Communication Complexity

Lec. 23: The gap-Hamming problem (part II)
Lecturer: Meena Mahajan
Scribe: Raja S

Summary

In this lecture, we have proved a lower bound of $\Omega(n)$ for the gap Hamming distance $\left(\mathrm{GHD}_{n}\right)$ problem. This result was first proved in [CR11] and followed by several other proofs [Vid11, She11]. We have followed the proof given by A.A.Sherstov [She11], which uses the corruption bound from problem set 2 (see Appendix).
Theorem 23.1 ([She11]). $R_{\frac{1}{3}}\left(\mathrm{ORT}_{n}\right)=\Omega(n)$.
Corollary 23.2 ($[$ She 11$]) . R_{\frac{1}{3}}\left(\mathrm{GHD}_{n}\right)=\Omega(n)$.

23.1 Proof outline

1. To prove $R_{\frac{1}{3}}\left(\mathrm{GHD}_{n}\right)=\Omega(n)$, we define another problem called gap orthogonality ORT_{n} and we reduce ORT_{n} to GHD_{N}. It then suffices to prove $R_{\frac{1}{3}}\left(\mathrm{ORT}_{n}\right)=\Omega(n)$.
2. To prove $R_{\frac{1}{3}}\left(\mathrm{ORT}_{n}\right)=\Omega(n)$, by Yao's lemma, it suffices to prove $D_{\frac{1}{3}}^{\mu}\left(\mathrm{ORT}_{n}\right)=\Omega(n)$ for some μ. We choose μ to be uniform.
3. We use the corruption bound to prove $R_{\frac{1}{3}}\left(\mathrm{ORT}_{n}\right)=\Omega(n)$. In order to use this, we need to show that
(a) $\mu\left(\mathrm{ORT}^{-1}(+1)\right)$ is large (i.e., $\left.\Theta(1)\right)$, and
(b) there exists a small enough ε such that any rectangle that is not ε-1-corrupted must be small. That is, $\forall S, T \subseteq\{-1,+1\}^{n}$, if $\mu\left(\mathrm{ORT}^{-1}(+1) \cap(S \times T)\right) \leq$ $\varepsilon \mu\left(\right.$ ORT $\left.^{-1}(-1) \cap(S \times T)\right)$ then $\mu(S \times T) \leq \exp (-\Omega(n))$.

23.2 Definitions

The gap orthogonality problem is defined as follows. Let $x, y \in\{-1,+1\}^{n}$. The function $\mathrm{ORT}_{n}(x, y)$ is defined as

$$
\operatorname{ORT}_{n}(x, y)= \begin{cases}-1 & \text { if }|\langle x, y\rangle| \leq \frac{\sqrt{n}}{8} \\ +1 & \text { if }|\langle x, y\rangle| \geq \frac{\sqrt{n}}{4}\end{cases}
$$

The general gap Hamming distance problem $\mathrm{GHD}_{n, t, g}$ is defined as follows. Let $x, y \in$ $\{-1,+1\}^{n}$. The function $\operatorname{GHD}_{n, t, g}(x, y)$ is defined as,

$$
\operatorname{GHD}_{n, t, g}(x, y)=\left\{\begin{aligned}
-1 & \text { if }\langle x, y\rangle \leq t-g \\
+1 & \text { if }\langle x, y\rangle \geq t+g
\end{aligned}\right.
$$

Note that both ORT $_{n}$ and $\mathrm{GHD}_{n, t, g}$ are partial functions. The function GHD_{N} is just GHD $_{N, 0, \sqrt{N}}$.

23.3 Proof Details

First we establish the first stage from the proof outline.
Claim 23.3. ORT_{n} reduces to GHD_{N}, where $N=O(n)$.
Proof. In the last lecture, we saw that $\mathrm{GHD}_{n, t, g}$ reduces to GHD_{N}, using a padding technique. The idea is to first reduce ORT_{n} to $\mathrm{GHD}_{n, t, g}$ which in turn reduces to GHD_{N}.

Let $x, y \in\{-1,+1\}^{n}$ which satisfies the promise (i.e., $\operatorname{ORT}_{n}(x, y)$ is defined). Then $\operatorname{ORT}_{n}(x, y)$ can be solved using 2 calls to $\operatorname{GHD}_{n, t, g}(x, y)$, as follows.

$$
\operatorname{ORT}_{n}(x, y)=\left\{\begin{aligned}
-1 & \text { if } \operatorname{GHD}_{n, \frac{3 \sqrt{n}}{16}, \frac{\sqrt{n}}{16}}(x, y)=-1 \& \mathrm{GHD}_{n,-\frac{3 \sqrt{n}}{16}, \frac{\sqrt{n}}{16}}(x, y)=+1 \\
+1 & \text { if } \operatorname{GHD}_{n,-\frac{3 \sqrt{n}}{16}, \frac{\sqrt{n}}{16}}(x, y)=-1 \& \operatorname{GHD}_{n, \frac{3 \sqrt{n}}{16}, \frac{\sqrt{n}}{16}}(x, y)=+1
\end{aligned}\right.
$$

We know that $\mathrm{GHD}_{m, t, g}$ can be reduced to GHD_{N} using padding. Examining the parameters m, t, g in the calls here relative to n, we see that $N \in O(n)$ suffices.

Thus, we have shown that ORT_{n} reduces to GHD_{N}.
Now consider the Stage 3(a) from the proof outline.
Claim 23.4. $\mu\left(\operatorname{ORT}^{-1}(-1)\right)=\Theta(1)$.
Proof. Let $x, y \in\{-1,+1\}^{n}$. We know that $\langle x, y\rangle=n-2 \Delta(x, y)$ (where $\Delta(.,$.$) is the$ Hamming distance). Note that if $\Delta(x, y) \in\left[\frac{n}{2}-\frac{\sqrt{n}}{8}, \frac{n}{2}+\frac{\sqrt{n}}{8}\right]$ then $|\langle x, y\rangle| \leq \frac{\sqrt{n}}{8}$. For each fixed x, we count number of $y^{\prime} s$ such that $|\langle x, y\rangle| \leq \frac{\sqrt{n}}{8}$. Using the fact that there is an absolute constant $c>0$ such that for k close to $n / 2,\binom{n}{k} \geq \frac{2^{n}}{c \sqrt{n}}$, we see that

$$
\text { Number of } y^{\prime} s \text { with }\left[|\langle x, y\rangle| \leq \frac{\sqrt{n}}{8}\right]=\sum_{k=\frac{n}{2}-\frac{\sqrt{n}}{8}}^{\frac{n}{2}+\frac{\sqrt{n}}{8}}\binom{n}{k} \geq \frac{\sqrt{n}}{4} \cdot \frac{2^{n}}{c \sqrt{n}}=\frac{2^{n}}{4 c}
$$

Thus, the total number of $x, y \in\{-1,+1\}^{n}$ such that $|\langle x, y\rangle| \leq \frac{\sqrt{n}}{8}$ is at least $\frac{2^{2 n}}{4 c}$.
Since μ is the uniform distribution, we have

$$
\mu\left(\mathrm{ORT}^{-1}(-1)\right) \geq \frac{2^{2 n}}{4 c} \cdot \frac{1}{4^{n}}=\frac{1}{4 c}
$$

The rest of the lecture is devoted to proving Stage 3(b) of the proof outline; that is, showing that any rectangle that is not 1-corrupted must in fact be small. We proceed via the following steps.

Step 0. For parameters ε, α to be chosen later, let $\rho=2 / 2^{\alpha n}$. Assume to the contrary that some rectangle $R=S \times T$ is not 1-corrupted and is large.
Large: $\mu(R) \geq \rho$. Since $\mu(R) \leq|S| / 2^{n}$, we can then conclude that $|S| \geq \rho 2^{n}=$ $2 \cdot 2^{(1-\alpha) n}$. Similarly, we can conclude that $|T| \geq 2 \cdot 2^{(1-\alpha) n}$.
Not 1-corrupted: $\mu\left(\right.$ ORT $\left.^{-1}(+1) \cap(S \times T)\right) \leq \varepsilon \mu\left(\right.$ ORT $\left.^{-1}(-1) \cap(S \times T)\right) \leq \varepsilon \mu(S \times T)$.
Step 1. Using the assumption that R has a "very high" density of -1 s (because it is not 1-corrupted), find $A \subseteq S$ with a "fairly high" density of -1 s (to be formally defined below) in each row, such that $|A| \geq \frac{|S|}{2}$.

Step 2. Using the assumption that S is large, and hence that A is large, show that there exists a set $A^{\prime} \subseteq A$ of $k=\frac{n}{10}$ "near-orthogonal" vectors x_{1}, \ldots, x_{k}.

Step 3. Show that for any set W of m near-orthogonal vectors x_{1}, \ldots, x_{m}, a random y is, with high probability, far from orthogonal to at least one x_{i} (and so the corresponding $\operatorname{ORT}\left(x_{i}, y\right)$ is +1$)$.

Step 4. Since $A^{\prime} \subseteq A, A^{\prime} \times T$ has a fairly high density of -1 s. Find a $B \subseteq T$ with a moderately high density of -1 s within $A^{\prime} \times B$ such that $|B| \geq|T| / 3$. Using the assumption that T is large, conclude that B is quite large. From Steps 2,3 , conclude that B cannot be quite large. This gives a contradiction.

Proof of Step 1:

Define the set A as follows:

$$
A=\{x \in S \mid \#+1 \text { 's in }\{x\} \times T \leq 2 \varepsilon|T|\}
$$

An averaging argument shows that $|A| \geq \frac{|S|}{2} \geq 2^{(1-\alpha) n}$.
(If $|A|<\frac{|S|}{2}$, then there are at least $\left(\frac{|S|}{2}+1\right)$ rows in S such that each row has more than $2 \varepsilon|T|$ entries as +1 . Thus, we have more than $\varepsilon|T||S|$ entries as +1 in the rectangle $S \times T$, contradicting the assumption that R is not 1-corrupted.)

Proof of Step 2:

Say that a set of vectors x_{1}, \ldots, x_{k} in $\{+1,-1\}^{n}$ is near-orthogonal if for each $i \in[k-1]$, the vector x_{i+1} is almost orthogonal to (has a very small projection on) the subspace spanned by x_{1}, \ldots, x_{i}. Specifically, for each $i,\left\|\operatorname{proj}_{\text {span }\left\{x_{1}, \ldots, x_{i}\right\}} x_{i+1}\right\| \leq \frac{\sqrt{n}}{3}$.

We prove the following. Let $A \subseteq\{-1,+1\}^{n}$. For a sufficiently small constant $\alpha>0$, which will be specified at the end of this Step, if $|A|>2^{(1-\alpha) n}$ then A contains a set A^{\prime} of $k=\left\lfloor\frac{n}{10}\right\rfloor$ near-orthogonal vectors x_{1}, \ldots, x_{k}.

Pick $x_{1} \in A$ aribitrarily. Using Talagrand's inequality (see Appendix), a randomly
picked x is unlikely to have a large projection on the space spanned by x_{1}.

$$
\begin{aligned}
\operatorname{Pr}_{x}\left[\left\|\operatorname{proj}_{x_{1}} x\right\|>\frac{\sqrt{n}}{3}\right] & \leq \operatorname{Pr}_{x}\left[\left|\left\|\operatorname{proj}_{x_{1}} x\right\|-1\right|>\frac{\sqrt{n}}{3}-1-c+c\right] \\
& <\exp \left(-\frac{\left(\frac{\sqrt{n}}{3}-c-1\right)^{2}}{c}\right) \\
& \leq 2^{-\beta_{1} n} \quad \text { for some constant } \beta_{1} \text { that depends only on } c .
\end{aligned}
$$

Also, since $|A|$ is large, a randomly picked x is likely to be in A with good probability; $\operatorname{Pr}_{x \in r}\{-1,+1\}^{n}[x \in A]>2^{-\alpha n}$. Putting these two together, a randomly picked x is likely to be both in A and have a small projection on the space spanned by x_{1}. That is,

$$
\begin{aligned}
\operatorname{Pr}_{x}\left[\left\|\operatorname{proj}_{x_{1}} x\right\| \leq \frac{\sqrt{n}}{3} \operatorname{AND} x \in A \backslash\left\{x_{1}\right\}\right] & =1-\operatorname{Pr}_{x}\left[\left\|\operatorname{proj}_{x_{1}} x\right\|>\frac{\sqrt{n}}{3} \text { OR } x \notin A \backslash\left\{x_{1}\right\}\right] \\
& \geq 1-\left[2^{-\beta_{1} n}+1-2^{-\alpha n}\right] \quad \text { (union bound) } \\
& =2^{-\alpha n}-2^{-\beta_{1} n}
\end{aligned}
$$

Let $\alpha<\beta_{1}$. Then the RHS is strictly positive. Therefore, there exists $x_{2} \in A$ that is near orthogonal to x_{1}. Let's fix it.

We continue adding vectors this way. If x_{1}, \ldots, x_{j} span space V, then $\operatorname{dim}(V) \leq j$.

$$
\begin{aligned}
\operatorname{Pr}_{x}\left[\left\|\operatorname{proj}_{\operatorname{span}\left(x_{1}, \ldots, x_{j}\right)} x\right\|>\frac{\sqrt{n}}{3}\right] & \leq \operatorname{Pr}_{x}\left[\left|\left\|\operatorname{proj}_{\operatorname{span}\left(x_{1}, \ldots, x_{j}\right)} x\right\|-\sqrt{j}\right|>\frac{\sqrt{n}}{3}-\sqrt{j}-c+c\right] \\
& <\exp \left(-\frac{\left(\frac{\sqrt{n}}{3}-c-\sqrt{j}\right)^{2}}{c}\right) \\
& \leq \exp \left(-\beta_{j} n\right)
\end{aligned}
$$

Here β_{j} is a constant depending only on c and j. By a similar argument as above, a random x will, with non-zero probability, be a new element of A and have a small projection with respect to the already chosen vectors. So we can find x_{j+1}.

Choose $\alpha<\beta_{j}$ for $1 \leq j \leq k=\frac{n}{10}$. In fact, let α be slightly smaller than the smallest β_{j}, to account for the fact that each x_{j+1} must be chosen not just from A but from $A \backslash\left\{x_{1}, \ldots, x_{j}\right\}$. Then we can choose $k=\left\lfloor\frac{n}{10}\right\rfloor$ near-orthogonal vectors in A.

Proof of Step 3:

Let $m \leq n / 10$, and fix any set W of vectors $x_{1}, \ldots, x_{m} \in\{-1,+1\}^{n}$ that are near-orthogonal. We want to show that with high probabilty, a random y is far-from-orthogonal to at least one x_{i}. Considering the complement event, we want to show that

$$
\operatorname{Pr}_{y}\left[\forall i,\left|\left\langle y, x_{i}\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \in \exp (-\Omega(m))
$$

Consider the $m \times n$ matrix M whose $i^{t h}$ row is x_{i} (We omit the notation for transpose; clear from the context). We want to show that $\operatorname{Pr}_{y}\left[\|M y\|_{\infty} \leq \frac{\sqrt{n}}{4}\right] \leq \exp (-\Omega(m))$. Since $\|M y\|_{\infty} \leq\|M y\| \leq \sqrt{m}\|M y\|_{\infty}$, it suffices to instead prove that

$$
\operatorname{Pr}_{y}\left[\|M y\|^{2} \geq \frac{m n}{16}\right] \geq 1-\exp (-\Omega(m))
$$

Consider a singular value decomposition SVD of M as $M=U D V^{t}$ where U, V are unitary matrices of order m and n respectively, and D is a "rectangular diagonal" $m \times n$ matrix with diagonal entries $\sigma_{1} \geq \ldots \geq \sigma_{m} . \quad D$ is uniquely defined by M. Let u_{i}, v_{i} denote the columns of U, V respectively. Then for any vector $y,\|M y\|^{2}=(M y)^{t}(M y)=$ $\left(U D V^{t} y\right)^{t}\left(U D V^{t} y\right)=\left(D V^{t} y\right)^{t}\left(D V^{t} y\right)=\sum_{i=1}^{m} \sigma_{i}^{2}\left\langle v_{i}, y\right\rangle^{2}$.

To show that $\|M y\|^{2}$ is large for many y, we prove the following:
Claim 23.5. Many σ_{i} are large. Specifically, $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\left\lceil\frac{m}{4}\right\rceil} \geq 0.51 \sqrt{n}$.
First, let us see why proving this claim is enough. Let $V=\left\{v_{i}: \sigma_{i} \geq 0.51 \sqrt{n}\right\}$. By the claim, dim $\operatorname{span}(V) \geq \frac{m}{4}$. For every vector y,

$$
\|M y\|^{2}=\sum_{i=1}^{m} \sigma_{i}^{2}\left\langle y, v_{i}\right\rangle^{2} \geq(0.51 \sqrt{n})^{2} \sum_{v_{i} \in V}\left\langle y, v_{i}\right\rangle^{2} \geq 0.26 n\left\|\operatorname{proj}_{\operatorname{span}(V)} y\right\|^{2}
$$

Using Talagrand's inequality, we can now conclude that

$$
\operatorname{Pr}_{y}\left[\|M y\|^{2} \geq \frac{m n}{16}\right] \geq \operatorname{Pr}_{y}\left[\left\|\operatorname{proj}_{\operatorname{span}(V)} y\right\|^{2} \geq \frac{m}{16 \times 0.26}\right] \geq 1-\exp (-\Omega(m))
$$

Proof. (Of Claim 23.5) We now prove the claim. First, we get a set of orthogonal vectors $x_{1}^{\prime}, \ldots, x_{m}^{\prime}$ from x_{1}, \ldots, x_{m} : For each i, define $x_{i}^{\prime}=x_{i}-\operatorname{proj}_{\text {span }\left(x_{1}, \ldots, x_{i-1}\right)} x_{i}$. (These are the vectors that would be returned by the Gram-Schmidt procedure.) Then we can show (see below) that $n \geq\left\|x_{i}^{\prime}\right\|^{2} \geq \frac{8 n}{9}$.

$$
\begin{aligned}
\left\|x_{i}\right\|^{2} & =\left\|x_{i}^{\prime}\right\|^{2}+\left\|\operatorname{proj}_{\text {span }\left(x_{1}, \ldots, x_{i-1}\right)} x_{i}\right\|^{2} \quad\left(\text { since these are orthogonal components of } x_{i}\right) \\
n & =\left\|x_{i}^{\prime}\right\|^{2}+\left\|\operatorname{proj}_{\operatorname{span}\left(x_{1}, \ldots, x_{i-1}\right)} x_{i}\right\|^{2} \quad\left(\because x_{i} \in\{-1,+1\}^{n}\right) \\
n & \leq\left\|x_{i}^{\prime}\right\|^{2}+\frac{n}{9} \quad\left(\because\left\|\operatorname{proj}_{\operatorname{span}\left(x_{1}, \ldots, x_{i-1}\right)} x_{i}\right\| \leq \frac{\sqrt{n}}{3}, \text { by near-orthogonality }\right) \\
n & \geq\left\|x_{i}^{\prime}\right\|^{2} \quad\left(\because\left\|\operatorname{proj}_{\operatorname{span}\left(x_{1}, \ldots, x_{i-1}\right)} x_{i}\right\| \geq 0\right.
\end{aligned}
$$

Let M^{\prime} denote the $m \times n$ matrix whose $i^{\text {th }}$ row is x_{i}^{\prime}.
Now consider the Frobenius norm of M, defined as $\|M\|_{F}=\sqrt{\sum_{i, j} M_{i j}^{2}}$. We will use the following proposition, to be proved later.
Proposition 23.6. For all $N, \sigma_{r+1}(M) \geq \frac{1}{\operatorname{rank}(M)-r}\left(\frac{\langle M, N\rangle}{\sigma_{1}(N)}-\|M\|_{F} \sqrt{r}\right)$
Using the above proposition with N being the Gram-Schmidt matrix M^{\prime}, we get

$$
\begin{aligned}
& \qquad\left\langle x_{i}, x_{i}^{\prime}\right\rangle=\left\|x_{i}^{\prime}\right\|^{2} \geq \frac{8 n}{9} ; \quad\left\langle M, M^{\prime}\right\rangle \geq \frac{8 m n}{9} \\
& \sigma_{1}\left(M^{\prime}\right) \leq \max _{i}\left\|x_{i}^{\prime}\right\|=\sqrt{n} ; \quad\|M\|_{F}=\sqrt{m n} \\
& \text { Hence } \quad \sigma_{r+1}(M) \geq \frac{1}{m-r}\left(\frac{\frac{8}{9} m n}{\sqrt{n}}-\sqrt{m n} \sqrt{r}\right)
\end{aligned}
$$

Hence for $r=\left\lceil\frac{m}{4}\right\rceil, \sigma_{r+1}(M) \geq 0.51 \sqrt{n}$.

All that remains in this Step is to prove Proposition 23.6).
Proof. (Of Proposition 23.6)
The largest r singular values satisfy

$$
\begin{aligned}
\sigma_{1}+\ldots+\sigma_{r} & \leq \sqrt{r} \sqrt{\left(\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}\right)} \quad \text { by Cauchy-Schwartz } \\
& \leq \sqrt{r}\|M\|_{F}
\end{aligned}
$$

The remaining singular values satisfy

$$
\begin{aligned}
\sigma_{r+1}+\ldots+\sigma_{m} & \leq(\operatorname{rank}(M)-r) \sigma_{r+1} \\
\text { Also, by SVD, } \sum_{i=1}^{m} \sigma_{i} & \geq \frac{\langle M, N\rangle}{\sigma_{1}(N)} \quad\left(\because\langle M, N\rangle=\sum \sigma_{i} u_{i}^{T} N v_{i} \leq \sum \sigma_{i} \sigma_{1}(N)\right) \\
\text { Hence }\|M\|_{F} \sqrt{r}+(\operatorname{rank}(M)-r) \sigma_{r+1} & \geq \sigma_{1}+\ldots+\sigma_{r} \geq \frac{\langle M, N\rangle}{\sigma_{1}(N)} \\
\therefore \quad \sigma_{r+1}(M) & \geq \frac{1}{\operatorname{rank}(M)-r}\left(\frac{\langle M, N\rangle}{\sigma_{1}(N}-\|M\|_{F} \sqrt{r}\right)
\end{aligned}
$$

Proof of Step 4:

Recall that $A^{\prime}=\left\{x_{1}, \ldots, x_{k}\right\}$ is contained in A. Hence by choice of A, each row of $A^{\prime} \times T$ has at most $2 \varepsilon|T|$ entries that are +1 .

Define the set B as follows:

$$
B=\left\{y \in T \mid \#+1 \text { 's in } A^{\prime} \times\{y\} \leq 3 \varepsilon\left|A^{\prime}\right|\right\}
$$

An averaging argument similar to that in Step 1 shows that $|B| \geq \frac{|T|}{3} \geq\left(\frac{2}{3}\right) 2^{(1-\alpha) n}$.
We now give an upper bound on the size of B. If $y \in B$, then we can pick a set $A^{\prime \prime} \subseteq A^{\prime}$, of size exactly $(1-3 \varepsilon)\left|A^{\prime}\right|=(1-3 \varepsilon) k$, such that $A^{\prime \prime} \times\{y\}$ has only -1 s. Let W be a subset of A^{\prime} of size exactly $(1-3 \varepsilon) k$, and define the set $B_{W} \subseteq T$ as follows:

$$
\begin{aligned}
B_{W} & =\{y \in T \mid W \times\{y\} \text { has only }-1 \mathrm{~s}\} \\
\text { Then } B & \subseteq \bigcup_{W \subseteq A^{\prime} ;|W|=(1-3 \varepsilon) k} B_{W} \\
\text { and hence }|B| & \leq \sum_{W \subseteq A^{\prime} ;|W|=(1-3 \varepsilon) k}\left|B_{W}\right|
\end{aligned}
$$

By Step 3, for any such $W, \operatorname{Pr}\left[y \in B_{W}\right] \in \exp (-\Omega(|W|))=\exp (-\Omega((1-3 \varepsilon) k))$. Hence $\left|B_{W}\right| \leq 2^{n} \exp (-\Omega((1-3 \varepsilon) k))$. The number of choices for W is $\binom{k}{(1-3 \varepsilon) k}=\binom{k}{3 \varepsilon k}$. Hence

$$
|B| \leq\binom{ k}{3 \varepsilon k} 2^{n} \exp (-\Omega((1-3 \varepsilon) k)) \leq 2^{-H(3 \varepsilon) k} 2^{n} \exp (-\Omega((1-3 \varepsilon) k))
$$

By choosing suitable α, ε, we can see that the bounds on B

$$
\left(\frac{2}{3}\right) 2^{(1-\alpha) n} \leq|B| \leq 2^{-H(3 \varepsilon) k} 2^{n} \exp (-\Omega((1-3 \varepsilon) k))
$$

are not simultaneously possible.

References

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication complexity of gap-Hamming-distance. In Proc. 43 rd ACM Symp. on Theory of Computing (STOC), pages 51-60. 2011. arXiv:1009.3460, eccc:TR10-140, doi:10.1145/1993636. 1993644.
[She11] Alexander A. Sherstov. The communication complexity of gap Hamming distance. Technical Report TR11-063, Electronic Colloquium on Computational Complexity (ECCC), 2011. eccc:TR11-063.
[Vid11] Thomas Vidick. A concentration inequality for the overlap of a vector on a large set, with application to the communication complexity of the gap-Hamming-distance problem. Technical Report TR11-51, Electronic Colloquium on Computational Complexity (ECCC), 2011. eccc:TR11-051.

23.4 Appendix

23.4.1 Corruption Bound

Lemma 23.7. Let $f: \mathrm{X} \times \mathrm{Y} \rightarrow\{0,1\}$ be a Boolean function and μ be a probability distribution on $\mathrm{X} \times \mathrm{Y}$ such that for every rectangle $R=\mathrm{S} \times \mathrm{T} \subseteq \mathrm{X} \times \mathrm{Y}$ with $\mu(R)>\rho$, we have $\mu\left(R \cap f^{-1}(1)\right)>\varepsilon \cdot \mu\left(R \cap f^{-1}(0)\right)$. Then, for every $\delta>0,2^{R_{\delta}(f)} \geq \frac{1}{\rho} \cdot\left(\mu\left(f^{-1}(0)-\frac{\delta}{\varepsilon}\right)\right.$.

23.4.2 Talagrand's Inequality

Let $V \subseteq \mathrm{R}^{n}$ be a linear subspace of dimension d. Talagrand's inequality states that for a randomly chosen $x \in_{r}\{-1,+1\}^{n}$, with high probability, the projection of x on V is of length close to \sqrt{d}. Formally:

There exists a $c>0$ such that $\forall t>0$,

$$
\operatorname{Pr}_{x \in r}\{-1,+1\}^{n}\left[\left|\left\|\operatorname{proj}_{V} x\right\|-\sqrt{\operatorname{dim} V}\right|>t+c\right]<4 \exp \left(-\frac{t^{2}}{c}\right)
$$

