive real δ, integers m, d and field F

satisfying |F| ≥ cd(m/δ)c
′
, the following holds: Fix f : Fm → F and fplanes. Let {P1, . . . , Pl} be the set of

all m-variate polynomials of degree d that have agreement at least δ/2 with the function f : Fm → F. Then

Pr
x,℘

[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] ≤ δ.

A cubic blowup in the proof-size of the MIPs we will be constructing (in Chapter 5) occurs from

the oracle fplanes which has size cubic in the size of the oracle f . A possible way to make the proof
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shorter would be to use an oracle for f restricted only to lines. (i.e., an analogous line-point test

to the above test) The analysis of [3] does apply to such a test. However they require the field size

to be (at least) a fourth power of the degree; and this results in a blowup in the proof to (at least)

an eighth power. Note that the above theorem only needs a linear relationship between the degree

and the field size.

4.2 Stronger Forms of the LDT

In this section, we shall prove stronger forms of Theorem 4.1.1 and finally prove the form of the

theorem (Theorem 4.1.2) which is most convenient to us. The first strong from of the theorem is as

follows:

Theorem 4.2.1 Let c0, c1, c2, c3 be the constants that appear in Theorem 4.1.1. For every positive real δ,

integers m, d and field F satisfying |F| ≥ c0d(m/δ)c1 , the following holds: Fix f : Fm → F and fplanes. Let

{P1, . . . , Pl} be the set of all m-variate polynomials of degree d that have agreement at least δc2/2c3 with

the function f : Fm → F. Then

Pr
x,℘

[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] ≤ δ.

Proof Suppose, Prx,℘[f(x) 6∈ {P1(x), . . . , Pl(x)} and LDTf,fplanes(x, ℘) = accept] > δ. Let S ⊆

F
m be the set of all points in Fm at which f does not agree with any of P1, . . . , Pl. Then by our

hypothesis, f
∣∣∣
S

passes the low-degree test (Plane-point test) with probability at least δ. We can

now extend f
∣∣∣
S

to a function g : Fm → F on the entire domain Fm by setting the value of g at points

not in S randomly. As g passes the test low degree test with probability at least δ, by Theorem 4.1.1,

we have that there exists a polynomial P : Fm → F of degree at most d that agrees with g on at

least δc2/c3 fraction of the points in Fm. The points of agreement of P with g must be concentrated

in S as the value of g at points in Fm − S is random. Note the a random function has agreement

approximately 1/|F| with every degree d polynomial. Thus, P agrees with f
∣∣∣
S

on at least δc2

2c3
|Fm|

points in S. As f is different from each of P1, . . . , Pl in S, this polynomial P must be different from

P1, . . . , Pl. Thus, we have a polynomial other than P1, . . . , Pl that agrees with f on δc2/2c3 fraction

of points in Fm. But this is a contradiction as {P1, . . . , Pl} is the set of all polynomial that have at

least δc2/2c3 agreement with f .

Now, for some more notation. Fix f : Fm → F and an oracle fplanes. Let the success probability

of a point x ∈ Fm be defined as the fraction of planes ℘ passing through x such that the value of

the polynomial fplanes(℘) at x agrees with f(x). The success probability of a plane ℘ is defined to

be the fraction of points x on the plane ℘ such that fplanes(℘) at x agrees with f(x). Note, by this
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definition

Ex∈Fm [ Success probability of x ] = E
℘− plane [ Success probability of ℘ ] = Pr

x,℘
[LDTf,fplanes = accept ]

We are now ready to prove the next stronger form of Theorem 4.1.1.

Theorem 4.2.2 There exist constants c, c′ such that for every positive real δ, integers m, d and field F

satisfying |F| ≥ cd(m/δ)c
′
, the following holds: Let f : Fm → F be any function. If there exists a oracle

fplanes satisfying Prx,℘[LDTf,fplanes(x, ℘) = accept] ≥ δ, then there exists a polynomial p : Fm → F of

degree at most d such that p and f agree on at least 3δ/4 fraction of the points.

Proof

Let ℘ be a random plane. SinceE
℘− plane [ Success probability of ] ≥ δ, it follows by an averag-

ing argument that with probability at least δ/8, the success probability of ℘ is at least 7δ/8. In other

words, if for a random plane ℘, E(℘) denotes the event that there exists a bivariate polynomial

g℘ : F2 → F of degree at most d that agrees with f on at least 7δ/8 fraction of the points on ℘, then

Pr
℘

[E(℘)] ≥ δ

8
(4.1)

Let c0, c1, c2, c3 be the constants that appear in Theorem 4.1.1. Let P1, . . . , Pl be all the polyno-

mials of degree at most d that agree with f on at least 1
2c3

(
δ2

20

)c2
fraction of the points of Fm. Note

that l ≤ 4c3
(

20
δ2

)c2 . Define ρ1, . . . , ρl such that ρi = Prx∈Fm [Pi(x) = f(x)] (i.e., agreement of Pi and

f ). If we show that there exists an i such that ρi ≥ 3δ/4, we would be done. We will assume the

contrary and obtain a contradiction to (4.1).

Suppose for all i = 1, . . . , l, ρi < 3δ/4. Let ℘ be any plane such that the eventE(℘) occurs. Then,

the bivariate polynomial g℘ that is described in the event E(℘) should satisfy one of the following.

Case (i) g℘ /∈ {P1

∣∣∣
℘
, . . . , Pl

∣∣∣
℘
}. (i.e., g℘ is not the restriction of any of the Pi’s to the plane ℘.)

Case (ii) g℘ ∈ {P1

∣∣∣
℘
, . . . , Pl

∣∣∣
℘
}. (i.e., g℘ is the restriction of one of the Pi’s to the plane ℘.)

In case (i), we have that ℘ is a plane whose success probability is at least 7δ/8 and moreover, on

at least 7δ/8− ld/|F| fraction of the points on ℘, the polynomial g℘ agrees with f but not with any

of P1, . . . , Pl. By Theorem 4.2.1, if |F| ≥ c0d(20m/δ2)c1 , then at most δ2/20 fraction of the points in

F
m are such that f does not agree with P1, . . . , Pl but the low degree test passes at that point. Thus,

by an averaging argument it follows that

Pr
℘

[ Case (i) occurs ] ≤ δ2

20( 7δ
8 −

ld
|F| )

If |F| > 22c2+55c2+1c3d/3δc2+1, then |F| > 40ld/3δ and the above probability is less than δ/16. Thus,

if F is chosen in such a manner, the probability of case(i) happening is less than δ/16.
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In case (ii), for i = 1, . . . , l, define the random variable γi to denote the fraction of points on the

random plane ℘ at which Pi agrees with f . We have that for each i, E℘[γi] = ρi. An application of

Chebyshev’s inequality tells us that for each i = 1, . . . , l,

Pr
℘

[
γi − ρi >

δ

8

]
≤ 64ρi
δ2|F|2

As we have by our assumption that ρi < 3δ/4, we have that

Pr
℘

[
∃i, γi >

7δ
8

]
≤ l × 64ρi

δ2|F|2
≤ 22c2+85c2c3
|F|2δ2c2+1

If we choose F such that |F| ≥ 2c2+65c2/2
√
c3/δ

c2+1, then the above probability is less than δ/16.

Note that the probability on the LHS is an upper bound on the Pr℘[ Case (ii) occurs ]. Thus, case

(ii) happens with probability less than δ/16.

Let c, c′ be sufficiently large constants such that |F| ≥ cd(m/δ)c
′

implies the three inequalities

|F| ≥ c0d(20m/δ2)c1 , |F| > 22c2+55c2+1c3d/3δc2+1 and |F| ≥ 2c2+65c2/2
√
c3/δ

c2+1. In this case we

have that Pr℘[E(℘)] = Pr℘[ Case (i) ] + Pr℘[ Case (i) ] < δ/16 + δ/16 = δ/8. This contradicts (4.1).

Hence, there does exist a i such that ρi ≥ 3δ/4. Thus, for this i, the polynomial Pi and f agree on at

least 3δ/4 fraction of the points in Fm.

Theorem 4.1.2 is obtained from Theorem 4.2.2 by mimicking the proof of Theorem 4.2.1 from

Theorem 4.1.1.
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CHAPTER 5

Randomness Efficient MIP for SAT

In this chapter, we show how to translate the use of state-of-the-art low-degree tests, in particular

the test of Raz and Safra [25], in conjunction with the hardness of PCS to obtain a 3-prover MIP for

SAT.

Using GapPCS it is easy to produce a simple probabilistically checkable proof for SAT. Given

an instance of SAT, reduce it to an instance I of GapPCS ; and provide as proof the polynomial

p : Fm → F as a table of values. To verify correctness a verifier first “checks” that p is close to some

polynomial using the low degree test and then verifies that a random constraint Cj is satisfied by

p.

A proof for such a PCP (MIP) system would be an oracle f representing the polynomial and

the auxiliary oracle fplanes. The verifier performs a low-degree test on f and then picks a random

constraint Cj and verifies that Cj is satisfied by the assignment f . But the naive implementation

would make k queries to the oracle f and this is too many queries. The same problem was faced

by Arora, Lund, Motwani, Sudan and Szegedy [1] who solved it by running a curve through the

k points and then asking a new oracle fcurves to return the value of f restricted to this curve. This

solution cuts down the number of queries to 3, but the analysis of correctness works only if |F| ≥ kd.

In our case, this would impose an additional quadratic blowup in the proof-size and we would like

to avoid this. We do so by picking r-dimensional varieties (algebraic surfaces) that pass through

the given k points. This cuts down the degree to rk1/r. However some additional complications

arise: The variety needs to pass through many random points, but not at the expense of too much

randomness. We deal with these issues in the following section.
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5.1 MIP Verifier

A variety V : Fr → F
m is a collection of m functions, V = 〈V1, . . . ,Vm〉, Vi : Fr → F. A variety

is of degree D if all the functions V1, . . . ,Vm are polynomials of degree D. For a variety V and

function f : Fm → F, the restriction of f to V is the function f
∣∣∣
V

: Fr → F given by f
∣∣∣
V

(a1, . . . , ar) =

f(V(a1, . . . , ar)). Note that the restriction of a degree d polynomial p : Fm → F to an r-dimensional

variety V of degree D is an r-variate polynomial of degree Dd.

Let S ⊆ F be of cardinality k1/r. Let z1, . . . , zk be some canonical ordering of the points in Sr.

Let V(0)
S,x1,... ,xk

: Fr → F
m denote a canonical variety of degree r|S| that satisfies V(0)

S,x1,... ,xk
(zi) = xi

for every i ∈ {1, . . . , k}. Let ZS : Fr → F be the function given by ZS(y1, . . . , yr) =
∏r
i=1

∏
a∈S(yi−

a); i.e. ZS(zi) = 0. Let α = 〈α1, . . . , αm〉 ∈ F
m. Let V(1)

S,α be the variety 〈α1ZS , . . . , αmZS〉.

We will let VS,α,x1,... ,xk be the variety V(0)
S,x1,... ,xk

+ V(1)
S,α. Note that if α is chosen at random,

VS,α,x1,... ,xk(zi) = xi for zi ∈ Sr and VS,α,x1,... ,xk(z) is distributed uniformly over Fm if z ∈ (F−S)r.

These varieties will replace the role of the curves of [1].

We are now ready to describe the MIP verifier for GapPCSε,m,b,q . (Henceforth, we shall assume

that t, the number of constraints in GapPCSε,m,b,q instance is at most q2m. In fact, for our reduction

from SAT (Lemma 3.2.2), t is exactly equal to qm.)

MIP Verifierf,fplanes,fvarieties(1n, d, k, s,F;C1, . . . , Ct).

Notation: r is a parameter to be specified. Let S ⊆ F be such that |S| = k1/r.

1. Pick a, b, c ∈ Fm and z ∈ (F− S)r at random.

2. Let ℘ = ℘a,b,c. Use b, c to compute j ∈ {1, . . . , t} at random (i.e., j is fixed given b, c, but

is distributed uniformly when b and c are random.) Compute α such that V(z) = a for

V = V
S,α,x

(j)
1 ,... ,x

(j)
k

.

3. Query f(a), fplanes(℘) and fvarieties(V). Let g = fplanes(℘) and h = fvarieties(V).

4. Accept if all the conditions below are true:

(a) g and f agree at a.

(b) h and f agree at a.

(c) Aj accepts the inputs h(z1), . . . , h(zk).

Complexity: Clearly the verifier V makes exactly 3 queries. Also, exactly 3m log q + r log q

random bits are used by the verifier. The answer sizes are no more than O((drk1/r + r)r log q) bits.

5.1.1 Completeness and Soundness of MIP Verifier

Now to prove the correctness of the verifier. Clearly, if the input instance is a YES instance then

there exists a polynomial P of degree d that satisfies all the constraints of the input instance. Choos-
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ing f = P and constructing fplanes and fvarieties to be restrictions of P to the respective planes and

varieties, we notice that the MIP verifier accepts with probability one. We now bound the sound-

ness of the verifier.

Claim 5.1.1 Let δ be any constant that satisfies the conditions of Theorem 4.1.2 and δ ≥ 2
√

d
q . Then the

soundness of the MIP Verifier is at most

δ +
4ε
δ

+
4rk

1
r d

δ(q − k 1
r )

Proof Let P1, . . . , Pl be all the polynomials of degree d that have agreement at least δ/2 with f .

(Note l ≤ 4/δ since δ ≥ 2
√
d/q.) Now suppose, the MIP Verifier had accepted a NO instance, then

one of the following events must have taken place.

Event 1: f(a) /∈ {P1(a), . . . , Pl(a)} and LDTf,fplanes(a, ℘) = accept.

We have from Theorem 4.1.2, that Event 1 could have happened with probability at most δ.

Event 2: ∃i ∈ {1, . . . , l}, such that constraint Cj is satisfiable with respect to polynomial Pi. (i.e.,

Aj(Pi(x
(j)
1 ), . . . , Pi(x

(j)
k )) = 0).

As the input instance is a NO instance of GapPCSε,m,b,q , this events happens with probability

at most lε ≤ 4ε/δ.

Event 3: ∀i , Pi
∣∣∣
V
6= h, but the value of h at a is contained in {P1(a), . . . , Pl(a)}.

To see this part, we reinterpret the randomness of the MIP verifier. First pick b, c, α ∈ Fm.

From this we generate the constraint Cj and this defines the variety V = V
S,α,x

(j)
1 ,... ,x

(j)
k

. Now

we pick z ∈ (F−S)r at random and this defines a = V(z). We can bound the probability of the

event in consideration after we have chosen V , as purely a function of the random variable z

as follows. Fix any i and V such that Pi
∣∣∣
V
6= h. Note that the value of h at a equals h(z) (by

definition. of a, z and V). Further Pi(a) = Pi

∣∣∣
V

(z). But z is chosen at random from (F − S)r.

By the Schwartz’s lemma (Lemma 3.2.7), the probability of agreement on this domain is at

most rk1/rd/(|F| − |S|). Using the union bound over the i’s we get that this event happens

with probability at most lrk1/rd/(|F| − |S|) ≤ 4rk
1
r d/δ(q − k 1

r ).

We thus have that the probability of one of the above events occurring is at most δ + 4ε/δ +

4rk
1
r d/δ(q − k 1

r ).

We would be done if we show that if none of the three events occur, then the MIP verifier rejects.

Suppose none of the three events took place. In other words, all the following happened

• f(a) ∈ {P1(a), . . . , Pl(a)} or LDTf,fplanes(a, ℘) = reject. We could as well assume that f(a) ∈

{P1(a), . . . , Pl(a)} for in the other case (i.e., LDT rejects), the verifier rejects.

• ∀i, Aj(Pi(x(j)
1 , . . . , Pi(x

(j)
k ) 6= 0.
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• ∃i, Pi
∣∣∣
V

= h or the value of h at a is not contained in {P1(a), . . . , Pl(a)}.

If h at a is not one of P1(a), . . . , Pl(a), then the MIP verifier rejects as f(a) ∈ {P1(a), . . . , Pl(a)}. So,

if the MIP verifier had accepted, it should be the case that ∃i, Pi
∣∣∣
V

= h. But as ∀i,Aj(Pi(x(j)
1 , . . . , Pi(x

(j)
k ) 6=

0, the verifier is bound to reject in this case too. Thus, if none of the the three events occurred, then

the verifier should have rejected.

5.2 Proof of Lemma 2.2.1

We can now complete the construction of a 3-prover MIP for SAT and give the proof of Lemma 2.2.1.

Proof of Lemma 2.2.1: Choose δ = µ
3 . Let c, c′ be the constants that appear in Theorem 4.1.2.

Choose ε′ = ε/2 where ε is the soundness of the MIP, we wish to prove. Choose ε = min{δµ/12, ε′/3(9+

c′)}. Let n be the size of the SAT instance. Let m = ε log n/ log log n, b = (logn)3+ 1
ε and q =

(log n)9+c′+ 1
ε . Note that this choice of parameters satisfies the requirements of Lemma 3.2.2. Hence,

SAT reduces to GapPCSε,m,b,q under length preserving reductions. Combining this reduction with

the MIP verifier for GapPCS, we have a MIP verifier for SAT. Also δ satisfies the requirements

of Claim 5.1.1. Thus, this MIP verifier has soundness as given by Claim 5.1.1. Setting r = 1
ε , we

can easily check that for sufficiently large n, 4rk
1
r d/δ(q − k 1

r ) ≤ 8rk
1
r d/qδ ≤ µ/3. We thus have

that the soundness of the MIP verifier is at most δ + 4ε/δ + µ/3 ≤ µ. The randomness used is

exactly 3m log q + r log q which with the present choice of parameters is (3 + ε′) logn+ poly log n ≤

(3 + ε) logn. The answer sizes are clearly poly log n. Thus, SAT ∈MIP1, 12 +µ[(3 + ε) logn,poly log n].
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CHAPTER 6

Constant Query Inner Verifier for MIPs

In this chapter, we truncate the recursion by constructing a constant query “inner verifier” for a

p-prover interactive proof system.

6.1 Inner Verifier

6.1.1 Introduction

An inner verifier is a subroutine designed to simplify the task of an MIP verifier. Say an MIP verifier

Vout, on input x and random string R, generated queries q1, . . . , qp and a linear sized circuit C. In

the standard protocol the verifier would send query qi to prover Πi and receive some answer ai.

The verifier accepts if C(a1, . . . , ap) = −1. (In this section, we will assume all Boolean functions

map to {+1,−1} with −1 representing the logical true.) An inner verifier reduces the answer size

complexity of this protocol by accessing oracles A1, . . . , Ap supposedly encoding the responses

a1, . . . , ap, and an auxiliary oracle B; and probabilistically verifying that the Ai’s really correspond

to some commitment to strings a1, . . . , ap that satisfy the circuit C. The hope is to get the inner

verifier to do all this with very few queries to the oracles A1, . . . , Ap and B and we do so with one

(bit) query each to the Ai’s and seven queries to B.

6.1.2 Details of the Inner Verifier

Let A = {+1,−1}a and B = {(a1, . . . , ap)|C(a1, . . . , ap) = −1}. Let πi be the projection function

πi : B → A which maps (a1, . . . , ap) to ai. By abuse of notation, for β ⊆ B, let πi(β) denote

{πi(x)|x ∈ S}. Queries to the oracle Ai will be functions f : A → {+1,−1}. Queries to the oracle B
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will be functions g : B → {+1,−1}. The inner verifier expects the oracles to provide the long codes

of the strings a1, . . . , ap, i.e., Ai(f) = f(ai) and B(g) = g(a1, . . . , ap). Of course, we can not assume

these properties; they need to be verified explicitly by the inner verifier. We will assume however

that the tables are “folded”, i.e., Ai(f) = −Ai(−f) and B(g) = −B(−g) for every i, f, g. (This is

implemented by issuing only one of the queries f or −f for every f and inferring the other value,

if needed by complementing it.)1We are now ready to specify the inner verifier.

Vinner
A1,... ,Ap,B(A,B, π1, . . . , πp).

1. For each each i ∈ {1, . . . , p}, choose fi : A → {+1,−1} at random.

2. Choose f, g1, g2, h1, h2 : B → {+1,−1} at random and independently.

3. Let g = f (g1 ∧ g2) (Πfi ◦ πi)) and h = f (h1 ∧ h2) (Πfi ◦ πi)).

4. Read the following bits from the oracles A1, . . . , Ap, B

yi = Ai(fi) , for each i ∈ {1, . . . , p}.

w = B(f).

u1 = B(g1);u2 = B(g2)

v1 = B(h1); v2 = B(h2)

z1 = B(g); z2 = B(h)

5. Accept iff

w

p∏
i=1

yi = (u1 ∧ u2)z1 = (v1 ∧ v2)z2

Clearly, the number of queries made by Vinner is exactly 7 while the randomness needed by it is

p|A|+ 5|B| ≤ p2a + 52pa = O(2pa).

6.1.3 Completeness and Soundness of Inner Verifier

It is clear that if a1, . . . , ap are such that C(a1, . . . , ap) = −1 and for every i and f , Ai(f) = f(ai)

and for every g, B(g) = g(a1, . . . , ap), then the inner verifier accepts with probability one. The fol-

lowing lemma gives a soundness condition for the inner verifier, by showing that if the acceptance

probability of the inner verifier is sufficiently high then the oracles A1, . . . , Ap are non-trivially

close to the encoding of strings a1, . . . , ap that satisfy C(a1, . . . , ap) = −1. The proof uses, by now

standard, Fourier analysis.

Note that the oracle Ai can be viewed as a function mapping the set {A → {+1,−1}} to the

reals. Let the inner product of two oracles A and A′ be 〈A,A′〉 = 2−|A|
∑
f A(f)A′(f). For α ⊆ A,

let χα(f) =
∏
a∈α f(a). Then the χα’s give an orthonormal basis for the space of oracles A. This

1The folded condition in terms of Fourier coefficients translates to Âα = 0 for allα such that |α| is even. More specifically,

Âφ = 0.
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allows us to express A(·) =
∑
α Âαχα(·), where Âα = 〈A,χα〉 are the Fourier coefficients of A. In

what follows, we let Âi,α denote the αth Fourier coefficient of the table Ai. Similarly one can define

a basis for the space of oracles B and the Fourier coefficients of any one oracle.

Our next lemma lays out the precise soundness condition in terms of the Fourier coefficients of

the oracles A1, . . . , Ap.

Claim 6.1.1 For every ε > 0, there exists a δ(= δε) > 0 such that if Vinner
A1,... ,Ap,B(A,B, π1, . . . , πp)

accepts with probability at least 1
2 + ε, then there exist a1, . . . , ap ∈ A such that C(a1, . . . , ap) = −1 and

|Âi,{ai}| ≥ δ for every i ∈ {1, . . . , p}.

Proof Let δ be some constant (to be decided later.) Assume that there do not exist a1, . . . , ap ∈ A

such that C(a1, . . . , ap) = −1 and |Âi,{ai}| ≥ δ for every i ∈ {1, . . . , p}. On restating this as-

sumption, we get that for every β ⊆ B such that |β| = 1, there exists a i ∈ {1, . . . , p} such that

|Âi,πi(β)| < δ. To prove the lemma, it is sufficient if we show that for a particular choice of δ, this

assumption implies that the acceptance probability of Vinner is less than 1
2 + ε.

The acceptance condition of the verifier Vinner can be given by the following expression.

ACC =
1
4

(
1 + w(u1 ∧ u2)z1

p∏
i=1

yi

)(
1 + w(v1 ∧ v2)z2

p∏
i=1

yi

)

Thus, the acceptance probability (E[ACC]) of Vinner is exactly equal to

1
4
E

[(
1 +B(f) (B(g1) ∧B(g2))B(g)

p∏
i=1

Ai(fi)

)(
1 +B(f) (B(h1) ∧B(h2))B(h)

p∏
i=1

Ai(fi)

)]

where the expectation is taken over the random choices of the functions fi, f, g1, g2, h1 and h2. This

expression can be simplified to

E[ACC] =
1
4

+
1
2
Efi,f,g1,g2

[
B(f) (B(g1) ∧B(g2))B(g)

p∏
i=1

Ai(fi)

]
(6.1)

+
1
4
Efi,f,g1,g2,h1,h2 [(B(g1) ∧B(g2)) (B(h1) ∧B(h2))B(g)B(h)] (6.2)

Using Fourier expansion and the fact that a∧b = 1+a+b−ab
2 , the expectation in (6.1) can be expressed
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as follows

1
2
E

[
B(f)B(g)

p∏
i=1

Ai(fi)

]
+ E

[
B(f)B(g)B(g1)

p∏
i=1

Ai(fi)

]

− 1
2
E

[
B(f)B(g)B(g1)B(g2)

p∏
i=1

Ai(fi)

]

=
1
2

∑
β

B̂2
β

p∏
i=1

Âi,αi

(
1
2

)|β|
+
∑
β

∑
β1⊆β

B̂2
βB̂β1

p∏
i=1

Âi,αi

(
1
2

)|β|

− 1
2

∑
β

∑
β1,β2⊆β

B̂2
βB̂β1B̂β2

p∏
i=1

Âi,αi(−1)|β1∩β2|
(

1
2

)|β|

≤ 1
2

∑
β

B̂2
β

p∏
i=1

|Âi,αi |
(

1
2

)|β|1 +
∑
β1⊆β

|B̂β1 |

2

The other expectation in (6.2) in the acceptance probability can be simplified to

1
4
E [B(g)B(h)] + E [B(g1)B(g)B(h)]− 1

2
E [B(g1)B(g2)B(g)B(h)] + E [B(g1)B(h1)B(g)B(h)]

−E [B(g1)B(g1)B(h1)B(g)B(h)] + E [B(g1)B(g1)B(h1)B(h2)B(g)B(h)]

This expression can be further simplified to

1
4

∑
β

B̂2
β

(
1
4

)|β|
+
∑
β

∑
β1⊆β

B̂2
βB̂β1

(
1
4

)|β|
− 1

2

∑
β

∑
β1,β2⊆β

B̂2
βB̂β1B̂β2

(
1
4

)|β|

+
∑
β

∑
β1,β2⊆β

B̂2
βB̂β1B̂β2

(
1
4

)|β|
−
∑
β

∑
β1,β2,β3⊆β

B̂2
βB̂β1B̂β2B̂β3

(−1)|β1∩β2|

4|β|

+
∑
β

∑
β1,β2,β3,β4⊆β

B̂2
βB̂β1B̂β2B̂β3B̂β3

(−1)|β1∩β2|+|β3∩β4|

4|β|

This expression can easily be seen to be no more than

1
4

∑
β

B̂2
β

(
1
4

)|β|1 +
∑
β1⊆β

|B̂β1 |

2

We have thus shown that the acceptance probability is no more than

1
4

+
1
4

∑
β

B̂2
β

(
p∏
i=1

|Âi,πi(β)|
(1 + γβ)2

2|β|
+

1
4

(1 + γβ)4

4|β|

)

where γβ =
∑
β′⊆β |B̂β′ |.

Define η1 =
∑
|β|=1 B̂

2
β , η3 =

∑
|β|=3 B̂

2
β and η5 =

∑
|β|≥5 B̂

2
β . (Note η1 +η3 +η5 = 1.) With these

definitions, the acceptance probability can be shown to be less than

1
4

+
1
4

[
2η1δ + η3

(1 +
√

1− η1 +
√

3η1)2

8
+

25
32
η5

]
+

1
4

[
η1

(1 +
√
η1)4

16
+ η3

(1 +
√

1− η1 +
√

3η1)4

256
+

54

46
η5

]
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This expression is of the form λ1(η1) + η3λ2(η1) + Cη5 where λ1, λ2 are the appropriate functions

and C a constant. For a fixed η1, if λ2(η1) < C, then the acceptance probability is at most λ1(η1) +

C(1−η1) and otherwise the acceptance probability is at most λ1(η1)+(1−η1)λ2(η1). We shall show

that both these expressions are at most 1
2 + δ

2 . The first of these expressions is

1
4

+
1
4

[
2η1δ + η1

(1 +
√
η1)4

16
+
(

25
32

+
54

46

)
(1− η1)

]

which is at most

1
4

+
δ

2
+

1
4

[
η1 +

(
25
32

+
54

46

)
(1− η1)

]

Now as
(

25
32 + 54

46

)
< 1, the expression η1 +

(
25
32 + 54

46

)
(1 − η1) is at most 1. Hence the above

expression is no more than 1
2 + δ

2 for η1 ≤ 1. The other expression is

1
4

+
1
4

[
2η1δ + η1

(1 +
√
η1)4

16

]
+

1− η1

4

[
(1 +

√
1− η1 +

√
3η1)2

8
+

(1 +
√

1− η1 +
√

3η1)4

256

]

From Claim 6.1.2, it follows that this expression is at most 1
2 + δ

2 .

We thus have that the acceptance probability in either case is less than 1
2 + δ

2 . Thus choosing

δ = 2ε, we have that the acceptance probability of Vinner is less than 1
2 +ε, which is what we wanted

to prove.

Claim 6.1.2 For 0 ≤ η ≤ 1,

η1

(1 +
√
η1)4

16
+ (1− η1)

(
(1 +

√
1− η1 +

√
3η1)2

8
+

(1 +
√

1− η1 +
√

3η1)4

256

)
is at most 1

Proof For η1 ≤ 1, we have that
√

1− η1 ≤ 1 − η1/2. Using this fact, the above expression is at

most

η1

(1 +
√
η1)4

16
+ (1− η1)

(
(2− η1

2 +
√

3η1)2

8
+

(2− η1
2 +
√

3η1)4

256

)
For convenience, let us call the above expression µ(η1).

Define µ′(η1) = µ((1 − η1)2). Note µ′ is a polynomial of degree 10 in η1. In fact µ′(η1) =
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µ1(η1) + µ2(η1), where µ1 and µ2 are as defined below.

µ1(η1) = 1 +
(
−4631

2048
+

255
256

√
3
)
η1 +

(
18407
4096

− 497
512

√
3
)
η2

1 +
(
−567

128
+

305
512

√
3
)
η3

1

+
(

2195
1024

+
411
512

√
3
)
η4

1 +
(
− 203

1024
− 169

512

√
3
)
η5

1

µ2(η1) =
(
− 615

2048
+

77
512

√
3
)
η6

1 +
(

35
256
− 35

512

√
3
)
η7

1 +
(
− 25

1024
+

9
512

√
3
)
η8

1

+
(

5
2048

− 1
512

√
3
)
η9

1 −
1

4096
η10

1

We can easily check that µ2(η1) ≤ 0 for all η1 ≥ 0. Thus it suffices, if we show that µ1(η1) ≤ 1

for all 0 ≤ η1 ≤ 1. Consider the function χ(η1) = (µ1(η1) − 1)/η1. χ is a polynomial of degree 4 in

η1 with a negative leading coefficient. It can easily be checked that the polynomial χ(x) has no real

roots. Hence χ(η1) < 0 for all η1. Thus, µ1(η1) ≤ 1 for all 0 ≤ η1.

6.2 Composed Verifier

There is a natural way to compose a p-prover MIP verifier Vout with an inner verifier such as Vinner

above so as to preserve perfect completeness. The number of queries issued by the composed

verifier is exactly that of the inner verifier. The randomness is the sum of the randomness. We

finally sum up giving the composed verifier and thus prove Lemma 2.2.3.

Proof of Lemma 2.2.3:

Let ε > 0 be an arbitrary number. Choose ε = ε/2. By claim 6.1.1, there exists a δ = δε such that

the statement of Claim 6.1.1 holds. Choose γ = εδ2p. For this choice of γ, we shall show that

MIP1,γ [p, r, a] ⊆ PCP1, 12 +ε[r +O(2pa), p+ 7]

thus, proving Lemma 2.2.3.

Let L ∈ MIP1,γ [p, r, a]. Let Vout be the corresponding MIP verifier for L. The action of Vout is as

described below.

Vout interacts with p provers, Π1, . . . ,Πp. On an input string x of length n, Vout picks a r(n)-

bit random string R; generates p queries (1, q(R)
1 ), . . . , (p, q(R)

p ) and a linear sized circuit CR. It

then issues query (i, q(R)
i ) to prover Πi which responds with the answer a

i,q
(R)
i

. Vout accepts iff

CR(a
1,q

(R)
1
, . . . , a

p,q
(R)
p

) = −1.

Let Q be the set of all queries issued by Vout on input string x and over all random strings

R. (Notice that |Q| ≤ p2r since each random string R uniquely determines the query Vout issues

to prover Πi) The p provers Π1, . . . ,Πp that Vout interacts with can be thought of as p functions

Πi : Q→ {0, 1}a.

46



We shall now construct a (r + O(2pa), p + 7)-restricted verifier Vcomp for L by composing Vout

with the inner verifier Vinner specified in Section 6.1.2. The proof (or oracle) that Vcomp expects is of

the form Γ : {0, 1}∗ → {+1,−1}.

Vcomp
Γ(x)

1. Pick a random string R ∈ {0, 1}r(n).

2. Generate queries (1, q(R)
1 ), . . . , (p, q(R)

p ) and circuit CR as Vout would do on input x and

random string R.

3. For each i ∈ {1, . . . , p}, set Ai(·)← Γ(i, q(R)
i , ·).

4. Set B ← Γ(p+ 1, R, ·).

5. Set A ← {+1,−1}a(n).

6. Set B ← {(a1, . . . , ap)|CR(a1, . . . , ap) = −1}.

7. For each i ∈ {1, . . . , p}, set the projection function πi : B → A such that (a1, . . . , ap)
πi−→

ai.

8. Accept iff Vinner
A1,... ,Ap,B(A,B, π1, . . . , πp) accepts.

Clearly the number of queries issued by Vcomp is that of Vinner which is 7, while the total ran-

domness is the sum of the randomness of Vout and Vinner which is r +O(2pa).

It is easy to verify that Vcomp has completeness 1. Suppose x ∈ L. By the completeness of

Vout, there exists tables Π1, . . . ,Πp such that PrR[Vout
Π1,... ,Πp(x,R) = accept ] = 1. For each R ∈

{0, 1}r, let (1, q(R)
j1

), . . . , (p, q(R)
jp

) be the queries issued by Vout on input string x and random string

R. Construct another oracle Πp+1 : {0, 1}r → {0, 1}ap such that Πp+1(R) = (a
1,q

(R)
1
, . . . , a

p,q
(R)
p

)

where a
i,q

(R)
i

= Πi(q
(R)
i ) (i.e., response of oracle Πi on query q(R)

i ). Now if we construct Γ such that

• For each i ∈ {1, . . . , p}, and q ∈ Q, Γ(i, q, ·) is the long code of Πi(q).

• For each R ∈ {0, 1}r, Γ(p+ 1, R, ·) is the long code of Πp+1(R).

we note that Vcomp accepts on all random strings. Thus, the completeness is 1.

The only thing that is left to be proved is that the soundness of Vcomp is 1
2 + ε. We prove this by

showing that if Vcomp accepts x with probability at least 1
2 + ε, i.e.,

Pr
R′

[V Γ(x;R′) = accept ] ≥ 1
2

+ ε

(where R′ is the combined randomness of Vout and Vinner) then x ∈ L. By the soundness condition

of the outer MIP verifier Vout, it is sufficient if we show that there exist provers Π1, . . . ,Πp such

that

Pr
R

[V Π1,... ,Πp(x;R) = accept ] ≥ γ
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And the rest of the proof would be devoted to proving this fact.

Consider the following randomized strategy DECODE that takes as input a folded table A and

returns a a-bit string. A is an oracle whose input are functions of the form f : A → {+1,−1}. Recall

A = {+1,−1}a.

DECODE(A)

1. Choose α ⊆ A with probability Â2
α.

2. Choose an x ∈ α uniformly at random.

3. Return x.

We remark that since
∑
α Â

2
α = 1, Â2

α does determine a probability distribution and hence Step 1 is

legitimate. Moreover, the procedure will never get stuck in Step 2 because of choosing α = φ since

Âφ = 0 (as A is folded) We thus have that if |Â{a}| ≥ δ, then Pr[DECODE(A) = a] ≥ δ2.

Now imagine constructing the p provers Π1, . . . ,Πp using the randomized strategy DECODE

(on the proofs Γ of the composed verifier Vcomp) as follows:

For each i ∈ {1, . . . , p} do

For each q ∈ Q do

Set ai,q ← DECODE(Γ(i, q, ·).

Set prover Πi : Q→ {0, 1}a such that Πi(q) = ai,q,∀q ∈ Q.

We shall now show that if Vcomp accepts x on proof Γ with probability at least 1
2 +ε, then Vout accepts

x on interacting with the p provers Π1, . . . ,Πp as constructed above with probability at least γ (over

the random coin tosses of Vout and the DECODE strategy.)

LetR denote the set of random choices of the MIP verifier Vout that satisfy

Pr
R′′

[Vinner
A1,... ,Ap,B(x;R′′) = accept ] ≥ 1

2
+
ε

2

where the probability is taken over the coin tosses R′′ of Vinner and each of Ai(·) = Γ(i, q(R)
i , ·)

and B = Γ(p + 1, R, ·) as specified in the working of Vcomp. By an averaging argument, it follows

that PrR[R ∈ R] ≥ ε/2. Let ε = ε/2 and δ = δε as mentioned in the beginning of the proof. By the

soundness condition for the inner verifier Vinner (see Claim 6.1.1), we have that for eachR ∈ R, there

exist a(R)
1 , . . . , a

(R)
p such that CR(a(R)

1 , . . . , a
(R)
p ) = −1 and for each l ∈ {1, . . . , p}, |Â

i,{a(R)
l }
| ≥ δ.

Translating these conditions into the proof of the composed verifier Vcomp, we have that for each

R ∈ R, there exist a(R)
1 , . . . , a

(R)
p such that CR(a(R)

1 , . . . , a
(R)
p ) = −1 and for each l ∈ {1, . . . , p},

|(Γ̂(i, q(R)
i , ·){a(R)

l }
| ≥ δ. We now use these facts to produce p provers Π1, . . . ,Πp for Vout such that

Vout accepts these p provers with probability at least γ.
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Reiterating the soundness condition from the inner verifier Vinner, we have that for each R ∈ R,

there exist a(R)
1 , . . . , a

(R)
p such thatCR(a(R)

1 , . . . , a
(R)
p ) = −1 and for each l ∈ {1, . . . , p}, |(Γ̂(i, q(R)

i , ·)){a(R)
l }
| ≥

δ. Now, let us analyze the probability of the outer verifier accepting the provers Π1, . . . ,Πp on input

string x, where the provers Πi are constructed from Γ as mentioned before.

Pr
[
Vout

Π1,... ,Πp(x;R) = accept
]

= Pr
[
Cr(a1,q

(R)
1
, . . . , a

p,q
(R)
p

) = −1
]

≥ Pr
[
∀i,Πi(q

(R)
i ) = a

(R)
i

]
≥ Pr

R
[R ∈ R] · Pr

[
∀i,Πi(q

(R)
i ) = a

(R)
i

∣∣∣R ∈ R]
= Pr

R
[R ∈ R] · Pr

[
∀i,DECODE

(
Γ(i, q(R)

i , ·)
)

= a
(R)
i

∣∣∣R ∈ R]
= Pr

R
[R ∈ R] ·

p∏
i=1

Pr
[
DECODE

(
Γ(i, q(R)

i , ·)
)

= a
(R)
i

∣∣∣R ∈ R]
≥ εδ2p

= γ

(all the probabilities are over the random coins of both Vout and the DECODE procedure unless

otherwise specified.) Thus, there exists provers Π1, . . . ,Πp such that Vout accepts with probability

at least γ, which in turn implies that x ∈ L. This completes the proof of the Lemma 2.2.3
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CHAPTER 7

Conclusion

We considered the problem of finding small PCPs with low query complexity. Both the parameters

- proof-size and query complexity have been independently optimized. In this thesis, we consid-

ered whether we can have PCPs which have both low query complexity and small proof-size. We

demonstrated that for every language in NP there exists a PCP in which there is at most a slightly-

super-cubic blowup in the proof-size and with a query complexity as low as 16. In this process, we

construct several modules that are amenable to future PCP constructions.

As a starting step, we proved the hardness of the Polynomial Constraint Satisfaction problem.

This is a neat algebraic problem and easily lends itself to MIP constructions. In the next step, we

use the state-of-the-art Low Degree Tests [25] in conjunction with the hardness of the Polynomial

constraint satisfaction to obtain a 3-prover MIP for SAT. For this part, we follow a proof of [1]

(their parallelization step); however a direct implementation would involve 6 logn randomness,

or an n6 blow up in the size of the proof. Part of this is a cubic blow up due to the use of the

low-degree test and we are unable to get around this part. Direct use of the parallelization also

results in a quadratic blowup of the resulting proof. We saved on this by creating a variant of the

parallelization step of [1] that uses higher dimensional varieties instead of 1-dimensional ones. We

then finally truncate the recursion by providing a constant bit verifier. This is the first time that

such a constant bit-verifier has been constructed for non-canonical MIPs with more than 2 provers.

7.1 Scope for Further Improvements

It is open as to whether there exist nearly linear sized PCPs with query complexity of 3 for NP

statements. Also, no non-trivial limitations are known for the joint query-proofsize complexity of
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PCPs.

With respect to our PCP construction, the following are a few approaches which would further

reduce the size-query complexity.

1. An improved low-error analysis of the low-degree test of Rubinfeld and Sudan [26] in the

case when the field size is linear in the degree of the polynomial. (It is to be noted that the

current best analysis [3] requires the field size to be at least a fourth power of the degree.)

Such an analysis would reduce the proof blowup to nearly quadratic.

2. Converting the PCP of Håstad [19] into an inner verifier for p-prover MIPs and thus showing

that for every δ > 0 and p there exists ε > 0 and c such that

MIP1,ε[p, r, a] ⊆ PCP1−δ, 12
[r + c log a, p+ 3].

This would reduce the query complexity of the small PCPs constructed in this paper to 6 bits.
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