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8. Disjointness over product distributions

Lecturer: Prahladh Harsha Scribe: Gaurav Rattan

In the last several lectures, we appealed to the following lower bound on disjointness for
proving a variety of lower bounds in various contexts.

Theorem 8.1 (Kalyanasundaram-Schnitger [KS92], Razborov [Raz92]).

R(DISJn) = Θ(n).

In today’s lecture, we build towards this result by showing a weaker lower bound for ran-
domized communication complexity of the disjointness problem due to Babai, Frankl and
Simon [BFS86]:

R(DISJn) = Ω(
√
n).

The proof of this weaker bound relies on the equivalence between randomized com-
munication complexity and distributional communication complexity as discussed in the
previous lecture. We will use an appropriately chosen product distribution µ to show that
the corresponding distributional complexity Dµ(DISJn) and hence the randomized complex-
ity R(DISJn) is at least Ω(

√
n). In the second part of the lecture, we show that, if one works

with just product distributions, one cannot improve this bound significantly and achieve
the lower bound in Theorem 8.1. More precisely, we show that

max
product µ

Dµ(DISJn) = O(
√
n log n).

The latter result shows that the hard distribution µ which witnesses R(DISJn) = Ω(n) must
necessarily be a non-product distribution.

8.1 Preliminaries

Before we proceed to prove the Babai-Frankl-Simon lower bound for disjointness, we revisit
the equivalence between distributional and randomized communication complexity. We also
define and motivate the product distribution we work with.

In the previous lecture, we showed that:

Lemma 8.2 (Yao’s lemma). Rpub
ε (f) = maxµ Dµ

ε (f).

Corollary 8.3. For c > 0, Rpub
ε (f) ≥ c⇐⇒ ∃µ : Dµ

ε (f) ≥ c.

Therefore, to show a lower bound for R(f), it is sufficient to exhibit a suitable µ for which
Dµ(f) is large. Our next task is to choose such a good µ for DISJn.
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8.1.1 Choosing a good distribution for DISJn

Let us first formalize what we mean by a product distribution.

Definition 8.4 (product distribution). A distribution µ : 2[n] × 2[n] → [0, 1] is called a
product distribution if there exist distributions λ, ρ : 2[n] → [0, 1], such that µ(X,Y ) =
λ(X)× ρ(Y ).

Recall that we used the uniform distribution unif for showing a lower bound for the inner
product function IP. Would unif work for DISJn too? Observe that Pr(X,Y )∼unif [X ∩ Y =
∅] ≈ (3/4)n. This implies that under the measure unif, the truth table MDISJn is highly
biased towards 0′s (at least for large n). This implies there exists an O(1) protocol (that
does nothing but output 0) that works for DISJn under the uniform distribution. The reason
for this bias towards “intersecting sets” is due to the large set size in unif. We can salvage
the uniform distribution by allowing its support to be suitably-sized sets only. Formally,
our product distribution is µ = λ× ρ where µ, λ are uniform over subsets of [n] of size

√
n:

λ(S) = ρ(S) =

{
1/
(
n√
n

)
if |S| =

√
n

0 otherwise
.

Under this measure, MDISJn is not biased since it can be easily seen that:

Pr
(X,Y )∼µ

[X ∩ Y = ∅] ≈
(
n−
√
n

n

)√n
≈ 1

e
. (8.1.1)

Next, we will show that Dµ(DISJ) is large for the above-mentioned product distribution.

8.2 Babai-Frankl-Simon Theorem

Theorem 8.5 (Babai-Frankl-Simon [BFS86]).

R(DISJn) = Ω(
√
n).

This theorem is proved using the corruption bound, which proceeds as follows. Any
(ε, µ)-deterministic protocol1 for DISJn partitions MDISJn into “almost” monochromatic
rectangles. We show that any such “almost” monochromatic rectangle in MDISJn must be
small (Lemma 8.6). This would imply that the number of such rectangles is large, which
would imply the large distributional complexity of DISJn and prove Theorem 8.5.

Lemma 8.6. There exists a constant c > 0 such that for all sufficiently large n, the following
holds. If R = S × T is an almost ε-unbalanced 1-rectangle i.e.,

Pr
(X,Y )∼µ

[DISJn(X,Y ) = 0 | (X,Y ) ∈ R] ≤ ε

then either |S| or |T | is at most 2−c
√
n
(
n√
n

)
.

1An (ε, µ)-deterministic protocol for a function f is a deterministic protocol that makes error at most ε
under the distribution µ.
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Proof. The proof idea is as follows: we can assume wlog. that |S| is large (else the lemma is
trivial). Then, S contains a lot of sets which are almost disjoint with each other (Claim 8.7).
Hence, the sets in S span a large fraction of the universe [n]. Then, it cannot be the case
that there exist a large number of sets which are disjoint with most of the sets in S. Hence,
T is small. The formal proof is as follows.

Assume that |S| > 2−c
′√n( n√

n

)
(where c′ is as in Claim 8.7 below). Define S′ = {x ∈ S :

set x intersects with at most 2ε fraction of sets y in T }. We note that |S′| ≥ |S|
2 (by an

averaging argument). Now we claim that

Claim 8.7. ∃c′ > 0 : if |S′| > (12)2−c
′√n( n√

n

)
, then for k =

√
n
3 , there exist x1, . . . , xk ∈ S′

such that ∀i = 1 . . . k, ∣∣∣∣∣∣xi ∩
⋃
j<i

xj

∣∣∣∣∣∣ <
√
n

2

Define S′′ = {x1, . . . , xk}. Claim 8.7 states that each set xi ∈ S′′ brings in at least√
n/2 distinct elements. We postpone the proof of the claim. Clearly,

∣∣⋃
x∈S x

∣∣ ≥ (
√
n/3)×

(
√
n/2) = n/6. Hence, the sets in S′′ span a good fraction of the universe U = [n]. We

work with S′′ henceforth.

Define T ′ = {y ∈ T : set y intersects with at most 4ε-fraction of sets xi in S′′}. Since

S′′ ⊆ S′, from the definition of S′ and an averaging argument, it follows that that |T ′| ≥ |T |2 .
Let us now (upper) bound the size of set T ′. Recall that every set y ∈ T ′ intersects at most
4εk sets in S′′. Thus for every set y ∈ T ′, there exists (1− 4ε)k sets xi1 , . . . , xi(1−4ε)k

∈ S′′
such that y ⊆ [n] \

⋃
j xij . Observe that |[n] \

⋃
j xij | is at most n − (1 − 4ε)k

√
n/2 ≤

n − n/9 = 8n/9 (assuming ε ≤ 1/100). We can thus upper bound the number of different
possible y in T ′ by(

k

4εk

)(
8n/9√
n

)
=

( √
n/3

4ε ·
√
n/3

)(
8n/9√
n

)
< 2−1−c

′′√n
(
n√
n

)
,

where c′′ is a suitable constant (obtained from the Stirling’s approximation). Hence,

|T | ≤ 2|T ′| < 2−c
′′√n

(
n√
n

)
Set c = min(c′, c′′). Consequently, if |S| > 2−c

√
n
(
n√
n

)
, then |S| > 2−c

′√n( n√
n

)
as well. We

have already shown that this implies |T | < 2−c
′′√n( n√

n

)
< 2−c

√
n
(
n√
n

)
. Therefore, either |S|

or |T | must be at most 2−c
√
n
(
n√
n

)
. Hence proved.

We now prove Claim 8.7.

Proof. We will prove this claim by showing inductively that for every l <
√
n/3 and every

choice of l sets x1, . . . , xl in S′, there exist another set x∗ in S′ (since S′ is large) such that∣∣∣x∗ ∩⋃i≤l xi

∣∣∣ < √n/2. Suppose we have only l <
√
n/3 sets x1, . . . , xl. Then, the size of
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their union Z =
⋃
i≤l xi is at most

√
n×
√
n/3 = n/3. Now, we bound the number of x ∈ S′

such that |x ∩ Z| ≥
√
n/2. Number of such x′s must be at most

√
n∑

i=
√
n/2

(
n/3

i

)(
2n/3√
n− i

)
≤ n

(
n/3√
n/2

)(
2n/3√
n/2

)

< 2−1−c
′√n
(
n√
n

)
[c′ from Stirling’s approximation]

< |S′|

Therefore, there exists a choice of x∗ ∈ S′ such that |x∗ ∩ Z| <
√
n/2. Repeating this

argument for each l <
√
n/3 proves the claim.

Having proved Lemma 8.6, we are ready to prove Theorem 8.5 via the corruption bound
argument.

Proof. From Lemma 8.6, we can conclude that for any (ε, µ)-deterministic protocol for
DISJn, the µ-measure of the largest “almost” monochromatic rectangleR = S×T is bounded
as follows. Wlog. assume |T | ≤ |S|. Hence, if R = S × T is an almost ε-unbalanced 1-
rectangle, we have |T | ≤ 2−c

√
n
(
n√
n

)
.

µ(R) =
∑

s∈S,t∈T
µ(s, t) =

(∑
s∈S

λ(s)

)
·

(∑
t∈T

ρ(t)

)
≤ 1 · |T |(

n√
n

) ≤ 2−c
√
n.

Thus, every unbalanced 1-rectangle has µ-measure at most 2−c
√
n. Recall from (8.1.1)

that µ is a distribution that puts at least a constant mass on the 1-inputs of DISJn, i.e.,
µ(DISJ−1n (1)) ≈ 1/e. Applying the corruption bound (proved in Problem Set 2), we obtain

2D
µ
δ (DISJn) ≥ 2c

√
n ·
(
µ(DISJ−1n (1))− δ · ε

1− ε

)
.

We thus, obtain that for small enough δ, we have Rδ(DISJn) ≥ Dµ
δ (DISJn) = Ω(

√
n).

8.3 Limitations of Product Distributions

The next question is: can we improve the Ω(
√
n) lower bound for Dµ(DISJn) for the distri-

bution µ used above? The following result tells us that it is unlikely. (recall that DISJk,n is
the disjointness problem restricted to sets of size k.)

Theorem 8.8 (H̊astad-Widgerson [HW07]).

Rpub
1/3(DISJk,n) = O(k)

Using this result and Corollary 8.3, we infer that for all distributions σ, Dσ
ε (DISJ√n,n) =

O(
√
n). Since the distribution µ considered in the previous section is supported only on

sets of size
√
n, we have that

Dµ(DISJ√n,n) = O(
√
n).
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In fact, now we will show that we cannot use any product distribution (even ones
supported on sets of larger size) to obtain (significantly) better lower bounds for DISJ.

Theorem 8.9 ([BFS86]). For all product distributions µ,

Dµ(DISJn) = O(
√
n log n).

Proof. Suppose that the inputs are distributed according to the product distribution µ =
λ× ρ. We will a public coins randomized protocol P for DISJn under the product distribu-
tion µ with expected error at most ε and expected communication cost O(

√
n log n). The

expectation (for both error and communication cost) is over both the public random coins
as well as the distribution of inputs. Given such a public coins protocol, by fixing random
coins, one obtains a (µ, ε)-deterministic protocol for DISJn of cost O(

√
n log n), thus proving

Theorem 8.9.
The public coin randomized protocol P is described below.

Alice’s Input: x ⊆ [n] and Bob’s Input: y ⊆ [n].

1. Alice and Bob set U ← [n].

2. Alice and Bob both have access to a public random stream of the form R =
X1, X2, . . . , where each Xi is interpreted as follows. Each Xi ⊆ [n] is distributed
independently according to the distribution λ||X|>√n. (i.e, the distribution λ
conditioned that X is of size at least

√
n.)

3. Repeat the following phase till a result is declared:

(a) Alice: If |x| ≤
√
n, then Alice sends x to Bob using

√
n log n bits, else she

informs Bob (using constant bits) that |x| >
√
n.

(b) Bob:

i. If Alice has sent the set x, then Bob compares it with y and declares
‘Disjoint’ or ‘Intersecting’ accordingly.

ii. If Alice instead informs Bob that “|x| >
√
n”, then Bob checks if:

εy = Pr
X∼λ

[X ∩ y = ∅ | |X| >
√
n] ≤ ε/

√
n (8.3.1)

A. If (8.3.1) is true, then Bob declares ‘Intersecting’.

B. If (8.3.1) is not true, then Bob identifies the minimum j such that the
set Xj in the random stream R is disjoint with y. Bob sends the index
j to Alice.

(c) Alice receives j and updates x′ = x \Xj . (Remark: x∩ y = ∅ iff x′ ∩ y = ∅)
(d) Alice updates her set x ← x′. Both Alice and Bob update U ← U \ Xj ,

the distribution λ ← λ|X⊆U and start the next phase with a fresh random-
coins-stream R = X1, X2, . . . , of sets distributed identically according to
λ||X|>√n.

Since the random stream is supported on
√
n-sized subsets U , on every completion of the

phase the set U drops in size by at least
√
n. Hence, the protocol has at most

√
n phases.

Though the above protocol was described for a specific input pair (x, y), we will carry out
the analysis averaged over input pairs (X,Y ) distributed according to µ.
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Expected Error: In any phase, error occurs only in Step 3(b)iiA of Bob’s response i.e.
whenX and Y are disjoint, but Bob declares them to be intersecting based on the probability
calculation in (8.3.1). Otherwise, correctness of the protocol stems from maintaining the
invariant corresponding to disjointness/intersection of x and y in Step 3c. Averaged over
Alice’s input X, the error in Step 3(b)iiA is at most ε/

√
n for a particular phase due to

(8.3.1). Taking union bound over the
√
n phases, the total error is at most

√
n · ε/

√
n = ε.

Expected Communication: We will bound the expected cost of the protocol as follows.
If in any phase, Alice sends her set of size at most

√
n to Bob, then the protocol terminates

and the communication cost for that phase is O(
√
n log n). Next, we bound the expected

cost ci incurred in ith phase for communicating J = j(X,Y ;R) to Alice in Step 3(b)iiB of
the protocol. Note that it costs O(log J) bits to communicate the integer J .

ci = E
R,X∼λ,Y∼ρ

[O(log J)] ≤ O
(

E
Y∼ρ

[
log

(
E

X∼λ,,R
[j]

)])
,

where the last inequality follows from Jensen’s inequality for the log function. We can
bound the expected value fo j over random X and R (for a fixed value of y) using (8.3.1)
as follows.

E
X∼λ,R

[j] =
1

PrX∼λ[X and y are disjoint | |X| >
√
n]

= 1/εy ≤
√
n

ε
.

Hence,

ci = O

(
E
Y∼ρ

[
log

(√
n

ε

)])
= O

(
log n+ log

(
1

ε

))
.

Taken over all
√
n phases, this cost is O(

√
n log n). Therefore, the overall communication

cost for the protocol is O(
√
n(log n+ log(1/ε)).
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