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Communication Complexity 21 Sep, 2011 (@ TIFR)

11. Disjointness

Lecturer: Jaikumar Radhakrishnan Scribe: Swagato Sanyal

In this lecture we will see lower bounds on communication complexity of two problems,
using ideas from information theory. The first one is a bound on the deterministic commu-
nication complexity of the Pointer Chasing problem introduced in the last lecture (the proof
presented is from [?]). The next one is a bound on randomized communication complexity
of the Disjointness problem using private coins.

11.1 Pointer Chasing Problem

Here we consider the k-level pointer chasing problem. Alice has L0 = {V0}, and the goal is
to find the Vk. We denote the vertex pointed to by v as f(v). Assume that there is a (k−1)
round deterministic protocol solving this problem, with Bob starting the communication,
such that each message contains at most cn bits. We want to bound c from below. To do
that, we analyze the performance of this protocol on certain distribution of inputs. At each
step we will start with inputs whose entrypy is high. We will fix Vi and the message sent
at that round such that we can get down to a reduced problem by incurring little loss to
the entropy of our inputs. Finally when no more message is to be exchanged, the lower
bound on c will come from the requirement that the entropy of Vk must be zero bit (as the
protocol is deterministic and correct). Choose V0, L1, V1, . . . , Vk, Lk uniformly at random
from all possible inputs. Call the distribution of Alice’s inputs (Bob’s inputs) at step t, X(t)

(Y (t)). Thus X(0) and Y (0) are uniform distribution. Now let us look at step t(t ≥ 0). We
prove the following by induction on t.

Claim 11.1. There exists messages m1,m2, . . . ,mt and vertices v1 ∈ L1, v2 ∈ L2, . . . , vt ∈
Lt such that under X(t) (Y (t)) = X(0) (Y (0)) conditioned on M1 = m1, . . . ,Mt = mt,V1 =
v1, . . . , Vt = vt, the following holds:

1. H[f(Vt)] ≥ log n− δ(n)

2. H[X(t)] ≥ kn log n− (2t − 1)cn

3. H[X(t)] ≥ kn log n− (2t − 1)cn

where δ() is the function given by the relations δ(0) = 0 and for j ≥ 1, δ(j) = (2j −
1)22(δ(j−1)+1).c.

Proof. The base case (t = 0) is clearly true, as we start with uniform distribution over all
inputs. For the industion step, we assume it to be true for t = i− 1 and show it to be true
for t = i. We assume that i is odd so that after choosing the mj ’s and vj ’s, Alice holds the
starting vertex. The proof of the other possibility is identical. According to the inductive
hypothesis, we have mesages m1,m2, . . . ,mi−1 and vertices v1 ∈ L1, v2 ∈ L2, . . . , vi ∈ Li−1
such that under X(i−1) and Y (i−1),
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1. H[f(Vi−1)] ≥ log n− δ(i− 1)

2. H[X(i−1)] ≥ kn log n− (2i−1 − 1)cn

3. H[Y (i−1)] ≥ kn log n− (2i−1 − 1)cn

We first describe how we choose mi. If we fix an mi, knowledge of that mi does not
affect the entropy of Alice’s distribution. According to our hypothesis, H[Y (i−1)|Mi] is at
least kn log n − (2i−1 − 1)cn − cn. So there is one mi for which H[Y (i−1)|Mi = mi] is at
least kn log n − (2i−1 − 1)cn − cn ≥ kn log n − (2i − 1)cn. Since fixing Vi which is part
of Alice’s input does reveal anything about Bob’s input, H[Y (i)] = H[Y (i−1)|Mi = mi] ≥
kn log n− (2i − 1)cn. Thus 3 holds after i-th round.
Now we describe how we fix vi. From inductive hypothesis, H[X(i−1)|Vi] ≥ kn log n−(2i−1−
1)cn− log n. Again from inductive hypothesis, H[Vi] ≥ log n− δ(i− 1). Let the set of Vi’s
for which H[X(i−1)|Vi] ≥ n log n−2((2i−1−1)cn− log n) be N . Let |N | = N . By Markov’s
inequality we have that the total probability p of vertices in N is at least 1/2. Also the sum
of entropies of vertices of N is at most logN . Thus H[Vi] is at most p logN + (1− p) log n.
As p ≥ 1/2, we have N ≥ kn/22(δ(i−1)+1). Choose one vertex vi from the set N for which
H[f(vi)] is maximum. H[X(i)] is at least kn log n − 2((2i−1 − 1)cn − log n) ≥ kn log n −
(2i − 1)cn. Thus 2 holds after i-th round. Finally, to show that 1 holds after i-th round,
note that H[Y (i)] ≤ Σv/∈N log n + Σv∈N f(v). Using 3, the fact that N ≥ kn/22(δ(i−1)+1),
and the fact that vi is the vertex in N for which H[X(i−1)|Vi = vi] is maximum, we have
H[Vi] ≥ log n− δ(i).

After k-th round we thus have H[f(Vi−1)] ≥ log n − δ(k − 1). But since we are not
allowed any further message, and the protocol is deterministic and correct, we must have
H[f(Vi−1)] = 0. This gives us log n ≤ δ(k − 1) which gives us c = Ω(log(k−1) n). If
we denote the k-level pointer chasing function by gk and for any function f , the cost of
the best deterministic protocol to compute f where Alice(Bob) sends the first message by
CA,k(f)(CB,k(f)), then we have proved the following theorem:

Theorem 11.2 (PRV). CB,k(gk) = Ω(n log(k−1) n) for any fixed k.

11.2 Disjointness Problem

In this problem, Alice and Bob are both given subsets X and Y of [n]. They are to decide
whether the sets are disjoint or not.

DISJn(X,Y ) =

{
1 if X ∩ Y = ∅
0 otherwise

The parties are allowed to use private randomness. The sets X and Y can also be
thought of as bit vectors with n components (which are the characteristic vectors of the
sets). Here onwards we will mean vectors in {0, 1}n whenever we talk of inputs. DISJn
under this representation can be written as follows

DISJn(X,Y ) =

n∧
i=1

(
Xi ∨ Yi

)
=

n∧
i=1

NAND(Xi, Yi)
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We prove the following result by Kalyanasundaram, Schnitger, the proof of which was
simplied by Razborov and further by Bar-Yossef, Jayram, Kumar and Sivakumar. We will
present the proof along the lines of Bar-Yossef et al.

Theorem 11.3 ([?, ?, ?]).
R 1

2
−ε(DISJn) = Ω(ε2n).

The proof has two broad parts. In the first part it is shown that existense of a efficient
randomized private coin protocol for disjointness implies existense of a randmomized private
coin protocol for 2-input NAND function with the property that for a particular input
distribution, the information about its inputs that its transcript contains is very small. The
second part derives a contradiction to it by showing that for any protocol for NAND, for
that particular input distribution, the information about its inputs in its transcript has to
be large.

Let us fix a (1/2−ε)-error private coin randmomized protocol Π for computing the Dis-
jointness problem of length at most δn for some δ > 0. Let Π = Π(X,Y ) = Π(X,Y ;RX , RY )
stand for the transcript of the protocol, and let |Π| = m.

We first define two distribution ηA and ηB on {0, 1}2 as follows.

Pr
(X,Y )∼ηA

[(X,Y ) = (1, 0)] = Pr
(X,Y )∼ηA

[(X,Y ) = (0, 0)] =
1

2

Pr
(X,Y )∼ηB

[(X,Y ) = (0, 1)] = Pr
(X,Y )∼ηB

[(X,Y ) = (0, 0)] =
1

2

Both ηA and ηB are supported on the YES instances of NAND. For ηA, Y is always set to
0 while X is 0 or 1 with equal probability and the other way round for ηB. Thus, “Alice is
active” in ηA while “Bob is active” in ηB. Observe that in both ηA and ηB, X and Y are
independent of each other.

For every σ ∈ {A,B}n, we define joint random variables (Xσ, Y σ) with distribution
µσ on ({0, 1}n)2 as follows: for each i ∈ [n] independently do the following, if σi = A,
set (Xσ

i , Y
σ
i ) ∼ ηA. In this case, we say “Alice is active” in coordinate i. if σi = B, set

(Xσ
i , Y

σ
i ) ∼ ηB. In this case, we say “Bob is active” in coordinate i. By construction,

(Xσ
i , Y

σ
i )ni=1 is independent across the coordinates for any σ.

Remark 11.4. It might appear strange that we are choosing a distribution which is sup-
ported on the YES instances of disjointness (and NAND). Clearly, there exists a 1-bit
protocol that obtains the correct answer on this distribution and furthermore this transcript
carries zero information about the inputs. How do we manage to get a lower bound then?
The reasoning goes as follows. We have assumed the protocol is correct on every input,
not just on the inputs supported by the distribution. We will use this fact to show that the
transcript must carry some information about the inputs even over this seemingly strange
distribution supported on the YES instances. Note that this is similar in spirit to the fooling
set argument used to bound deterministic communication complexity.

We will consider the quantity I[XY : Π], which is the amount of information the tran-
script contains about the pair of inputs. This quantity is at most the entropy of Π which in
turn is at most the length of Π. We thus, have that I[XY : Π] ≤ δn. Since for each σ, the

11-3



D
RA
FT

pair (Xσ
i , Y

σ
i ) is independent over different i, it follows from the sub-additivity of mutual

information that

δn ≥ I[XσY σ : Π(Xσ, Y σ)] ≥
n∑
i=1

(I[Xσ
i Y

σ
i : Π]).

If we choose a coordinate k ∈ [n] uniformly at random, then

Ek(I[XσY σ
k : Π]) ≤ δ.

The above expectation is over choice of k and for every fixed σ. Now we choose a σ uniformly
at random from {A,B}n and take expectation over σ to obtain

EσEk(I[Xσ
k Y

σ
k : Π]) ≤ δ.

Interchanging the order expectations, we have

EkEσ(I[Xσ
k Y

σ
k : Π]) ≤ δ.

Thus, there exists a coordinate k, such that,

Eσ(I[Xσ
k Y

σ
k : Π]) ≤ δ.

We fix such a k. We now split the choice of σ into two parts: choosing active party for
k-th coordinate (denoted by σk ∈ {A,B}) and choosing active parties for the remaining
coordinates (denoted by σ−k ∈ {A,B}n−1). Thus we have,

Eσ−k
Eσk(I[Xσ

k Y
σ
k : Π]) ≤ δ.

Thus, there exists a σ−k, such that

Eσk(I[Xσ
k Y

σ
k : Π]) ≤ δ.

Fix such a σ−k for the rest of the argument. Expanding the above expectation over the two
possible choices for σk, we get

1

2
(I[Xσ

k Y
σ
k : Π|“Alice is active”] + I[Xσ

k Y
σ
k : Π|“Bob is active”]) ≤ δ. (11.2.1)

The above equations tells us that the transcript hardly contains any information about the
inputs in the k-th coordinate. We will use this to show that the protocol Π cannot compute
the NAND of the k bits. For this purpose, we describe a protocol π for NAND based on the
protocol Π. Suppose Alice and Bob are given input bits x and y respectively. First, Alice
and Bob construct n bit inputs X and Y for DISJn function from x and y respectively as
follows: Alice and Bob set the k-bit of X and Y to be x and y respectively (i.e., Xk = x
and Yk = y). For the remaining n−1 bits, Alice and Bob behave as follows. For each i 6= k,
σ−k|i tells if Alice or Bob is active. If Alice is active (ie., σ−k(i) = A), then Alice sets Xi

with equal probability to 0 or 1, while Bob sets Yi to be 0. Similarly, if Bob is active, then
Bob sets Yi with equal probability to 0 or 1, while Alice sets Xi to be 0. Observe, that all
of this can be done by Alice and Bob independently using their private randomness and
the knowledge of k and σ−k. They, then run the protocol Π on this input (X,Y ). Since
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NAND(Xi, Yi) = 1 for all i 6= k, we have that DISJn(X,Y ) = NAND(x, y). Hence, if Π is
a protocol that computes DISJn correctly on every input with error at most 1/2 − ε, then
π is a protocol that computes NAND correctly on every input with error at most 1/2 − ε.
It is to obtain this conclusion, that we chose distributions ηA and ηB which were entirely
supported on the YES instances of NAND. Let us know rewrite (11.2.1) which was written
for protocol Π in terms of the protocol π.

I[XY : π(X,Y )|(X,Y ) ∼ ηA] + I[Y : π(X,Y )|(X,Y ) ∼ ηB] ≤ 2δ.

Recall that when (X,Y ) ∼ ηA, we have X is a random bit and Y is 0 (and the other way
round for ηB). We can thus, rewrite the above inequality as follows.

I[Z : π(Z, 0)] + I[Z : π(0, Z)] ≤ 2δ, (11.2.2)

where Z is a random bit that takes 0 and 1 with equal probability.
What does the above inequality imply? The fact that I[Z : π(Z, 0)] is small reveals

that conditioned on Bob’s bit being 0, the transcript does not contain much information
about Alice’s random bit Z. In other words, the transcript distributions π(0, 0) and π(1, 0)
look alike. Similarly, from the fact that I[Z : π(0, Z)] is small, we conclude that the
transcript distributions π(0, 0) and π(0, 1) look alike. But then the transcript distributions
π(0, 1) and π(1, 0) must also look alike. This by itself is not surprising since NAND(0, 1) =
NAND(1, 0) = 1. Let us pretend that π is a determinstic protocol and “look alike” means
the transcripts are identical. Now, if the transcripts π(0, 1) and π(1, 0) are identical, then so
do the transcripts π(0, 0) and π(1, 1) by the rectangle property of deterministic protocols.
However this cannot be true, since NAND(0, 0) = 1 while NAND(1, 1) = 0 and the protocol π
distinguishes between YES and NO instances of NAND. This leads us to our contradiction.
We will get around the fact that π is randomized and the transcript distributions only look
alike and are not identical, using a formalization via Hellinger distance.

Definition 11.5 (Hellinger distance). Let P = (pi)i and Q = (qi)i be two probability
distributions on some universe. The Hellinger Distance h(P,Q) between them is defined as

h(P,Q) =

√
1

2

∑
i

(
√
pi −

√
qi)

2

We will study Hellinger Distance in greater detail in the next lecture. In this lecture, we
state without proof a few properties of Hellinger Distance, which we will help us complete
the disjointness lower bound. The first one relates Hellinger distance to the standard total
variation distance between two distributions.

Lemma 11.6 (Hellinger vs. total variation distance).

∆(p− q) =
1

2
· ‖p− q‖1 ≤

√
2 · h(p, q).

The next one relates Hellinger Distance to information.

Lemma 11.7 (Hellinger vs. Information). Let a random variable Z be distributed uniformly
over {z1, z2} and π(Z) be a function (possibly randomized) of Z. Then

I[Z : π(z)] ≥ h2(π(z1), π(z2))
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The third lemma is the reason why Hellinger is useful while studying randomized commu-
nication protocols. It is the extension of the rectangle property for deterministic protocols
to private-coins randomized protocols.

Lemma 11.8 (cut-and-paste lemma). Let π(x, y) denote the transcript of a randomized
protocol of some communcation problem on input (x, y). Then for all x, x′, y, y′,

h2(π(x, y′), π(x′, y)) = h2(π(x, y), π(x′, y′))

We can now complete the lower bound for disjointness formalizing the above intuition
using Hellinger distance.

2δ ≥ I[Z : π(Z, 0)] + I[Z : π(0, Z)] [from (11.2.2)]

≥ h2(π(0, 0), π(1, 0)) + h2(π(0, 0), π(0, 1)) [from Lemma 11.7]

≥ 1

2
· (h(π(0, 0), π(1, 0)) + h(π(0, 0), π(0, 1)))2 [Cauchy-Schwarz inequality]

≥ 1

2
· h2(π(1, 0), π(0, 1)) [triangle inequality, since h is a metric]

=
1

2
· h2(π(0, 0), π(1, 1)) [by cut-and-past lemma 11.8]

≥ 1

4
·∆2(π(0, 0), π(1, 1)) [by Lemma 11.6]

≥ ε2

The last inequality follows since the protocol π outputs NAND with error at most 1/2− ε.
Hence, the total variation distance between the transcript distributions π(0, 0) and π(1, 1)
is at least 2ε. Hence, δ ≥ ε2/2. We thus, have R1/2−ε(DISJn) ≥ ε2n/2.
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