13. Lower bound for norm estimation

Lecturer: Prahladh Harsha
Scribe: Rakesh Venkat

In this lecture, we will see an application of information theoretic methods to obtain a lower bound on the communication complexity of the Gap- L_{∞} problem and generalizations of this problem. This problem results naturally from trying to prove lower bounds on estimating the L_{∞} norm on data streams. The references for today's lecture are [BJKS04] and [AJP10].

13.1 The Gap- L_{∞} problem

Problem 13.1 (the Gap- $L_{\infty}(m, n)$ problem). Parameters: n, m (with $n \gg m$ typically). The instances of the problem are pairs $(x, y) \in\{0,1, \ldots, m\}^{n} \times\{0,1, \ldots, m\}^{n}$.

YES: $\|x-y\|_{\infty} \geq m$, that is, $\exists i:\left|x_{i}-y_{i}\right| \geq m$.
NO: $\|x-y\|_{\infty} \leq 1$, that is, $\forall i:\left|x_{i}-y_{i}\right| \leq 1$.
As usual, x goes to Alice, y goes to Bob, and they have to differentiate between the YES and NO instances.

Usually we will drop the (m, n) arguments, and simply refer to it as the Gap- L_{∞} problem. Our goal for this lecture is to prove the following theorem:

Theorem 13.2 ([BJKS04]). $\mathrm{R}_{1 / 3}^{\text {priv }}\left(\right.$ Gap- $\left.L_{\infty}\right)=\Omega\left(\frac{n}{m^{2}}\right)$.
As we observed in Lecture 5, this theorem implies lower bounds on the space requirements for streaming algorithms approximating the L_{∞}-norm, running on a stream of length n, where every stream element lies in $\{0, \ldots, m\}$.

Corollary 13.3. Any streaming algorithm (even randomized) that approximates the ∞ norm to within a factor m requires space $\Omega\left(n / m^{2}\right)$.

13.2 Hardness of approximating Gap- L_{∞}

We will express the Gap- L_{∞} problem as a a disjunction of n copies of a smaller problem, called DIST. Each of these subproblems corresponds to a decision problem on one coordinate of the Gap- L_{∞} problem. We then proceed by applying techniques similar to the previous lectures on disjointness. First, we define a distribution over the NO instances of the inputs that acts as a fooling set of sorts. If a private-coins protocol for Gap- L_{∞} had communication δn for the original problem, then we will zoom-in on one co-ordinate, and show that it must have conveyed at most δ bits of information for DIST on this co-ordinate. But we know that at least some information must have been transmitted for this co-ordinate,
since our inputs now come from a 'fooling set', and using randomized communication the protocol is able to distinguish between YES and NO instances with error at most $\leq \frac{1}{2}-\varepsilon$.

The main departure from the disjointness proof will come in the fact that the single coordinate DIST problem analysis will require a new property of Hellinger distance, different from the cut-and-paste property one used earlier. This is the Z-Lemma, and we will state and prove it along the way.

13.2.1 The DIST Problem

We first define the $\operatorname{DIST}(m)$ problem as follows:
Problem 13.4 (the $\operatorname{DIST}(m)$ problem). Instances are integer pairs $(u, v) \in\{0 \ldots m\} \times$ $\{0 \ldots m\}$.

YES: $|u-v| \geq m$.
$\mathrm{NO}:|u-v| \leq 1$.
As before, we will drop the argument m, if is clear from context. Notice that given a Gap- L_{∞} instance (x, y), we have

$$
\operatorname{Gap}-L_{\infty}(x, y)=\bigvee_{i=1}^{n} \operatorname{DIST}\left(x_{i}, y_{i}\right)
$$

13.2.2 The fooling set distribution for DIST and $\operatorname{Gap}-L_{\infty}$

We now define a distribution over questions for the players in the Gap- L_{∞} problem. Let $\sigma \equiv$ $\left(T_{i}, S_{i}\right)_{i=1}^{n}$ be a random variable, where each $\sigma_{i}=\left(T_{i}, S_{i}\right)$ taking values uniformly in $\{A, B\} \times$ $\{0, \ldots, m-1\}$. For example, σ may look like $[(A, 0),(B, 4),(B, m-1), \ldots,(A, 7)]$. The distribution on (X, Y) is defined based on the value of σ drawn; we denote the distribution of X, Y conditioned on a given value of σ as $\left(X^{\sigma}, Y^{\sigma}\right)$:

$$
\begin{aligned}
X^{\sigma} Y^{\sigma}: \text { If } T_{i}=A \quad \text { then } \quad\left\{\begin{array}{l}
X_{i}^{\sigma} \in_{R}\left\{S_{i}, S_{i}+1\right\} \\
Y_{i}^{\sigma}=S_{i}+1
\end{array}\right. \\
\text { If } T_{i}=B \quad \text { then } \quad\left\{\begin{array}{l}
X_{i}^{\sigma}=S_{i} \\
Y_{i}^{\sigma} \in_{R}\left\{S_{i}, S_{i}+1\right\}
\end{array}\right.
\end{aligned}
$$

Note that conditioned on a fixed value of σ, the questions are chosen independently across co-ordinates. Also, this distribution has support only on the NO instances, and acts like a fooling set for the problem.

13.2.3 Part 1: Reducing Gap- L_{∞} to DIST

All probabilities in what follows are over the distribution defined above, and private randomness used by the players. Let us start off, as in the previous lecture, with $\Pi(X, Y)$ being the random variable corresponding to the transcript on the (random) questions X, Y (for the Gap- L_{∞} problem). Suppose that this transcript succeeds with probability $\geq \frac{1}{2}+\varepsilon$,
(this is over only the private randomness of the players, and holds for every input) and has length $\leq \delta n$. Let $\left(X^{\sigma} Y^{\sigma}\right)$ be the questions conditioned on σ (in general, superscripting with σ refers to conditioning with respect to σ). We have the familiar inequality chain:

$$
\begin{array}{rlrl}
\delta n & \geq H[\Pi(X, Y)] & & \\
& \geq H\left[\Pi\left(X^{\sigma} Y^{\sigma}\right) \mid \sigma\right] & & \\
& \geq I\left[X^{\sigma} Y^{\sigma}: \Pi\left(X^{\sigma} Y^{\sigma}\right) \mid \sigma\right] & & \\
& \geq \sum_{i \in[n]} I\left[X_{i}^{\sigma} Y_{i}^{\sigma}: \Pi\left(X^{\sigma} Y^{\sigma}\right) \mid \sigma\right] . & & \\
\Longrightarrow \delta & \geq \underset{\sigma, k \in[n]}{\mathbb{E}}\left[I\left[X_{k}^{\sigma} Y_{k}^{\sigma}: \Pi \mid \sigma\right]\right] & & \\
& =\underset{k}{\mathbb{E}}\left[\underset{\sigma_{-k}}{\mathbb{E}}\left[\underset{\sigma_{k}}{\mathbb{E}}\left[I\left[X_{k}^{\sigma} Y_{k}^{\sigma}: \Pi \mid \sigma_{-k} \sigma_{k}\right]\right]\right]\right] & & \\
& \geq \underset{\sigma_{k}}{\mathbb{E}}\left[I\left[X_{k}^{\sigma} Y_{k}^{\sigma}: \Pi \mid \sigma_{k}\right]\right] . & \text { [for some chain rule for mutual information] }
\end{array}
$$

We show a lower bound on this quantity. As all other co-ordinates are fixed to a NO instance of DIST, the protocol must compute DIST on co-ordinate k correctly with at least the same probability as it computes Gap- L_{∞}, which is $\frac{1}{2}+\varepsilon$.

Since $\sigma_{k}=\left(T_{k}, S_{k}\right)$, either Alice or Bob is active (depending on T_{k}, with probability $1 / 2$ each. Further, the inactive party is set to a fixed value, which is uniform either over the space $\{0, \ldots, m-1\}$ or $\{1, \ldots, m\}$. Unrolling the above expectation over the values of σ_{k} gives:

$$
\delta \geq \frac{1}{2 m} \sum_{s=0}^{m-1} I\left[X_{k}^{(A, s)}: \Pi\left(X_{k}^{(A, s)}, s+1\right)\right]+I\left[Y_{k}^{(B, s)}: \Pi\left(s, Y_{k}^{(B, s)}\right)\right] .
$$

Note that the variables $X_{k}^{(A, s)}$ and $Y_{k}^{(B, s)}$ are uniform in $\{s, s+1\}$. For simplicity, denote $\Pi_{a b} \equiv \Pi(a, b)$. Applying the mutual-information to Hellinger distance property, we get:

$$
\begin{array}{rlrl}
\delta & \geq \frac{1}{2 m} \sum_{s=0}^{m-1} h^{2}\left(\Pi_{s, s+1}, \Pi_{s+1, s+1}\right)+h^{2}\left(\Pi_{s, s}, \Pi_{s, s+1}\right) & \\
& \geq \frac{1}{4 m^{2}}\left(\sum_{s=0}^{m-1} h\left(\Pi_{s, s+1}, \Pi_{s+1, s+1}\right)+h\left(\Pi_{s, s}, \Pi_{s, s+1}\right)\right)^{2} & & \text { [By Cauchy Schwarz inequality] } \\
& \geq \frac{1}{4 m^{2}}\left(\sum_{s=0}^{m-1} h\left(\Pi_{s, s}, \Pi_{s+1, s+1}\right)\right)^{2} & & \text { [By triangle inequality] } \\
& \geq \frac{1}{4 m^{2}} h^{2}\left(\Pi_{00}, \Pi_{m m}\right) & \text { [By triangle inequality] }
\end{array}
$$

However, $\Pi_{00}, \Pi_{m m}$ are possibly close in statistical distance, since both correspond to NO instances. Similarly, $\Pi_{0 m}, \Pi_{m 0}$ could also be close since both are YES instances. So a routine cut and paste yields nothing, and we will need something more to proceed.

13.2.4 Part 2: The Z-lemma, finishing the proof

Lemma 13.5 (Z-Lemma for Hellinger distance). If Π is the transcript for a communication protocol, and let $x, x^{\prime} \in \mathcal{X}, y, y^{\prime} \in \mathcal{Y}$. Then we have the following property:

$$
h^{2}\left(\Pi_{x y}, \Pi_{x^{\prime} y^{\prime}}\right) \geq \frac{1}{2}\left(h^{2}\left(\Pi_{x y}, \Pi_{x y^{\prime}}\right)+h^{2}\left(\Pi_{x^{\prime} y}, \Pi_{x^{\prime} y^{\prime}}\right)\right) .
$$

Before seeing the proof of this lemma, let us use it to finish the earlier proof. Applying the Z-Lemma, we have,

$$
\begin{aligned}
\delta & \geq \frac{1}{8 m^{2}}\left(h^{2}\left(\Pi_{00}, \Pi_{0 m}\right)+h^{2}\left(\Pi_{m 0}, \Pi_{m m}\right)\right) \\
& \geq \frac{1}{16 m^{2}}\left(\Delta^{2}\left(\Pi_{00}, \Pi_{0 m}\right)+\Delta^{2}\left(\Pi_{m 0}, \Pi_{m m}\right)\right) \quad \text { [Moving from Hellinger to statistical distance] } \\
& \geq \frac{1}{16 m^{2}} \cdot 8 \varepsilon^{2} \\
& =\frac{\varepsilon^{2}}{2 m^{2}},
\end{aligned}
$$

which gives us the final result that $\mathrm{R}_{1 / 3}^{\text {priv }}\left(\operatorname{Gap}-L_{\infty}\right)=\Omega\left(\frac{n}{m^{2}}\right)$ (since the total communication was δn).

Now, we prove the Z-lemma.
Proof of Z-Lemma 13.5. Let $\Pi(x, y)$ be the randomized transcript on questions $X=x, Y=$ y. We know that there are functions q_{A}, q_{B} such that $\operatorname{Pr}[\Pi(x, y)=\tau]=q_{A}(\tau, x) q_{B}(\tau, y)$. Using this, we can write:

$$
\begin{aligned}
& \frac{1}{2}\left(1-h^{2}\left(\Pi_{x y}, \Pi_{x^{\prime} y}\right)+\frac{1}{2}\left(1-h^{2}\left(\Pi_{x y^{\prime}}, \Pi_{x^{\prime} y^{\prime}}\right)\right)\right. \\
= & \frac{1}{2} \sum_{\tau} \sqrt{q_{A}(\tau, x) q_{B}(\tau, y) q_{A}\left(\tau, x^{\prime}\right) q_{B}(\tau, y)}+\sqrt{q_{A}(\tau, x) q_{B}\left(\tau, y^{\prime}\right) q_{A}\left(\tau, x^{\prime}\right) q_{B}\left(\tau, y^{\prime}\right)} \\
= & \sum_{\tau} \frac{q_{B}(\tau, y)+q_{B}\left(\tau, y^{\prime}\right)}{2} \sqrt{q_{A}(\tau, x) q_{A}\left(\tau, x^{\prime}\right)} \\
\geq & \sum_{\tau} \sqrt{q_{B}(\tau, y) q_{B}\left(\tau, y^{\prime}\right)} \sqrt{q_{A}(\tau, x) q_{A}\left(\tau, x^{\prime}\right)} \quad \quad \text { [AM-GM inequality] } \\
= & 1-h^{2}\left(\Pi_{x y}, \Pi_{x^{\prime} y^{\prime}}\right) .
\end{aligned}
$$

13.3 Generalization using Poincaré inequalities

Let g be a distance function, i.e. $g: \mathcal{X} \times \mathcal{X} \rightarrow\{0,1\}$ satisfies $\forall x \in \mathcal{X}: g(x, x)=0$ and $\forall x, y \in \mathcal{X} \times \mathcal{X}: g(x, y)=g(y, x)$. The DIST function is an example of such a distance function.

The problem we consider, is to lower bound the communication complexity of $f: \mathcal{X}^{n} \times$ $\mathcal{X}^{n} \rightarrow\{0,1\}$, the disjunction of n copies of g :

$$
f(x, y) \triangleq \bigvee_{i=1}^{n} g\left(x_{i}, y_{i}\right)
$$

Andoni, Jayram and Patrascu [AJP10] show that the proof method used for Gap- L_{∞} can be generalized to find a lower bound on $\mathrm{R}_{1 / 3}^{\text {priv }}(f)$, as long as g satisfies a Poincaré inequality.

A Poincaré inequality for g is stated with respect to two distributions η_{0} and η_{1} satisfying: $\operatorname{supp}\left(\eta_{0}\right) \subseteq g^{-1}(0)$ and $\operatorname{supp}\left(\eta_{1}\right) \subseteq g^{-1}(1) . g$ is said to satisfy a Poincaré inequality with respect to these distributions, if for some $\alpha \in \mathbb{R}^{+}$and $\forall \rho: \mathcal{X} \rightarrow \mathbb{S}_{+}$:

$$
\underset{x, y \sim \eta_{0}}{\mathbb{E}}\|\rho(x)-\rho(y)\|_{2}^{2} \geq \alpha \underset{x, y \sim \eta_{1}}{\mathbb{E}}\|\rho(x)-\rho(y)\|_{2}^{2}
$$

Poincaré inequalities of this form arise in many places. Notable examples are expanders and Boolean function analysis.

Example 13.6. Consider the Boolean hypercube H on $\{0,1\}^{n}$, and define the function $g:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ as follows: $g(x, y)=0$, if $\|x-y\|_{1} \leq 1$ and $g(x, y)=$ 1 if $\|x-y\|_{1} \geq n$.

Set η_{0} to be uniform over the pairs (x, y) with $\|x-y\|_{1}=1$, and η_{1} to be uniform over pairs (x, \bar{x}). Then we can show that g satisfies a Poincaré inequality for any mapping $\rho: H \rightarrow \mathbb{S}_{+}$:

$$
\underset{(u, v) \sim \eta_{0}}{\mathbb{E}}\left[\|\rho(u)-\rho(v)\|_{2}^{2}\right] \geq \frac{1}{n} \underset{(u, v) \sim \eta_{1}}{\mathbb{E}}\left[\|\rho(u)-\rho(v)\|_{2}^{2}\right] .
$$

Example 13.7. The DIST function on $\{0, \ldots, m\} \times\{0, \ldots, m\} \rightarrow\{0,1\}$ satisfies a Poincaré inequality, with η_{0} be the uniform distribution over pairs $(s, s+1)$ with $s \in_{R}\{0, \ldots, m-1\}$, and η_{1} supported completely on the single pair $(0, m)$:

$$
\underset{u \in_{R}\{0, \ldots, m-1\}}{\mathbb{E}}\left[\|\rho(u)-\rho(u+1)\|_{2}^{2}\right] \geq \frac{1}{m^{2}}\|\rho(0)-\rho(m)\|_{2}^{2} .
$$

This has been implicitly shown in the proof of the previous section, using Cauchy-Schwarz and triangle inequalities.

Let us sketch the general proof method, that runs along the same lines as above. First, we define the distribution over the questions depending on $\sigma \in_{R}\left(\{A, B\} \times \eta_{0}\right)^{n}$. Note that the second component in every co-ordinate is a NO instance drawn from η_{0}. Let $\sigma_{i}=\left(T_{i},(U, V)\right)$. Then set the questions as follows:

$$
\begin{aligned}
& \text { If } T_{i}=A \text { then }\left\{\begin{array}{l}
X_{i}^{\sigma} \in_{R}\{u, v\} \\
Y_{i}^{\sigma}=v
\end{array}\right. \\
& \text { If } T_{i}=B \text { then }\left\{\begin{array}{l}
X_{i}^{\sigma}=u \\
Y_{i}^{\sigma} \in_{R}\{u, v\} .
\end{array}\right.
\end{aligned}
$$

Let Π be the transcript of a private coins protocol for f that succeeds with probability $\frac{1}{2}+\varepsilon$ and has length $\leq \delta n$. Again, following chain of inequalities as in the Gap- L_{∞} problem,
we arrive at the point where, for some fixed σ_{-k} and k, we have that:

$$
\begin{aligned}
\delta & \geq \underset{\sigma_{k}}{\mathbb{E}}\left[I\left[X_{k}^{\sigma} Y_{k}^{\sigma}: \Pi\right]\right. & & \\
& \geq \frac{1}{2} \underset{(u, v) \sim \eta_{0}}{\mathbb{E}}\left[I\left[X^{u v}: \Pi\left(X^{u v}, v\right)\right]+I\left[Y^{u v}: \Pi\left(u, Y^{u v}\right)\right]\right] & & \\
& \geq \frac{1}{2} \underset{(u, v) \sim \eta_{0}}{\mathbb{E}}\left[h^{2}\left(\Pi_{u v}, \Pi_{v v}\right)+h^{2}\left(\Pi_{u u}, \Pi_{u v}\right)\right] & & \text { [Cauchy Schwarz }+\triangle \text { inequality] } \\
& \geq \frac{1}{4} \underset{(u, v) \sim \eta_{0}}{\mathbb{E}}\left[h^{2}\left(\Pi_{u u}, \Pi_{v v}\right)\right] & & \text { [Poincaré inequality] } \\
& \geq \frac{\alpha}{4} \underset{(u, v) \sim \eta_{1}}{\mathbb{E}}\left[h^{2}\left(\Pi_{u u}, \Pi_{v v}\right)\right] & & \text { [the Z-lemma] } \\
& \geq \frac{\alpha}{8} \underset{(u, v) \sim \eta_{1}}{\mathbb{E}}\left[h^{2}\left(\Pi_{u v}, \Pi_{u u}\right)+h^{2}\left(\Pi_{v u}, \Pi_{v v}\right)\right] & &
\end{aligned}
$$

From reflexivity, we know that $g(u, u)=g(v, v)=0$, but $g(u, v)=g(v, u)=1$ since $(u, v) \sim \eta_{1}$. Thus, $\Delta\left(\Pi_{u v}, \Pi_{u u}\right) \geq 2 \varepsilon$ and $\Delta\left(\Pi_{v u}, \Pi_{v v}\right) \geq 2 \varepsilon$. Plugging this in gives us our bound:

$$
\delta \geq \frac{\alpha \varepsilon^{2}}{2} .
$$

This gives us that $\mathrm{R}_{1 / 3}^{\text {priv }}(f)=\Omega(\alpha n)$.

References

[AJP10] Alexandr Andoni, T. S. Jayram, and Mihai Patrascu. Lower bounds for edit distance and product metrics via Poincaré-type inequalities. In Proc. 21th Annual ACMSIAM Symposium on Discrete Algorithms (SODA), pages 184-192. 2010.
[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. J. Computer and System Sciences, 68(4):702-732, June 2004. (Preliminary Version in 43 rd FOCS, 2002). doi:10.1016/j.jcss.2003.11.006.

