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Communication Complexity 21 Oct, 2011 (@ IMSc)

17. Direct Sum(Part IV): Conclusion

Lecturer: Prahlad Harsha Scribe: Sajin Koroth

In this last lecture of the four part seris on direct sum we will be focusing on protocol
compression for product distributions and proving a tighter direct sum result for product
distributions. In the past three lectures we proved that protocol compression along with
analysis of information content of a protocol for fn restricted to f gave direct sum results.
Today we will do a different protocol compression technique which crucially uses the fact
that inputs come from a product distribution to prove a direct sum result which is almost
tight (except for a slight increase in error and poly-logarithmic factors). We will prove the
following protocol compression theorem for product distributions :

Theorem 17.1. [?]

Dµn

ρ (fn)polylog

(
Dµn
ρ (fn)

α

)
= Ω

(
Dµ
ρ+α(f)α2n

)
17.1 Protocol Compression for Product Distributions

We will consider a randomized protocol π using both public and private coins. The inputs
of Alice and Bob come from a distribution µ which is a product distribution. This setting
is illustrated in the figure 17.1.

Figure 1: Communication Setting for Protocol Compression

Alice Bob

X Y

Alice Bob

X Y

τ

π

μ μ

Protocol compression is about compressing a communication protocol to its information
content as far as possible. When we refer to information content of a protocol it is either
of the following definitions of information that we are referring to.

• External Information : This is the amount of information revealed to an external
entity watching the protocol. This is defined as the mutual information between
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the inputs, X,Y and the message transcript including the public randomness used,
π(X,Y ).

ICo
µ(π) , I(XY ;π(X,Y ))

• Internal Information : This is the amount of information one party involved in com-
munication learns about the other parties information.

ICi
µ(π) , I(X;π(X,Y )|Y ) + I(Y ;π(X,Y )|X)

Since each party knows his/her own input, the information revealed by the protocol
is the mutual information between the input of the other party and the transcript of
the protocol including the public randomness used. When the inputs are drawn from
a product distribution (that is the inputs are independent) then external information
equals the internal information.

One way to achieve protocol compression is to do message compression, that is compress
the messages send by each party in each round to the amount of information contained in
the message(information theory guarantees message compression schemes which will achieve
this). But if you do message compression on a general protocol then it is clear that for each
round of the protocol you have to spend at least O(1) bits, but it could be the case that
the global information in the original message is << 1. This scheme would hence fail as
the compressed protocols length would be at least the number of rounds and this in general
could be much more than the information content in the original protocol. Hence you need
to ensure that there is uniformity in the amount of information in each message you send.
For achieving this, suppose if there is a bit transmitted in some round which carries a lot
of information, in the modified protocol we would send a lot of bits such that the majority
of the bits is slightly biased towards the value of the original bit, but each individual bit
is almost unbiased. For doing this we will use the idea of rejection sampling introduced in
the last lecture. To analyze the compressed protocol we will use the protocol tree view of
a private coins protocol. The compression scheme which we will detail later on is : first
fix the public randomness, so that the protocol is now a private coins protocol. Now use
rejection sampling to transform the protocol such that in each node of the protocol tree,
the bit transmitted is almost unbiased. Now in the protocol tree both Alice and Bob will
choose a frontier such that all the paths from roots to a node in the frontier has at least
β information. Now both of the will use rejection sampling with public randomness to
obtain a node w in the frontier. Repeat this until the current frontier reaches the leaf of
the protocol tree and then output the value of the protocol at that leaf.

17.2 Spreading the information uniformly

Recall that a private coins protocol tree is rooted, where each internal node v, the owner of
the node has a probability distribution on its children based on the input, i.e. for node owned
by Alice there is a collection of probability distributions Pv,x supported on the children of
v. Similarly for the nodes owned by Bob there is collection Pv,y. Each path from root to
an internal nodes at depth j is labeled by the messages send out by the parties according
to the protocol and hence can be represented by a binary string of length j. So here after
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when we say node v bear in mind that there is an associated binary representation which
has j bits where j is the level of v in the protocol tree. For the protocol transcript π(x, y)
which also contains the public randomness, we denote by π(x, y)j the jth bit communicated
by the protocol on input x, y and by π(x, y)≤j the j bit prefix of the transcript on input
(x, y) along with the public randomness.

The first step, after fixing the public randomness is transform the private randomness
protocol πR to π

′
R such that π

′
has the following property

∀x, y, v, j Pr
[
π
′
(x, y)j+1 | π

′
(x, y)≤j = v

]
∈
[

1

2
− β, 1

2
+ β

]
But in doing so we want the error of π

′
not to increase more than γ+ε, where ε is the error

of π. For that we need a blowup of log |π|/γ
β2 for each bit in π so that we can use Chernoff

bound to prove that the majority of the extra bits will be equal to the original bit with
probability at least 1− γ.

17.3 Accumulating enough information a.k.a building the
frontier

Now let us analyze the information, divergence at each node. Recall that the divergence
between two distributions P,Q was defined as

D(P ||Q) = Σpi log
pi
qi

And we saw that it is related to information by the following equation.

I[X;Y ] = E
y←Y

[D [XY=y || X]]

Let us take a node of the protocol tree, say v at depth j from root. And let us denote
by π(x, y)j+1 |v≤j the probability distribution on the j + 1th bit transmitted by the pro-
tocol given that jbit prefix of the protocol transcript is v(remember that v is the binary
representation of the path from root to node v in the protocol tree). We define Dπ

x,j(v) and
Dπ
y,j(v) as the following.

Dπ
x,j(v) = D [π(x, Y )j+1 |v≤j || π(X,Y )j+1 |v≤j ]

Dπ
y,j(v) = D [π(X, y)j+1 |v≤j || π(X,Y )j+1 |v≤j ]

If v is owned by Alice then Dπ
x,j(v) as defined above is exactly equal to the amount of

information the j + 1th bit, send by Alice will reveal to Bob about Alice’s input.

Observation 17.2. If v is owned by Alice then

Dπ
x,j ≥ 0

Dπ
y,j = 0
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This is because, if v is owned by Alice then the next bit transmitted does not depend
on Bob’s input y and also Xx = X since we are guaranteed that the distribution on inputs
is a product distribution. Similarly

Observation 17.3. If v is owned by Bob then

Dπ
x,j = 0

Dπ
y,j ≥ 0

Now we prove the relation between divergence at a node and the information content of
the bit transmitted by the node.

E
x,v←π(X,Y )

[
Dπ
x,j(v)

]
= E

x
[D [π(x, Y )j+1 |v≤j || π(X,Y )j+1 |v≤j ]]

= I [π(X,Y )j+1;X | π(X,Y )≤j ;Y ]

This proves that expected value of Dπ
x,j(v) for Alice(for Bob its always zero) is the mutual

information of j + 1th bit of π(X,Y ) and the input X conditioned on the mutual informa-
tion between the transcript upto j bits and the input Y . That is exactly the amount of
information revealed to Bob by j + 1th bit about Alice’s input. Also note that

Σ
|π|−1
j=0 E

x,y,π

[
Dπ
x,y(v)

]
= I[X;π|Y ]

This leads to the following observation.

Observation 17.4.

E
[
Σ
|π|−1
j=0 Dπ

x,j(v) + Σ
|π|−1
j=0 Dπ

y,j(v)
]

= ICµ(π)

Definition 17.5 (Frontier Bv,xy(β)). Given a node v and inputs x, y frontier Bv,xy(β)
contains all nodes w such that w is a descendant of v satisfying the following properties :
For all prefixes w

′
of w :

max

{
Σ
|w′ |−1
j=|v| D

π
x,j(w

′
),Σ

|w′ |−1
j=|v| D

π
y,j(w

′
)

}
< β

and
max

{
Σ
|w|−1
j=|v| D

π
x,j(w),Σ

|w|−1
j=|v| D

π
y,j(w)

}
≥ β

or w is a leaf node.

Let us define the following probability distributions for a w ∈ Bv,xy(β)

Definition 17.6.

Pv,xy(w) , Pr
[
π(x, y)||w| = w | π(x, y)||v| = v

]
Pv,x(w) , Pr

[
π(x, Y )||w| = w | π(x, Y )||v| = v

]
Pv,y(w) , Pr

[
π(X, y)||w| = w | π(X, y)||v| = v

]
Pv(w) , Pr

[
π(X,Y )||w| = w | π(X,Y )||v| = v

]
Where X and Y are the average inputs according to the distribution µ.
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For any element w in the frontier Bv,xy(β),

Pv,xy(w) = Pr
[
π(x, y)|w| = w|π(x, y)|v| = v

]
=

|w|−1∏
j=|v|

Pr [π(x, y)j+1 = wj+1|π(x, y)≤j = w≤j ]

=
∏
j∈Aw

Pr [π(x, y)j+1 = wj+1|π(x, y)≤j = w≤j ]
∏
j∈Bw

Pr [π(x, y)j+1 = wj+1|π(x, y)≤j = w≤j ]

=
∏
j∈Aw

Pv,x(w)
∏
j∈Bw

Pv,y(w)

= PAv,x(w)× PBv,y(w)

Where Aw denotes nodes of Alice in the path from v to w and Bw Bob’s nodes. Similarly
you can prove that

Pv,x(w) = PAv,x(w)× PBv,x(w)

Pv,y(w) = PAv,y(w)× PBv,y(w)

Pv(w) = PAv (w)× PBv (w)

Claim 17.7.

PBv,x = PBv

PBv,xy = PBv,y

PAv,y = PBv

PAv,xy = PBv,x

Proof. PBv,x = PBv because at Bob’s node the next bit depends only on the transcript so
far (v) and Bob’s input y. But Bob’s input y is independent of Alice’s input x as we are
assuming that the inputs come from a product distribution. The other three claims also
follow from a similar argument. Note that this the only crucial place that we are using the
fact that the inputs come from a product distribution.

17.4 One Round Compression Protocol

Let us first assume that both Alice and Bob know the frontier. They use rejection sampling
to find a node w in the current frontier.

Protocol τv,t,β :

1. Sample w ∈ Bv,xy(β) using the public coins with probability Pv(w).

2. Alice accepts w with probability min
{
Pv,x(w)
tPv(w)

, 1
}

.
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3. Bob accept w with probability min
{
Pv,x(w)
tPv(w)

, 1
}

.

4. Alice and Bob send a bit each to notify each other if they have accepted the current
w. They stop if both accept w, otherwise they goto step 1.

We know that Pv,xy(w) = PAv (w)PBv (w). The above protocols accepts a w when its accepted
by both Alice and Bob. Suppose w is owned by Alice, then (assuming no min’s)

Q(w)a(w) = P|v|(w)×
PAv,x(w)

tPv(w)

PBv,y
tPv(w)

= P|v|(w)×
PAv,x(w)

tPv(w)
× 1

t

= PAv,x(w)× 1

t2
= Pv,xy(w)

1

t2

Similarly when Bob owns the node, the same result can be obtained. Hence the above rejec-
tion sampling stopping probability for a specific w in the first round is given by probability
1
t2
Pv,xy. We showed in the last lecture that if we denote by s Pr[T = 1], then the expected

number of rounds is E[T ] = 1
s and if the target distribution is P (x) then s = Q(x)a(x)

P (x) . Since

the target distribution is Pv,xy(w) we get that s = 1
t2

. Our assumption avoiding the min
can be ensured by choosing a large enough t such that

t ≥ Pv,x(w)

Pv(w)

Pv,y(w)

Pv(w)

17.5 Compressed Protocol τβ,t

1. Use public randomness r ← R to obtain a protocol πr.

2. v ←root(πr)

3. While v is not a leaf

(a) v ← τβ,t(v)

4. Output v

The working of the protocol is illustrated by figure 2.
But there is an issue in the implementation of the algorithm, so far we have assumed

that both Alice and Bob know the frontier. But the calculation of frontier depends on both
Alice’s input and Bob’s input. To tackle this issue instead of sampling a node from the
frontier, sample a leaf v of the protocol tree with probability Pv using public randomness.
Now Alice can compute the first point where her divergence crosses β and Bob can compute
the first point where his divergence crosses β on the path v. Use binary search to find the
first point on the path where divergence crosses β(the binary search will ask in each round
Alice and Bob whether their first point lies in the first half of the range or not, and if it is
the case that Alice’s point lies there and Bob’s doesn’t, then we know that at Alice’s point
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Bob’s divergence is strictly less than β)and let us call this node w. The probability of such
w being picked is not reduced by picking a leaf v because we can express the probability of
w being picked as a sum over probabilities that one of the leaf nodes originating from w is
picked.

Recall that the expected number of iterations of the one round compression protocol
is, E[T ] = t2. Each one round compression protocol can be implemented using O(t2 log |π|)
expected bits of communication(the log |π| coming from the binary search for w).

17.6 Analysis of the Protocol

So it remains to analyze the number of steps of the compression protocol τt,β samples
elements from successive frontiers until it hits a leaf node.

We will not be proving the following claim, but we will give a proof sketch and the
remaining details can be worked out.

Claim 17.8. For all x, y, t, β,

Pr
w←Bβv,xy

[
Pv,x(w)

Pv(w)
≥ t
]
≤ exp

(
−Ω

(
log t−O(β2)

β

))
, δβ(t)

Proof Sketch. Let P =
Pv,x(w)
Pv(w)

, then we get

P =
∏ Pr [π(x, Y )j+1 = wj+1 | π(x, Y )≤j = w≤j ]

Pr [π(X,Y )j+1 = wj+1 | π(X,Y )≤j = w≤j ]

Let Zj equal the log of jth term in the above product. We get logP = ΣZj .

E
[
Zi |w≤i−1

]
= Dπ

x,i(w)

Furthermore since we transformed π to π
′

such that the probability of each bit transmitted
assuming a value is in [12 − β, 12 + β] we get for each i, |Zi| = O(β). And Ti = Zi −
E [Zi | Z1 . . . Zi−1]. You can check that T1, T2, . . . is a martingale with bounded increments.
And you can also check that E [Ti|T1 . . . Ti−1] = 0.

Now let us analyze the probability that the compressed protocol τβ,t stops in a single

step using the above claim. Let us denote by min1(w) , min
{
Pv,x(w)
tPv(w)

, 1
}

and min2(w) ,

min
{
Pv,x(w)
tPv(w)

, 1
}

.

Pr[T = 1] = Σw min
1

(w) min
2

(w)

≥ Σ
w good for min1,min2

1

t2
Pv,xy

≥ 1

t2
(1− 2δβ(t))

Hence we get that expected number of iterations of τβ,t(v) is O( t2

1−2δβ(t)).

We will now prove that no sample gets undue attention, i.e.,
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Claim 17.9.
P
′
v,xy(w)

Pv,xy(w)
≤ 1 + 2δt(β)

Where P
′

is the distribution obtained by rejection sampling in one round compression pro-
tocol.

Proof. For all w

P
′
v,xy(w) =

Pv(w)a(w)
1
t (1 + δt,β)

Now let us fix the parameters such that we get the direct sum result for product distri-
butions. Let us fix β such that 1

k log(|π|/ε) . And let t be a small positive constant such that

δβ(t) = exp
(
−Ω( 1

β )
)

= ε
|π| . Now the total communication by the protocol is

El
[
Dπ
x(l) +Dπ

y (l)

β

t2 log |π|
1− 2δβ(t)

]
= O

(
ICµ(π)polylog

(
π
′

ε

))

And for all leaves l,

Pr [τ outputs l]

Pr [π(x, y) = l]
≤ (1 + 2δβ) (t))

|l|
β ≤ exp (O(ε))
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Figure 2: Illustration of the compressed protocol. The grey nodes represent nodes in a given
frontier. The protocol progresses by choosing a frontier node and calculating a frontier from
that node and repeating by choosing a node from the new frontier
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