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13. Lower bound for norm estimation

Lecturer: Prahladh Harsha Scribe: Rakesh Venkat

In this lecture, we will see an application of information theoretic methods to obtain a
lower bound on the communication complexity of the Gap-L∞ problem and generalizations
of this problem. This problem results naturally from trying to prove lower bounds on
estimating the L∞ norm on data streams. The references for today’s lecture are [BJKS04]
and [AJP10].

13.1 The Gap-L∞ problem

Problem 13.1 (the Gap-L∞(m,n) problem). Parameters: n,m (with n � m typically).
The instances of the problem are pairs (x, y) ∈ {0, 1, . . . ,m}n × {0, 1, . . . ,m}n.

YES: ‖x− y‖∞ ≥ m, that is, ∃i : |xi − yi| ≥ m.

NO: ‖x− y‖∞ ≤ 1, that is, ∀i : |xi − yi| ≤ 1.

As usual, x goes to Alice, y goes to Bob, and they have to differentiate between the YES and
NO instances.

Usually we will drop the (m,n) arguments, and simply refer to it as the Gap-L∞ problem.
Our goal for this lecture is to prove the following theorem:

Theorem 13.2 ([BJKS04]). Rpriv
1/3 (Gap-L∞) = Ω

(
n
m2

)
.

As we observed in Lecture 5, this theorem implies lower bounds on the space require-
ments for streaming algorithms approximating the L∞-norm, running on a stream of length
n, where every stream element lies in {0, . . . ,m}.

Corollary 13.3. Any streaming algorithm (even randomized) that approximates the ∞-
norm to within a factor m requires space Ω(n/m2).

13.2 Hardness of approximating Gap-L∞

We will express the Gap-L∞ problem as a a disjunction of n copies of a smaller problem,
called DIST. Each of these subproblems corresponds to a decision problem on one co-
ordinate of the Gap-L∞ problem. We then proceed by applying techniques similar to the
previous lectures on disjointness. First, we define a distribution over the NO instances of
the inputs that acts as a fooling set of sorts. If a private-coins protocol for Gap-L∞ had
communication δn for the original problem, then we will zoom-in on one co-ordinate, and
show that it must have conveyed at most δ bits of information for DIST on this co-ordinate.
But we know that at least some information must have been transmitted for this co-ordinate,
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since our inputs now come from a ‘fooling set’, and using randomized communication the
protocol is able to distinguish between YES and NO instances with error at most ≤ 1

2 − ε.
The main departure from the disjointness proof will come in the fact that the single co-

ordinate DIST problem analysis will require a new property of Hellinger distance, different
from the cut-and-paste property one used earlier. This is the Z-Lemma, and we will state
and prove it along the way.

13.2.1 The DIST Problem

We first define the DIST(m) problem as follows:

Problem 13.4 (the DIST(m) problem). Instances are integer pairs (u, v) ∈ {0 . . .m} ×
{0 . . .m}.

YES: |u− v| ≥ m.

NO: |u− v| ≤ 1.

As before, we will drop the argument m, if is clear from context. Notice that given a
Gap-L∞ instance (x, y), we have

Gap-L∞(x, y) =

n∨
i=1

DIST(xi, yi)

13.2.2 The fooling set distribution for DIST and Gap-L∞

We now define a distribution over questions for the players in the Gap-L∞ problem. Let σ ≡
(Ti, Si)

n
i=1 be a random variable, where each σi = (Ti, Si) taking values uniformly in {A,B}×

{0, . . . ,m − 1}. For example, σ may look like [(A, 0), (B, 4), (B,m − 1), . . . , (A, 7)]. The
distribution on (X,Y ) is defined based on the value of σ drawn; we denote the distribution
of X,Y conditioned on a given value of σ as (Xσ, Y σ):

XσY σ : If Ti = A then

{
Xσ
i ∈R {Si, Si + 1}

Y σ
i = Si + 1

If Ti = B then

{
Xσ
i = Si

Y σ
i ∈R {Si, Si + 1}

Note that conditioned on a fixed value of σ, the questions are chosen independently
across co-ordinates. Also, this distribution has support only on the NO instances, and acts
like a fooling set for the problem.

13.2.3 Part 1: Reducing Gap-L∞ to DIST

All probabilities in what follows are over the distribution defined above, and private ran-
domness used by the players. Let us start off, as in the previous lecture, with Π(X,Y )
being the random variable corresponding to the transcript on the (random) questions X,Y
(for the Gap-L∞ problem). Suppose that this transcript succeeds with probability ≥ 1

2 + ε,
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(this is over only the private randomness of the players, and holds for every input) and has
length ≤ δn. Let (XσY σ) be the questions conditioned on σ (in general, superscripting
with σ refers to conditioning with respect to σ) . We have the familiar inequality chain:

δn ≥ H [Π(X,Y )]

≥ H [Π(XσY σ)|σ]

≥ I [XσY σ : Π(XσY σ)|σ]

≥
∑
i∈[n]

I [Xσ
i Y

σ
i : Π(XσY σ)|σ] . [using the chain rule for mutual information]

=⇒ δ ≥ E
σ,k∈[n]

[I [Xσ
k Y

σ
k : Π|σ]]

= E
k

[
E
σ−k

[
E
σk

[I [Xσ
k Y

σ
k : Π|σ−kσk]]

]]
≥ E

σk
[I [Xσ

k Y
σ
k : Π|σk]] . [for some fixing of k, σ−k]

We show a lower bound on this quantity. As all other co-ordinates are fixed to a NO
instance of DIST, the protocol must compute DIST on co-ordinate k correctly with at least
the same probability as it computes Gap-L∞, which is 1

2 + ε.
Since σk = (Tk, Sk), either Alice or Bob is active (depending on Tk, with probability

1/2 each. Further, the inactive party is set to a fixed value, which is uniform either over
the space {0, . . . ,m− 1} or {1, . . . ,m}. Unrolling the above expectation over the values of
σk gives:

δ ≥ 1

2m

m−1∑
s=0

I
[
X

(A,s)
k : Π

(
X

(A,s)
k , s+ 1

)]
+ I

[
Y

(B,s)
k : Π

(
s, Y

(B,s)
k

)]
.

Note that the variables X
(A,s)
k and Y

(B,s)
k are uniform in {s, s+1}. For simplicity, denote

Πab ≡ Π(a, b). Applying the mutual-information to Hellinger distance property, we get:

δ ≥ 1

2m

m−1∑
s=0

h2(Πs,s+1,Πs+1,s+1) + h2(Πs,s,Πs,s+1)

≥ 1

4m2

(
m−1∑
s=0

h(Πs,s+1,Πs+1,s+1) + h(Πs,s,Πs,s+1)

)2

[By Cauchy Schwarz inequality]

≥ 1

4m2

(
m−1∑
s=0

h(Πs,s,Πs+1,s+1)

)2

[By triangle inequality]

≥ 1

4m2
h2(Π00,Πmm) [By triangle inequality]

However, Π00,Πmm are possibly close in statistical distance, since both correspond to
NO instances. Similarly, Π0m,Πm0 could also be close since both are YES instances. So a
routine cut and paste yields nothing, and we will need something more to proceed.

13-3



13.2.4 Part 2: The Z-lemma, finishing the proof

Lemma 13.5 (Z-Lemma for Hellinger distance). If Π is the transcript for a communication
protocol, and let x, x

′ ∈ X , y, y
′ ∈ Y. Then we have the following property:

h2(Πxy,Πx′y′) ≥
1

2

(
h2(Πxy,Πxy′) + h2(Πx′y,Πx′y′)

)
.

Before seeing the proof of this lemma, let us use it to finish the earlier proof. Applying
the Z-Lemma, we have,

δ ≥ 1

8m2

(
h2(Π00,Π0m) + h2(Πm0,Πmm)

)
≥ 1

16m2

(
∆2(Π00,Π0m) + ∆2(Πm0,Πmm)

)
[Moving from Hellinger to statistical distance]

≥ 1

16m2
· 8ε2

=
ε2

2m2
,

which gives us the final result that Rpriv
1/3 (Gap-L∞) = Ω( n

m2 ) (since the total communication

was δn).
Now, we prove the Z-lemma.

Proof of Z-Lemma 13.5. Let Π(x, y) be the randomized transcript on questions X = x, Y =
y. We know that there are functions qA, qB such that Pr[Π(x, y) = τ ] = qA(τ, x)qB(τ, y).
Using this, we can write:

1

2
(1− h2(Πxy,Πx′y) +

1

2
(1− h2(Πxy′ ,Πx′y′))

=
1

2

∑
τ

√
qA(τ, x)qB(τ, y)qA(τ, x′)qB(τ, y) +

√
qA(τ, x)qB(τ, y′)qA(τ, x′)qB(τ, y′)

=
∑
τ

qB(τ, y) + qB(τ, y′)

2

√
qA(τ, x)qA(τ, x′)

≥
∑
τ

√
qB(τ, y)qB(τ, y′)

√
qA(τ, x)qA(τ, x′) [AM-GM inequality]

=1− h2(Πxy,Πx′y′).

13.3 Generalization using Poincaré inequalities

Let g be a distance function, i.e. g : X × X → {0, 1} satisfies ∀x ∈ X : g(x, x) = 0 and
∀x, y ∈ X × X : g(x, y) = g(y, x). The DIST function is an example of such a distance
function.

The problem we consider, is to lower bound the communication complexity of f : X n ×
X n → {0, 1}, the disjunction of n copies of g:
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f(x, y) ,
n∨
i=1

g(xi, yi)

Andoni, Jayram and Patrascu [AJP10] show that the proof method used for Gap-L∞ can
be generalized to find a lower bound on Rpriv

1/3 (f), as long as g satisfies a Poincaré inequality.
A Poincaré inequality for g is stated with respect to two distributions η0 and η1 satis-

fying: supp(η0) ⊆ g−1(0) and supp(η1) ⊆ g−1(1). g is said to satisfy a Poincaré inequality
with respect to these distributions, if for some α ∈ R+ and ∀ρ : X → S+:

E
x,y∼η0

‖ρ(x)− ρ(y)‖22 ≥ α E
x,y∼η1

‖ρ(x)− ρ(y)‖22.

Poincaré inequalities of this form arise in many places. Notable examples are expanders
and Boolean function analysis.

Example 13.6. Consider the Boolean hypercube H on {0, 1}n, and define the function
g : {0, 1}n × {0, 1}n → {0, 1} as follows: g(x, y) = 0, if ‖x − y‖1 ≤ 1 and g(x, y) =
1 if ‖x− y‖1 ≥ n.

Set η0 to be uniform over the pairs (x, y) with ‖x − y‖1 = 1, and η1 to be uniform
over pairs (x, x̄). Then we can show that g satisfies a Poincaré inequality for any mapping
ρ : H → S+:

E
(u,v)∼η0

[‖ρ(u)− ρ(v)‖22] ≥
1

n
E

(u,v)∼η1
[‖ρ(u)− ρ(v)‖22].

Example 13.7. The DIST function on {0, . . . ,m}×{0, . . . ,m} → {0, 1} satisfies a Poincaré
inequality, with η0 be the uniform distribution over pairs (s, s+1) with s ∈R {0, . . . ,m−1},
and η1 supported completely on the single pair (0,m) :

E
u∈R{0,...,m−1}

[‖ρ(u)− ρ(u+ 1)‖22] ≥
1

m2
‖ρ(0)− ρ(m)‖22.

This has been implicitly shown in the proof of the previous section, using Cauchy-Schwarz
and triangle inequalities.

Let us sketch the general proof method, that runs along the same lines as above. First,
we define the distribution over the questions depending on σ ∈R ({A,B} × η0)

n. Note
that the second component in every co-ordinate is a NO instance drawn from η0. Let
σi = (Ti, (U, V )). Then set the questions as follows:

If Ti = A then

{
Xσ
i ∈R {u, v}

Y σ
i = v

If Ti = B then

{
Xσ
i = u

Y σ
i ∈R {u, v}.

Let Π be the transcript of a private coins protocol for f that succeeds with probability
1
2 +ε and has length ≤ δn. Again, following chain of inequalities as in the Gap-L∞ problem,
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we arrive at the point where, for some fixed σ−k and k, we have that:

δ ≥ E
σk

[I[Xσ
k Y

σ
k : Π]

≥ 1

2
E

(u,v)∼η0
[I[Xuv : Π(Xuv, v)] + I[Y uv : Π(u, Y uv)]]

≥ 1

2
E

(u,v)∼η0

[
h2(Πuv,Πvv) + h2(Πuu,Πuv)

]
≥ 1

4
E

(u,v)∼η0

[
h2(Πuu,Πvv)

]
[Cauchy Schwarz + 4 inequality]

≥ α

4
E

(u,v)∼η1
[h2(Πuu,Πvv)] [Poincaré inequality]

≥ α

8
E

(u,v)∼η1
[h2(Πuv,Πuu) + h2(Πvu,Πvv)] [the Z-lemma]

≥ α

16
E

(u,v)∼η1
[∆2(Πuv,Πuu) + ∆2(Πvu,Πvv)] [moving to statistical distance]

From reflexivity, we know that g(u, u) = g(v, v) = 0, but g(u, v) = g(v, u) = 1 since
(u, v) ∼ η1. Thus, ∆(Πuv,Πuu) ≥ 2ε and ∆(Πvu,Πvv) ≥ 2ε. Plugging this in gives us our
bound:

δ ≥ αε2

2
.

This gives us that Rpriv
1/3 (f) = Ω(αn).
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