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2. Depth lower bound for matching

Lecturer: Prahladh Harsha Scribe: Nitin Saurabh

In today’s lecture, we will first recall the fooling set argument we discussed in the previous
lecture and then explore a connection between communication complexity and formula
depth. The references for today’s lecture include Sections 1.3 and 10.1–10.3 of Kushilevitz
and Nisan’s book on Communication Complexity [KN97].

2.1 Rectangles

Definition 2.1. Let f : X × Y → V . A subset R of X × Y is a rectangle1 if it is of the
form A × B for some A ⊆ X and B ⊆ Y . The rectangle R is said to be monochromatic
(wrt. f) if f is constant on R. A monochromatic rectangle R is a 0-rectangle if f(R) = {0};
it is a 1-rectangle if f(R) = {1}.

Observation 2.2. A subset S of X × Y is a rectangle iff for all x, x′ ∈ X and y, y′ ∈ Y
(x, x′) ∈ S and (y, y′) ∈ S implies (x, y′) ∈ S and (x′, y) ∈ S.

Observation 2.3. Any deterministic protocol P on X×Y induces a partition of X×Y . If
P computes a function f : X × Y → {0, 1}, then the rectangles of this partition are 0- and
1-rectangles. There is one such rectangle for each leaf of P . Similarly, a non-deterministic
protocol for f induces a set of 1-rectangles of f whose union (and not necessarily a partition)
is f−1(1).

2.1.1 The fooling set argument

Definition 2.4. Let f : X × Y → {0, 1}. A set S ⊂ X × Y is called a fooling set for f if
no monochromatic rectangle wrt. f contains more than one element of S.

Lemma 2.5. Let S be a fooling set for f . Then, D(f) ≥ log2 |S|. If S ⊆ f−1(1), then
N(f) ≥ log2 |S|.

Proof. Since no two elements of S can be in the same rectangle, Observation 2.3 implies
that any deterministic protocol tree for f must have at least |S| leaves and, therefore, depth
at least log2 |S|. The lower bound on N(f) is similar.

Exercise: Exhibit fooling sets of appropriate sizes for EQn and DISJn, and conclude tight
lower bounds for deterministic and non-deterministic complexities of EQn and DISJn.

Remark 2.6. The fooling set argument works by showing that many rectangles are necessary
because any one rectangle can cover only a small part of the fooling set. In general, if there
is a probability distribution µ : X × Y → [0, 1] such that

∑
µ(x, y) = 1, such that for ever

1also called combinatorial rectangle
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rectangle R, µ(R) ≤ δ, then D(f) ≥ log2(1/δ). The fooling set argument is just a special
case of this where µ is the uniform distribution supported on the fooling set. A similar
conclusion holds for non-deterministic complexity when the support of µ is contained in
f−1(1).

2.2 Communication complexity and formula depth

Definition 2.7. A relation is subset F of X × Y × I (for some sets X, Y and I), where
for each (x, y) ∈ X × Y , there is an i ∈ I such that (x, y, i) ∈ F . The communication
complexity of such a relation is defined in the following natural way: Alice is given an x ∈ X,
and Bob a y ∈ Y ; they must determine an i ∈ I such that (x, y, i) ∈ F . Corresponding
to the Boolean function f : {0, 1}n × {0, 1}, we have its Karchmer-Wigderson relation
KWf ⊆ f−1(1)× f−1(0)× [n] defined by KWf = {(x, y, i) : xi 6= yi}.

Definition 2.8. A formula on input variables z1, z2, . . . , zn is circuit of the following form.
The underlying graph of a formula is a tree, where internal nodes have labelled ∨ or ∧, and
each leaf is labelled by a literal of the form xi or ¬xi. The depth of a formula is the length of
the longest path from a root to an input. Let depth(f) be the minimum depth of a formula
computing f .

Theorem 2.9 ([KPPY84, KW90]). For a Boolean function f : {0, 1}n → {0, 1}, D(KWf ) =
depth(f).

Claim 2.10. D(KWf ) ≤ depth(f)

Proof. Let F be a formula of depth depth(f) on variables z1, z2, . . . , zn computing f . In
the protocol, Alice and Bob both travel down F , starting at the root, in order to identify
a coordinate where their inputs differ. At all times, they maintain the invariant that the
function computed at the current node evaluates to 1 on x (Alice’s input) and evaluates to
0 on y (Bob’s input). Note that this is true at the beginning as the first node is the root of
F .

If the current node is an OR gate then it is Alice’s turn to speak. Let the function
computed at the current node be f0 ∨ f1. Hence, f0(x) ∨ f1(x) = 1 and f0(y) ∨ f1(y) = 0.
Therefore, either f0(x) = 1 or f1(x) = 1. Alice sends a single bit indicating which child
evaluates to 1, and they both move to the corresponding node. Note that this node satisfies
the invariant. If the current node is labelled ∧, Bob can send a bit indicating which child
they must move to next. If the current node is a leaf and its zi or ¬zi, the protocol returns
the value i. The number of bits exchanged in the protocol is the depth of the leaf reached,
justifying Claim 2.10.

Claim 2.11. D(KWf ) ≥ depth(f).

Proof. Let P be the optimal protocol for D(KWf ). We will convert its protocol tree into a
formula as follows: each internal node in which Alice sends a bit is labelled by ∨ and each
internal node in which Bob sends a bit is labelled by ∧. Each leaf of the protocol tree is
labelled by an index in [n]. Let S × T ⊆ f−1(1)× f−1(0) be a set of inputs that lead to a
leaf labelled i ∈ [n]. Then either (1) ∀x ∈ S, xi = 1 and ∀y ∈ T , yi = 0; or (2) ∀x ∈ S,
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xi = 0 and ∀y ∈ T , yi = 1. To see this, suppose not, then there exist (x, y) ∈ S × T such
that xi = 1 and yi = 0, and (x′, y′) ∈ S × T such that x′i = 0 and y′i = 1. This implies,
(x, y′) ∈ S × T and (x′, y) ∈ S × T . But that implies that the protocol tree outputs i on
these inputs, which is a contradiction. So, in the first case we label the leaf node by zi, and
in the second case we label the leaf node by ¬zi.

Clearly, the depth of the formula is D(KWf ). Therefore, it remains to prove that the
constructed formula computes f . It is sufficient to prove that for every node of the formula,
the function f ′ corresponding to that node satisfies f ′(x) = 1 for all x ∈ A and f ′(z) = 0
for all z ∈ B, where A × B are the inputs that reach that node of the protocol tree. This
immediately implies that the function computed by the output node is f , because it is 1
for all inputs in f−1(1) and 0 for all inputs in f−1(0).

To justify the claim we use induction on the depth of the formula. Base case: the claim
holds for the input nodes by construction. Assume the claim holds for the children v0 and
v1 of a certain node v. We will now show that it must then hold for the node v itself. Let
f0 and f1 be the corresponding formulas rooted at nodes v0 and v1. Let f ′ be a function
computed at a node v. Let A × B be the inputs reaching v in the protocol tree. Let us
assume that Alice sends Bob a bit in this node. Alice’s bit partitions A into A0 and A1 such
that A0 × B is the set of input that reaches v0 and A1 × B reaches v1. By the induction
hypothesis, ∀y ∈ B, f0(y) = f1(y) = 0, and ∀x ∈ A0, f0(x) = 0 and ∀x ∈ A1, f1(x) = 1.
Since f = f0 ∨ f1, ∀y ∈ B, f(y) = 0 and ∀x ∈ A, f(x) = 1. A similar argument applies
when it is Bob’s turn to communicate when the protocol reaches node v.

One can also restrict attention to monotone functions.

Definition 2.12. For x, y ∈ {0, 1}n we say that x ≤ y if for all i, xi ≤ yi. A boolean
function f : {0, 1}n → {0, 1} is called monotone if x ≤ y implies f(x) ≤ f(y). Let depth+(f)
be the minimum depth of a monotone formula computing f .

Definition 2.13. For a monotone Boolean function f on n inputs, let KW+
f = {(x, y, i) :

x ∈ f−1(1), y ∈ f−1(0), 1 = xi 6= yi = 0}.
Theorem 2.14. For every monotone boolean function f , D(KW+

f ) = depth+(f).

Proof. Same as above.

2.2.1 Lower bound for matching

Definition 2.15. Matchn is a function on
(
n
2

)
variables, where the input (in {0, 1}(

n
2))

is interpreted as the characteristic vector of the edge set of a graph G. The value of the
function is 1 iff G has a perfect matching. Note that Matchn is a monotone function.

Exercise: Show that Matchn can be computed by an OR-AND-OR monotone formula
(unbounded fanin) formula of size 2O(n).

Theorem 2.16 ([RW92]). depth+(Matchn) = Ω(n), where n is the number of vertices.

Proof. We will show a randomized reduction from DISJn to Matchn′ (for some n′ = O(n))
and conclude from Theorem 2.14 that depth+(Matchn′) = D(KW+

f ) = R(DISJn) = Ω(n) =
Ω(n′). In the above sequence, we use the result (to be shown later in the course) that
R(DISJn) = Ω(n).
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Disjointness reduces to a covering problem: Consider an instance of DISJn. Alice
gets X ⊆ [n] and Bob gets Y ⊆ [n]. Alice makes the following graph on 3n vertices:
V = {ai, bi, ci : i ∈ [n]} and edges are added as follows, if i ∈ X, then (ai, bi) is an edge
else (bi, ci) is an edge. So, Alice’s graph is a matching of size n on 3n vertices. Bob gets a
subset T of vertices, where if i /∈ Y then bi ∈ T else ci ∈ T (see Figure 1). Observe that X
and Y are disjoint if and only if T covers the edges of Alice’s graph.
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Figure 1: Alice’s graph and Bob’s set

Disjointness reduces to KWMatch(n,3n): The function Match(n, 3n) (on an input of size(
3n
2

)
) is similar to Matchn, and is 1 iff the graph has a matching of size n. We will show a

randomized reduction from the covering problem above to KWMatch(n,3n): that is Alice will
be given a graph with a matching of size 3n and Bob a graph with no such matching. Their
goal is to determine an edge in Alice’s graph that is missing from Bob’s.

Alice’s input is the same graph as the one in the reduction above. We need to turn Bob’s
set T into a graph that has no matching of size n. We do this as follows. Bob randomly
picks a vertex v ∈ T and considers T ′ = T \ {v}. Bob’s input for KWMatch(n,3n) is the
complete bipartite graph between T ′ and {ai, bi, ci : i ∈ [n]} \ T ′. (See Figure 2.)

Alice and Bob use shared randomness to apply a common random permutation σ to
the vertices. Let the resulting graphs be GA and GB. Suppose Alice and Bob run the
protocol for KWMatch(n,3n) on the input (GA, GB) and the protocol returns e = {x, y} ∈
E(GA) \E(GB). If e is incident on σ(v) (where v is the vertex that was removed from T to
produce T ′), then Bob declares that T is a cover, otherwise he says that T is not a cover.

Error analysis: Notice that whenever T covers the edges of GA, Bob does declare it to
be so. If T does not cover the edges of GA, there are at least two edges in Alice’s matching
that are not in Bob’s graph; since the vertices are being permuted randomly each of these
edges is equally likely to be picked by the protocol for KWMatch(n,3n). Thus, with probability

at least 1
2 , Bob declares that T does not cover the edges of GA. We can repeat the protocol

to reduce error.

KWMatch(n,3n) reduces to KWMatch4n: Alice and Bob add n vertices (with identical names)
to their graphs and connect them to all the other vertices.
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T’ = T \ {randomly chosen vertex}

Bob’s Graph

[n] \ T’

(complete bipartite graph)

Alice’s Graph

(matching of size n)

Figure 2: Disjointness to graphs

Clearly, Alice’s graph has a perfect matching and Bob’s hasn’t. A protocol for KWMatch4n

must discover an edge E(GA) \ E(GB), for all other (newly added) edges are the same in
the two graphs.
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Figure 3: Match(n, 3n) to Match4n
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