
Communication Complexity 1 Nov, 2011 (@ IMSc)

20. Predecessor searching problem. Part II

Lecturer: Meena Mahajan Scribe: Pranabendu Misra

20.1 The Predecessor Problem

We are given a universe U of size 2m and a subset S ⊆ U , |S| = n. For x ∈ U , define the
following functions:

Definition 20.1. predS(x) = max{y ∈ S|y ≤ x}.

Definition 20.2. rankS(x) = |{y ∈ S|y ≤ x}|.

Definition 20.3. ⊕ rankS(x) = rank(x) mod 2.

Now given S, we wish to answer queries on S. The preprocessing algorithm should store
information about S in an appropriate way so that given any x ∈ U , we can find fS(x)
efficiently, where f could be one of the above functions.

Definition 20.4. A randomized (s, w, t)ε storage scheme for fS(x) consists of
(1) a deterministic storage algorithm which takes as input S ⊆ U and outputs a data

structure T with s cells, each cell w bits long.
(2) a randomized query algorithm which, on input x ∈ U , probes at most t cells in T ,

and outputs fS(x) correctly with probability at least (1− ε).

All these functions depend on S; henceforth we drop the subscript S in predS , rankS
and ⊕ rankS for convenience. Some departures from last time: we use m for the bit size
of an element in the universe. We do not assume that the cell-word-size is m but allow an
independent parameter w.

Last time we saw an (O(n), O(m), O(1)) deterministic scheme for the dictionary problem
using FKS hashing. We also saw an (O(mn), O(m), O(logm)) deterministic scheme for the
predecessor problem, using X-tries and the dictionary solution. We also stated without

proof that there is an (O(mn), O(m),min
[

logm
log logm ,

√
logn

log logn

]
) deterministic scheme for the

predecessor problem.
In this lecture we will show that the upper bound is almost tight:

Theorem 20.5. For s ∈ poly(n), w ∈ poly(m), if there is an (s, w, t)ε randomized scheme

for the predecessor problem, then t ∈ Ω
[

logm
log logm ,

√
logn

log logn

]
.

The references for today’s lecture are [Sen03, SV08]. We will actually prove the above
theorem for the ⊕ rank function. Then we will make use of the following observation:

20-1

Observation 20.6. If there is an (s, w, t)ε scheme for pred(x), then there is an (s +
O(n), w +O(m), t+O(1))ε scheme for rank(x). This is because for each y ∈ S, if y is the
predecessor of x, then rank(x) = rank(y). So given x we first find pred(x), and then query
a dictionary to find rank(pred(x)). And for each y ∈ S, we can use the FKS scheme for
the dictionary problem, to store rank(y).

Similarly, under this hypothesis, ⊕ rank(x) also has an (s+O(n), w+O(m), t+O(1))ε
scheme.

Let (m,n) denote the size of the universe |U | = 2m and the size of the subset |S| = n.
We carry these parameters as subscripts with the function.

To actually prove the theorem for the ⊕ rankm.n function, we will consider the communi-
cation game associated with ⊕ rankm,n. Alice has an element x ∈ U , with x = (x1, . . . , xm),
each xi ∈ {0, 1}. Bob has the subset S = {y1, . . . , yn} ⊆ U . They wish to determine
⊕ rankm,n(x) with respect to S.

Now, given a (2a, b, t)ε scheme for ⊕ rankm.n, there is a protocol for the communication
game which satisfies the following,

(a) Messages from Alice to Bob are a bits long,

(b) Messages from Bob to Alice are b bits long,

(c) Alice begins, and there are 2t rounds,

(d) The protocol errs with probability at most ε.

The protocol is simple: Bob runs the preprocessing algorithm and constructs the data-
structure T . Alice runs the query algorithm. Whenever she needs to probe a cell, she sends
the cell number to Bob, who responds with the contents of that cell in T . The randomness
can be private or public; it is required only by Alice, while running the query algorithm.

We call any protocol with these properties a (2t, a, b)A(ε,m,n) protocol for ⊕ rankm,n. A

(2t − 1, a, b)B(ε,m,n) protocol for ⊕ rankm,n is a similar (2t − 1)-round protocol where Bob

begins the communication. Note that a protocol for (m,n) is also a protocol for (m′, n) for
every m′ ≤ m.

The lower bound proof proceeds as follows. Suppose we have a (2t, a, b)Aε protocol for
⊕ rankm,n. Using round elimination we will then show that:

(2t, a, b)Aε protocol for ⊕ rankm.n

⇒ (2t− 1, a, b)B
ε+ 1

12t

protocol for ⊕ rankm
k
,n

[eliminate Alice’s first message; still OK for slightly smaller universe]

⇒ (2t− 2, a, b)A
ε+ 1

6t

protocol for ⊕ rankm
k
−log l,n

l

[eliminate Bob’s first message; still OK for slightly smaller set]

We will show that for c1 = 72 ln 2, k = c1at
2, and l = c1bt

2, each round elimination adds
no more than 1/6t to the error.

Consider the following parameters: m is any given value. Choose n = 2log2m/ log logm.
Set c1 = 72 ln 2, and let c2, c3 be any constants greater than 1. Choose a = c2 log n, b = mc3 .

20-2

Let t = logm
(c1+c2+c3) log logm . Choose k = c1at

2, l = c1bt
2. With these parameters, we can

verify that:

(1) m
k − log l ≥ m

2k .

(2) m′ = m
(2k)t ∈ m

Ω(1).

(3) n′ = n
lt ∈ n

Ω(1).

Then, if we repeat round elimination t times, we obtain a (0, a, b)ε+ 1
6

protocol for ⊕ rankm′,n′

for non-trivial m′, n′. For ε < 1
3 , we get a zero round protocol with error less than 1

2 . But this
means that with no information whatsoever about the set S (since there is no communication
between Alice and Bob), Alice can guess ⊕ rank(x) and be right with probability greater
than 1/2, which is a contradiction.

We now proceed to prove the round elimination theorem. Assume that the constants
are chosen as above. Suppose P is a (2t, a, b)Aε protocol for ⊕ rankm.n. We will convert P
into a (2t− 2, a, b)A

ε+ 1
6t

protocol for ⊕ rankm
k
−log l,n

l
.

20.2 Round Elimination: Eliminating Alice’s message

We will first convert P into a (2t− 1, a, b)B
ε+ 1

12t

protocol Q for ⊕ rankm
k
,n. To do so we will

use the randomized version of Yao’s lemma which states, Rε(f) = maxµD
µ
ε (f) where the

protocols Dµ
ε are randomized. We will show that for any distribution µ over (x, S), there is

a (2t − 1, a, b)B
ε+ 1

12t

protocol Q that solves ⊕ rankm
k
,n well when the inputs are distributed

according to µ. Recall that P works well for all distributions; in particular, it works well
for (m,n) distributions that somehow extend µ.

Choose any distribution µ over (x, S) where |U | = 2
m
k and |S| = n. We first design

a protocol (2t, a, b)Aε protocol Q′ for ⊕ rankm
k
,n with respect to µ. Then we adapt Q′ to

obtain Q.

The protocol Q′

Consider a run of the protocol P . Let Alice’s input be x′ = x1, . . . , xk where x′ is broken
up into blocks of length m/k, and each block xi is drawn according to µ. Let M be the
first message that Alice sends in the protocol P while using randomness R.

I(x′ : MR) = I(x′ : R) + I(x′ : M |R)

≤ 0 +H(M |R) (the input x and randomness R are not correlated)

≤ H(M)

≤ |M | = a

Therefore,

a ≥ I(x1, . . . , xk : MR)

= I(x1 : MR) + I(x2 : MR|x1) + . . .+ I(xk : MR|x1, . . . , xk−1)

20-3

Therefore, there is a block numbered i ∈ [k] such that

I(xi : MR|x1, . . . , xi−1) ≤ a

k

That is, the first message from Alice and the public randomness together give Bob very
little information about the ith block, even if Bob knows the strings in all the preceding
blocks. Fix such an i. By definition,

Ex1=u1,...,xi−1=ui−1 [I(xi : MR|x1 = u1, . . . , xi−1 = ui−1] ≤ a

k

So ∃u1, . . . , ui−1 such that,

I (xi : MR|x1 = u1, . . . , xi−1 = ui−1) ≤ a

k

Fix these u1, . . . , ui−1.
Now we start designing Q′. Alice gets x ∈ U = 2

m
k and Bob gets a set S ⊆ U of size

n, where (x, S) are drawn according to µ. To run P , they must extend their inputs to look
like inputs to P . The idea is to embed x and S into the ith block of suitable chosen longer
strings, so as to make the first message almost irrelevant.

Bob extends his set by prefixing each element of S with u1 . . . ui−1 and suffixing it with
zeroes. That is, he constructs the set S′ = {u1 . . . ui−1y0(k−1)m

k |y ∈ S}.
Alice constructs the element x′ by prefixing x with u1 . . . ui−1 and suffixing it with k− i

blocks each chosen according to µ using private randomness. Thus x′ = u1 . . . ui−1xxi+1 . . . xk,
where xi+1, . . . , xk are drawn according to µ.

Observe that ⊕ rankm
k
,n(x, S) = ⊕ rankm,n(x′, S′). So Alice and Bob can now run the

protocol P to determine ⊕ rankm
k
,n(x, S). This is the (2t, a, b)Aε protocol Q′ for ⊕ rankm

k
,n.

The protocol Q

Observe that because of the way we constructed the protocol Q′, the first message M sent
by Alice to Bob contains very little information about x, i.e. I(x : MR) ≤ a

k . Since
M contains so little information about x, Bob might as well replace it with an “average”
message. This will introduce some additional error, but we can keep this within bounds
using the following:

Theorem 20.7. (Average Encoding Theorem) Let X,Y be correlated random variables
with joint distribution rx,y. Let F be the marginal distribution of Y . For any x, let F x denote
the distribution of Y conditioned on the event X = x. Then,∑

x

Pr[X = x] ‖F x − F‖1 ≤
√

(2 ln 2)I(X : Y)

Proof. Consider the definitions of these quantities:

F (y) =
∑
x′

rx′,y; F x(y) =
rx,y∑
y′ rx,y′

; Pr(X = x) =
∑
y′

rx,y′ .

20-4

Define the following distributions on XY :

P (x, y) = Pr[X = x]F x(y) Q(x, y) = Pr[X = x]F (y)

The first distribution P is exactly the joint distribution rx,y. The second distribution Q is
a product distribution: imagine independent random variables X ′, Y ′ distributed according
to the marginals, and consider their joint distribution. Therefore,

LHS in Theorem = ‖P −Q‖1 ≤
√

(2 ln 2)D(P ||Q) =
√

(2 ln 2)I(X : Y)

Here, D(P ||Q) is the relative entropy or Kullbach-Leibler distance between P and Q. Recall
the discussion in Lecture 15, where it was related to the total variation ∆, which is itself
half the `1 distance (Lecture 12). This gives the inequality above.

Now we define the (2t − 1, a, b) protocol Q for ⊕ rankm
k
,n, where (x, S) are drawn ac-

cording to distribution µ.
Alice gets a string x of m

k bits.
Bob gets a set S of size n.
Bob constructs S′ = {u1 . . . ui−1y0(k−1)m

k |y ∈ S}. Bob then uses public randomness R
to construct the ”average” message. That is, using public randomness he samples Ui, . . . , Uk
according to µ, and then simulates the protocol P to generate the first message Alice would
have sent if her input were u1 . . . ui−1Ui . . . Uk. We call this the “average” message M ′.

Observe that Alice also knows M ′, because Bob uses public randomness R. Now Alice
does a ”reverse engineering” of M ′. Using private randomness, she samples Vi+1, . . . , Vk
according to µ, conditioned on the message being M ′ and Vi being x. She then constructs
x′ = u1 . . . ui−1xVi+1 . . . Vk. This ensures that Alice and Bob now have “consistent” states
with input x, S and first message M ′, and Bob still has very little information about x.

Now Alice and Bob proceed using the protocol Q′ (which itself uses P) from the second
message onwards.

Calculating the error

Assume Alice’s input is x. Consider the following distributions on the set of first messages
that can be be sent by Alice. Let F x be the distribution in protocol Q′, and F be the
distribution in protocol Q where Bob samples an ”average” first message. By the Average
Encoding Theorem 20.7, and the choice of i, u1, . . . , ui−1,

∑
x

Pr[X = x] ‖F x − F‖1 ≤
√

(2 ln 2)I(X : MR) ≤
√

(2 ln 2)
a

k

20-5

Hence

Pr[Q errors] = Pr[Q errors |M = M ′]Pr[M = M ′] + Pr[Q errors |M 6= M ′]Pr[M 6= M ′]

≤ Pr[Q errors |M = M ′] + Pr[M 6= M ′]

= Pr[Q′ errors] +
∑
x

Pr[X = x]Pr[M 6= M ′|X = x]

≤ ε+
∑
x

Pr[X = x]
1

2
‖F x − F‖1

≤ ε+
1

2

√
2 ln 2

√
a

k

For a suitable choice of k (at least 72(ln 2)at2), we will get the error to be less than ε+ 1
12t .

20.3 Round Elimination: Eliminating Bob’s message

Now assume we have a (2t − 1, a, b)Bδ protocol P for ⊕ rankM,N , where M = m/k and
N = n. Following a similar strategy as above, we will convert P into a (2t − 2, a, b)A

δ+ 1
12t

protocol Q for ⊕ rankM−log l,N
l

.

Consider any distribution µ on (x, S), where x ∈ 2M−log l and |S| = N
l .

Now let Bob’s input in protocol P be S. Partition S based on the first log l bits as
S = [1].S1 ∪ . . . ∪ [l].Sl, where [i] is the representation of i using log l bits and [i].Si =
{[i] ·y|y ∈ S′i}. Assume that the Si are chosen according to µ. (P works for any distribution
of S; in particular, for this distribution.)

Let M be the first message sent by Bob in protocol P while using randomness R. Then,

b ≥ I(S : MR) =
∑
i

I(Si : MR|S1, . . . Si−1)

So ∃i such that I(Si : MR|S1 . . . Si−1) ≤ b
k . Fix such an i. By definition,

b

k
≥ ES1=s1...Si−1=si−1I[Si : MR|S1 = s1, . . . , Si−1 = si−1]

So, ∃s1, . . . , si−1 such that I(Si : MR|S1 = s1, . . . , Si−1 = si−1) ≤ b
k . Fix these sets

s1, . . . , si−1.
Now the (2t − 1, a, b)Bδ protocol Q′ for ⊕ rankM−log l,N

l
is as follows. Bob and Alice

embed their inputs into inputs suitable for protocol P .
Bob gets a set S of size N

l . Bob draws sets Si+1 . . . Sl according to µ using public
randomness, and constructs S′ = [1].s1 ∪ . . . ∪ [i− 1].si−1 ∪ [i].S ∪ [i+ 1].Si+1 ∪ . . . ∪ [l].Sl.

Alice gets a string x of length M − log l. Alice constructs the string x′ = [i] · x.
Now observe that ⊕ rankS′(x

′) = ⊕ rankS(x). Therefore Alice and Bob run the protocol
P on (x′, S′). This is the protocol Q′ for ⊕ rankM−log l,N

l
.

In this protocol, Alice knows the sets s1, . . . , si−1 since they are fixed. By choice of the
index i and these sets, knowing this and after getting the first message from Bob, she still
has very little (at most b/k) information about S. So if the first message is dispensed with

20-6

and replace with an average message, the error won’t increase much. This gives the protocol
Q: As before, Alice will sample the average first message M ′ with public randomness, and
Bob will “reverse engineer” the process to sample Si+1 . . . Sl conditioned on M ′ and S.

To bound the error, as before, use the Average Encoding Theorem. For a suitable choice
of l (at least 72(ln 2)bt2), we will get the error to be less than δ + 1

12t .

References

[Sen03] Pranab Sen. Lower bounds for predecessor searching in the cell probe model. In Proc.
18th IEEE Conference on Computational Complexity, pages 73–83. 2003. doi:10.1109/

CCC.2003.1214411.

[SV08] Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the
cell probe model. J. Computer and System Sciences, 74(3):364–385, 2008. (Preliminary
version in in 28th ICALP, 2001 and 18th IEEE Conference on Computational Complexity,
2003). arXiv:cs/0309033, doi:10.1016/j.jcss.2007.06.016.

20-7

http://dx.doi.org/10.1109/CCC.2003.1214411
http://dx.doi.org/10.1109/CCC.2003.1214411
http://arxiv.org/abs/cs/0309033
http://dx.doi.org/10.1016/j.jcss.2007.06.016

	The Predecessor Problem
	Round Elimination: Eliminating Alice's message
	Round Elimination: Eliminating Bob's message

