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Course Announcement

CS369E: Expanders in Computer Science (Stanford)
Expanders, constructions and their applications

Time: Mon 2:15-4:05pm
Location: Gates 159 (Stanford)
Instructors : Cynthia Dwork and Prahladh Harsha
Homepage: http://cs369e.stanford.edu

Expanders in Computer Science
Over the past few decades, expanders have played a pervasive role in diverse fields of

computer science - network design, derandomization, distributed computing, random walks,
error-correcting codes, metric embeddings etc. Informally, an expander is a sparse graph
which is nevertheless highly connected. In this course, we will study these expander graphs
and several of their applications.

As part of this course, we will study the relationship between expansion and eigen
values. We will then look at various constructions of expanders - Margulis, LPS and zig-zag
expanders. A large chunk of the course will be devoted to applications of expanders:

1. Random walks and universal sequences

2. Derandomization
(including Reingold’s ”SL=L” result)

3. Error Correcting Codes

4. Distributed Computing

5. Isoperimetric problems

The course will reach the cutting-edge of current research in this area, covering some
results from within the last year. At the same time, the concepts we will cover are general
and useful enough that hopefully anyone with an interest in the theory of computation or
combinatorics could find the material appealing.
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Chapter 1

Expanders – an Introduction

Lecturer: Cynthia Dwork
Scribe: Arpita Ghosh

April 4, 2005

In this lecture, we start with some basic definitions and notation, and then discuss some
motivating applications of expanders.

A graph G = (V,E) has vertex set V , with |V | = N , and edge set E. G is undirected,
unless specified otherwise, and can be a multigraph. A bipartite graph will be denoted as
G = (L∪R,E), i.e., its vertex sets are partitioned as L and R (L and R do not necessarily
have the same size).

For each vertex v ∈ V , the neighborhood of v is denoted Γ(v), and defined as

Γ(v) = {u ∈ V | (u, v) ∈ E}.

The neighborhood of a subset S ⊆ V is defined as the union of the neighborhoods of the
vertices in S, i.e.,

Γ(S) = ∪v∈SΓ(v).

We also define
Γ
′
(S) = S ∪ Γ(S),

i.e., Γ
′
(S) consists of vertices in S as well as their neighbors.

Definition 1. A graph G is said to have vertex expansion (K,A) if

|Γ(S)| ≥ A · |S|, ∀S ⊆ V with |S| ≤ K.

We will then say that G is a (K,A)-expander
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Clearly, a complete graph has the best possible expansion. However, we will be interested
in constant degree graphs. We will typically want K = cN , for some constant c, and A to
be of the order of the degree d of the graph. When K = N/2 (this will be the most common
setting in this course), we will refer to G as an A-expander. Informally, an expander graph
is one where all subsets of V (under some constraint on their size) have large neighborhoods.
Now we will see some applications and results related to expanders. Surprisingly, such graph
do exisit. For the present we will assume the existence of such graphs (and also that we
can construct them efficiently). We will defer the actual constructions of such expanders to
the second half of this course.

We will now consider applications of such graphs in five different contexts.

• Time-space tradeoffs

• Byzantine Agreement

• Saving Random Bits

• Error Correcting Codes

• Metric Embeddings

Two of these applications (the first and the last) are lower bounds while the other two are
upper bounds. These examples illustrate the use of expanders in a wide variety of contexts,
both for positive and negative results. We will not furnish full proofs in these examples,
however.

1.1 Time-space tradeoffs in computing functions

One of the first uses of expanders in computer science was in studying the computational
hardness of certain functions. Given a specific method for computing a function we can
create an acyclic computational circuit describing the computation. Valiant was studying
the hardness of computing certain linear transforms, and observed that every circuit com-
puting these functions was a superconcentrator [Val]. Intuitively, these are graphs with very
great flow from inputs to outputs: An n-superconcentrator is a graph with n inputs and
n outputs, such that for all subsets S of the input, and all subsets T of the output with
|T | = |S|, there exist vertex disjoint paths connecting S to T . Valiant hoped to obtain
lower bounds for the linear transforms by obtaining high lower bounds for superconcentra-
tors. Valiant conjectured that any superconcentrator must have a superlinear number of
edges. However, Valiant himself disproved this conjecture and gave construction of super-
concentrators with O(n) edges using expanders. This happens to be the first context when
expanders where used in Computer Science. For an interesting account of the details that
went into the discovery of expanders, refer the writeup on Reingold’s recent “SL=L” result
by Sara Robinson [Rob].

However, it turns out that superconcentrators exhibit interesting time/space trade-
offs, leading to time/space tradeoffs for computations (see the work of Paul, Tarjan and
Celoni [PTC, PT]). We will show how a pebbling game on such graphs leads to some
lower bounds. Consider the following pebbling game played on a DAG (directed acyclic

7



graph). To start with, the DAG has some specified input nodes and output nodes, and
some auxiliary nodes connecting inputs to output. All edges are directed and go from left
to right (inputs are on the left, and outputs on the right). We are given S pebbles, with
the following rules:

• A pebble can be placed on an input at any time.

• A pebble can be placed on a non-input node if all its predecessors (i.e., nodes with
edges leading into it) currently hold pebbles.

• A pebble can be removed at any time.

The goal is to evaluate the outputs, i.e., pebble each of the outputs. For example, suppose
the DAG represents a computational circuit. Clearly, with a large number of pebbles S, the
outputs can be computed in a small number of steps. If every graph to evaluate a function
is such that it cannot be pebbled quickly with a small number of pebbles, then the function
is hard to compute with a small amount of memory. For further details, refer to the work
of Celoni, Tarjan and Paul [PTC, PT].

As stated earlier, superconcentrators with O(n) eedges can be constructed from constant
degree expanders (we will not discuss this construction here). This construction uses the
Hall’s Theorem which states the necessary and sufficient condition for a graph to have a
perfect matching. Since this condition is similar in flavor to the definition of expanders, we
state and prove Hall’s theorem here.

Theorem 2. Let G = (L ∪ R,E) be a bipartite graph. Then, G has a perfect matching if
and only if

Γ(S) ≥ |S|, for all S ⊆ L. (1.1)

Proof. The only if direction is obvious (if there is a subset of S with not as many neighbors
as vertices, S cannot have a matching). We will show the if direction by induction on the
size of L. The base case, where L has at most one vertex is trivial. Suppose now that the
claim is true for some L ≤ m. We will consider two cases:

• Case 1: All proper subsets S of L, S 6= ∅, expand strictly, i.e., |Γ(S)| > |S|. Consider
any vertex x in L, and let (x, y) be an edge in E. Now, consider the bipartite graph
G∗ with vertex sets L∗ = L−{x} and R∗ = R−{y}. Since every S ⊂ L satisfies (1.1)
with strict inequality, every subset of L∗ satisfies (1.1), since only a single vertex y has
been removed from R. Therefore, by the induction hypothesis, the smaller graph G∗

has a matching. To this matching add the edge (x, y); this gives a perfect matching
in G.

• Case 2: There exists a proper subset T ⊂ L, T 6= ∅, with |Γ(T )| = |T |. Consider
the induced graphs G1 and G2 on the vertex sets T ∪ Γ(T ), and L \ T ∪ R \ Γ(T )
respectively. By the induction hypothesis, G1 has a perfect matching. (Note that the
induction hypothesis cannot be used directly on G2.) Let S ⊆ L \ T . Then,

ΓG2(S) = ΓG(S ∪ T ) \ ΓG(T )

⇒ |ΓG2(S)|
(a)

≥ |S ∪ T | − |T |
= |S|,
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where (a) is true since S ∪ T satisfies |ΓG(S ∪ T )| ≥ |S ∪ T |, and by assumption,
|Γ(T )| = |T |. Therefore, the graph G2 also satisfies (1.1), and by the induction
hypothesis, has a matching. The unions of the perfect matchings in G1 and G2 is a
matching for G.

1.2 Almost Everywhere Byzantine Agreement

In the Byzantine agreement problem each of n processors begins with an input value, say,
vi ∈ {0, 1}. During the course of the computation each processor must irreversibly decide
on an output value di. The requirements are

• (Unanimty): All non-faulty processors must produce the same decision.

• (Non-triviality): If all non-faulty processors begin with the same value, say v, then
every non-faulty processor must output v.

Another application of expanders occurs in the context of solving Byzantine agreement
in general networks, where the processors correspond to nodes and a processor can only
communicate with its immediate neighbors. Dolev showed that for t-resilient Byzantine
agreement, connectivity greater equal 2t+ 1 is necessary [Dol].

When t is linear in the number n of vertices in the network, this requires O(n2) edges,
which is unreasonable for large n. Consider, instead, a constant-degree expander on n
vertices. In such a network, if not too many nodes are faulty, then it can be shown that
there is a large fraction of non-faulty nodes that can communicate “as if” they were in a
completely connected network. Intuitively this is because expanders do not have small cuts.

By relaxing the unanimity requirement, essentially permitting O(t) non-faulty proces-
sors to be “lost” (not to join in the majority decision), we obtain almost-everywhere agree-
ment [DPPU]. Using constant-degree expanders (together with other special graphs), the
relaxed problem can be solved in networks of bounded degree. For further details, refer
[DPPU] and [Upf].

1.3 Saving random bits

Another application of expander graphs occurs in reducing the number of random bits used
by a randomized algorithm. We will study several such applications of expanders in the
context of derandomization. For today’s introductory lecture, we will study a simple and
beautiful application due to Karp, Pippenger and Sipser [KPS].

Recall that a language L belongs to RP if there exists a polynomial time Turing machine
M using a sequence of random bits (of length polynomial in the input size), such that

x ∈ L ⇒ |Wx|
2p(|x|)

≥ q ≥ 3
4
,

and
x /∈ L ⇒ |Wx| = 0,
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where
Wx = {y|M(x, y) = 1, |y| = poly(|x|)}.

That is, if x ∈ L, the probability that M(x, y) = 0 (which is the probability of error) is
less equal 1− q, a constant (less than 1/4). That is, if the algorithm M returns 1 on input
(x, y), then surely x ∈ L, but if it returns 0, then x may or may not belong to L.

Let r be the number of random bits used to generate the string y, r = poly(|x|). Suppose
we want the probability of error to be δ. Since the error decreases by a constant fraction each
time, to reduce the probability of error down to δ, we can repeat the algorithm O(log(1

δ ))
times. But for this, the total number of random bits used is O(r log(1

δ )), i.e., we need to
use a large number of random bits to make the probability of error small.

Using expanders, it is possible to obtain, in polynomial time, to reduce the error to as
low as 1

poly(r) with no extra random bits (i.e.using only the original r random bits).
The expander used is a giant (N/2, A)-expander G on N = 2r vertices where A is the

expansion of the expander. Note that since the expander is so large, we cannot even afford
to write down the entire expander, forget constructing it. However, we will assume that
there exists an implicit construction of the expander in the following sense: given any vertex
v and any index i in the range 1 . . . d (where d is the degree of the expander), we can in
time polynomial in |v| and |i|, compute the ith-neighbor of v. The expanders constructions
we will discuss later in the course will satisfy such strong properties.

Choose a radius c such that 1
4Ac ≤ δ, where A is the expansion of G. Choose a vertex v

uniformly at random from G. This needs r random bits, since |V | = 2r. The modified RP
algorithm is as follows:

1. Run the original RP algorithm M for all strings y lying within a ball of radius c
around v.

2. If for all these y, M(x, y) = 0, reject x.

3. If M(x, y) = 1 for any y, accept x.

We will show that the error of this modified RP algorithm is at most δ.
Suppose x ∈ L. Define Badx to be the set of y for which M(x, y) = 0. The output is

erroneous only if Γ
′
c(v) ⊆ Badx, where the subscript c denotes the set of vertices within a

distance c of v. Let
B = {v | Γ

′
c(v) ⊆ Badx}.

The algorithm fails only when v is picked from B. Now, by definition of B, for 1 ≤ i ≤ c−1,

Γ
′
i(B) ⊆ Γ

′
i+1(B) ⊆ Badx.

Also, by definition, since we started with an input x ∈ L ∈ RP ,

|Badx| ≤ N/4.

Since G has an expansion of A,
|Γ′c(B)| ≥ Ac|B|.
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Combining all of this, we have

N

4
≥ |Badx| ≥ |Γ

′
c(B)| ≥ Ac|B|,

and therefore,
|B|
N
≤ 1

4Ac
≤ δ.

But the algorithm only fails when the vertex v is picked from the set B, which has a
probability of |B|N . Observe that the running time of the new algorithm is poly(1/δ). This
limits the minimum error that can be attained by this technique. Therefore, we can get
any error δ = 1

poly(r) by choosing c appropriately, with only r bits of randomness.

1.4 Error correcting codes

The next application comes from error correcting codes. Suppose a sender A is sending a
k-bit message to receiver B over a faulty channel, which could flip up to a fraction p of
the bits sent over it. The message is encoded by A into an n-bit codeword in C ⊂ {0, 1}n,
where the size of the C is 2k (there is a unique codeword for each message). The decoding
is simple: given an n-bit vector, find the closest codeword w ∈ C, and return the k-bit
message that maps to w. The rate R of the code is defined to be

R =
log |C|
n

=
k

n
.

Clearly, if the Hamming distance between every two codewords is strictly greater than
2pn, then the message can be decoded without error (there is a unique closest codeword
w ∈ C for each n-bit string.) Define the distance δ of a codebook to be

δ = min
c1 6=c2∈C

dH(c1, c2)
n

,

where dH , the Hamming distance, is the number of bit positions in which the vectors differ.
The communication problem is the following:

Is it possible to define a family of codes, {Ck}∞k=1, such that |Ck| = 2k, and for each k,
δk > 0, and Rk > 0?

We will show that codes with good distance can be constructed from expanders which
have very good expansion (more precisely, when the expansion factor is greater than half
the degree). The first such construction of expander based codes was given by Tanner [Tan].
Suppose we have an (αN,K) d-regular expander G, where K > d/2. Consider a bipartite
graph with L = n, with the vertices in L the components of a (n-bit) codeword. Each
vertex in R represents a constraint, which are of the form ⊕xv = 0, where xv is the vth
component of the (n-bit) codeword x. Thus if vertex j ∈ R has neighbors, say i1, i2, i3 ∈ L,
then vertex j represents the constraint xi1 ⊕ xi2 ⊕ xi3 = 0. (Thus, the larger the number of
constraints, the smaller the size of the code, and vice versa.)

Note that a code which is the set of Boolean vectors satisfying constraints of the form
⊕xv = 0 is a linear code, since (0, . . . , 0) belongs to the code, and if c1 and c2 belong to the
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code, then so does c1 ⊕ c2. It can easily be checked (using the above definition) that the
distance of a linear code is the weight of the minimum weight (non-zero) codeword.

Now, since G has an expansion of K > d/2, for every subset S of L of size less equal
αN , there is a v ∈ Γ(S) such that v is adjacent to a unique element of S. Suppose not;
then, every vertex in Γ(S) is connected to at least two vertices in S. Let E be the number
of edges between S and Γ(S), then

d|S| = |E| ≥ 2|Γ(S)|

⇒ |Γ(S)| ≤ d

2
|S|.

But this contradicts the K > d/2 expansion of G.
Now, this means that there cannot be a codeword with only αN ones in it, since then

we can choose S to be this subset of αN ones, and have a violated constraint. Therefore,
the minimum weight codeword has a weight strictly greater than αN , and thus δ ≥ α.

If there are n(1 − c) constraints, then the set of codewords simultaneously satisfying
these constraints is a linear subspace of {0, 1}n, with size |C| ≥ 2nc. Therefore, the rate of
such a code would be nc/n = c, which is a constant greater than zero.

Thus, the existence of a family of expanders, with an expansion of K > d/2, and
|R| = (1− c)|L| allows the construction of a family of codes {C}k, with rate and minimum
Hamming distance strictly greater than 0 for all k. We will return to the applications of
expanders to error-correcting codes in one of the later lectures.

1.5 Metric embeddings

Another use of expanders occurs in metric embeddings. LetM on (X,D) (i.e., a metric onX
with distance measure D) and M

′
on (X

′
, D
′
) be two metrics. An embedding f : M →M

′

has distortion c if

∀x, y ∈ X, D(x, y) ≤ D′(f(x), f(y)) ≤ cD(x, y).

Bourgain showed that any n-point metric space can be embedded into l2-metric 1 with
distortion O(log n) and dimension at most O(log n) [Bou].

Embeddings are used in several contexts. For instance, it might be the case that a
problem (say the Travelling Salesman Problem) is hard in an arbitrary metric, but is slightly
more tractable in a well-understood metric such as l2. In this case, it is plausible that
embedding the arbitrary metric into l2, solving the problem in l2 and retransforming the
problem back to the original metric gives some insight into the solution of the problem in
the “hard” metric.

The following is another application of metric embeddings into l2. Suppose we are given
a graph G = (V,E) with weights (or distances) on edges, and the distance between an
arbitrary pair of nodes i and j is the shortest path distance between i and j on G. We want
to be able to quickly answer (approximately) a query of the form ‘what is the shortest path
distance between vertices i and j in G’, where i and j are arbitrary. To answer this question

1l2 is Rn equipped with the usual Euclidean metric.
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exactly, the storage required is O(n2) (store all the shortest path distances). However, the
l2 embedding allows us to simply compute the l2 distance between the queried vertices in
the l2 embedding, which is a O(log n) approximation to the actual shortest path distance
between the same vertices in G. The storage required for the l2 embedding is O(n log n);
since the l2 embedding is into a O(log n) dimensional space (which is, of course, better than
the O(n2) storage for the exact solution).

Expanders happen to be some of the worst case examples for embedding. In this sense,
expanders are sometimes used to show the limits of embedding. For instance, London, Linial
and Rabinovich showed that this is actually tight, by constructing expanders for which the
distortion is Ω(log n) [LLR].
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Chapter 2

Eigenvalues and Expanders

Lecturer: Cynthia Dwork
Scribe: Geir Helleloid

April 11, 2005

2.1 Lecture Outline

1. A non-constructive proof that expanders exist.

Our method of proof will be to pick a random graph and show that it is an expander
with some non-zero probability. There do exist constructive proofs, but we won’t see
any today. Given this proof, in order to find an expander in practice, we might want
to generate a graph at random and test to see if it is an expander – but testing is
co-NP hard.

2. Explore the connection between expanders and the spectrum of the graph (that is,
the set of eigenvalues of the graph).

There is a connection between the expansion of a graph and the eigengap (or spectral
gap) of the normalized adjacency matrix (that is, the gap between the first and second
largest eigenvalues). Recall that the largest eigenvalue of the normalized adjacency
matrix is 1; denote it by λ1 and denote the second largest eigenvalue by λ2. We will
see that a large gap (that is, small λ2) implies good expansion and vice versa.

(a) Large spectral gap implies good expansion.

(b) Expander Mixing Lemma
Heuristically, this says that “an expander graph will behave like a random graph.”
Let S and T be disjoint subsets of a vertex set V . If G is a random d-regular
(multi)graph on V , then the expected number of S-T edges (that is, edges with
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one endpoint in S and one endpoint in T ) is d|S||T |/N . The lemma says that in
an expander on V , the number of S-T edges will be d|S||T |/N + λ2(error term).

3. Alon’s proof ([Alo], 1986) that good expansion implies a large spectral gap.

This can be viewed as a discrete analogue of a result of Cheeger. Though vertex
expansion and spectral gap are very closely related, vertex expansion does not seem to
be the combinatorial equivalent of spectral expansion. This is because, the connection
between vertex expansion and spectral expansion does not seem to be tight. Bitu and
Linial ([BL], 2004), via their (partial) converse to the expander mixing lemma, give
what might be the combinatorial equivalent notion (at least in the case of constant
degree graphs) of the second eigen value.

4. The relationship between d and λ2.

(Several of the proofs given in this Section are from Lectures 8 and 9 of Salil Vadhan’s
notes on Pseudo-randomness [Vad]).

2.2 Existence of Expanders

The best probabilistic result on the existence of expanders is:

Theorem 3. Fix d ≥ 3. A random d-regular graph is a (Ω(N), d − 1.01)-expander with
high probability (as N →∞, the probability goes to 1).

We will not prove this result. Instead we will show the existence of bipartite expanders.
Let Gd,N denote the set of bipartite graphs with partite sets L and R of cardinality N and
left degree d.

Theorem 4. For all d, there exists α(d) > 0 such that for all N ,

Pr[G is an (αN, d− 2)-expander] ≥ 1/2,

where G is chosen uniformly at random from Gd,N . (In fact, we can take α(d) = 1/(cd4)
for some constant c.)

Proof. To choose G in Gd,N uniformly at random, we choose d (not necessarily distinct)
neighbors for each vertex L at random. For k ≤ αN , let

pk = Pr[∃ S ⊆ L such that |S| = k, |Γ(S)| < (d− 2)|S|].

Thus pk is the probability that G is not a (αN, d− 2)-expander because the neighborhood
of a set of size k is not large enough. To prove the theorem, it suffices (by the union bound)
to show that

∑
k pk ≤ 1/2.

If S ⊆ L has cardinality k, then the total number of neighbors of vertices in S, counted
with multiplicity, is dk. So if |Γ(S)| < (d − 2)k, then there must be 2k repeats among the
neighbors of vertices in S. We can compute this probability:

Pr[at least 2k repeats among the kd neighbors of vertices in S] ≤
(
kd

2k

)(
kd

N

)2k

.
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Here, the binomial coefficient represents the number of ways to choose 2k neighbors to be
repeats, and the fraction kd/N represents an upper bound on the probability that any given
choice of a neighbor is a repeat. That this is an upper bound follows from the union bound.
Since there are

(
N
k

)
possibilities for S, we have

pk ≤
(
N

k

)(
kd

2k

)(
kd

N

)2k

≤
(
Ne

k

)k (kde
2k

)2k (kd
N

)2k

=
(
cd4k

N

)k
,

where c = e3/4. When α = 1/(cd4) and k ≤ αN , we see that pk ≤ 4−k. Then

Pr[G is not an (αN, d− 2)-expander] ≤
αN∑
k=1

pk ≤
αN∑
k=1

4−k < 1/2.

This completes the proof.

2.3 Exploring the spectral connection

Let G be a d-regular multigraph with normed adjacency matrix A. The largest eigenvalue
of A is λ1 = 1 with eigenvector u = (1/N, . . . , 1/N). Then the second largest eigenvalue is
given by

λ2 = max
‖x‖=1,x⊥u

‖Ax‖.

If π is a probability distribution on the vertices of G (represented as a vector), we can
write π = u+ π⊥, where π⊥ ⊥ u. View A as the transition matrix for a Markov chain and
use the initial distribution π. Then

Aπ − u = A(u+ π⊥)− u = Au− u+Aπ⊥ = Aπ⊥.

Thus
‖Aπ − u‖2 = ‖Aπ⊥‖2 ≤ λ2

2‖π⊥‖2 = λ2
2‖π − u‖2.

Definition 5. G has spectral expansion λ if λ2(G) ≤ λ.

So if G has spectral expansion λ, at each step of the Markov chain, distance to uniformity
shrinks by at least λ. Note that the term spectral expansion suggests that large λ is good
for expansion, but the opposite is true.

Definition 6. Given a probability distribution π, the collision probability of π is Coll(π) =
‖π‖2 =

∑
x π

2
x.

Lemma 7. Coll(π) = ‖π − u‖2 + 1/N .
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Proof. Write π = u+ π⊥. Then

‖π‖2 = ‖u‖2 + ‖π⊥‖2 = 1/N + ‖π − u‖2.

Note that Aπ is also a probability distribution and using the lemma, we can compute
the associated collision probability:

Coll(Aπ)− 1/N = ‖Aπ − u‖2 ≤ λ2‖π − u‖2 = λ2(Coll(π)− 1/N).

Given a probability distribution π, let the support of π be support(π) = {x : πx 6= 0}.

Lemma 8. Let π be a probability distribution. Then Coll(π) ≥ 1/|support(π)|.

Proof. Let m = |support(π)|. We claim that if x1 + · · · + xm = x, then x2
1 + · · · + x2

m is
minimized (with value x/m) when x1 = · · · = xm = x/m. This easily follows from the fact
that x2 + y2 ≥ ((x+ y)/2)2 + ((x+ y)/2)2. Thus Coll(π) ≥ 1/m and we are done.

Theorem 9. If G has spectral expansion λ, then for all α > 1, G has vertex expansion(
αN, 1

(1−α)λ2+α

)
.

Proof. Let |S| ≤ αN . Choose π a probability distribution that is uniform on S and 0 on
the complement of S. Then

Coll(π) = 1/|S| and Coll(Aπ) ≥ 1/|support(Aπ)| = 1/|Γ(S)|.

Then
1/|Γ(S)| − 1/N ≤ λ2(1/|S| − 1/N).

But N ≥ |S|/α, so solving the above inequality gives

|Γ(S)| ≥ |S|
(1− α)λ2 + α

.

Thus G is an (αN, 1/((1− α)λ2 + α))-expander.

Now we turn to a theorem on the spectral expansion of random graphs.

Theorem 10 (Alon’s Conjecture, Friedman ([Fri], 2003)). For any d and any constant ε >
0, a random d-regular graph has spectral expansion at most 2

√
d− 1/d+ ε with probability

1− 1/NΩ(d).

This theorem says that with high probability, the spectral expansion of a random d-
regular graph is approximately bounded by 2/

√
d. The previous theorem implies that such

a graph has expansion at least d/4. In fact, there do exist graphs with λ2 ≤ 2/
√
d and

expansion greater than d/2.
There is a theorem of Alon and Boppana that gives a lower bound for spectral expansion,

showing that Alon’s Conjecture is essentially sharp.

Theorem 11 (Alon-Boppana (stated in [Alo])). Any infinite family of d-regular graphs has
spectral expansion (as N →∞) at least 2

√
d− 1/d− o(1).
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2.3.1 Expander Mixing Lemma

Heuristically, the following lemma, due to Alon and Chung [AC], says that an expander
graph behaves like a random graph.

Theorem 12 (Expander Mixing Lemma, [AC] 1988). For any subsets S and T of V (G), let
e(S, T ) denote the set of S − T edges in G (edges with one endpoint in S and one endpoint
in T ). Let G be d-regular with λ2 = λ. Then

|#e(S, T )− d|S||T |/N | ≤ λd
√
|S||T |.

Proof. Let χS and χT be the characteristic vectors of S and T respectively. First note that

#e(S, T ) =
∑

u∈S,v∈T
(dA)uv =

∑
u,v

χS(u)(dA)uvχT (v) = χtS(dA)χT .

Write χS in terms of something parallel to u and χ⊥S . Then the coefficient of u is the
projection

χS · u
‖u‖2

=
(1/N)

∑
i χS(i)

(1/N)
= |S|.

So
χS = |S|u+ χ⊥S and χT = |T |u+ χ⊥T .

(The intuition should be that the term |S|u “spreads the weight evenly” and χ⊥S is an error
term.)

Now:

#e(S, T ) = (|S|u+ χ⊥S )t(dA)(|T |u+ χ⊥T )
= d|S||T |(u · u) + d|S|utAχ⊥T + d|T |(χ⊥S )tAu+ d(χ⊥S )tAχ⊥T

Since χ⊥T · u = 0, we see that utAχ⊥T = 0, and similarly χ⊥SAu = 0. Then

#e(S, T ) = d|S||T |/N + d(χ⊥S )tAχ⊥T
≤ d|S||T |/N + ‖χ⊥S ‖‖Aχ⊥T ‖
≤ d|S||T |/N + dλ‖χS‖‖χT ‖
= d|S||T |/N + dλ

√
|S||T |.

From the first line, it is evident that #e(S, T ) ≥ d|S||T |/N . Thus

|#e(S, T )− d|S||T |/N | ≤ dλ
√
|S||T |.

There is a partial converse to this theorem.

Theorem 13 (Bilu-Linial, ([BL], 2004)). Let G be a d-regular graph and fix θ. If for all
S, T ⊂ V , the inequality

|#e(S, T )− d|S||T |/N | ≤ θd
√
|S||T |

holds, then G has spectral expansion λ = O(θ(1 + log (d/θ))).

In particular, this means that for a d-regular graph, λ is essentially (up to log d factor),
the best constant that can occur in the expander mixing lemma.
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2.4 Vertex Expansion Implies Spectral Expansion

The following theorem (due to Alon) is a discrete version of Cheeger’s result. We first
prove for the special case when the normalized adjacency matrix A has only non-negative
eigenvalues.

Theorem 14 (Alon, ([Alo], 1986)). Let G be a d-regular (N/2, 1 + α)-expander and let
λ2(G) be the second largest eigenvalue of the normalized adjacency matrix A(G) of G in
absolute value. If the matrix A = A(G) has all non-negative eigen-values, then G is a
λ-spectral expander for λ = 1− α2/(d(8 + 4α2)).

Proof. Let x be an eigenvector with eigenvalue λ2(A). Since x ⊥ u, the vector x has both
positive and negative entries. Let V+ = {i : xi > 0} and V− = {i : xi ≤ 0}. Without loss
of generality |V+| ≤ N/2. Let x be the vector that agrees with x on V+ and is 0 elsewhere.

Note that 〈x, x〉 = 〈x, x〉, so it can be shown that

λ2(A) =
λs 〈x, x〉
〈x, x〉

=
λ2 〈x, x〉
〈x, x〉

=
〈Ax, x〉
〈x, x〉

.

Also,

λ2(A) 〈x, x〉 = 〈Ax, x〉
=

∑
i,j

Aijxjxi

= ‖x‖2 − 1
d

d‖x‖2 − ∑
i∈V+,{i,j}∈E

xixj


= ‖x‖2 − 1

d

d‖x‖2 − 2
∑

i,j∈V+,{i,j}∈E

xixj −
∑

i∈V+,j∈V−,{i,j}∈E

xixj


≤ ‖x‖2 − 1

d

d‖x‖2 − 2
∑
{i,j}∈E

xixj


= ‖x‖2 − 1

d

∑
{i,j}∈E

(xi − xj)2

λ2 ≤ 1−
∑
{i,j}∈E (xi − xj)2

d
∑

i∈V x
2
i

. (2.1)

Build a new (directed) graph H as follows. Let

V (H) = {s} ∪ {vi : i ∈ V+} ∪ {wj : j ∈ V } ∪ {t}.

For all i ∈ V+, put the arcs (s, vi) in H with capacity 1 + α. For each i ∈ V+ and j ∈ V
where j is a neighbor of i in G, put the arcs (vi, wj) in H with capacity 1. Finally, for each
j ∈ V , put the arcs (wj , t) in H with capacity 1.
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We claim that the minimum cut in this graph is (1+α)|V+|. A cut of this size is given by
the set of arcs {(s, vi) : i ∈ V+}. Given any other cut C, let W = {i ∈ V+ : (s, vi) /∈ C}.
For each j ∈ N(W ), there must be an arc in C adjacent to wj . But |N(W )| ≥ (1 + α)|W |,
so the capacity of C must be at least (1 + α)|V+ − W | + |N(W )| ≥ (1 + α)|V+| (since
|W | ≤ N/2). So the minimum cut has capacity (1 + α)|V+|.

By the min-cut max-flow theorem, there exists a flow on H of size (1 + α)|V+|. In
particular, note that the flow through each vertex vi must be 1 + α. Reading off the flow
along arcs (vi, wj), it follows that there is a function F : V ×V → R satisfying the following
conditions (here Ẽ denotes the set of ordered pairs (i, j) where {i, j} ∈ E, so that each edge
in E is counted twice in Ẽ):

1. 0 ≤ F (i, j) ≤ 1 for all i, j ∈ V .

2. F (i, j) = 0 if i /∈ V+ or (i, j) /∈ Ẽ.

3.
∑

j : (i,j)∈Ẽ F (i, j) = 1 + α for each i ∈ V+.

4.
∑

i : (i,j)∈Ẽ F (i, j) ≤ 1 for each j ∈ V .

We need to calculate two bounds involving F in order to bound λ2(G). Keeping in mind
that 2(a2 + b2) ≥ (a+ b)2 for all real a and b, we find:∑

(i,j)∈Ẽ

F 2(i, j)(xi + xj)2 ≤ 2
∑

(i,j)∈Ẽ

F 2(i, j)(x2
i + x2

j )

= 2
∑
i∈V

x2
i

 ∑
(i,j)∈Ẽ

F 2(i, j) +
∑

(i,j)∈Ẽ

F 2(j, i)


≤ (4 + 2α2)

∑
i∈V

x2
i .

∑
(i,j)∈Ẽ

F (i, j)(x2
i − x2

j ) =
∑
i∈V

x2
i

 ∑
(i,j)∈Ẽ

F (i, j)−
∑

(i,j)∈Ẽ

F (j, i)


≥ α

∑
i∈V

x2
i

Note that in the third line, we used the fact that if x1 + · · · + xn = 1 + α and 0 ≤ xi ≤ 1
for all i, then x2

1 + · · ·+ x2
n ≤ 1 + α2. Multiplying equation (2.1) by

1 =

∑
(i,j)∈Ẽ F

2(i, j)(xi + xj)2∑
(i,j)∈Ẽ F

2(i, j)(xi + xj)2
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and using Cauchy-Schwarz, we get

λ2(G2) ≤ 1−
∑
{i,j}∈E (xi − xj)2

d
∑

i∈V x
2
i

= 1−
∑
{i,j}∈E (xi − xj)2 ·

∑
(i,j)∈Ẽ F

2(i, j)(xi + xj)2

d
∑

i∈V x
2
i ·
∑

(i,j)∈Ẽ F
2(i, j)(xi + xj)2

≤ 1−

(∑
(i,j)∈Ẽ F (i, j)(x2

i − x2
j )
)2

2d(4 + 2α2)
(∑

i∈V x
2
i

)2
≤ 1− α2

d(8 + 4α2)
.

This completes the proof.

We now move to the general case, when the eigen-values of A(G) need not all be non-
negative.

Corollary 15. If G is a d-regular (N/2, 1+α)-expander, then G is also a λ-spectral expander
for λ =

√
1− α2/(d2(8 + 4α2)).

Proof. Consider the graph G2. If the normalized adjacency matrix of G is A, then the
normalized adjacency matrix of G2 is A2. Also G2 is d2-regular and has all non-negative
eigenvalues. Finally, G2 is a (N/2, 1 + α)-expander, as follows: If S is a subset of the
vertices of size at most N/2, then |N(S)| ≥ (1 + α)|S|. Choose a subset S′ of N(S) with
|S| ≤ |S′| ≤ N/2. Then |N(N(S))| ≥ |N(S′)| ≥ (1 + α)|S′| ≥ (1 + α)|S|. But N(N(S)) is
the neighborhood of S in G2, and S was an arbitrary subset of vertices of size at most N/2,
so G2 is a (N/2, 1 + α)-expander.

By Theorem 14, λ2(G2) ≤ 1 − α2/(d2(8 + 4α2)). Since the eigenvalues of G2 are the
squares of the eigenvalues of G, taking the square root of the right-hand side proves the
corollary.
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Chapter 3

Random Walks

Lecturer: Prahladh Harsha
Scribe: David Arthur

April 18, 2005

3.1 Introduction

Consider an undirected graph G. A random walk of length l starting at the vertex u is a
sequence of vertices u = v0, v1, v2, · · · , vl, where each vi is chosen to be a random neighbor
of vi−1 for all i > 0. One considers the distribution of vi for i ≤ l.

Intuitively, a random walk can be thought of as choosing a globally random vertex on a
graph using only local choices. This is something that people actually do in practice. For
example, one might shuffle a deck of cards by repeatedly moving the top card to a random
position in the deck. We can model all orderings of the deck as the vertices of a graph with
edges corresponding to the operation described above. This process of repeatedly moving
the top card can then be thought of as a random walk that provides a more convenient way
of shuffling a deck than explicitly choosing 1 of 52! possible orderings.

Traditionally, random walks were considered on infinite graphs, and the following result
is typical of what was studied.

Theorem 16 (Polya, 1921). Consider a random walk on an infinite D-dimensional grid.
If D = 2, then with probability 1, the walk returns to the starting point an infinite number
of times. If D > 2, then with probability 1, the walk returns to the starting point only a
finite number of times.

For the purpose of this lecture, we will consider random walks on finite undirected graphs
and even more specifically, d-regular undirected graphs. Refer [Lov] for an excellent survey
on Random Walks on Graphs.
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Several questions will motivate this lecture. Let π0 = π be the starting distribution
on the graph G (mostly, we will consider cases when π is concentrated on a single vertex).
Let πi denote the probability distribution of vi for a random walk beginning at the starting
distribution π0. Since we are interested in the ability of random walks to generate a globally
random vertex, it is natural to consider πi as i gets large.

Question 17. For which π0, does πi converge to some stationary distribution as i ap-
proaches infinity? What is the stationary distribution that it converge to?

If we let A = A(G) denote the normalized adjacency matrix of G, then it is easy to
check that πi+1 = Aπi for all i. Thus, a given distribution x is a stationary distribution
for some starting distribution π0 only if x = Ax. This is equivalent to stating x is an
eigenvector of A with corresponding eigenvalue 1. As noted in previously lectures, the
uniform distribution u = ( 1

n ,
1
n , . . . ,

1
n) has this property, but there could be other possible

stationary distributions as well. If the graph is disconnected, then there exist multiple
(independent) eigenvectors with eigenvalue 1. In fact, one can show the following.

Lemma 18. The multiplicity of the largest eigenvalue (i.e.,. 1) in A(G) is equal to the
number of connected components in G.

In particular, if G is connected, the only possible stationary distribution is u. Thus, the
stationary distribution (if it exists) is independent of the starting distribution π0. This
largely answers the second part of Question 1.

Before answering the first part of Question 1, we consider a related question.

Question 19. If πi converges to a stationary distribution, how fast does it converge?

We can also recast this in terms of mixing time, described below.

Definition 20 (Mixing Time). The “mixing time” of a graph G with n vertices is the
minimum l such that for all starting distributions π

‖Alπ − u‖∞ <
1

2n
. (3.1)

We will define the ‖·‖∞-norm shortly.
The 1

2π is largely arbitrary, but this value will prove convenient. If we take the mixing time
to be infinity for graphs where no l satisfies (3.1), answering our remaining questions is
equivalent to understanding mixing time.

Finally, we present two concepts related to mixing time, which are interesting in their
own right.

Definition 21. (Hitting Time) For a graph G, let H(u, v) denote the expected number of
steps a random walk beginning at u must take before reaching v. Define the “hitting time”
of G by H(G) = maxu,vH(u, v).

Definition 22. (Cover Time) For a graph G, let Cu denote the expected number of steps
a random walk beginning at u must take before reaching every other vertex at least once.
Define the “cover time” of G by C(G) = maxuCu.

It easily follows from the definitions that H(G) ≤ C(G) ≤ n·H(G). The latter inequality
can be tightened (using the coupon-collectors’ problem) to show that C(G) ≤ O(log n) ·
H(G).
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3.2 Bounding the Mixing Time

As discussed above, the distribution of random walks on disconnected graphs need never
converge to u. Bipartite graphs are similarly problematic. Specifically, if a random walk
begins at a vertex in one part, it will always be in that part after an even number of steps,
and it will always be in the other part after an odd number of steps. Thus, πl can never
converge to u on a bipartite graph.

As with Lemma 18, we can characterize this failure case in terms of eigenvalues of A.

Lemma 23. G is bipartite iff -1 is an eigenvalue of A(G).

For example, if G is bipartite, consider the vector v with a value of 1 at all vertices in one
part and a value of -1 at all other vertices. One can check this is an eigenvector of A(G)
with eigenvalue -1.

Now, fix a graph G with n vertices and consider the eigenvalues λ1, λ2, · · · , λn of A(G).
Without loss of generality we may assume λ1 = 1 and |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Furthermore,
let λ = |λ2|. By Lemmas 18 and 23, we know λ = 1 iff G is either bipartite or disconnected.
Therefore, G has infinite mixing time if λ = 1. We now show that conversely, if λ < 1 then
G has finite mixing time.

Theorem 24. If G is a connected, d-regular, non-bipartite graph on n vertices, then λ < 1
and G has mixing time O

(
logn
1−λ

)
.

We review the l1, l2 and l∞ norms before proceeding with the proof.

Definition 25. If v = (v1, v2, · · · , vm) is an arbitrary vector, define

‖v‖∞ = max
i
|vi|,

‖v‖ = ‖v‖2 =
√∑

i

v2
i , and

‖v‖1 =
∑
i

|vi|.

Fact 26. ‖v‖∞ ≤ ‖v‖ ≤ ‖v‖1 ≤
√
n ‖v‖.

The first two inequalities here can easily be verified and the third follows from the Cauchy-
Schwarz inequality. Furthermore, these are all norms, which implies that they satisfy the
triangle inequality.
Proof of Theorem 24: Note that A(G) is a real, symmetric matrix, which implies that
it has n orthonormal eigenvectors u = v1, v2, · · · , vn. Let π denote any (starting) probability
distribution on the vertices of G. Then, we can decompose π uniquely as

∑n
i=1 πi where πi

is a constant multiple of vi. Furthermore, as discussed in the previous lecture, the fact that
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π is a probability distribution guarantees π1 = u. Now,

‖Aπ − u‖2 = ‖Au+Aπ2 +Aπ3 + · · ·+Aπn − u‖2

= ‖λ2π2 + λ3π3 + · · ·+ λnπn‖2 since Au = u

= λ2
2‖π2‖2 + λ2

3‖π3‖2 + · · ·+ λ2
n‖πn‖2 by the Pythagorean theorem

≤ λ2
(
‖π2‖2 + ‖π3‖2 + . . .+ ‖πn‖2

)
= λ2‖π2 + π3 + · · ·+ πn‖2 again by the Pythagorean theorem
= λ2‖π − u‖2.

Thus, each step of the random walk decreases the l2-distance of the distribution on the
vertices to the uniform distance by a factor of at least λ. Therefore, ‖Alπ−u‖ ≤ λl‖π−u‖
for all l ≥ 0. It follows that

‖Alπ − u‖∞ ≤ ‖Alπ − u‖
≤ λl‖π − u‖
< λl‖π‖ since π − u and u are orthogonal
≤ λl‖π‖1
= λl.

It follows that ‖Alπ−u‖∞ < 1
2n when l = O

(
logn

log 1
λ

)
≈ O

(
logn
1−λ

)
. To see this last step, note

that log(1 + x) = 1− 1
1+x +O

(
1

(1+x)2

)
by taking the Taylor expansion of both sides.

3.2.1 Bounding the Spectral Gap 1− λ

Since Theorem 24 depends so heavily on 1−λ, it is natural to try to bound this quantity for
various graphs G. We have already seen that 1−λ = Ω(1) for expanders. We now consider
its value for other graphs.

Theorem 27. If G is a connected, d-regular, non-bipartite graph on n vertices, then 1−λ ≥
1
dn2 .

We will prove the result this theorem only for the case where G has only non-negative
eigenvalues.

Proof. As discussed in the previous lecture, we can obtain the following characterization of
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the spectral gap.

λ = max
x⊥u,‖x‖=1

〈Ax, x〉 since G has only non-negative eigen values

= max
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

2xuxv

= max
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(
x2
u + x2

v − (xu − xv)2
)

= max
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(x2
u + x2

v − (xu − xv)2

= max
x⊥u,‖x‖=1

1
d

d · x2
u −

∑
(u,v)∈E

(xu − xv)2


Hence, the spectral gap 1− λ is given by

1− λ = min
x⊥u,‖x‖=1

1
d

∑
(u,v)∈E

(xu − xv)2.

Then there exists x with x ⊥ u and ‖x‖ = 1 so that 1 − λ = 1
d

∑
(u,v)∈E(xu − xv)2.

Since ‖x‖ = 1, there exists v′ for which |xv′ | ≥ 1√
n

. However, since x ⊥ u, we know∑
xv = 0, and hence there exists v′′ for which xv′ and xv′′ have different signs. It follows

that |xv′ − xv′′ | ≥ 1√
n

.
Now, G is connected so there exists some shortest path v0(= v′), v1, · · · , vk(= v′′) from

v′ to v′′. The triangle inequality now implies that

k−1∑
i=0

|xvi − xvi+1 | ≥ |xv0 − xvk | ≥
1√
n
.

Therefore,

1− λ =
1
d

∑
(u,v)∈E

(xu − xv)2

≥ 1
d

k−1∑
i=0

(xvi − xvi+1)2

≥ 1
dk

(
k−1∑
i=0

|xvi − xvi+1 |

)2

by Fact 26

≥ 1
dkn

≥ 1
dn2

.

As mentioned earlier, our proof only applies if G has no negative eigenvalues. In the general
case, one can apply similar analysis to G2 to bound 1− λ2. This gives us a weaker bound
1 − λ2 ≥ 1

d2n2 and hence 1 − λ ≥ 1
poly(n,d) . In fact the same bound of 1

dn2 can be obtained
for the general case using a tighter analysis.
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Note that Theorems 24 and 27 imply the mixing time of any d-regular, connected,
non-bipartite graph on n vertices is O(dn2 log n).

3.2.2 A Combinatorial Notion of Mixing

So far we have related the mixing time to the spectral gap 1− λ. There is a combinatorial
parameter of the graph that relates more directly to the mixing time. Suppose G is made up
of two cliques joined by just a few edges. This creates a bottleneck that should intuitively
limit the mixing time of G. To characterize this, one defines the following. For any set of
vertices S, let S denote V (G)−S, and let |E(S, S)| denote the number of edges between S
and S. Then, define

Φ(S) =
|E(S, S)|
|S|

, and

Φ(G) = min
S:|S|≤n

2

Φ(S).

Φ(G) is called the edge-expansion of the graph G. Φ(G) has a direct relation to the mixing
time. The edge expansion Φ(G) is related to the spectral gap as follows:

Theorem 28. Let G be a d-regular graph. Then,

d(1− λ)
2

≤ Φ(G) ≤ d
√

2(1− λ).

3.3 Applications

3.3.1 Undirected s-t Connectivity

Let G be a d-regular, connected, non-bipartite graph with n vertices and mixing time l.
Consider a random walk beginning at some vertex s. Then for any vertex t and any integer
l′ ≥ l, we know that

Prob
[
Random walk is at vertex t after l′ steps

]
=
(
Al
′
π
)
t
≥ 1
n
− 1

2n
=

1
2n
.

Therefore, a random walk of length 2nl′ will reach t with constant probability. We know
that the mixing time for a d-regular connected bipartite graph is O(dn2 log n). This suggests
an algorithm for s-t connectivity. Take a random walk of length Θ(dn3 log n) starting at s.
If the walk reaches t, then s and t are connected. Otherwise, s and t are disconnected with
high probability. Note this runs in polynomial time and uses only log n space to track the
current vertex.

Now, as stated, our argument relies on G being d-regular, connected and and non-
bipartite to find a path from s to t. We can remove these assumptions as follows.

1. (Connected) Restrict to the connected component of G containing s.

2. (Bipartite) Add a self loop at each vertex. This does not affect whether s and t are
connected and it causes the graph to be no longer bipartite.
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3. (Regular) Each vertex of degree D > 3 can be replaced by D vertices of degree 3 in
a cycle to make the graph 3-regular. Also, non-regular graphs do in fact mix already
and the same algorithm works. We have not shown this, however.

We summarize all this as follows.

Theorem 29 (Undirected Connectivity is in RL, [AKLLR]). There is a polynomial time,
log space Monte Carlo algorithm for s-t connectivity in undirected graphs.

Recently, Reingold obtained a deterministic algorithm for undirected s-t connectivity (also
using expanders)[Rei]. We will cover it in future lectures.

3.3.2 Hitting Time and Cover Time

As in the previous section, let l be the mixing time of a graph G on n vertices. Consider a
random walk beginning at an arbitrary vertex s. Then, recall that for l′ ≥ l, it is true for
any t that

Prob
[
Random walk is at vertex t after l′ steps

]
≥ 1

2n
.

It follows that the expected time for a random walk to reach t is at most 2n · l, so the
hitting time of G is at most 2n · l, which is polynomial in n. Similarly, after 2n2 · l steps,
the walk will have reached each vertex with high probability. Thus, the cover time of G is
also polynomial in n.

Tighter results are known for both the hitting time and cover time, as summarized in
the following theorems.

Theorem 30. Let G be an arbitrary undirected graph on n vertices. Then,

1. [BW] H(G) ≤ 4
27n

3 − 1
9n

2 +O(n), and

2. [Fei1] C(G) ≤
(

4
27 + o(1)

)
n3.

Theorem 31 ([Fei2]). Let G be a d-regular undirected graph on n vertices. Then, C(G) ≤
2n2.

The bound given in Theorem 31 is also known to be tight.

3.3.3 Universal Traversal Sequences

Universal traversal sequences (UTS) were originally defined by Cook, and later suggested
by [AKLLR] as a possible means to derandomize Theorem 29.

Consider a sequence S ∈ {1, 2, · · · , d}l(n) for some function l. Now, consider a d-regular
undirected graph G where all the edges adjacent to each vertex have been labeled with
distinct integers from 1 to d. These labellings need not be consistent in the sense that
one edge might have two different labels assigned to it by two different vertices. For each
vertex s, we can now use S to define a walk on G starting at s. Specifically, if we are at
vertex v after i steps, we go to vertex v′ where vv′ is the edge labeled Si by v. We say
S is a “universal traversal sequence” if this walk traverses every vertex of the graph for
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every possible beginning vertex on every labeling of every n vertex d-regular graph. We are
interested in constructing UTS of short length (i.e., l(n) = poly(n)).

It is not obvious how to construct a UTS or even whether one exists. However, a
sufficiently lengthy random string will be a UTS with high probability.

Theorem 32. Suppose every d-regular, n vertex graph has cover time at most C (note
C ≤ 2n2 by Theorem 31). Then, there exists a UTS for d-regular, n vertex graphs of length
at most 4ndC log n.

Proof. Choose S uniformly at random from {1, 2, · · · , d}4ndC logn.
Let G be a random labeled d-regular graph on n vertices and u be a random starting

vertex in G. The expected time for the random walk S to cover every vertex of G is at
most C, so by Markov’s inequality, a random walk will cover every vertex within 2C steps
with probability at least 1

2 . Since S can be decomposed into 2nd log n disjoint, and hence
independent, random sequences of length 2C, it follows that S will cover all the vertices of
G with probability at least 1− 1

22nd logn = 1− 1
n2nd . Hence,

Prob
G,u,S

[S covers all vertices of G starting at u] ≥ 1− 1
n2nd

.
Let N denote the number of ways of choosing a labeled d-regular graph G and a starting

vertex u. For each vertex and each label, we can choose an adjacent vertex, and we can
also choose one distinguished starting vertex. Thus, N ≤ n · nnd.

Now, the probability that there exists one configuration (i.e., a labeled graph G and a
starting vertex u) where S does not cover every vertex is at most N · 1

n2nd ≤ n
nnd

= o(1).
Thus, with high probability, S is a UTS. The result follows.

To use a UTS to derandomize Theorem 29, this result is insufficient. For that purpose,
we would need to construct a UTS deterministically using logarithmic space. In general,
such a construction has not been found. However, we know how to construct UTS if we
relax either the restriction that the length of the UTS must be polynomial or the restriction
that the UTS holds good for all d-regular graphs on n vertices. The following is a flavor of
such results under such relaxations.

Theorem 33. • [Ist] A UTS (of polynomial length) can be constructed deterministically
in O(log n) space for cycles.

• [HW] A UTS (of polynomial length) can be constructed deterministically in O(log n)
space for d-regular expanders which are “consistently labelled’1

3. [Rei] A UTS (of polynomial length) can be constructed deterministically in O(log n)
space for d-regular undirected graphs which are consistently labelled.

4. [Nis] A UTS, of length O(nlogn), can be constructed deterministically in O(log2 n)
space for general d-regular graphs with general labellings.

1A labeling is said to be be consistent if for any two edges e1 = (u1, v) and e2 = (u2, v) incident on the
same vertex v, it is the case that the label of e1 wrt u1 is different from that of e2 wrt u2.
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3.3.4 Random Walks on Expanders

Finally, we apply Theorem 24 to the case of expanders. We know the mixing time is O( logn
1−λ )

but λ is bounded by a constant for expanders. Thus, the mixing time on an expander is
just O(log n), which is the best possible (up to constant factors) since the diameter of an
expander is O(log n). It follows that expanders are rapidly mixing, which will allow for
some applications to derandomization in the next lecture.
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Chapter 4

Derandomization

Lecturer: Cynthia Dwork
Scribe: Adam Barth & Prahladh Harsha

April 25, 2005

In today’s (and the next) lecture(s), we will discuss applications of expanders in the
context of derandomization. The three applications we will consider are the following:

• Use of random walks on expanders as an error reduction technique for randomized
algorithms.

• a pseudo-random generator to fool space bounded machines.

• Derandomized linearity testing

We will discuss the first two applications in this lecture and postpone the linearity testing
to the next lecture.

4.1 RP error reduction

Consider an RP algorithm with constant error probability that uses r random bits. We
will improve the error probability to 2−k with r + O(k) random bits. Compare this with
(1) the brute force k-independent trials, which would require O(kr) random bits to achieve
the same error probability and (2) the technique due to Karp, Pippenger and Sipser [KPS]
(discussed in Lecture 1) which uses r random bits (i.e., no extra random bits) and achieves
an error probability of 1/poly(r). We will use random walks on expanders to reduce the
error of RP algorithms. Ajtai, Komlos and Szemeredi first used random walks on expanders
in the context of small-space derandomization [AKS]. The proof we present in lecture is
due to Impagliazzo and Zuckerman [IZ].
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The KPS technique, though great in terms of the number of extra random bits being
used is limited by the fact that the running time of the improved algorithm is at least
poly(1/δ) where δ is the (new reduced) error of the algorithm. Hence, we can reduce the
error to at most 1/poly. The technique, discussed today, will further reduce the error to
2−k at the cost of only O(k) extra random bits as opposed O(rk) random bits in the k
independent trails, while the algorithm still runs in (randomized) polynomial time.

As in KPS, we will use a d-regular expander with V = {0, 1}r, thus |V | = 2r and d is
a constant. As in KPS, we will assume that there exists an implicit construction of such
expanders in the following sense: given any vertex v and any index i in the range 1 . . . d
(where d is the degree of the expander), we can in time polynomial in |v| and |i|, compute
the ith-neighbor of v. The expanders constructions we will discuss later in the course will
satisfy such strong properties.

Recall that to find witnesses, KPS began at a random vertex and completely explored
all vertices within a ball of radius O(k). Here, we also start at a random vertex but instead
of exploring all vertices in a ball, we will walk randomly for k steps and run the original
RP algorithm along all vertices along this random walk. Thus the total randomness uses is
at most r + k log d since log d bits are required to choose a random neighbor.

Clearly, if the input is a NO instance, then this new algorithm will also reject. Our
concern is that there might exist YES instances, for which the random walk fails to arrive
at even one membership witness. The following theorem shows that this is highly unlikely.

Theorem 34 (Hitting Property of Expander Random Walks). Given a graph G = (V,E)
with spectral expansion λ and B ⊂ V , the probability a random walk of length k, starting
from a random vertex r0 ∈R V , starts and remains in B is ≤

(
µ2 + λ2

)k/2
, where µ =

|B|/|V | is the density of B.

For every RP language L and every x ∈ L, |Wx|/2r ≥ 3/4. For our application to
derandomization, we set B = V \Wx and obtain the required error-reduction for RP.

Proof. We wish to bound Prr0,...,rk
[
r0, . . . , rk ∈ B

]
, where ri is the ith vertex encountered

in the random walk on G.
Let A be the normalized adjacency matrix for G, where the vertices of G are ordered

such that the first |B| vertices are the elements of B. Fix P to be the projection matrix
onto B, that is

P =
(

I|B|×|B| 0|B|×|V \B|
0|V \B|×|B| 0|V \B|×|V \B|

)
.

In other words, Pi,j = 1 if i = j and i, j ∈ 1, . . . , |B| and is 0 otherwise. For any distribution
π on the set of vertices V , note that ‖Pπ‖1 is the probability that a vertex chosen according
to π is in the set B.

Fix u to be the uniform distribution on V . As mentioned above, ‖Pu‖1 is the probability
a uniformly randomly selected vertex lies in B, i.e. ‖Pu‖1 = µ. Similarly, ‖P (AP )u‖1 is the
probability r1 is also in B, i.e. the probability both r0, r1 ∈ B. By an inductive argument,
we seek to bound ‖P (AP )ku‖1. Observe ‖(PAP )ku‖1 = ‖P (AP )ku‖1, as P is idempotent.
It will be more convenient to work with ‖(PAP )ku‖1 than ‖P (AP )ku‖1. We now switch to
the L2 norm and will later return to the L1 norm.

32



We first show that a single application of PAP to any vector x reduces its L2-norm by
a factor of

√
µ2 + λ2.

Claim 35. ∀x ∈ Rn, ‖(PAP )x‖2 =
√
µ2 + λ2 · ‖x‖2.

Assuming this claim, we complete the proof of the theorem. Applying the claim k times,
we obtain

‖(PAP )kx‖2 ≤
(
µ2 + λ2

)k/2 · ‖x‖2.
We now return to the L1 norm.

‖(PAP )ku‖1 ≤
√
N‖(PAP )ku‖2 By Cauchy-Schwarz Inequality

≤
√
N
(
µ2 + λ2

)k/2 ‖u‖2
=

(
µ2 + λ2

)k/2
.

We now prove Claim 35.
Proof of Claim 35: The main intuition behind the proof is that A reduces the length
of component of the vector x that is orthogonal to u while P reduces the length of the
component of x along u. Together, they reduce the length of x.

Fix y = Px and split y = y‖ + y⊥, where y‖ is parallel to u and y⊥ is perpendicular to
u. By the triangle inequality and Ay‖ = y‖, ‖PAy‖2 ≤ ‖Py‖‖2 + ‖PAy⊥‖2. Because of the
second eigenvalue, ‖Ay⊥‖2 ≤ λ‖y⊥‖2 ≤ λ‖y‖2 ≤ λ‖x‖2 (since the length of y is at most
that of x, recall that y is the projection of x). Therefore,

‖PAy⊥‖2 ≤ ‖Ay⊥‖2 ≤ λ‖x‖2 (4.1)

As for the y‖ term,

y‖ =
(
y · u
‖u‖22

)
u, which implies y‖ =

(∑
i

yi

)
u.

By observing y = Px and so y has support |B| = µN .

‖y‖‖22 =
N∑
i=1

(
∑µN

i=1 yi)
2

N2

=
(
∑µN

i=1 yi)
2

N

≤
µN

(∑
i y

2
i

)
N

(By Cauchy-Schwarz inequality)

= µ‖y‖22
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On the other hand, since y‖ = (
∑

i yi)u, we have that (Py‖)j = (
∑

i yi)/N for j = 1, . . . , µN
and 0 otherwise. Hence,

‖Py‖‖22 =
µN∑
j=1

(
∑

i yi)
2

N2

= µN
(
∑

i yi)
2

N2

= µ‖y‖‖22

Combining the two we have, ‖Py‖‖22 ≤ µ‖y‖‖22 ≤ µ2‖y‖22 ≤ µ2‖x‖22. Combining equa-
tion (4.1) we have ‖(PAP )x‖22 ≤ (µ2 + λ2)‖x‖22. Hence, ‖(PAP )x‖2 ≤

√
µ2 + λ2‖x‖2

In this result about RP, we worry about not hitting a witness. For a similar result
about BPP, however, we need to show we encounter approximately the correct fraction of
appropriate witnesses. For random walks on the complete graph (i.e. independent trials),
Chernoff bounds tell us the witness fraction will be close to the appropriate ratio with
high probability. It is possible to obtain a similar Chernoff bound for random walks on
expanders, but we omit the details.

4.2 PRGs for Space Bounded Computation

The general idea of pseudo-random generators is to output a long string from a short,
truly random seed such that some restricted class of adversaries (typically time-bounded
adversaries) cannot distinguish (with greater than some probability) the long string from a
long string of truly random bits. We think of a generator as taking a seed of length s(n)
and producing a string of length f(n).

Definition 36. Let M be a randomized Turing machine using, on input w, f(|w|) random
bits. The family {gn}∞n=1 of functions gn : {0, 1}s(n) → {0, 1}f(n) is an ε-generator for M
if, for all w,∣∣∣∣ Pr

r∈{0,1}f(|w|)

[
M(w, r) accepts

]
− Pr
z∈{0,1}s(|w|)

[
M(w, g|w|(z)) accepts

]∣∣∣∣ ≤ ε
Typically, pseudo-random generators are constructed to fool time-bounded adversaries.

Here, we consider constructing a generator to fool (randomized) space-bounded adversaries
(specifically logspace machines).

4.2.1 Randomized Logspace TM

Before proceeding any further, we have to clarify a point regarding how the random bits
are accessed in a randomized space bounded computation (logspace in our case). There are
2 varying definitions of randomized space bounded TMs based on the manner the random
bits are accessed

• The TM obtains the random bits as and when required by it.
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• The string of random bits is fed as an auxiliary off-line input (on a separate tape) in
addition to the regular input to the TM. In this case, the head accessing the random
bits on this tape can move back and forth on the tape.

It is to be noted that in the case of randomized time bounded computation it is immaterial
which convention we observe. For randomized space bounded computation, we shall consider
only TMs of the first kind or equivalently consider TMs of the second kind in which the
head on the random tape is restricted in the sense that it can only move right along the tape
(i.e., the random tape is one-way read-only tape) Recall that a space S-bounded machine
is also effectively time-bounded, for some large time bound 2S .

4.2.2 Nisan’s Generator

In this lecture, we will construct a pseudo-random generator for space bounded machines
using expanders. The first such PRG construction was given by Nisan [Nis]. Nisan’s con-
struction used hash functions instead of expanders. In this lecture, we give the construction
due to Impagliazzo, Nisan and Wigderson [INW], that uses expanders.

Typically, we would like the generator to also run within the space-bound S. If this were
the case, we would be able to completely derandomize the randomized space S-bounded
machine. Unfortunately, we won’t be able to achieve something as strong as that. Instead,
we let the generator use more space (specifically S2 space) than the space S-bounded TM
it fools.

We will prove the following theorem in today’s lecture.

Theorem 37. There exists a n-space-bounded Turing machine G : {0, 1}O(log2m) → {0, 1}m
such that for all randomized S-space-bounded Turing machines M , G is a (1/2S)-generator
for M , where m = 2S and n = O(log2m).

4.2.3 Proof of Theorem 37

Before going into proving the existence of a PRG as mentioned in Theorem 37, we shall
first study the structure of the computation tableau of a randomized space S TM and find
how this structure can be exploited to reduce the randomness. The computation tableau
for a randomized space S TM is as shown in Figure 1, i.e., it is a very thin (width at most
S), but possibly very long (length can be as long as 2S) tableau.

In the original definition of the randomized TM, the computation requires at most 2S

random bits. We will break the tableau into several components (see Figure 4.2), each of
which require exactly R random bits. Thus, there are at most 2S/R such components. For
simplicity, we will assume that there are actually 2S components. R will be typically Θ(S)
for our purposes, but our proof will work even for larger R.

Consider the first two components A1 and A2 both of which require random strings
r1 and r2 respectively each of length R. If r1 and r2 are chosen independently, then by
definition the 2 components work to give the right results. We would like to choose r1 and
r2 in such a manner that their behavior is not significantly different from the case when
r1 and r2 are chosen independently. We would now use the fact that the computation
tableau is very thin (more specifically, at most S bits are communicated between the two
components A1 and A2) to let us choose r1 and r2 in a manner better than independently.
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S2

S

random
bits

Figure 4.1: The Computation Tableau of a space S TM

To put things more formally, we have 2 algorithms A1 and A2 such that

• A1 takes an input x1 of length r and outputs a string b1 of length c.

• A2 takes as input the output b1 of A1 and another string x2 of length r and outputs
a string b2 of length c (see Figure 4.3).

What we are in search of is a generator that supplies strings x1 and x2 in a fashion
better than choosing them independently. For notational brevity, given a function g, define
functions gl and gr such that gl(z) and gr(z) denote the left half and the right half of the
string g(z) (i.e., g(z) = gl(z) ◦ gr(z) and |gl(z)| = |gr(z)|)1. See Figure 4.4.

Definition 38. A function g (g : {0, 1}t → {0, 1}r×{0, 1}r) is defined to be a ε− generator
for communication c if for all functions A1 and A2 such that A1 : {0, 1}r → {0, 1}c and
A2 : {0, 1}c × {0, 1}r → {0, 1}c, we have that

∀b
∣∣∣∣ Prob
x1,x2∈{0,1}r

[A2(A1(x1), x2) = b]− Prob
z∈{0,1}t

[
A2(A1(gl(z)), gr(z)) = b

]∣∣∣∣ < ε

For notational convenience, we shall call a 2−2c−generator for communication c a c−generator.
For the present we shall assume the following lemma and present its proof later (in

Section 4.3).

Lemma 39. There exists a constant k > 0 such that for all r, c, there exists a polynomial
time and linear space computable c−generator g where g is such that g : {0, 1}r+kc →
{0, 1}r × {0, 1}r.

1◦ denotes the concatenation operator

36



���
����
����
��
���

�	�	�	�	�
	
	
	
	


�	�	�	�	��	�	�	�	�

				�	�	�	�	�

S

S

S

S

S

S

R

R

R

R

R

R

A

A

A

A

A

A

1

2

3

4

2   −1

2 S

S

Figure 4.2: Breaking the tableau into components each requiring R random bits

A1 ←−−−− x1yb1
A2 ←−−−− x2y
b2

Figure 4.3: A1, A2 with random inputs

Given such a c-generator, we can generate pseudo-random strings for every pair of
successive components (A2i−1 and A2i), such that their behavior is almost similar to the
case when pure random strings are fed to all the components. More formally, we let g1 :
{0, 1}R+kS → {0, 1}R×{0, 1}R be the S-generator guaranteed by lemma 39 (i.e., by setting
r = R and c = S in the lemma). For every pair of components (A2i−1 and A2i), instead
of feeding them each with pure random strings of length R, we now take one random
string of length R + kS, run the generator g1 on this string and feed the output of the
generator to the two components A2i−1 and A2i (See Figure 4.5). By doing so, we require
only 2S−1 · (R + KS) random bits as opposed to 2S · R random bits. Furthermore, each
application of the generator g1 causes an error of at most 1/22S (since g1 is a S-generator).
Hence, the total error incurred is at most 2S−1/22S since we run the generator g1 at most
2S−1 times.

We now have 2S−1 components each of which require R+kS random bits (see Figure 4.5).
Furthermore, as before each pair of successive components communicate at most S bits of
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A1 ←−−−− gl(z)yb1
A2 ←−−−− gr(z)y
b2

Figure 4.4: A1, A2 with inputs from generator
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Figure 4.5: Using S-generator to save randomness

information. Hence, we can once again apply the generator to reduce the number of random
bits required by every pair of components from R + kS each to R + 2kS total. Moreover,
we can perform this operation repeatedly till we finally have just one component left. More
formally we do the following (also see Figure 4.6).

Let gi : {0, 1}R+ikS → {0, 1}R+(i−1)kS × {0, 1}R+(i−1)kS be a S−generator for i =
1, 2, . . . , S as guaranteed by lemma 39 (i.e., by setting r = R + (i − 1)kS and c = S in
the lemma). Define functions Gi : {0, 1}R+ikS → {0, 1}2i·R for i = 0, 1, . . . S inductively as
follows

G0(z) = z

Gi(z) = Gi−1(gli(z)) ◦Gi−1(gri (z))

We shall show that the existence of GS implies Theorem 37. Clearly, by definition of
GS , GS is a Space(n) TM (i.e., it runs in space O(R + kS2)). We only have to show that
GS fools all randomized space S TMs, which is implied by the following lemma.
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Lemma 40. For all TMs A that run in space S and in time 2S, GS is an 2−S−generator
for A

Proof. Each application of the generator gi, for any i, incurs an error of at most 1/22S (as
guaranteed by Lemma 39). There are at most 2S−1 +2S−2 + · · ·+2+1 = 2S−1 applications
of the generator gi (over all i) (see Figure 4.6). Hence, the maximum error incurred is at
most (2S − 1)/22S < 1/2S . Thus, proved.
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Figure 4.6: Pseudo-random generator GS for Space S machines

4.3 Proof of Lemma 39 using Expanders

We prove Lemma 39 using the expander mixing lemma

Lemma 41 (Expander Mixing Lemma). If G = (V,E) is a D-regular graph with spectral
expansion λ, then for all sets S and T ⊆ V , we have∣∣∣∣e(S, T )

|E|
− |S|
|V |
· |T |
|V |

∣∣∣∣ ≤ λ
√
|S|
|V |
· |T |
|V |
≤ λ,

where e(S, T ) denotes the number of edges between the sets S and T .

Lemma 39 basically tells us that Figure 4.3 can be replaced by Figure 4.4. In other words,
the ε−generator for communication r+ kc, g, should construct strings gl(z) and gr(z) such
that functions A1 and A2 are fooled into believing that these strings were random ones. The
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main idea is to view the set of strings {0, 1}r as the vertices of an expander G = (V,E) and
choose the strings gl(z) and gr(z) to be the endpoints of a random edge of the expander.

The actual construction of the c-generator is as follows: Let G = (V,E) be a D =
26c-regular Ramanujan expander graph on |V | = 2r vertices. (Recall that a D-regular
Ramanujan graph is a D-regular graph with the best possible spectral expansion, namely
λ ≈ 1/

√
D. Such graphs are constructed by Lubotsky, Philips and Sarnark [LPS]). Note

that for super-constant c, the above expander has super-constant degree. We can either
construct such a Ramanujan expander explicitly or start with a constant degree Ramanujan
expander and then take a suitable power of it to increase the degree). The generator
g : {0, 1}r+6c → {0, 1}r×{0, 1}r works as follows: On input z = (x, i) ∈ {0, 1}r×{0, 1}d(=6c),
output (gl(z), gr(z)) = (x, y) where y is the vertex reached by taking the ith edge out of x.
Proof of Lemma 39: Let b be any string that is a possible output of the pair of
algorithms (A1, A2). For every b′ ∈ {0, 1}c, define the following:

Sb′ =
{
x ∈ {0, 1}r|A1(x) = b′

}
Tb′ =

{
x ∈ {0, 1}r|A2(b′, x) = b

}
i.e., if x1 ∈ Sb′ and x2 ∈ Tb′ , A1(x1) = b′ and A2(b′, x2) = b. Hence,

Prob
x1,x2

[A2(A1(x1), x2) = b] =
∑

b′∈{0,1}c
Prob
x1,x2

[x1 ∈ Sb′ ∧ x2 ∈ Tb′ ]

=
∑

b′∈{0,1}c

|Sb′ |
|V |
· |Tb

′ |
|V |

Similarly,

Prob
z∈{0,1}r+d

[
A2(A1(gl(z)), gr(z)) = b

]
=

∑
b′∈{0,1}c

Prob
(x,i)

[x ∈ Sb′ ∧ ( ith edge out of x leads to Tb′)]

=
∑

b′∈{0,1}c

e(Sb′ , Tb′)
|E|
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Hence, ∣∣∣∣Prob
x1,x2

[A2(A1(x1), x2) = b]− Prob
z∈{0,1}r+d

[
A2(A1(gl(z)), gr(z)) = b

]∣∣∣∣
=

∣∣∣∣∣∣
∑
b′∈0,1c

|Sb′ |
|V |
· |Tb

′ |
|V |
− e(Sb′ , Tb′)

|E|

∣∣∣∣∣∣
≤

∑
b′∈0,1c

∣∣∣∣ |Sb′ ||V | · |Tb′ ||V | − e(Sb′ , Tb′)
|E|

∣∣∣∣
≤

∑
b′∈0,1c

λ (By Expander Mixing Lemma)

≤ 2cλ

≤ 2c · 1√
D

= 2c · 1
23c

=
1

22c

Thus, proved.
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Chapter 5

Derandomization (Part II)

Lecturer: Prahladh Harsha
Scribe: Adam Barth

May 1, 2005

Today we will use expanders to derandomize the algorithm for linearity test.
Before presenting the linearity testing algorithm and its derandomization, we review

some expander preliminaries.

5.1 Expander Preliminaries

So far we have considered vertex expansion. For the derandomized linearity testing, we will
need a notion of edge-expansion. Informally, edge-expansion implies that every small set of
vertices has a large number of edges leaving the set. We show below that any graph that is
an expander (i.e., has spectral expansion λ) is also an edge-expander.

Lemma 42 (Edge expansion). If G has spectral expansion λ, then for all A ⊆ V with
|A| ≤ n/2,

e(S, S) ≥ d(1− λ)
2

|S|

where e(S, S) denotes the number of edges between S and S.

Proof. Given a vertex set G on n vertices with adjacency matrix A, recall that λ =
maxx⊥u〈Ax, x〉/〈x, x〉. For a subset S ⊆ V of vertices, fix

x =
χS
|S|
−
χS
|S|

.
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In other words, x is the n-dimension vector such that

xv =

{
1
|S| if v ∈ S
− 1
|S| if v /∈ S

Observe the following: x ⊥ u, and 〈x, x〉 = 1
|S| + 1

|S| , and

〈Ax, x〉 =
∑

aijxixj

=
∑
i,j∈S

2
d
xixj +

∑
i,j∈S

2
d
xixj +

∑
i∈S,j∈S

2
d
xixj

=
2

d|S|2

(
d|S| − e(S, S)

2

)
+

2
d|S|2

(
d|S| − e(S, S)

2

)
− 2e(S, S)

d|S||S|

=
(

1
|S|

+
1
|S|

)[
1− e(S, S)

d

(
1
|S|

+
1
|S|

)]
,

Since 〈Ax, x〉 ≤ λ〈x, x〉, we have that

1− e(S, S)
d

[
1
|S|

+
1
|S|

]
≤ λ.

which implies

e(S, S) ≥ d(1− λ)
|S||S|
|S|+ |S|

≥ d(1− λ)
2

|S|

since |S| ≤ n/2.

Suppose you remove a few edges from a graph. It is possible we might have partitioned
the graph into several small (disconnected) pieces. However, if the graph is an expander,
there must exist a huge connected component. This is captured in the following lemma.

Lemma 43. For all δ ≤ (1 − λ)/12, after removing any 2δdn edges from a graph G with
spectral expansion at most λ, there exists a connected component of size at least(

1− 4δ
1− λ

)
n.

Proof. We prove this lemma in two steps. If removing the edges partitions the graph into
two halves, these two halves must be unbalanced with the smaller side containing less than
n/3 vertices. More precisely, fix a partition S, S of G such that the edges in e(S, S) is
contained in the set of removed edges and S is the smaller half (i.e., |S| ≤ n/2). Then (by
Lemma 42),

d(1− λ)|S|
2

< e(S, S) ≤ 2δdn implies |S| < 4δ
1− λ

n ≤ n

3
.

Therefore, if there is a component of size at least n/2, then there is one of size 1− 4δ
1−λ ≥ 2n/3.

On the other hand, the graph (on removal of the edges) could consist of several small
components (of size less than n/3) and not have any large component. The following claim
shows that this cannot be the case
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Claim 44. The union of all components of size less than n/3 is itself of size less than n/3.

Proof. Consider two components C1 and C2, each of size less than n/3. Their union is of
size at most |C1 ∪ C2| < 2n/3. We know from above that any component is of size greater
than 2n/3 or less than n/3. Hence, |C1 ∪ C2| < n/3. We could repeatedly do this for all
components of size less than n/3 to show that their union is of size at most n/3.

Thus, there must exist a large sized component and we are done in this case.

5.2 Linearity testing

Linearity testing is an instance of the more general problem of property testing [RS, GGR].
In general property testing, the goal is to check whether a huge string has a specific property.
The string is so huge that one can not afford to read it in its entirety.

For example, given the adjacency matrix of a huge graph G, suppose we wish to design
an algorithm A (also called a (property) tester) to determine whether the graph is bipartite
without reading the entire matrix. Clearly, A can not determine exactly whether the graph
is bipartite without looking at the entire graph because a single edge may destroy the
property of being bipartite. Therefore, we relax the requirements and require A to only
distinguish between the cases when G is bipartite and when G is “far” from being bipartite1

rather than the cases when G is bipartite and when it is non bipartite. Note that A must
be randomized because otherwise an adversary could fool A by placing “bad” edges in parts
of the matrix A does not inspect. We thus, require the following of the tester A:

• If the graph is bipartite, A must accept with probability at least 2/3.

• If the graph is “far” from bipartite, A must reject with probability at least 2/3.

We know to design testers A which satisfy the above properties and needs to probe at most
a constant number of locations of the matrix (the precise constant depends on how “far”
we want the graph to be from bipartite) [GGR].

We now consider the linearity testing of Blum, Luby and Rubinfeld [BLR]. In linearity
testing, the string we wish to test is a function from Zn2 to Z2, presented as a table. Our
proofs will work for the more general case when f : G → H where G and H are arbitrary
groups (not even abelian). For simplicity, we will assume that the groups G and H are
abelian. Also it is a good idea to consider the case G = Zn2 and H = Z2. The table lists
the value of the function for each input value x ∈ G.

Definition 45. • A function f : G→ H is said to be linear if for all x, y ∈ G, we have
f(x) + f(y) = f(x+ y).

• A function h : G→ H is said to be an affine function, if there exists a linear function
f : G→ H and a constant a ∈ H such that for all x ∈ G, we have h(x) = f(x) + a.

1We say G is “far” from being bipartite if a “lot of edges” need to be removed in order to make it bipartite
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We say that a function is δ-far (δ-close) from linear, if the value of the function for at
least (at most) δ-fraction of the points in G needs to be changed in order to make it linear.

The goal in linearity testing is to test whether the given function (specified as a table of
values) is linear or far from linear, without reading the entire table. Linearity testing has
applications to locally testable codes (Hadamard codes) and to probabilistically checkable
proof constructions.

Blum, Luby and Rubinfeld proposed the following simple linearity testing algorithm
(see Figure 5.1) [BLR].

LT(G,H)

Input: function f : G→ H, specified as a table of values.

1. Choose x, y ∈R G uniformly at random.

2. Query the table for f(x), f(y) and f(x+ y).

3. Check whether f(x + y) = f(x) + f(y). If the check succeeds, LT accepts f ,
otherwise, LT rejects f .

Figure 5.1: Linearity Test of Blum, Luby and Rubinfeld [BLR]

We state, without proof, two properties of LT.

Proposition 46. • Completeness: If f is linear, then Pr
[
LT accepts f

]
= 1.

• Soundness: If f is δ-far from linear, then Pr
[
LT accepts f

]
< 1−O(δ).

The number of random bits used by LT is 2 log |G| (= 2n in the case when G = Zn2 )
because LT selects two element of G uniformly at random. The main question we will
address is whether this randomness can be further reduced. Goldreich and Sudan showed
that at least log|G| − O(1) random bits is required [GS]. They also suggested that the
random bits can be reduced by selecting the second point y from a smaller set S instead
of the entire group G. Ben-Sasson et.al. showed that a set with the following properties
suffices [BSVW].

1. s ∈ S implies −s ∈ S.

2. The Cayley graph GS = (VS , ES), where VS = G and ES = {(x, x+s) | x ∈ G, s ∈ S},
must have spectral expansion λ.

With such a set S in hand, we modify LT to choose x ∈R G and y ∈R S uniformly at
random. We call the modified algorithm derand-LT. The modified derandomized linearity
testing due to Ben-Sasson et. al. [BSVW] is shown in Figure 5.2.

When G = Zn2 there exist deterministic constructions for such sets S of size poly log |G|.
For general groups, deterministic constructions exist for sets S of size Gε, for every ε > 0.
In terms of number of random bits, G = Zn2 requires log |G| + log log |G| bits and generic
groups G require (1+ε) log |G| bits. This might not seem as a great savings in randomness –
a mere constant factor of 2; however, in PCP constructions and Locally testable codes, one
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derand-LT(G,H, S)

Input: function f : G→ H, specified as a table of values.

1. Choose x ∈R G and y ∈R S uniformly at random.

2. Query the table for f(x), f(y) and f(x+ y).

3. Check whether f(x+ y) = f(x) + f(y). If the check succeeds, derand-LT accepts
f , otherwise, derand-LT rejects f .

Figure 5.2: Derandomized Linearity Test of Ben-Sasson, Sudan, Vadhan and Wigder-
son [BSVW]

is actually interested in reducing the constant before the leading term (which is typically
O(log n)).

Clearly, every linear function is accepted by derand-LT with probability 1. To prove the
soundness of derand-LT, we follow the approach of Shpilka and Wigderson [SW].

Theorem 47 (Derandomized LT). Let δ < (1− λ)/12 where λ is the spectral expansion of
the Cayley graph GS. Then, if derand-LT accepts f with probability at least 1− δ, then f is
4δ/(1− λ)-close to an affine function.

Note that we do not show that f is close to a linear function (this is in fact not true),
but only the weaker statement that f is close to some affine function.

Proof. Suppose derand-LT rejects with probability p ≤ δ. That is,

Pr
x∈G,s∈S

[
f(x+ s) 6= f(x) + f(s)

]
≤ δ.

Given y ∈ G, we define the “opinion of y about f(x)” as f(x + y) − f(y). We define a
function ϕ : G→ G such that for all x ∈ G, ϕ(x) is the plurality over y ∈ G of the opinion
of y about f(x), that is f(x+ y)− f(y) i.e.,.

ϕ(x) = pluralityy∈G (f(x+ y)− f(y))) .

The following three claims prove the theorem.

Claim 48 (Popularity is majority). For all x,

Pr
y

[
ϕ(x) = f(x+ y)− f(y)

]
> 1−

(
4δ

1− λ

)
.

Proof. Given x ∈ G, we remove the following edges from GS . If f(y + s) 6= f(y) + f(s),
then remove edge (y, y + s) from GS . If f(x+ y + s) 6= f(x+ y) + f(s), then remove edge
(y, y + s) from GS . Notice we have removed at most 2δdn edges from GS and hence by
Lemma 43, there exists a huge connected component of size at least 1− 4δ

1−λ .
If an edge remains in the graph, then f(x+y+s)−f(y+s) = f(x+y)−f(y) and therefore

y and y + s share the same opinion about f(x). Hence, all vertices in the huge connected
component share the same opinion about f(x) which must agree with the plurality.

46



Claim 49 (ϕ is linear). For all x, y ∈ G, ϕ(x+ y) = ϕ(x) + ϕ(y).

Proof. Let x, y ∈ G. We first show Prz∈G
[
ϕ(x+y) = ϕ(x)+ϕ(y)

]
> 0. This will prove that

ϕ)x + y) = ϕ(x) + ϕ(y) since this event is independent of z. Hence, ϕ is linear. Consider
the following events for a random z:

E1: ϕ(x+ y) = f(x+ y + z)− f(z).

E2: ϕ(x) = f(x+ y + z)− f(y + z).

E3: ϕ(y) = f(y + z)− f(z).

Each of these events occurs with probability 1 − 4δ/(1 − λ) (by Claim 48). By the union
bound, the probability that at least one of them fails to occur is at most 12δ/(1− λ) < 1.
Hence, the events E1, E2 and E3 occur simultaneously with non-zero probability. However,
if E1, E2 and E3 all occur, we then have that ϕ(x+ y) = ϕ(x) + ϕ(y). Thus, proved.

Claim 50 (f is close to being affine). f is 4δ
1−λ -close to an affine shift of ϕ.

Proof. By Claim 48, for every x ∈ G, we have the following

Pr
y∈G

[
ϕ(x) = f(x+ y)− f(y)

]
> 1− 4δ

1− λ
.

Hence, by an averaging argument, there exists a y ∈ G such that

Pr
x∈G

[
ϕ(x) = f(x+ y)− f(y)

]
> 1−

(
4δ

1− λ

)
.

Therefore,

Pr
z∈G

[
f(z) = ϕ(z − y) + f(y) = ϕ(z) + (f(y)− ϕ(y))

]
> 1−

(
4δ

1− λ

)
,

and so f(z) is 4δ
1−λ -close is ϕ with an affine shift of f(y)− ϕ(y).
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Chapter 6

Expander Codes

Lecturer: Prahladh Harsha
Scribe: Hovav Shacham

May 2 & 9, 2005

In today’s lecture, we will discuss the application of expander graphs to error-correcting
codes. More specifically, we will describe the construction of linear-time decodable expander
codes due to Sipser and Spielman. We begin with some preliminaries on error-correcting
codes.

(Several of the proofs presented in this lecture are adapted from the lecture notes of
Venkatesan Guruswami’s course on Codes and Pseudo-random objects [Gur1]).

6.1 Error Correcting Codes – Preliminaries

We first recall the definition of error-correcting codes. For more information, see, e.g., the
excellent survey by Guruswami [Gur2]. Suppose Alice wants to send a k-bit message to
Bob over a noisy channel (i.e., the channel flips some bits of the message). In order for Bob
to recover (decode) the correct message even after the channel corrupts the transmitted
word, Alice instead of sending the k-bit message, encodes the message by adding several
redundancy bits and instead sends an n-bit encoding of it across the channel. The encoding
is chosen in such a way that a decoding algorithm exists to recover the message from a
codeword that has not been corrupted too badly by the channel. (What this means depends
on the specific application.)

More formally, a code C is specified by a injective map E : Σk → Σn that maps k-
symbol messages to n-symbol codewords where Σ is the underlying set of symbols called
the alphabet. For the most most of today’s lecture, we will only consider the binary alphabet
(i.e., Σ = {0, 1}). The map E is called the encoding. The image of E is the set of codewords
of the code C. Some times, we abuse notation and refer to the set of codewords {E(x)|x ∈

48



{0, 1}k} as the code. k is refered to as the message-length of the code C while n is called
the block-length.

The rate of the code, (denoted by r), is the ratio of the logarithm of number of codewords
to the block-length n, i.e, r(C) = log(#codewords)/n = k/n ≤ 1. Informally, a rate is the
amount of information (about the message) contained in each bit of the codeword.

The (Hamming) distance ∆(x, y) between any two strings x, y ∈ {0, 1}n is the number of
bits in which they differ. The distance of the code, denoted by d, is the minimum Hamming
distance of any two of its codewords, i.e., d(C) = minx,y∈C ∆(x, y). The relative distance,
denoted by δ, is the ratio of the distance to the block-length, i.e. δ = d/n.

We will refer to a code C that maps k message-bits to n codewords with distance d as
a (n, k, d)-code.

If the distance of codeword is large and if not too many codeword bits are corrupted by
the channel (more precisely if not more than d/2 bits are flipped), then we can uniquely de-
code the corrupted codeword by picking the codeword with the smallest Hamming distance
from it. Note that for this unique decoding to work, it must be the case that there are no
more than d/2 errors caused by the channel. Furthermore, clearly the above algorithm is
not efficient as we need to search over the entire space {0, 1}n to find the nearest codeword.
In today’s lecture, we will describe a code (based on expanders) for which this decoding can
be done efficiently (more precisely in time linear in the length of the codeword).

Linear Code A code C is linear if 0n is (a codeword) in C and if, whenever x and y are
in C, so is x ⊕ y1. Linear codes are usually defined in the more general setting when the
underlying alphabet for the codeword is some finite field, however for the purpose of this
lecture we will restrict ourselves to the binary alphabet {0, 1}. We refer to a linear code
that maps k message bits to n codeword bits with distance d as a [n, k, d]-code.

It is an easy observation that , in a linear code, d equals the smallest Hamming weight
of a non-zero codeword. A linear code can be described as an n × k generator matrix C
(such that Cm ∈ {0, 1}n is the codeword corresponding to a message m ∈ {0, 1}k), or
by an (n − k) × n parity-check matrix H (such that x ∈ {0, 1}n is a codeword whenever
Hx equals 0n−k). The existence of a generator matrix C immediately implies that the
encoding time for linear codes is at most quadratic. The parity check-matrix H implies
that a [n, k, d]-code can be described by the n − k = n(1 − r) linear constraints (i.e., the
columns of H) imposed on the codewords bits. Conversely, if a linear code is described by
a set of t (consistent) linear equations, then the rate of the code is at least r ≥ 1− t/n.

A random [n, k, d]-linear code is formed by choosing a random n × k generator matrix
C of zeros and ones (where each entry is chosen to be either 0 or 1 with probability 1/2)
and defining the code C accordingly (i.e, setting E(x) = Cx,∀x ∈ {0, 1}k). The Gilbert-
Varshamov bound states that such a random linear code has (with high probability) distance
δ if the block-length is at least n ≥ k/(1−H(δ)) where H(·) is the binary entropy function
H(p) = p log

(
1
p

)
+ (1− p) log

(
1

1−p

)
.

Theorem 51 (Gilbert-Varshamov). Let δ < 1
2 . If C is a random linear code with rate at

1where ⊕ refers to the bit-wise xor operation
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most 1−H(δ), then
Prob [d(C) ≥ δ] = 1− o(1).

6.2 Expander based codes

We now present the expander codes of Sipser and Spielman [SS]. These expander codes
have the advantage that the decoding process is very efficient, can be performed in linear
time on a single processor or in log n time by a parallel processor with n-machines. We
describe the construction due to Zémor [Zem] which is a slight modification of the original
construction of Sipser and Spielman [SS]

6.2.1 Zémor Codes – construction

The family of expander codes is parametrized by a fixed-size code C with some small block-
length d and a family expander graph Gn on n vertices with constant degree d. The construc-
tion due to Zémor is specified by a process that converts a fixed-size code C of block-length
d and an expander graph G on n vertices and degree d into a new code Z = Z(C,G) with
block-length nd. The rate and distance of the new code Z depend on the rate and distance
r and δ of C, and on the spectral expansion λ of G.

The construction proceeds as follows. Take the graph G = (V,E), and duplicate its
vertex set V into left and right vertex sets L and R. For an edge e ∈ E with endpoints
u and v in V , connect both uL in L to vR in R and vL in L to uR in R. This creates a
d-regular 2n-vertex bipartite graph G′. Since the graph G′ is constructed from an expander
G with spectral expansion λ, the expander mixing lemma can be applied to this graph. In
other words, for all sets S ⊂ L and T ⊂ R, we have that∣∣∣∣e(S, t)− d |S||T |n

∣∣∣∣ ≤ λd√|S||T |,
where e(S, T ) represents the number of edges between the sets S and T .

Now we will use the new graph G′ to describe codewords in Z. These codewords are
dn bits long, and G′ has dn edges. We will associate each bit position in the codeword with
an edge in G′. It is thus possible to consider a codeword x as an assignment of ones and
zeroes to the edges in G′. Moreover, for each vertex v (on either side) we can consider the
d-bit restriction xv of x to edges incident on v. For this purpose, we assume some canonical
ordering among the edges incident on any vertex. If x ∈ {0, 1}dn and e1, . . . , ed are the edges
incident on vertex v, then xv = (xe1 , . . . , xed) ∈ {0, 1}d. Observe that this association also
works if x is not a proper codeword: for example, if it has been corrupted by the channel.

Given these mappings, the code itself is actually quite simple. A bit string x ∈ {0, 1}dn
is a codeword in Z if, for each vertex v ∈ L∪R, xv is a codeword in C. Note that each edge
label must satisfy constraints imposed by both its left and right endpoint.

If C is a linear code, then so is Z. The following theorem characterizes Z in terms of
C and G.

Theorem 52. Suppose Cis a [d, rd, δd]-code with rate r < 1/2 and G is a d-regular expander
on n vertices with spectral expansion λ < δ. Then Z(C,G) is a [dn, (2r− 1)dn, δ(δ− λ)dn]-
code.
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Proof. It is clear that block length of Z is dn.
The codes C and Z are linear, and so we can consider their rates in terms of constraints

in their parity-check matrices. Since C has block-length d and rate r, its parity-check
matrix imposes at most d− rd = (1− r)d constraints on codewords. These constraints are
imposed in Z at each of the 2n vertices, so the total number of constraints in Z is at most
2n(1− r)d =

(
1− (2r − 1)

)
nd, and Z’s rate is at least (2r − 1).

Since Z is linear, its distance equals the minimum Hamming weight of a non-zero code-
word. Consider such a codeword x. Let X be the edges labeled 1 in x: X = {e | xe = 1},
and let S and T be the sets of left- and right-hand vertices, respectively, on which edges
in X are incident.

The degree of X with respect to vertices in S and T must be at least δd, since otherwise
x would not locally be a C-codeword at these vertices. With a factor of 2 to allow for the
double-counting of edges, we have that

|X| ≥ δd

2
(|S|+ |T |) . (6.1)

However, by the Expander Mixing Lemma, we have

|X| ≤ e(S, T ) ≤ d

n
|S||T |+ λd

√
|S||T | .

Combining the inequalities and dividing out d yields

δ

2
(|S|+ |T |) < 1

n
|S||T |+ λ

√
|S||T | .

We can simplify this inequality by means of the following AM-GM inequality

|S||T | ≤ (|S|+ |T |)2

4
, (6.2)

obtaining
δ

2
(|S|+ |T |) < 1

4n
(|S|+ |T |)2 +

λ

2
(|S|+ |T |) ,

or, after some algebra,
|S|+ |T | > 2n(δ − λ) ; (6.3)

Substituting 6.3 into (6.1) shows that Z’s distance is at least δ(δ − λ)dn, as required.

6.2.2 Decoding Algorithm

We now consider how one might decode corrupted codewords in the code Z(C,G). The
algorithm we give has the considerable advantage of being local : at each round, algorithm
choices at a node depend only values local to that node. In a distributed or multi-processing
environment, these local choices can all be made in parallel. It will be evident from the
algorithm below, how the decoding can be implemented in O(log n) time on a parallel
machine with n machines. To obtain a linear-time decoding algorithm (on a single machine),
a little more book-keeping is necessary. However, for today’s lecture, we will ignore this
book-keeping (the details of which can be found in [BZ]).

51



Algorithm 6.1 (Local Decoding for Z(C,G)). The algorithm is given as input a corrupted
codeword x, interpreted as consisting of corrupted local codewords xv at vertices v in the left
or right vertex sets L and R. It corrects these codewords locally as follows.

1. Set V0 ← L

2. Set i← 0

3. while there exists a vertex v such that xv /∈ C do:

(a) For each v ∈ Vi such that xv /∈ C, decode xv to nearest codeword in C
(b) If Vi = L, set Vi+1 ← R, otherwise set Vi+1 ← L.

(c) set i← i+ 1

4. Return x

Since all the choices in any single round of the algorithm can be carried out in parallel,
we will analyze the algorithm in terms of the number of rounds before it converges on a
codeword. In particular, we obtain the following theorem, parametrized on α, which can
take values between 0 (faster convergence, but corrects less noise) and 1 (slower, but corrects
more).

Theorem 53. Suppose C is a [d, rd, δd]-code and G is a d-regular expander on n vertices
with spectral expansion λ < δ/3. Then for all α, 0 ≤ α ≤ 1, the decoding algorithm given
in Algorithm 6.1 corrects α δ2( δ2 − λ)dn errors in O

(
lgn

lg(2−α)

)
rounds.

Proof. Because Z is linear, we can, wlog, assume that the closet codeword to the corrupted
codeword x is the all-zeros codeword. Denote the working word after i rounds by x(i).
Thus, x(0) represents the initial corrupted codeword. Let E(i) be the edges labeled 1 after
i rounds:

E(i) =
{
e | x(i)

e = 1
}

,

Thus, E(i) represents the codeword bits that haven’t been decoded correctly after i rounds.
Let S(i) be the vertices in the set Vi−1 (i.e., left or right side depending on i) with edges in
E(i), i.e., the vertices that have not yet correctly decoded at the end of the i rounds.

S(i) =
{
v ∈ Vi−1 | Ev ∩ E(i) 6= ∅

}
.

where Ev represents the set of edges incident on v.
By a series of claims, we will show a geometric decline in the size of S(i),

|S(i+1)| < |S
(i)|

2− α
,

proving the theorem.
We first make some observations:

• Every edge in E(i) has at least one endpoint in S(i).
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• With respect to E(i), every vertex in S(i+1) has degree at least δd/2, since otherwise
the vertex would have been locally decoded to the zero codeword in the (i+1)th round.

Claim 54. |S(1)| ≤ α( δ2 − λ)n.

Proof. By assumption, |E(0)| ≤ α δ2( δ2 − λ)dn. By the observations above, |E(0)| ≥ |S(1)| δd2 ;
adjoining the two inequalities proves the claim.

Claim 55. If δ > 3λ and |S(i)| < α( δ2 − λ)n, then |S(i+1)| < |S(i)|
2−α .

Proof. Consider the edge set E(S(i), S(i+1)). This set certainly includes all edges in E(i)

between S(i) and S(i+1), and these number (by the observation) at least δd
2 |S

(i+1)|. Thus
we have

e(S(i), S(i+1)) ≥ δd

2
|S(i+1)| .

By the Expander Mixing Lemma, however, we have

e(S(i), S(i+1)) ≤ d|S(i)||S(i+1)|
n

+ λd
√
|S(i)||S(i+1)| .

Combining these inequalities, we obtain

δd

2
|S(i+1)| ≤ d|S(i)||S(i+1)|

n
+ λd

√
|S(i)||S(i+1)| ,

and, using the AM-GM inequality (6.2) with S = S(i) and T = S(i+1),

δd

2
|S(i+1)| < d|S(i)||S(i+1)|

n
+
λd

2
(|S(i)|+ |S(i+1)|) .

Applying the claim precondition |S(i)| < α( δ2 − λ)n to the first summand gives

δd

2
|S(i+1)| < αd(

δ

2
− λ)|S(i+1)|+ λd

2
(|S(i)|+ |S(i+1)|) ,

which we can rearrange as(
δ − α(δ − 2λ)− λ

)
|S(i+1)| < λ|S(i)| . (6.4)

Using the other claim precondition, δ > 3λ, we see that

δ − α(δ − 2λ)− λ = (1− α)(δ − 2λ) + λ > (1− α)λ+ λ = (2− α)λ ,

which, applied to (6.4), gives (2− α)|S(i+1)| < |S(i)|, which proves the claim.

We have thus shown a geometric decline in the size of S(i);. Expressed in terms of |S(1)|,
|S(i)| drops exponentially as 1/(2 − α)i, and the algorithm will complete in O

(
lgn

lg(2−α)

)
rounds.

53



The above code and decoding algorithm, together with explicit constructions for C and
G, give the following general theorem. We choose C to be a fixed-size linear code satisfying
the Gilbert-Varshamov bound and G to be a family of Ramanujan graphs with λ ≈ 1/

√
d

(in fact, any family of expander graphs with λ = 1/o(d) will suffice.

Theorem 56 (Sipser and Spielman; Zémor). For all 0 < δ, ε < 1 such that 1−2H(
√
δ) < 1,

there exists an explicit family of codes with rate 1 − 2H(
√
δ) and relative distance δ − ε,

with a decoding algorithm that corrects δ/4 − ε errors in O(lg n) rounds, where n is the
block-length of the code and H(·) is the binary entropy function.

6.2.3 Expander codes with nearly optimal rate

The condition 1− 2H(
√
δ) < 1 in Theorem 56 allows for only codes with relative distance

δ < 0.0121 and thus allows error-recovery from a small fraction ≈ 1% of errors. Expanders
and the expander mixing lemma can be used again (!!) to improve the relative distance to
1/2− ε and linear-time decoding upto 1/4− ε fraction of errors at the cost of increasing the
alphabet size from binary to a large constant depending on ε. This construction is due to
Guruswami and Indyk [GI].

Theorem 57 (Guruswami Indyk [GI]). For every 0 < r, ε < 1, there is an explicit infinite
family of linear codes with rate r and relative distance at least (1−r− ε) such that the codes
in the family can be decoded from a fraction (1 − r − ε)/2 of errors in time linear in the
block-length of the code.

The details of this construction can be found in [Gur2, GI].
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Chapter 7

Expander Constructions (Zig-Zag
Expanders)

Lecturer: Cynthia Dwork
Scribe: Geir Helleloid

May 9 & 16, 2005

7.1 Lecture Outline

In this lecture we will see three explicit constructions of expanders. By an “explicit con-
struction”, we mean a construction with the following three properties:

1. We can build the entire N -vertex graph in poly(N) time.

2. From a vertex v, we can find the i-th neighbor in poly(logN, logD) time where D is
the degree of the graph.

3. Given vertices u and v, we can determine if they are adjacent in poly(logN) time.

The first two constructions will be presented without proof, but we will see the proof in the
case of the zig-zag construction.

1. The first construction is due to Margulis and Gaber-Galil.

2. The second construction is due to Lubotsky, Phillips, and Sarnak, and achieves opti-
mal spectral expansion λ ≈ 2/

√
d.

3. The third construction is due to Reingold, Vadhan, and Wigderson. These so-called
zig-zag expanders are built via repeated applications of two basic operations that
jointly increase the number of nodes but keep the degree and expansion λ small.
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These operations are graph squaring and the zig-zag product. The proof that these
graphs are expanders will use the tensor product of two vectors.

7.2 The First Two Constructions

Construction 7.1 (Margulis [Mar]) Fix a positive integerM and let [M ] = {1, 2, . . . ,M}.
Define the bipartite graph G = (V,E) as follows. Let V = [M ]2∪ [M ]2, where vertices in the
first partite set are denoted (x, y)1 and vertices in the second partite set are denoted (x, y)2.
From each vertex (x, y)1, put in edges to (x, y)2, (x, x+ y)2, (x, x+ y+ 1)2, (x+ y, y)2, and
(x+ y+ 1, y)2, where all arithmetic is done modulo M . Then G is an expander. The proof
uses Fourier analysis.

Construction 7.2 (Lubotsky-Phillips-Sarnak [LPS]) Fix primes q and p such that
q ≡ 1 (mod 4) and p ≡ 1 (mod q). Let i be an integer such that i2 ≡ −1 (mod q). Define
the graph G = (V,E) as follows. Let V = GF (q) ∪ {∞}. Put an edge between (z, z′) if

z′ =
(a0 + ia1)z + (a2 + ia3)

(−a2 + ia3)z + (a0 − ia1)

for some a0, a1, a2, a3 ∈ N such that a2
0 +a2

1 +a2
2 +a2

3 = p. It can be shown that the number
of integral solutions to a2

0 + a2
1 + a2

2 + a2
3 = p is p + 1. Hence, G has degree d = p + 1. It

can further be shown that the spectral expansion of G is at most λ(G) ≤ 2
√
d− 1/d, which

is optimal. Families of graphs with such optimal spectral expansion are called Ramanujan
graphs.

7.3 The Zig-Zag Product

In this section, we define the zig-zag product of two graphs. We will use this product in
Sections 7.4 and 7.5 to construct expander graphs and prove their spectral properties. This
construction is due to Reingold, Vadhan and Wigderson [RVW]. For convenience, we say
that G is an (N, d, λ)-expander if G has N vertices, degree d, and spectral expansion λ.

To construct the zig-zag product, we begin with an (N1, d1, λ1)-expander G and a
(d1, d2, λ2)-expander H. Assume that V (H) = [d1] = {1, 2, . . . , d1}. Each vertex in G
has d1 neighbors, and we can label them as the 1st, 2nd, . . . , and d1-th neighbors of v. De-
fine a matching RotG on V (G)× V (H) by RotG(u, i) = (v, j) where v is the i-th neighbor
of u and u is the i-th neighbor of v. This is the rotation map associated to G.

One intuitive way to approach the zig-zag product is to suppose that we want to con-
struct a random walk on V (G)×V (H). Starting at (u, i), what can we do? We can choose a
random neighbor i′ of i in H, and use that to pick a random neighbor v of u in G. Since this
isn’t quite reversible, we need to end by choosing another random neighbor of our current
vertex in H. This attempts to motivate the following definition.

The zig-zag product of G and H is denoted G z©H. The vertex set of G z©H is V (G)×
V (H), so the vertices of G z©H are pairs (v, i) with v ∈ V (G) and i ∈ V (H). Put an edge
between (u, i) and (v, j) if and only if there exist i′, j′ ∈ V (H) such that (i, i′) and (j, j′)
are edges of H and RotG(u, i′) = (v, j′). (See Figure 7.1)
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(u,i)

(u,i’) (v,j’)

(v,j)

u−cloud 
v−cloud 

zig−zag edge

Figure 7.1: Zig-Zag Product

More formally,

Definition 58. The zig-zag product between rotation map representations of two graphs
G, a (N,D1, λ1)-graph and H, a (D1, D2, λ2)-graph, is a rotation map representation of a
graph, denoted by G z©H. The graph G z©H and its rotation map are defined as below.

1. G z©H has ND1 vertices.

2. G z©H is a D2
2-regular graph.

3. RotG z©H((u, i), (a1, a2)) = ((v, j), (b1, b2)) if the following is satisfied: There exist
i′, j′ ∈ [D2] such that

• RotH(i, a1) = (i′, b2)

• RotG(u, i′) = (v, j′)

• RotH(j′, a2) = (j, b1)

Less formally, let’s explore what this really looks like. First, form an intermediate graph
K by replacing each vertex v of G by a copy Hv of H. For each neighbor w of v in G, choose
a vertex in Hw. Then construct a matching between these d1 vertices and the d1 vertices of
Hv. Of course, the matchings constructed for the vertices in G must be compatible in the
obvious way. We refer to Hv as the cloud corresponding to v.

Now, if there is an edge between (u, i′) and (v, j′) in K (with u 6= v), then in G z©H, all
the neighbors of (u, i′) in Hu are connected to all the neighbors of (v, j′) in Hv. So G z©H is
the edge union of many complete bipartite graphs Kd2,d2 . We can easily calculate the degree
of G z©H: from (u, i), there are d2 choices for (u, i′), then one choice for (v, j′) = RotG(u, i′),
and finally d2 choices for (v, j). Thus the degree of G z©H is d2.

Intuitively, why should G z©H have good expansion when G and H do? If we are given
a distribution that is mixed on the G component, then the rapid mixing on H suggests that
the distribution will rapidly mix on G z©H. Similarly, given a distribution that is mixed on
the H component, then the rapid mixing on G suggests that the distribution will rapidly
mix on G z©H. So we might hope that every distribution mixes rapidly on G z©H.
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7.4 The Zig-Zag Expander Construction

Using both the zig-zag product and graph squaring, we can demonstrate the zig-zag con-
struction of expanders. Recall that the square of G is denoted G2; it has the same vertex
set as G, and (x, y) ∈ E(G2) if and only if there exists a path of length two from x to y in
G. If G is an (N, d, λ)-expander, then G2 is an (N, d2, λ2)-expander. In the next section we
will show that λ(G z©H) ≤ λ(G) + λ(H) + λ(H2). Assuming this result, we can state and
prove the zig-zag construction of expanders.

Theorem 59. Let H be a (d4, d, λ0)-expander for some λ0 ≤ 1/51. Define G1 = H2 and
Gt+1 = G2

t z©H for t ≥ 1. Then for all t, Gt is a (d4t, d2, λ)-expander with λ ≤ 2/5.

Proof. The proof is by induction on t. When t = 1, based on what we know about the
square of a graph, we see that G1 is a (d4, d2, λ2

0)-expander where λ2
0 ≤ 1/25.

Now assume that Gt−1 is a (d4(t−1), d2, λ)-expander with λ ≤ 2/5. It is clear that Gt
has d4t nodes since the number of nodes in the zig-zag product of two graphs is the product
of the number of nodes in each of the two graphs. Also Gt has degree d2, since the degree
of a zig-zag product is the degree of the second factor.

Finally,

λ(Gt) ≤ λ(G2
t−1) + λ(H) + λ(H2)

≤
(

2
5

)2

+
1
5

+
1
25

=
2
5
.

7.5 Spectral Property of the Zig-Zag Product

It remains to give an upper bound for the spectral expansion of a zig-zag product.

Theorem 60. Suppose G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-expander. Then
G z©H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where f(λ1, λ2) ≤ λ1 + λ2 + λ2

2.

Proof. Recall that given vectors x ∈ RN1 and y ∈ RN2 , their tensor product is given by
x⊗ y = (xi · yj) ∈ RN1N2 . Let M be the normalized adjacency matrix of G z©H. Then

λ(G z©H) = max
α⊥1N1d1

| 〈Mα,α〉 |
| 〈α, α〉 |

.

So we need to show that for all α ∈ RN1d1 , if α ⊥ 1N1d1 , then | 〈Mα,α〉 | ≤ f(λ1, λ2)| 〈α, α〉 |.
Let α ∈ RN1d1 such that α ⊥ 1N1d1 . For all v ∈ [N1], define αv ∈ Rd1 by (αv)k = αvk.

Also define a linear map C : RN1d1 → RN1 by (Cα)v =
∑d1

k=1 αvk. Then α =
∑

v (ev ⊗ αv).
1Since H is a fixed-size graph, such an expander graph can be found by brute-force search.
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Furthermore, we can decompose αv into αv = α⊥v + α
‖
v, where α⊥v ⊥ 1d1 . Thus we can

decompose α into α‖ and α⊥ as follows:

α =
∑
v

(ev ⊗ α‖v) +
∑
v

(ev ⊗ α⊥v )

=: α‖ + α⊥.

Note that α‖, if viewed as a distribution on G z©H, is uniform within any given cloud. In
fact,

α‖ =
Cα⊗ 1d1

d1
=
(

total on v1

d1
, . . . ,

total on vi
d1

, . . . ,
total on vN

d1

)
.

Evidently, since the sum of the entries in α‖ equals the sum of the entries in α, namely 0,
we have α‖ ⊥ 1N1d1 and Cα‖ ⊥ 1N1 .

Define B̃ = IN1 ⊗ B, where B is the normalized adjacency matrix for H. Thus B̃ is
a block diagonal square matrix of size N1d1 with blocks B. Furthermore, let Ã be the
permutation matrix corresponding to the RotG mapping. Then M = B̃ÃB̃.

Note that
〈Mα,α〉 =

〈
B̃ÃB̃α, α

〉
=
〈
ÃB̃α, B̃α

〉
,

since B̃ is a real symmetric matrix and hence self-adjoint. Also B̃α‖ = α‖, since the uniform
distribution on H is invariant under B. Then

B̃α = B̃(α⊥ + α‖) = α‖ + B̃α⊥.

Computing, we find

〈Mα,α〉 =
〈
Ã(α‖ + B̃α⊥), (α‖ + B̃α⊥)

〉
=

〈
Ãα‖, α‖

〉
+
〈
Ãα‖, B̃α⊥

〉
+
〈
ÃB̃α⊥, α‖

〉
+
〈
ÃB̃α⊥, B̃α⊥

〉
| 〈Mα,α〉 | ≤

∣∣∣〈Ãα‖, α‖〉∣∣∣+ ‖Ãα‖‖ · ‖B̃α⊥‖+ ‖ÃB̃α⊥‖ · ‖α‖‖+ ‖ÃB̃α⊥‖ · ‖B̃α⊥‖

=
∣∣∣〈Ãα‖, α‖〉∣∣∣+ 2‖α‖‖ · ‖B̃α⊥‖+ ‖B̃α⊥‖2,

where the last line uses the fact that Ã is a permutation and hence ‖Ãx‖ = ‖x‖, for all
x ∈ RN1d1 .

To simplify this expression, we first see that

‖B̃α⊥‖2 = ‖B̃(
∑
v

ev ⊗ α⊥v )‖2

= ‖
∑
v

ev ⊗Bα⊥v ‖2

=
∑
v

‖Bα⊥v ‖2

≤
∑
v

λ2
2‖α⊥v ‖2

≤ λ2
2‖α⊥‖2.
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Secondly, we need to bound
∣∣∣〈Ãα‖, α‖〉∣∣∣. Let A be the normalized adjacency matrix

for G; we want to relate Ã and A. Fix ev ∈ RN1 . Then Aev gives a uniform distribution on
the neighbors of v in G. This means that

Aev = CÃ · ev ⊗ 1d1
d1

.

The tensor product gives a uniform distribution on the cloud corresponding to v, multiplying
by Ã moves the distribution to the neighbors of v, and multiplying by C adds up the
distribution in each cloud.

By linearity, it follows that for all β ∈ RN1 ,

Aβ = CÃ · β ⊗ 1d1
d1

.

Take β = Cα. Then α‖ = (β ⊗ 1d1)/d1, so we get that CÃα‖ = ACα. Thus〈
Ãα‖, α‖

〉
=

〈
Ãα‖, Cα⊗ 1d1

〉
/d1

=
〈
CÃα‖, Cα

〉
/d1

= 〈ACα,Cα〉 /d1∣∣∣〈Ãα‖, α‖〉∣∣∣ ≤ λ1 〈Cα,Cα〉 /d1

= λ1 〈Cα⊗ 1d1 , Cα⊗ 1d1〉 /d2
1

= λ1

〈
α‖, α‖

〉
.

Combining the two inequalities, we find

| 〈Mα,α〉 | ≤ λ1‖α‖‖2 + 2λ2‖α‖‖ · ‖α⊥‖+ λ2
2‖α⊥‖2.

Take p = ‖α‖‖/‖α‖ and q = ‖α⊥‖/‖α‖, so that p2 + q2 = 1. Then

| 〈Mα,α〉 |
| 〈α, α〉 |

≤ λ1p
2 + 2λ2pq + λ2

2q
2

= λ1 + λ2 + λ2
2.
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Chapter 8

Undirected Connectivity is in
logspace

Lecturer: Prahladh Harsha
Scribe: Cynthia Dwork & Prahladh Harsha

May 16, 2005

In the second half of today’s lecture, we will discuss a deterministic logspace algorithm
for undirected connectivity, a recent and beautiful result due to Omer Reingold [Rei]. In
fact, Reingold’s algorithm is one of the reasons this course is being offered this quarter.

8.1 Undirected S-T Connectivity

The undirected s-t connectivity problem is the problem of finding if there exists a path
between two specified vertices in a given undirected graph. More formally, the problem is
as follows:
Input: A undirected graph G = (V,E) and two vertices s, t ∈ V (s denotes source and t
target).
Problem: Are s and t connected? I.e., does there exist a path in G from the source s to
the target t?

USTCONN = {〈G, s, t〉 | G– undirected graph, s, t ∈ V (G); s and t are connected in G} .

Clearly, any of the standard search algorithms (depth-first-search, breadth-first-search
etc.) solve USTCONN in linear time. Thus, the time complexity of USTCONN is well-
understood. What we would be interested in today’s lecture is the same complexity of
USTCONN. It is to be noted that the standard search algorithms perform poorly with
respect to space (this is because their implementation requires a stack or queue which in
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the worst case could be as large as the graph). The question we will concern ourselves is
the following: Is USTCONN in Logspace. In other words, does there exist a deterministic
logspace algorithm that can decide connectivity in an undirected graph. Reingold resolved
this question positively and gave a logspace algorithm for USTCONN using the zig-zag
product. Before that, we will briefly look at the history of USTCONN.

8.1.1 History of Space Complexity of USTCONN

USTCONN is in NL. In fact, the directed counterpart of USTCONNis the complete problem
for non-deterministic logspace. In 1970, Savitch demonstrated [Sav] a simulation of a non-
deterministic space S machine by a deterministic space S2 machine. Thus, USTCONN ∈
SPACE(log2 n). In one of the initial lectures of this course on random walks (Lecture 3),
we saw a randomized logspace algorithm for USTCONN due to Aleliunas et. al. [AKLLR].
Thus, USTCONN ∈ RL (RL denotes randomized logspace). Saks and Zhou, in 1995, then
showed that any randomized space S machine can be simulated by a deterministic space S3/2

machine [SZ]. Putting both these results together, we have USTCONN ∈ SPACE(log3/2 n).
Later, in 1997, Armoni, Ta-Shma, Wigderson and Zhou improved this deterministic simu-
lation to give a O(log4/3 n)-space algorithm for USTCONN. The status of this problem has
been open since then till it was resolved recently due to Reingold. Note that log n space is
required to even index a vertex in the graph.

8.2 Savitch’s Deterministic Simulation

To begin with, we will look at Savitch’s algorithm for USTCONN. The main idea in Savitch’s
algorithm is that squaring improves connectivity. More formally, for any graph G, define
Gsq to be the graph on the same set of vertices as G, but has an edge between any two
vertices u, v in V (G) if there exists a path of length at most two between u and v in the
original graph G. Note this is not the same as the more natural G2 which corresponds
to the graph where there are as many edges between u and v as the number of walks of
length exactly two between u and v in G. A simple observation reveals that if u and v are
connected in G, then (u, v) is an edge in Gsqlogn

. Savitch gave a O(log2 n) algorithm that
computes the graph Gsqlogn

from G, thus proving USTCONN ∈ SPACE(log2 n).
We will now perform Savitch’s algorithm with the more natural G2 instead of Gsq.

Though, this will also solve USTCONN, this will not give us another proof of Savitch’s
Theorem. In fact, the space complexity of computing G2n is huge. However, this exercise
will be illuminating and will lead us towards Reingold’s algorithm.

For the purpose of this discussion, we will assume all graphs are regular. Before dis-
cussing the algorithm for G2n , we need to indicate which representation of the graph we use.
For reasons that will become clear later, we will use the rotation map representation intro-
duced while talking about the zig-zag product. If the graph G is d-regular, then the rotation
map RotG is the permutation that maps (u, i) ∈ V ×[d] to (v, j) ∈ V ×[d] if the ith edge from
u leads to v and the label of this edge with respect to v is j. Note, RotG(RotG(u, i)) = (u, i)
for all (u, i). We can compute this representation from the adjacency matrix and list in
O(log n) space.
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Let us first calculate the space-complexity of computing the rotation map of H2 given
the rotation map of H. Let H be a d-regular graph, then H2 is a d2 regular graph. The edge
labels ofH2 can be assumed to be from the set [d]×[d]. How do we compute RotH2(u, (i1, i2))
efficiently in space? To start with we assume that the tape contains (u, (i1, i2)) and at the
end of the computation, we would like this to be replaced by RotH2(u, (i1, i2)). For a
graph G, let SPACE(G) denote the additional space required to replace the input (u, i)
on the tape with RotG(u, i). We first compute RotH(u, i1) = (w, j2) and replace the tape
contents (u, (i1, i2)) with (w, (j2, i2)). This requires an additional space for computing
RotH , i.e., SPACE(H). In the second step, we then reuse this extra space to compute
RotH(w, i2) = (v, j1) and replace the tape contents (w, (j2, i2)) with (v, (j2, j1)). Finally, we
swap the indices j1 and j2 in the tape to obtain (v, (j1, j2)) which is in fact RotH2(u, (i1, i2)).
A analysis of the above shows that

SPACE(H2) = SPACE(H) +O(log deg(H)).

Performing the above procedure O(log n) times, we can compute the rotation map of
Gn = G2logn

, thus solving USTCONN. The space complexity of this algorithm is given by
the following:

SPACE(Gn) = SPACE(G2logn
)

= SPACE(G2logn−1
) +O(log deg(G2logn−1

))
...

= SPACE(G) +O(log degG) +O(log degG2) + · · ·+O(log degG2logn−1
)

=
logn−1∑
i=1

O(log degG2i)

The reason this is a bad algorithm for solving USTCONN is because the degree of G2i

grows prohibitively large with i, in fact deg(G2i) = (deg(G))2i . If somehow we could keep
the degree constant through out the process, then in fact the above procedure would give
a O(log n) space algorithm for USTCONN. But this is not possible, squaring a graph will
also square the degree. Is it possible to obtain the same effect as squaring without actually
increasing the degree of the graph? The main advantage of squaring is that it improves
the expansion of the graph (and thus the connectivity of the graph). The crucial idea
in Reingold’s algorithm is that the zig-zag product (discussed in the first half of today’s
lecture) can be used to decrease the degree without altering the expansion of the graph by
too much. Reingold’s algorithm thus alternates between squaring and zig-zag to improve
the expansion of the graph (via squaring) while not increasing the degree.

8.3 Zig-Zag Product

We say that a graph G is a (N, d, λ)-graph if G is a d-regular graph on N vertices and
the spectral expansion of G is at most λ. Let us quickly recall the definition of the zig-zag
product.
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Definition 61. The zig-zag product between rotation map representations of two graphs
G, a (N,D1, λ1)-graph and H, a (D1, D2, λ2)-graph, is a rotation map representation of a
graph, denoted by G z©H. The graph G z©H and its rotation map are defined as below.

1. G z©H has ND1 vertices.

2. G z©H is a D2
2-regular graph.

3. RotG z©H((u, i), (a1, a2)) = ((v, j), (b1, b2)) if the following is satisfied: There exist
i′, j′ ∈ [D2] such that

• RotH(i, a1) = (i′, b2)

• RotG(u, i′) = (v, j′)

• RotH(j′, a2) = (j, b1)

We proved the following result in the earlier lecture on zig-zag products.

Theorem 62. Suppose G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-expander. Then
G z©H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where f(λ1, λ2) ≤ λ1 + λ2 + λ2

2.

Note that the above result is useful only when both the graphs G and H have fairly
good expansion to start with. For our case, all we know is that the original graph, if
connected and non-bipartite, has spectral expansion bounded away from 1 by at least a
inverse polynomial. In fact, we proved the following result in Lecture 3.

Lemma 63. If G is a connected, d-regular, non-bipartite graph on n vertices, then

1− λ ≥ 1
dn2

.

The zig-zag product is useful even in this case as long as the other graph H has good
spectral expansion. We will use the following result (which we will not prove in class) on
zig-zag products for this purpose.

Lemma 64. If λ(H) ≤ 1/2, then

1− λ(G z©H) ≤ 1
3

(1− λ(G)) .

We mention that the zig-zag product is not the only graph product that satisfies such
properties. The replacement product would have sufficed for our purposes (see [MR1,
MR2]). However, we use the zig-zag product since we are already familiar with it from the
previous lecture. A proof of Lemma 64 can be found in [RVW] while a proof of a similar
statement for the replacement product can be found in Martin and Randall [MR2].
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8.4 Reingold’s Algorithm

As mentioned in the previous sections, the main idea in Reingold’s algorithm is to alternate
squaring with zig-zag product (with a constant sized expander). Lemma 64 tells us the
following: as long as H is a good expander (i.e., λ(H) ≤ 1/2), zig-zagging G with H only
reduces the spectral gap (i.e., 1 − λ) by a factor of three (3). This is good for us, since
squaring improves the spectral gap 1− λ from to 1− λ2 while zig-zag product deteriorates
the spectral gap from 1−λ to 1−λ/3. Thus, we could alternate a couple of squarings with
a zig-zag product to reduce the spectral gap by a factor of two while keeping the degree
constant.

We are now ready to describe Reingold’s algorithm.
let H be a (d16, d, 1/2)-graph for some constant G. Such a graph H can be found either

by exhaustive search or by using one of the expander constructions (described earlier in
the course). For this section, we will assume that the input graph G for which we need to
check (s, t) connectivity is a d16-regular non-bipartite graph. We will later remove these
restrictions on G.

Furthermore, we will assume G is a connected graph. Actually, this is a stupid assump-
tion since if G were indeed connected, then there is nothing to prove. What we actually
mean is the following: Reingold’s algorithm works independently for each connected com-
ponent of the graph and checks if t exists in the connected component that contains s. Since
every component of G is d16-regular, connected and non-bipartite, we have from Lemma 63
that 1− λ(C) ≥ 1/d16n2, for all components C of G.

Checking connectivity on an expander We first argue that checking connectivity on
a graph, each of whose connected components is an expander (i.e., λ ≤ 1/2) can be done
in logspace. This follows from the simple observation that in an expander, the distance
between any two vertices in O(log n). Thus, it suffices to enumerate all O(log n) paths in
the graph originating at s and check if any of them lead to t. This can be done in logspace.
Thus, it suffices for us to convert G into another G′ in logspace such that each connected
component of G′ is an expander (i.e., λ ≤ 1/2) and furthermore, two vertices are connected
in G iff they are connected in G′ (i.e., the transformation does not alter the connectivity of
the graph).

Reingold’s Algorithm

Input: G – d16-regular graph and two vertices s, t ∈ V (G).

1. Set l to be the smallest integer such that
(
1− 1

d16n2

)2l ≤ 1
2 .

Comment: l is O(log n)

2. Set G0 ← G.

3. For i = 1, . . . , l do, set Gi ← (Gi−1 z©H)8.

Comment: (1) Each Gi is a d16-regular graph.
(2) Each connected component of Gl is an expander with spectral expansion
at most 1/2 (see Theorem 66)
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4. Check if s and t are connected in Gl by enumerating over all O(log n) paths
originating at s.

We first prove the comment in Step 3, which will suffice to prove the correctness of
Reingold’s algorithm. For this we need the following proposition.

Proposition 65. For i = 1, . . . , l, λ(Gi) ≤ min{λ2(Gi−1), 1/2}.

Proof. Since Gi = (G z©H)8, we have from Lemma 64 that λ(Gi) = λ8(Gi−1 z©H) ≤
[1− (1− λ(Gi−1))/3]8. Now, consider the following two cases.

Case (i): λ(Gi−1) ≤ 1/2. Then,

λ(Gi) = (λ(Gi−1 z©H))8 ≤
(

1− 1
3
· 1

2

)8

=
(

5
6

)8

<
1
2
.

Case (ii): λ(Gi−1) > 1/2. In this case, we can by expansion check that(
1− 1

3
(1− x))

)4

≤ x, for all
1
2
≤ x ≤ 1

Hence,

λ(Gi) = (λ(Gi−1 z©H))8 ≤
(

1− 1
3

(1− λ(Gi−1))
)8

≤ λ2(Gi−1).

By our choice of l, we have the following theorem on the expansion of each connected
component of Gl.

Theorem 66. The spectral expansion of each connected component of Gl is at most 1/2.

Space Complexity of Reingold’s Algorithm We noted before that each squaring oper-
ation requires an additional space of O(log degG). Similarly, it can be shown that each zig-
zag product with H (of constant size) also requires additional space at most O(log degG).
Since there are at most O(log n) squaring and zig-zag products (since l = O(log n)) and
the degree of all the graphs is at most d16, a constant, the total space complexity of the
algorithm is at most O(log n).

Handling non-regular bipartite graph To start with, we will convert the graph into a
3-regular graph by replacing each vertex of degree d greater than 3 by a cycle of size d and
connecting each of the d neighbors of the vertex to the d distinct points on the circle. To
convert the graph into a d16-regular graph, we then add d16 − 3 self loops to each vertex.
Note, the addition of self loops also makes the graph non-bipartite. Both these conversions
can be effected in log space.
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Chapter 9

Dinur’s Proof of the PCP
Theorem

Lecturer: Prahladh Harsha
Scribe: Krishnaram Kenthapadi

May 31, 2005

In this lecture, we will describe a recent and remarkable proof of the PCP theorem,
due to Irit Dinur [Din]. This proof is a beautiful application of expanders for “soundness
amplification” of randomized algorithms without using too many random bits.

Before describing the proof, we will first look at the PCP theorem, by relating it with
the theory of NP-completeness.

9.1 Hardness of Optimization Problems

The theory of NP-completeness, as developed by Cook, Levin, and Karp, states that any
language, L in NP is reducible to the Boolean satisfiability problem, 3SAT. By this, we
mean that for every instance, x of the language L, we can obtain a satisfiability instance, φ
such that x ∈ L if and only if φ is satisfiable. Thus, 3SAT is at least as hard as any other
problem in NP. Karp further showed that 3SAT can be reduced to other problems such as
CLIQUE and 3-COLORABILITY and hence that these problems are at least as hard as
any problem in NP. In other words, solving these problems optimally is as hard as solving
any other problem in NP optimally.

However the question of the hardness of approximation was left open. For instance,
can the following be true – finding a satisfying assignment for 3SAT is NP-hard, however
it is easy to find an assignment that satisfies 99% of the clauses. Questions such as Other
examples: can we approximate the clique size in a graph? Or, can we obtain a 3-coloring that
satisfies 99% of the edge constraints? In other words, is the approximation version of some
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of NP-hard problems easier than the optimization versions. The PCP Theorem [FGLSS,
AS, ALMSS] states that this is not the case – for several of the NP-hard problems, the
approximation version is just as hard as the optimization version. The PCP theorem can
be viewed as a strengthening of Karp reductions. It provides a reduction from a 3SAT
instance φ to another 3SAT instance ψ such that if φ ∈ 3SAT , then ψ ∈ 3SAT and if
φ 6∈ 3SAT , then any assignment to ψ violates at least α fraction of the clauses. This
provides a hardness of approximation result for MAX-3SAT (i.e., the problem of finding
the assignment that satisfies the most number of clauses in a given 3CNF formula).

Theorem 67. There exists a constant 0 < α < 1 such that MAX-3SAT is (1− α)-hard to
approximate unless P = NP.

Observe that the theory of NP-completeness provides α = 1/n instead of a constant.
The PCP Theorem amplifies this sub-constant soundness 1/n to some constant α. Starting
from the PCP Theorem, it is possible to derive hardness of approximation results for several
optimization problems.

9.2 Dinur’s Proof of the PCP Theorem

We define the NP-complete problem called CONSTRAINT-GRAPH (CG). An instance of
CG is of the form G = ((V,E),Σ, C) where (V,E) is an undirected graph, Σ a constant-sized
set of colors and C is a set of constraint functions, one corresponding to each graph edge, i.e.,
C = {cE : Σ2 → {0, 1}|e ∈ E}. A coloring that assigns color c1 to vertex v1 and c2 to vertex
v2 is said to satisfy the coloring constraint c(v1,v2) on edge (v1, v2) is c(v1,v2)(c1, c2) = 1.
An instance ((V,E),Σ, C) is an YES instance of CG, if there exists a coloring σ : V → Σ
that satisfies all of C. Since 3-COLORING is NP-complete, it easily follows that CG is also
NP-complete.

The α-approximate version of CG is whether there exists a coloring that satisfies at
least (1− α)-constraints. In today’s lecture, we will prove the following equivalent version
of the PCP Theorem. It is an easy exercise to show that these two versions are equivalent.
Now the PCP theorem can be equivalently stated as follows.

Theorem 68 (Dinur [Din]). There exists a constant α such that the α-approximation ver-
sion of CONSTRAINT-GRAPH is NP-hard.

We will restate this theorem in a more convenient form in terms of a reduction. For
this we need some notation. For any instance G = ((V,E),Σ, C) of CG, let n = |C| and
size(G) = |V | + |E|. Let σG be the best colorings for G (i.e., it is the coloring that
violates the least number of edge constraints.) If there is more than one, set σG to be one
of them arbitrarily. Let UNSAT (G), called the unsatisfiability factor, be the fraction of
edge constraints violated by σG. Note that if there exists a coloring that satisfies all the
constraints of G, then UNSAT (G) = 0. Since CG is itself a NP-complete problem, the
above theorem can be restated as follows in terms of a reduction from the decision version
of CG to its approximation version.

Theorem 69 (PCP Theorem as a reduction). There exists a constant α and a polynomial
time reduction from CG to the α-approximation version of CG that maps the instance,
G = ((V,E),Σ, C) to the instance, G′ = ((V ′, E′),Σ′, C′) such that
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• size(G′) = poly(size(G))

• Completeness: UNSAT (G) = 0⇒ UNSAT (G′) = 0

• Soundness: UNSAT (G) ≥ 1/n⇒ UNSAT (G′) ≥ α

We will prove the above theorem by applying the following Gap Amplification Lemma
for O(log n) steps.

Lemma 70 (Gap Amplification Lemma). There exists a constant 0 < α < 1, a color set Σ
and a polynomial time reduction from CG to itself mapping the instance, G = ((V,E),Σ, C)
to the instance, G′ = ((V ′, E′),Σ′, C′) such that

• size(G′) = O(size(G)) and Σ′ = Σ

• UNSAT (G) = 0⇒ UNSAT (G′) = 0

• UNSAT (G′) ≥ 2 ·min(UNSAT (G), α)

We can now prove the PCP Theorem 69 starting from the Gap Amplification Lemma.
Proof of Theorem 69: We first observe that the gap amplification increases the unsatis-
fiability factor of the instance G by a factor of 2 (if it is not already a constant) and in doing
so it blows up the size of the instance by at most a constant factor. We can hence apply
this lemma O(log n) times to improve the gap from 1/n to α with at most a polynomial
blowup in size, thus proving the PCP Theorem 69.

Thus it suffices for us to prove the Gap Amplification Lemma 70 and this will be our goal
for the rest of the lecture. But first we need some preliminaries regarding edge expansion
of expanders.

9.3 Expanders – Edge Expansion

For a graph G = (V,E), the edge expansion φ(G) is defined as follows:

φ(G) = min
|S|≤n/2

E(S, S)
|S|

.

The following lemma provides an inverse relationship between the edge expansion, φ(G)
and the spectral expansion, λ(G).

Lemma 71. For a d-regular graph G, φ2(G)
2d ≤ 1− λ(G) ≤ 2φ(G)

d

Thus, if we a graph with good spectral expansion, it also has good edge expansion.
Since we know how to construct good spectral expanders, we can also assume the following.
There exists a family of constant degree edge-expanders that can be explicitly constructed,
i.e., there exists a constant φ0, such that for all n, there exists a d-regular graph Gn on n
vertices such that φ(Gn) ≥ φ0 and furthermore there exists an explicit construction of such
graphs.

We also require the following estimate on the random-like behavior of random walk on
an expander.
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Lemma 72. Let G = (V,E) be a d-regular graph with spectral expansion λ. Let B ⊂ E
be a set of edges. The probability p that a random walk that starts at a random edge in B
takes its (i+ 1)st step in B as well, is bounded above by |B||E| + λi.

Note that if the edges were chosen randomly and independently (instead of choosing
them along a random walk) then the above probability p is exactly |B||E| . The above lemma
states that choosing the edges according to a random walk worsens this probability by at
most λi.

The proof of this lemma is similar to that of the Expander Mixing Lemma. This proof
is reproduced verbatim from Dinur’s paper [Din].

Proof. Let K be the distribution on vertices of G induced by selecting a random edge in B
and then a random vertex on which the edge is incident on. Let W be the support of the
distribution K. As always, let A be the normalized adjacency matrix of G.

Let π be the vector corresponding to the distribution K. Hence, πv is the fraction of
edges incident on v that are in B, divided by 2. For any vertex v, let Bv denote the set of
edges incident on v that are in B. Hence, πv = |Bv|/2|B| ≤ d/2|B| since G is d-regular. Let
yv be the probability that a random step from v is in B, so yv = |Bv|/d = 2|B|πv/d. The
probability p equals the probability of landing in W after i steps and then taking a step in
B. Hence

p =
∑
v∈W

yv(Aiπ)v =
∑
v∈V

yv(Aiπ)v = 〈y,Aix〉.

let u be all ones vector. Decomposing π along u and its orthogonal component we have
π = π‖ + π⊥. Observe that

‖π‖22 ≤

(∑
v

πv

)
·
(

max
v
πv

)
≤ 1 · d

2|B|
=

d

2|B|
.

Since G has spectral expansion λ,

‖Aiπ⊥‖2 ≤ λi‖π⊥‖2
≤ λi‖π‖2

≤ λi

√
d

2|B|

By Cauchy-Schwarz,

〈y,Aiπ⊥〉 >≤ ‖y‖2‖Aiπ⊥‖2 ≤
2|B|
d
λi‖π‖22 ≤ λi

Combining we have,

p = 〈y,Aiπ〉 = 〈y,Aiπ‖〉+ 〈y,Aiπ⊥〉 ≤ 2|B|
dn

+ λi =
|B|
|E|

+ λi.
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9.4 Proof of Gap Amplification Lemma

The reduction in the gap amplification lemma is achieved by a two-step process:

Preprocessing step This preprocessing step converts an arbitrary graph into a constant
degree expander and worsens the unsatisfiability by at most a constant factor. This
step blows up the size by at most a constant factor.

Powering step Assuming that the graph is a constant-degree graph, this step performs
a “powering operation” that amplifies the unsatisfiability factor of the graph while
blowing up the size by at most a constant factor. This step increase the size of
the color-set Σ. There exist standard techniques, namely proof composition in PCP
technology, that are precisely designed for reducing the size of the color-set. Proof
Composition attains color-set reduction while just mildly worsening other parameters.
For want of time, we will not consider this issue in lecture but for stating the required
result.

9.4.1 Graph Preprocessing

The preprocessing step involves converting the graph into a constant degree expander graph.
This is performed in two steps: (a) converting the graph into a constant degree graph and
(b) “expanderizing” the constant degree graph.

Conversion into a constant degree graph Let Gn be a family of expander graph with
degree d and edge expansion at least φ0.

The given graph G = (V,E) is transformed as follows: A vertex, v with degree dv is
replaced by an expander Gdv on dv vertices and the edges incident on v are now assigned
to the vertices of Gdv , one edge per vertex. All the vertices in the transformed graph,
G′ = (V ′, E′) thus have degree d + 1, where d is the degree of any graph in the expander
family. All the edges inside each expander graph have equality constraints while the external
edges retain the constraint they had earlier.

|V ′| =
∑

dv = 2|E|

|E′| = d+ 1
2
|V ′| = (d+ 1)|E|

Thus, the size of the new graph G′ = (V ′, E′) is at most a constant factor that of G.
Clearly, if UNSAT (G) = 0, then so is UNSAT (G′).
We now need to show that if UNSAT (G) is non-zero, then UNSAT (G′) is worsened

(i.e., reduced) at most by a constant factor. The intuition is that we can try to cheat by
giving different colors to the dv vertices. However, due to the property of the expander,
this will result in violating several of the equality constraints within each expander.

Let σ′ = σ′G′ : V ′ → Σ be the best coloring for G′. From this, we can obtain a coloring
σ : V → Σ for G, in which the color of a vertex v is the most popular of the colors assigned
to the corresponding “cloud” of dv vertices in G′.

Let µ = UNSAT (G). Let B be the set of edges violated by σ in G and B′ be the set
of edges violated by σ′ in G′. Define S to be the set of vertices in G′ whose color is not the
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popular one (in the corresponding cloud). Since every edge in B should either be in B′ or
contribute to S, we have µ|E| ≤ |B| ≤ |B′|+ |S|.

• Case 1 : |B′| ≥ µ|E|/2

UNSAT (G′) =
|B′|
|E′|

≥ µ|E|
2|E′|

=
µ

2(d+ 1)
=
UNSAT (G)

2(d+ 1)

• Case 2 : |S| ≥ µ|E|/2
Consider any vertex v in G and its corresponding cloud of vertices in G′. Let Sv be
the set of vertices in the cloud which did not get the popular color. For each color a,
define Sva = {u ∈ Sv|σ′(u) = a}. By the definition of popularity, |Sva | < dv/2. Now,
from the expansion property within each cloud, we get that |E(Sva , Sva)| ≥ φ0|Sva |.
Note that the constraints for all the edges in E(Sva , Sva) are violated. Summing over
the colors and clouds,

|B′| ≥
∑
|E(Sva , Sva)|

2
≥ φ0|S|

2
≥ µφ0

4
|E| ≥ µπ0

4(d+ 1)
|E′|

Thus, UNSAT (G′) ≥ UNSAT (G) µφ0

4(d+1)

In either case, the transformation results in at most a constant factor drop in the fraction
of violated edge constraints.

The graph G is thus converted into a constant degree (d+ 1) graph G′.

Expanderizing the graph The transformed graph G′ is (d+1)-regular. We superimpose
with a d̃-regular expander on |V ′| nodes (i.e, th new superimposed graph has the same vertex
set as the original constraint edges, its edges are however the union of the two graphs –
the original constraint graph and the expander). Furthermore, we add self-loops for each
vertex to get G′′. We then impose dummy constraints on the new edges (i.e., constraint
that are always satisfied). G′′ is still an expander (with constant degree, (d + 2 + d̃)), but
with slightly weaker spectral expansion given as follows: (this calculation uses Lemma 71)

λ(G′′) ≤ 1− φ2(G′′)
2(d+ d̃+ 2)

≤ 1−
φ2(G|V ′|)

2(d+ d̃+ 2)
≤ 1− φ2

0

2(d+ d̃+ 2)
= λ(say).

Observe that if G′ is satisfiable, so is G′′.

UNSAT (G′) = µ⇒ UNSAT (G′′) = µ

(
d+ 1

d+ 2 + d̃

)
Thus, G = (V,E) is converted into a constant-degree ∆ = (d + d̃ + 2) expander graph

G′′ = (V ′′, E′′) with spectral expansion λ. This completes the preprocessing step.
Hence, we will assume without loss of generality that the given constrain graph G =

(V,E) is ∆-regular and has spectral expansion λ.
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9.4.2 Graph Powering

Due to the preprocessing step, we can assume without loss of generality that the given
constrain graph G = (V,E) is ∆-regular expander graph with self loops and has spectral
expansion λ. Suppose the unsatisfiability factor of this graph is α. In other words, every
coloring of the graph violates at least α-fraction of the edge-constraints. We need to double
this factor to 2α without blowing up the size of the graph too much. A natural way to do
this is the powering operation. i.e., we build a new powered graph Gt on the same set of
vertices, each edge of which corresponds to a walk of length t in the original graph.

More formally, the power graph Gt = ((V ′, E′),Σ′, C′) for some parameter t ∈ Z≥0 is
defined as follows.

• V ′ = V i.e., the set of vertices is the same.

• (u, v) ∈ E′ iff there exists a walk of length t between the vertices u and v in the
original graph G. I.e., there exist vertices v0, v1, . . . , vt ∈ V such that v0 = u, vt = v
and (vi−1, vi) ∈ E for i = 1, . . . , t. Thus, every edge in E′ is a t-walk in G. To
distinguish between edges of G and Gt, we will refer to the edges of G as edges and
the edges of Gt as t-walks or (just) walks.

• Σ′ = Σ∆dt/2e . More precisely, the color σ′ ∈ Σ′ of any vertex v gives not only the color
of the vertex v, but also v’s opinion of the colors of all vertices which are reachable
from v by a walk of length at most t/2. Note, such a coloring allows for the case that
two (different) vertices u and v could have different opinions about the color of some
other vertex which is within distance t/2 of both vertices u and v.

• The set of constraints C′ = {cw : Σ′ × Σ′ → {0, 1}|w ∈ E′} is defined as follows: For
any t-walk w = (u, v) ∈ E′, the constraint cw checks that the opinion of the vertices v
and u agree on their intersection and that they satisfy all the edge constraints along
the walk (u, v). We call each such constraint a walk-constraint.

Below we give a very informal (and in fact wrong) argument as to why powering should
amplify the unsatisfiability factor. Let us make two egregious assumptions. Suppose the
coloring σ′ to the vertices of G′ = (V ′, E′) satisfies the property, that if two vertices have
an opinion about a third vertex, then their opinions are consistent. Furthermore, let us
assume that the edges along a random t-walk appear like t random edges. Then, the
following calculations show that the fraction of violated constraints in the powered graph
increases by a factor of t. Since by assumption one, the coloring σ : V → Σ′ is consistent
across the vertices, we have that σ′ is actually derived from a coloring σ : V → Σ of the
original constraint graph. However, we know that σ violates at least α-fraction of the edge-
constraints in the original graph G. Consider any such edge. This edge occurs in exactly
t∆t−1 walks of the powered graph and the constraints corresponding to each of these walks is
violated. Hence, the fraction of violated walk-constraints in G′ is ≈ t∆t−1α|E|

|E′| ≈ t∆t−1α|E|
∆t−1|E| =

t · α. Thus the unsatisfiability factor increases t-fold. This argument is wrong as both
the assumptions are wrong. We won’t be able to completely get over the first assumption.
However, we will be able to show that if a violated edge occurs in the middle of a walk (ie.,
between t/2−

√
t and t/2 +

√
t), then it is very likely that the constraint on the walk is also
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violated. Regarding the second assumption, we will use the fact that the underlying graph
is an expander and hence the set of edges along a walk do in “some sense” look random
(See Lemma 72). Using both these we will prove the following lemma which shows that the
unsatisfiability factor is amplified

√
t-fold instead of t-fold as in fallacious argument above.

Lemma 73. There exists β > 0 such that if UNSAT (G) ≤ 1/
√
t, then UNSAT (G′) ≥

β
√
t UNSAT (G).

Proof. Let σ′ : V → Σ′ be the best possible coloring satisfying the most number of walk-
constraints on G′. Hence, α = UNSAT (G′) is exactly the fraction of walk-constraints
violated by σ′. From the coloring σ′, we build a coloring σ : V → Σ for the original
constraint graph G as follows: Define the random variable Xv,i to be the opinion that
a vertex which is i random steps away from v has about v. Let σ(v) = a such that
Pr[Xv,t/2 = a] is maximized. In other words, this is the most popular color for v assigned
by vertices which are at a distance t/2 far from v. By definition of popularity, we have that
if σ(v) = a, then Pr[Xv,t/2 = a] ≥ 1

|Σ| .
Let B be the set of edges violated by σ in G. Since σ can color no better than the best

coloring for G, we have |B||E| ≥ UNSAT (G) = α.

Consider any edge e = (u, v) ∈ B. Let i ∈ I = [t/2−
√
t, t/2 +

√
t]. Consider a random

t-walk w = (v0, v1, . . . , vt) in G′ conditioned on the fact that e is the ith edge of the walk
(i.e, u = vi−1 and v = vi). We will now analyze the probability that the coloring assigned
by σ′ to the end-vertices of the walk v0 and vt violates the walk-constraint cw.

Let σ(u) = a and σ(v) = b. We know that the coloring a and b to vertices u and v
respectively violates the edge constraint ce. Now, if the opinion of the color of u = vi−1

held by the σ′-color of v0 is a and that of v = vi held by the σ′-color of vt is b, then the
walk constraint cw is violated. These events are Xu,i−1 = a and Xv,t−i = b. Hence,

Pr
w: (u, v) is ith edge of w

[
cw is violated

]
≥ Pr[Xu,i−1 = a] · Pr[Xv,t−i = b] (9.1)

For simplicity, let us consider the case that i− 1 = t/2 and t− i = t/2. In other words,
e is exactly the middle edge. This case actually does not arise since it assumes the walk is
of length t+ 1 as opposed to t. In this case, we have that Pr[Xu,i−1 = a] = Pr[Xu,t/2 = a]
which is at least 1/|Σ| since σ(u) = a which implies a is the most popular color assigned to
u by σ′. Similarly, Pr[Xv,t−i = b] ≥ 1/|Σ|. Thus, in this case we have that

Pr
w: (u, v) is ith edge of w

[
cw is violated

]
≥ 1
|Σ|2

We now have to consider the more general case when e is the ith edge for some i ∈ I.
Note that this i satisfies the property that |i − t/2| ≤

√
t, i.e., it is within one standard

deviation of the mean. The general idea is that since i is at most one standard deviation of
the mean, the behavior at i is similar up to certain constant factors to that at the mean.
More formally, it can be shown that

There exists τ > 0 such that if |l − t/2| ≤
√
t, then Pr[Xu,l = a] ≥ τ · Pr[Xu,t/w = a] (9.2)

This is proved by considering the random walk at u using properties of the binomial distri-
bution. The main intuition is that self loops of G make the distribution of vertices reached
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by a random t/2-step walk from u roughly the same as the distribution on vertices reached
by an l-step from u, for l ∈ I. This argument can be formalized; for want of time, we do
not present the proof in lecture.

Thus, it follows from (9.1) and (9.2) that for all i ∈ I,

Pr
w: (u, v) is ith edge of w

[
cw is violated

]
≥
(
τ

|Σ|

)2

= µ (say) (9.3)

So far we have shown that an edge is bad, then a constant fraction of the walks in which
it occurs nearly in the middle are also bad. We will now show that these bad walks do not
overlap too much and hence there is not too much of over-counting. For this purpose, we
define the random variable N . Let w be a random t-walk in the powered graph G′ (ie.,
chosen by starting at a random vertex and walking t random steps),

N =
{

Number of bad edges in I if w is a rejecting t-walk according to σ′

0 otherwise

i.e., N is the number of bad edges encountered along the walk w around the middle of the
walk if any bad edges are encountered at all and is 0 otherwise.

Clearly this definition of N satisfies,

UNSAT (G′) ≥ Pr[N > 0].

So it suffices to lower bound Pr[N > 0]. We do so using the following two claims.

Claim 74. There exists µ > 0 such that E[N ] ≥ 2µ
√
t |B||E| .

Claim 75. There exists C > 0 such that E[N2] ≤ C
√
t |B||E| .

We can now bound Pr[N > 0] using the second moments inequality as follows:

Pr[N > 0] ≥ (E[N ])2

E[N2]

≥ 4µ2

C
·
√
t · |B|
|E|

Choosing β = 4µ2

C completes the proof of Lemma 73.

We now need to prove Claims 74 and 75. For this purpose, we define the following two
random variables. For a random walk w, let

Zi =

{
1 if ith edge of w is in B

0 otherwise

Yi =

{
1 if w is a rejecting t-walk and ith edge ∈ B
0 otherwise
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Observe that Yi ≤ Zi always.
Proof of Claim 74: We observe that N =

∑
i∈I Yi. Hence,

E[N ] =
∑
i∈I

E[Yi]

=
∑
i∈I

Pr[Yi = 1]

=
∑
i∈I

Pr[Yi = 1|Zi = 1] · Pr[Zi = 1]

Pr[Zi = 1] is just the probability that the ith edge of a random walk is in B and is thus
|B|/|E|. Pr[Yi = 1|Zi = 1] is the probability that the random walk w violates the constraint
cw conditioned on the fact that the ith edge is in B. This is precisely the probability
calculated in (9.3). Hence,

E[N ] ≥
∑
i∈I

µ · |B|
|E|

= 2µ
√
t · |B|
|E|

Proof of Claim 75: Using Yi ≤ Zi, we have N ≤
∑

i∈I Zi. Hence,

E[N2] ≤ E

(∑
i∈I

Zi

)2


= 2
∑
i∈I

∑
j∈I,j≥i

E [ZiZj ]

= 2
∑
i∈I

Pr[Zi = 1]

 ∑
j∈I,j≥i

Pr[Zj = 1|Zi = 1]


=

2|B|
|E|

∑
i∈I

∑
j∈I,j≥i

Pr[Zj = 1|Zi = 1]

The probability Pr[Zj = 1|Zi = 1] is precisely the probability that a random walk has its
(j− i+ 1)th edge in B conditioned on the fact that the first edge of the walk is in B. Here,
we use the fact that G is an expander and use Lemma 72. We thus, have

E[N2] ≤ 2|B|
|E|

∑
i∈I

∑
j∈I,j≥i

(
|B|
|E|

+ λj−i−1

)
≤ C

√
t
|B|
|E|

since
|B|
|E|
≤ 1√

t

where C is some constant.
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This almost completes the proof of the Gap Amplification Lemma, modulo one fact
– the size of the color set has expanded fro |Σ| to

∣∣∣Σd∆t/2e
∣∣∣. We now, perform what is

known as Proof Composition, to reduce the size of the color set. Proof Composition is a
standard procedure (introduced by Arora and Safra [AS]), to reduce the size of the alphabet
while only mildly worsening other parameters. After proof composition, we have a similar
statement to Lemma 73 only with a smaller β, but the color set being the same Σ.

Thus, by choosing an appropriate constant t, we obtain the Gap Amplification Lemma,
from which the proof of the PCP theorem follows.
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