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12. Hellinger distance

Lecturer: Prahladh Harsha Scribe: Girish Varma

In this lecture, we will introduce a new notion of distance between probability distributions
called Hellinger distance. Using some of the nice properties of this distance, we will gen-
eralize the fooling set argument for deterministic protocols to the randomized setting. We
will then use this to prove a Ω(n) lower bound for the communication complexity of Dis-
jointness. We will also see how this proof easily extends to the multi party setting, thereby
proving Theorem 5.7 from Lecture 5.

12.1 Hellinger Distance

Let P = {pi}i∈[n], Q = {qi}i∈[n] be two probability distributions supported on [n]. A
natural way of defining a distance between them is to consider the `1-distance between the
probability vectors P and Q.

‖P −Q‖1 =
∑
i∈[n]

|pi − qi|.

The total variation distance, denoted by ∆(P,Q) (and sometimes by ‖P − Q‖TV ), is half
the above quantity. It is an easy exercise to check that

∆(P,Q) = max
S⊆[n]

|P (S)−Q(S)|. (12.1.1)

Because of the above equality, this is also referred to as the statistical distance.
Taking the `1 norm of the difference made sense because P and Q where unit vectors

according to the `1 norm. Since
√
P = (

√
p1,
√
p2, . . .

√
pn) is a unit vector according to `2

norm, we can also consider the `2 norm of the difference of the square root vectors.

Definition 12.1 (Hellinger Distance). For probability distributions P = {pi}i∈[n], Q =
{qi}i∈[n] supported on [n], the Hellinger distance between them is defined as

h(P,Q) =
1√
2
· ‖
√
P −

√
Q‖2.

By definition, the Hellinger distance is a metric satisfying triangle inequality. The
√

2 in
the definition is for ensuring that h(P,Q) ≤ 1 for all probability distributions. It is closely
related to a quantity known as Fidelity or the Bhattacharya coefficient of two probability
distributions F (P,Q) =

∑
i∈[n]
√
piqi by the relation:

h2(P,Q) = 1− F (P,Q).
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12.1.1 Properties of Hellinger distance

Lemma 12.2 (Hellinger vs. total variation).

h2(P,Q) ≤ ∆(P,Q) ≤
√
h2(P,Q)(2− h2(P,Q) ≤

√
2h(P,Q)

Proof. For the first inequality,

h2(P,Q) =
1

2

∑
i

|√pi −
√
qi||
√
pi −

√
qi| ≤

1

2

∑
i

|√pi −
√
qi|(
√
pi +

√
qi)

≤ 1

2

∑
i

|pi − qi| = ∆(P,Q).

For the last two inequalities,

∆2(P,Q) =
1

4

∑
i∈[n]

|pi − qi|

2

=
1

4

∑
i∈[n]

(
√
pi −

√
qi) (
√
pi +

√
qi)

2

≤ 1

4

∑
i∈[n]

(
√
pi −

√
qi)

2

∑
i∈[n]

(
√
pi +

√
qi)

2

 [By Cauchy Schwarz]

≤ 1

2
· h2 (P,Q) ·

2 + 2
∑
i∈[n]

√
pi
√
qi


≤ h2 (P,Q) ·

(
2− h2 (P,Q)

)
≤
√

2h (P,Q) .

Cut and paste property: In the fooling set argument, we saw that if inputs (x, y) and
(x′, y′) have the same transcript in a deterministic communication protocol, then (x′, y) and
(x, y′) must have the same transcript. This rectangle property can be extended to private
coins randomized protocols using Hellinger distance in the follows sense: if the transcript
distributions for inputs (x, y) and (x′, y′) are close in Hellinger distance, then so are the
transcript distributions for (x′, y) and (x, y′).

Lemma 12.3 (Cut-and-Paste). Let P be a randomized private coins protocol and Πx,y

denote the (randomized) transcript on input x, y. Then,

h2(Πx,y,Πx′,y′) = h2(Πx′,y,Πx,y′).

Proof. We can think of a randomized private coin protocol working on input (x, y) as
a deterministic protocol on the extended inputs ((x,RA), (y,RB)), where the additional
inputs RA and RB are chosen according to the suitable private coins distribution. From
the rectangle property of deterministic protocols, we have that for any fixed transcript τ ,
the set of extended inputs that gives rise to it form a rectangle, say Rectτ = Sτ × Tτ . Now,
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let’s consider the probability that transcript τ arises for inputs x and y.

Pr
RA,RB

[Π(x, y,RA, RB) = τ ] = Pr
RA,RB

[((x,RA), (y,RB)) ∈ Rectτ ]

= Pr
RA,RB

[(x,RA) ∈ Sτ and (y,RB) ∈ Tτ ]

= Pr
RA

[(x,RA) ∈ Sτ ] · Pr
RB

[(y,RB) ∈ Tτ ].

This splitting of probabilities follows from the independence of Alice and Bob’s private coins
RA and RB and is used to proved the lemma as follows.

1− h2(Πx,y,Πx′,y′)) = F (Πx,y,Πx′,y′)

=
∑
τ

√
Pr

RA,RB

[Πx,y = τ ] · Pr
RA,RB

[Πx′,y′ = τ ]

=
∑
τ

√
Pr
RA

[(x,RA) ∈ Sτ ] · Pr
RB

[(y,RB) ∈ Tτ ] · Pr
RA

[(x′, RA) ∈ Sτ ] · Pr
RB

[(y′, RB) ∈ Tτ ]

=
∑
τ

√
Pr
RA

[(x,RA) ∈ Sτ ] · Pr
RB

[(y′, RB) ∈ Tτ ] · Pr
RA

[(x′, RA) ∈ Sτ ] · Pr
RB

[(y,RB) ∈ Tτ ]

=
∑
τ

√
Pr

RA,RB

[Πx,y′ = τ ] · Pr
RA,RB

[Πx′,y = τ ]

= F (Πx,y′ ,Πx′,y) = 1− h2(Πx,y′ ,Πx′,y).

The above cut-and-paste lemma can be extended to communication protocols for t
parties.

Lemma 12.4 (multiparty cut-and-paste). For any v ∈ {x1, y1} × {x2, y2} · · · × {xt, yt}

h2(Πx1,x2,...xt ,Πy1,y2,...yt) = h2(Πv,Πv).

Lemma 12.5 (Hellinger vs. Information [Lin91]). Let Z be a random variable taking values
in {z1, z2} equally likely and Π a randomized function of Z. Then,

I[Z : Π(Z)] ≥ h2(Πz1 ,Πz2).

A proof of a slightly weaker theorem is presented in Appendix A.

12.2 Lower bound for Disjointness

In this section, we will prove the Ω(n) lower bound for the randomized private coins commu-
nication complexity of Disjointness, using the above properties of Hellinger distance. Recall
that

DISJ(x, y) =
∧
i

xi ∨ yi =
∧
i

NAND(xi, yi).

Let’s quickly recall the steps in the proof of the disjointness lower bound from last lecture.
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Suppose there exists a (1/2−ε)-error private coin randomized protocol Π for computing
the Disjointness problem of length at most δn for some δ > 0. Define two distribution ηA
and ηB on {0, 1}2 (in fact, on the YES instances of NAND) as follows.

Pr
(X,Y )∼ηA

[(X,Y ) = (1, 0)] = Pr
(X,Y )∼ηA

[(X,Y ) = (0, 0)] =
1

2

Pr
(X,Y )∼ηB

[(X,Y ) = (0, 1)] = Pr
(X,Y )∼ηB

[(X,Y ) = (0, 0)] =
1

2

For every σ ∈ {A,B}n, we define joint random variables (Xσ, Y σ) with distribution µσ
on ({0, 1}n)2 as follows: for each i ∈ [n] independently do the following, if σi = A, set
(Xσ

i , Y
σ
i ) ∼ ηA and otherwise (i.e., σi = B), set (Xσ

i , Y
σ
i ) ∼ ηB. Using, sub-additivity of

mutual information and independence of (Xσ
i , Y

σ
i ) across the different i’s, we showed that

δn ≥ |Π(Xσ, Y σ)| ≥ I[Xσ, Y σ : Π(Xσ, Y σ)] ≥
∑
i

I[Xσ
i , Y

σ
i : Π(Xσ, Y σ)].

Averaging over i’s and all possible σ’s we get,

δ ≥ EσEkI[Xσ
k Y

σ
k : Π(Xσ, Y σ)] = EkEσ−k

EσkI[Xσ
k Y

σ
k : Π].

Hence, there exists a k and a σ−k, such that EσkI[Xσ
k Y

σ
k : Π] ≤ δ. Expanding this expec-

tation, we obtain
1

2
(IA[XkYk : Π] + IB[XkYk : Π]) ≤ δ, (12.2.1)

where IA[·, ·] denotes the mutual information when when the k-coordinates are chosen ac-
cording to ηA and the remaining coordinates are chosen as dictated by the σ−k that we had
fixed earlier in the proof (similarly for IB[·, ·]).

This gives a protocol π for computing the NAND function which works as follows: On
input x and y, Alice and Bob construct n bit inputs X and Y for DISJn function from
x and y respectively as follows: Alice and Bob set the k-bit of X and Y to be x and y
respectively (i.e., Xk = x and Yk = y). For each i 6= k, σ−k|i tells if Alice or Bob is active.
If Alice is active (ie., σ−k(i) = A), then Alice sets Xi with equal probability to 0 or 1, while
Bob sets Yi to be 0. Similarly, if Bob is active, then Bob sets Yi with equal probability
to 0 or 1, while Alice sets Xi to be 0. Observe, that all of this can be done by Alice and
Bob independently using their private randomness and the knowledge of k and σ−k. They,
then run the protocol Π on this input (X,Y ). Since DISJn(X,Y ) = NAND(x, y) and Π is
a protocol that computes DISJn correctly on every input with error at most 1/2 − ε, we
have that π is a protocol that computes NAND correctly on every input with error at most
1/2− ε. Rewriting (12.2.1) in terms of protocol π, we have

I[Z : πZ,0] + I[Z : π0,Z ] ≤ 2δ, (12.2.2)

where Z is a random bit that takes 0 and 1 with equal probability.
We can now complete the lower bound using the properties of the Hellinger distance

proved in the beginning of the lecture.
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2δ ≥ I[Z : πZ,0] + I[Z : π0,Z ] [from (12.2.2)]

≥ h2(π0,0, π1,0) + h2(π0,0, π0,1) [from Lemma 12.5]

≥ 1

2
· (h(π0,0, π1,0) + h(π0,0, π0,1))

2 [By Cauchy-Schwarz]

≥ 1

2
· h2(π1,0, π0,1) [triangle inequality, since h is a metric]

=
1

2
· h2(π0,0, π1,1) [by Cut-and-Paste lemma 12.3]

≥ 1

4
·∆2(π0,0, π1,1) [by Lemma 12.2]

≥ ε2

The last inequality follows from the fact that NAND takes different answers on inputs
(1, 1) and (0, 0). More precisely, if the protocol was correct with probability 1/2 + ε, using
Equation (12.1.1) we obtain:

∆(π1,1, π0,0) ≥ |Pr [Output of transcript π1,1 = 0]− Pr [Output of transcript π0,0 = 0]|

≥
∣∣∣∣(1

2
+ ε

)
−
(

1

2
− ε
)∣∣∣∣

≥ 2ε

Hence, δ ≥ ε2/2. We have thus, proved the following theorem.

Theorem 12.6 (Disjointness lower bound [KS92, Raz92, BJKS04]).

R1/2−ε(DISJn) ≥ ε2n/2.

12.3 Lower bound for Multi-party Disjointness

In this section, we will generalize the proof for disjointness to the multi-party setting. Recall
the promise problem of UDISJn,t from Lecture 5, given by:

YES = {(x1, x2, . . . xt) ∈ {0, 1}nt | ∀i 6= j, xi, xj are pairwise disjoint }
NO = {(x1, x2, . . . xt) ∈ {0, 1}nt | ∃a ∈ [n], ∀i 6= j, xi ∩ xj = {a}}

Note that we are using xi to denote subsets of [n] as well as the characteristic vectors of
these subsets.

As in the last section, we will start with the observation that

UDISJn,t(x1, . . . , xt) =
n∧
i=1

 t∨
j=1

xj,i

 =

n∧
i=1

NANDt(x1,i, x2,u, . . . , xt,i).

Just as UDISJ is a promise problem, the t-wise NANDt is also a promise problem whose
only NO instance is the all 1’s vector 1 and YES instances are the unit vectors ei and the
all zeros vector 0. Here, ei represents the unit vector with 1 in the ith coordinate.

We consider the number-in-hand and broadcast model and prove the following theorem.
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Theorem 12.7 ([BJKS04]). The communication complexity of UDISJn,t under number in
hand and broadcast communication is Ω(n/t2).

As in the case of DISJ, we will show that communication complexity of UDISJn,t is at
least n times the information complexity of multi-party NANDt, which we will lower bound
by Ω(1/t2), again using properties of Hellinger distance.

Proof. Suppose there exists a (1/2 − ε)-error private coin multi-party NIH randomized
broadcast protocol Π for computing UDISJn,t of total broadcast length at most δn for some
δ > 0. Define t distributions ηi, i ∈ [t] on {0, 1}t (in fact, on the YES instances of NANDt)
as follows.

Pr
(X1,...,Xt)∼ηi

[(X1, X2, . . . , Xt) = ei] = Pr
(X1,...,Xt)∼ηi

[(X1, X2, . . . , Xt) = 0] =
1

2
.

For every σ ∈ {A1, . . . , At}n, we define joint random variables (Xσ
1 , . . . , X

σ
t ) with distri-

bution µσ on ({0, 1}n)t as follows: for each i ∈ [n] independently do the following, if σi = Ai,
set (Xσ

1,i, . . . , X
σ
t,i) ∼ ηi. Using, sub-additivity of mutual information and independence of

(Xσ
1,i, . . . , X

σ
t,i) across the different i’s, we infer that

δn ≥ |Π(Xσ
1 , . . . , X

σ
t )| ≥ I[Xσ

1 , . . . , X
σ
t : Π(Xσ

1 , . . . , X
σ
t )] ≥

∑
i

I[Xσ
1,i, . . . , X

σ
t,i : Π(Xσ

1 , . . . , X
σ
t )].

Averaging over i’s and all possible σ’s we get,

δ ≥ EσEkI[Xσ
1,k, . . . , X

σ
t,k : Π(Xσ

1 , . . . , X
σ
t )] = EkEσ−k

EσkI[Xσ
1,k, . . . , X

σ
t,k : Π].

Hence, there exists a k and a σ−k, such that

EσkI[Xσ
1,k, . . . , X

σ
t,k : Π] ≤ δ. (12.3.1)

We now give a protocol π for computing the multi-party NANDt function as follows:
On inputs x1, . . . , xt, the t parties A1, . . . , At construct n bit inputs X1, . . . , Xt for UDISJn,t
function from x1, . . . , xt as follows: party Ai set the k-bit of Xi to be xi (i.e., Xi,k = xi).
For each i 6= k, σ−k|i tells which party is active. If σ−k(i) = Aj , then party Aj sets Xj,i with
equal probability to 0 or 1, while all other parties (j′ 6= j) sets Xj′,i to be 0. Observe, that
all of this can be done by the t parties independently using their private randomness and the
knowledge of k and σ−k. They, then run the protocol Π on this input (X1, . . . , Xt). Since
UDISJn,t(X1, . . . , Xt) = NANDt(x1, . . . , xt) and Π is a protocol that computes UDISJn,t
correctly on every legal input with error at most 1/2 − ε, we have that π is a protocol
that computes NANDt correctly on every legal input with error at most 1/2− ε. Rewriting
(12.3.1) in terms of protocol π, we have

1

t
·

t∑
i=1

I[Zi : πZi ] ≤ δ,

where Zi is a random vector defined as follows:

Zi =

{
0 with probability 1

2

ei the ith unit vector with probability 1
2
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We can now complete the lower bound using the properties of the Hellinger distance just
as in the case of the disjointness lower bound.

δ ≥ 1

t
·

t∑
i=1

I[Zi : πZi ]

≥ 1

t
·

t∑
i=1

h2(π0, πei) [from Lemma 12.5]

≥ 1

t2
·

(
t∑
i=1

h(π0, πei)

)2

[By Cauchy-Schwarz]

=
1

t2
· h2(π0, π1) [by Claim 12.8] (12.3.2)

≥ 1

2t2
·∆2(π0, π1) [by Lemma 12.2] (12.3.3)

≥ 2ε2

t2

The only difference from the disjointness proof is Inequality (12.3.2) which is proved in
Claim 12.8. This is proved by repeated application of the multi-party Cut-and-Paste
Lemma 12.4 and the triangle inequality. The last inequality (12.3.3) follows from the fact
that NANDt takes different answers on inputs 0 and 1 and hence ∆(π0, π1) ≥ 2ε. This
completes the proof of Theorem 12.7.

This theorem was improved by Gronemeier who proved a Ω(n/t) lower bound [Gro09].

Claim 12.8.
∑t

i=1 h(π0, πei) ≥ h(π0, π1)).

Proof. We will illustrate the proof for the case t = 4. The general case follows by induction.

LHS = h(π0000, π1000) + h(π0000, π0100)

+ h(π0000, π0010) + h(π0000, π0001)

≥ h(π1000, π0100) + h(π0010, π0001) [By Triangle inequality]

= h(π0000, π1100) + h(π0000, π0011) [By Cut-and-Paste Lemma 12.4]

≥ h(π1100, π0011) [By Triangle inequality]

= h(π0000, π1111) [By Cut-and-Paste Lemma 12.4]
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A Weaker proof of Lin’s Lemma 12.5

Lemma 12.9. Let Z be a random variable taking values in {z1, z2} equally likely and Π a
randomized function of Z. Then,

I[Z : Π(Z)] ≥ log2 e

2
· h2(Πz1 ,Πz2).

Proof. Since x ≤ ex − 1, we have ln y ≤ y − 1. Substituting y =
√

pi
qi

, we get

1

2
· ln pi

qi
≤
√
pi
qi
− 1.

Multiplying by qi and summing over i, we obtain

− 1

2 log2 e
·D(Q‖P ) ≤

(∑√
piqi − 1

)
= −h2(Q,P ).

Using the above bound on divergence, we get

I[Z : ΠZ ] = Ez←Z [D(Πz‖Π)]

=
1

2
(D(Πz1‖Π) +D(Πz2‖Π))

≥ log e · (h2(Πz1 ,Π) + h2(Πz2 ,Π))

≥ log e

2
· (h(Πz1 ,Π) + h(Πz2 ,Π))2 [By Cauchy Schwarz]

≥ log e

2
· h2(Πz1 ,Πz2) [By triangle inequality]
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