Communication Complexity 11 Nov, 2011 (@ IMSc)

Lec. 23: The gap-Hamming problem (part II)

Lecturer: Meena Mahajan Scribe: Raja S

Summary

In this lecture, we have proved a lower bound of (n) for the gap Hamming distance
(GHD,,) problem. This result was first proved in [CR11] and followed by several other
proofs [Vid11, Shell]. We have followed the proof given by A.A.Sherstov [Shell], which
uses the corruption bound from problem set 2 (see Appendix).

Theorem 23.1 ( [Shell]). R%(ORTn) =Q(n).

Corollary 23.2 ( [Shell]). Ri1(GHD,,) = Q(n).

23.1 Proof outline

1. To prove Ri(GHD,) = Q(n), we define another problem called gap orthogonality
3
ORT,, and we reduce ORT,, to GHDy. It then suffices to prove R1(ORT,) = Q(n).
3

2. To prove R% (ORT,,) = Q(n), by Yao’s lemma, it suffices to prove D} (ORT),) = Q(n)
for some . We choose p to be uniform. ’

3. We use the corruption bound to prove R1(ORT),) = Q(n). In order to use this, we
3
need to show that

(a) w(ORT™L(+1)) is large (i.e., ©(1)), and

(b) there exists a small enough e such that any rectangle that is not e-1-corrupted
must be small. That is, VS, T C {—1,+1}", if w(ORT}(+1) N (S x T)) <
en(ORT™H(—=1) N (S x T)) then u(S x T) < exp(—Q(n)).

23.2 Definitions

The gap orthogonality problem is defined as follows. Let z,y € {—1,+1}". The function
ORT,,(x,y) is defined as

—1if |z, )| <
ORT,(z,y) =
1 (2, )] > Y2

The general gap Hamming distance problem GHD,,;, is defined as follows. Let z,y €
{—1,+1}". The function GHD,, 1 4(z,y) is defined as,

—1 if(z,y) <t-yg
GHD,, 1 4(z,y) =
+1 if (z,y) >t+g
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Note that both ORT,, and GHD,;, are partial functions. The function GHDy is just
GHD NONN

23.3 Proof Details

First we establish the first stage from the proof outline.
Claim 23.3. ORT),, reduces to GHDy, where N = O(n).

Proof. In the last lecture, we saw that GHD,, ; , reduces to GHDy, using a padding tech-
nique. The idea is to first reduce ORT), to GHD,, ; , which in turn reduces to GHD y.

Let z,y € {—1,4+1}" which satisfies the promise (i.e., ORT,,(z,y) is defined). Then
ORT,,(z,y) can be solved using 2 calls to GHD,, ¢ 4(x,y), as follows.

-1 if GHDn 3vm @([L’,y) =-1& GHDn 3vn @(xvy) =+1

16 ’ 16 16 ’ 16

ORT,(z,y) =

" 716 016 716 016

We know that GHD,,, ; 4 can be reduced to GHD y using padding. Examining the parameters
m, t, g in the calls here relative to n, we see that N € O(n) suffices.
Thus, we have shown that ORT,, reduces to GHD . O

Now consider the Stage 3(a) from the proof outline.
Claim 23.4. u(ORT}(—1)) = ©(1).

Proof. Let z,y € {—1,+1}". We know that (z,y) = n — 2A(x,y) (where A(.,.) is the
Hamming distance). Note that if A(z,y) € [§ — %, 5+ %] then |(x,y)| < %. For each
fixed z, we count number of y's such that [{(z,y)| < %. Using the fact that there is an

absolute constant ¢ > 0 such that for k close to n/2, (Z) > j;ﬁ, we see that

ny,vn 28 2%
k)] = 4 cy/n  4c

Thus, the total number of z,y € {—1,41}" such that |(z,y)| < % is at least 242—:.
Since p is the uniform distribution, we have

Number of y's with [(m,y)] < \gﬁ} =

22n 1 1
T l-1)>2 . — = —
pORT (1)) = 7= 0 = 10

O

The rest of the lecture is devoted to proving Stage 3(b) of the proof outline; that is,
showing that any rectangle that is not 1-corrupted must in fact be small. We proceed via
the following steps.
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Step 0. For parameters €, to be chosen later, let p = 2/2%". Assume to the contrary
that some rectangle R = S x T is not 1-corrupted and is large.

Large: p(R) > p. Since u(R) < |S|/2", we can then conclude that |S| > p2" =
2. 200=9)" Similarly, we can conclude that |T| > 2 - 201",

Not 1-corrupted: p(ORT™H(+1)N (S x T)) < en(ORTH—=1)N (S x T)) < eu(S x T).

Step 1. Using the assumption that R has a “very high” density of —1s (because it is not
1-corrupted), find A C S with a “fairly high” density of —1s (to be formally defined
below) in each row, such that |A| > @

Step 2. Using the assumption that S is large, and hence that A is large, show that there

exists a set A’ C Aof k = 16 ‘nmear-orthogonal” vectors x1, ..., T.

Step 3. Show that for any set W of m near-orthogonal vectors x1, ..., Z,;, a random y is,
with high probability, far from orthogonal to at least one x; (and so the corresponding
ORT(z;,y) is +1).

Step 4. Since A’ C A, A’ x T has a fairly high density of —1s. Find a B C T with a
moderately high density of —1s within A’ x B such that |B| > |T|/3. Using the
assumption that T is large, conclude that B is quite large. From Steps 2,3, conclude
that B cannot be quite large. This gives a contradiction.

Proof of Step 1:
Define the set A as follows:

A = {zeS|# +Usin {z} xT <2|T|}

An averaging argument shows that |A| > @ > o(l-a)n,

(If |4] < ‘—g‘, then there are at least (@ + 1) rows in S such that each row has more
than 2¢|T’| entries as +1. Thus, we have more than ¢|T||S| entries as +1 in the rectangle
S x T, contradicting the assumption that R is not 1-corrupted.)

Proof of Step 2:

Say that a set of vectors x1, ..., zj in {+1, —1}" is near-orthogonal if for each ¢ € [k — 1], the
vector x;41 is almost orthogonal to (has a very small projection on) the subspace spanned
by x1,...,x;. Specifically, for each 4, || Projspants, . ..z} Tit1ll < @

We prove the following. Let A C {—1,4+1}". For a sufficiently small constant o > 0,
which will be specified at the end of this Step, if |A| > 2(-)n then A contains a set A’ of
k = | {5 near-orthogonal vectors z1, ..., 7.

Pick 21 € A aribitrarily. Using Talagrand’s inequality (see Appendix), a randomly
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picked z is unlikely to have a large projection on the space spanned by z;.

. n . n
P o, all > | < Br [ llpros all— 11> ¥~ 1 ot

(L2 —c—1)2

)

< 275" for some constant 3; that depends only on c.

< exp(— -

Also, since |A| is large, a randomly picked z is likely to be in A with good probability;
Proc (—1,+1n[r € A] > 279", Putting these two together, a randomly picked = is likely to
be both in A and have a small projection on the space spanned by x1. That is,

NG

Pr ||| proj,, || < —-- AND z € A\{xl}} =1-Pr [Hprojxle > \gﬁ OR z ¢ A\ {z1}

>1—[27%"41-27°"  (union bound)
—9—on _ 27,8111

Let @ < 1. Then the RHS is strictly positive. Therefore, there exists x5 € A that is near
orthogonal to x1. Let’s fix it.
We continue adding vectors this way. If z1,...,z; span space V, then dim(V) < j.

vn

E;I' H pro.]span(xh...,xj) :I:H > :| < E;I' |: ’ H pro.]span(xl,...,xj) :ZIH - \/3‘ > ? —VJ]—ctec

3
NI
< exp(—( 3 p W)Q)
< exp(—fjn)

Here 3; is a constant depending only on c and j. By a similar argument as above, a random
x will, with non-zero probability, be a new element of A and have a small projection with
respect to the already chosen vectors. So we can find zj41.

Choose a < Bj for 1 < 7 < k = 5. In fact, let o be slightly smaller than the

10°
smallest 3;, to account for the fact that each x;,1 must be chosen not just from A but from
A\ A{z1,...,2;}. Then we can choose k = | {;] near-orthogonal vectors in A.

Proof of Step 3:

Let m < n/10, and fix any set W of vectors z1, ..., z,, € {—1,+1}" that are near-orthogonal.
We want to show that with high probabilty, a random y is far-from-orthogonal to at least
one x;. Considering the complement event, we want to show that

Pry Y (ai)| < Y| € exp(-02m)

Consider the m x n matrix M whose i** row is z; (We omit the notation for transpose;

clear from the context). We want to show that Pry[ || My||s < %] < exp(—€(m)). Since

[IMy|leo < ||[My|| < +/m||Myl|s, it suffices to instead prove that

Pr [|1My|? > T2 > 1 exp(—Q(m)).
Y 16
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Consider a singular value decomposition SVD of M as M = UDV! where U,V are
unitary matrices of order m and n respectively, and D is a “rectangular diagonal” m x n
matrix with diagonal entries oy > ... > o,,. D is uniquely defined by M. Let u;,v;
denote the columns of U,V respectively. Then for any vector y, ||My||> = (My)!(My) =
(UDV'y)(UDV'y) = (DV'y)(DV'y) = 312, o7 (vi,y)*.

To show that ||My]||? is large for many ¥y, we prove the following:

Claim 23.5. Many o; are large. Specifically, o1 > 09 > ... > opmy > 0.51/n.

First, let us see why proving this claim is enough. Let V' = {v; : 0; > 0.51/n}. By the
claim, dimspan(V) > . For every vector y,

||My|‘2 ZU y,Uz 0 51\/>) Z <y7 Ui>2 > 026”” projspan(V) y||2
v; eV

Using Talagrand’s inequality, we can now conclude that

mn .
pr (1101 2 5] = P |l prodanc ol = > 1 exp(~2(m)

>__m
~ 16 x 0.26

Proof. (Of Claim 23.5) We now prove the clalm First, we get a set of orthogonal vectors
x;, ey &y, from 21, ..., 2yt For each ¢, define m = Ti — PrOjspan(zy,....e;_) Ti- (These are the
vectors that would be returned by the Gram—Schmldt procedure. ) Then we can show (see
below) that n > [|z;||? > 5.

|42 = Hx;|]2 + PIOjspan(er,....zi-1) z;]|*  (since these are orthogonal components of ;)
n= ||xz||2 + H projspan(:pl,...,xi,l) $1H2 ( T; € {—L _|_1}n )

m <24 DMOanterser ) ] < % by near-orthogonality )

n
9
n > szHQ ( H projspan(ml,‘..,mi_l) xl” >0

. B . /
Let M’ denote the m x n matrix whose " row is ;.

Now consider the Frobenius norm of M, defined as |[M||p = />, ; M. We will use

the following proposition, to be proved later.

Proposition 23.6. For all N, o,41(M) > rank(%%)—r (01 ) ||M||F\f)

Using the above proposition with N being the Gram-Schmidt matrix M, we get

/ / 8n / 8mn
<xiﬂxi>:|’xi”227; <M7M>27
9 9
o1(M') < max||a|| = Vi ||M]|r = vimn
1 %mn
Hence ory1(M) > — vmnyr
m—r\ /n
Hence for r =[], orq1(M) > 0.51/n. O
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All that remains in this Step is to prove Proposition 23.6).
Proof. (Of Proposition 23.6)

The largest r singular values satisfy

o1+ ...+0. < ry/(6?+..4+02) by Cauchy-Schwartz
< Vr|M||r
The remaining singular values satisfy
Ort1+ ... +om < (rank(M) —r)orq1
“ <M7 N> T
AISO, b SVD, ag; Z M,N = ou; NUZ' S g;0 N
eSVD. Do = S =Y > oin(V))

M, N

Hence ||M||py/r + (rank(M) —7)ory1 > o1+ ...+ 00 > <a (7N)>
1

1 (M, N)

(M) > M
(M) = rank(M) —r ( o1(N I ”F\/;)

Proof of Step 4:

Recall that A’ = {z1,..., 2} is contained in A. Hence by choice of A, each row of A’ x T
has at most 2¢|T’| entries that are +1.
Define the set B as follows:

B={yeT|# +1'sin A" x {y} < 3¢|A'|}

An averaging argument similar to that in Step 1 shows that |B| > @ > (%)2(1_6”)”.

We now give an upper bound on the size of B. If y € B, then we can pick a set A” C A’,
of size exactly (1—3¢)|A’| = (1 —3¢)k, such that A” x {y} has only —1s. Let W be a subset
of A" of size exactly (1 — 3e)k, and define the set By C T as follows:

By = {yeT|W x{y} hasonly —1s}
Then B C U Bw
WC AL W|=(1-3¢)k
and hence |B| < Z | By |

WCA|W|=(1-3¢)k

By Step 3, for any such W, Prly € By € exp(—Q(|W])) = exp(—Q((1 — 3¢)k)). Hence
| By | < 2" exp(—Q((1 — 3¢)k)). The number of choices for W is ((1—1?55)1@) = (3§k) Hence

1B| < (3’;) 2" exp(—Q((1 — 3e)k)) < 2716 exp(—Q((1 — 3e)k)).

By choosing suitable «, e, we can see that the bounds on B

3

are not simultaneously possible.

<2> 2(=n < | B| < 27 HBIkRQM oxpy(—Q((1 — 3¢)k))
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23.4 Appendix

23.4.1 Corruption Bound

Lemma 23.7. Let f: X xY — {0,1} be a Boolean function and p be a probability distri-
bution on X XY such that for every rectangle R =S x T C X x Y with u(R) > p, we have
w(ROF11)) > e- (RN f71(0)). Then, for every § >0, 28s(f) > % (p(f~0) - g)

23.4.2 Talagrand’s Inequality

Let V' C R™ be a linear subspace of dimension d. Talagrand’s inequality states that for
a randomly chosen = €, {—1,+1}", with high probability, the projection of x on V is of
length close to v/d. Formally:

There exists a ¢ > 0 such that V¢ > 0,

12
Pr | ||proij||—vdimV|>t+c] <4exp(—)
c

z€r{—1,+1}"
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