Lec. 23: The gap-Hamming problem (part II)

Lecturer: Meena Mahajan

Scribe: Raja S

Summary

In this lecture, we have proved a lower bound of $\Omega(n)$ for the gap Hamming distance (GHD_n) problem. This result was first proved in [CR11] and followed by several other proofs [Vid11, She11]. We have followed the proof given by A.A.Sherstov [She11], which uses the corruption bound from problem set 2 (see Appendix).

Theorem 23.1 ([Shel1]). $R_{\frac{1}{2}}(ORT_n) = \Omega(n)$.

Corollary 23.2 ([She11]). $R_{\frac{1}{2}}(\text{GHD}_n) = \Omega(n).$

23.1 Proof outline

- 1. To prove $R_{\frac{1}{3}}(\text{GHD}_n) = \Omega(n)$, we define another problem called gap orthogonality ORT_n and we reduce ORT_n to GHD_N . It then suffices to prove $R_{\frac{1}{3}}(\text{ORT}_n) = \Omega(n)$.
- 2. To prove $R_{\frac{1}{3}}(\text{ORT}_n) = \Omega(n)$, by Yao's lemma, it suffices to prove $D_{\frac{1}{3}}^{\mu}(\text{ORT}_n) = \Omega(n)$ for some μ . We choose μ to be uniform.
- 3. We use the corruption bound to prove $R_{\frac{1}{3}}(\text{ORT}_n) = \Omega(n)$. In order to use this, we need to show that
 - (a) $\mu(\text{ORT}^{-1}(+1))$ is large (i.e., $\Theta(1)$), and
 - (b) there exists a small enough ε such that any rectangle that is not ε -1-corrupted must be small. That is, $\forall S, T \subseteq \{-1, +1\}^n$, if $\mu(\text{ORT}^{-1}(+1) \cap (S \times T)) \leq \varepsilon \mu(\text{ORT}^{-1}(-1) \cap (S \times T))$ then $\mu(S \times T) \leq \exp(-\Omega(n))$.

23.2 Definitions

The gap orthogonality problem is defined as follows. Let $x, y \in \{-1, +1\}^n$. The function $ORT_n(x, y)$ is defined as

$$ORT_n(x,y) = \begin{cases} -1 & \text{if } |\langle x,y\rangle| \le \frac{\sqrt{n}}{8} \\ +1 & \text{if } |\langle x,y\rangle| \ge \frac{\sqrt{n}}{4} \end{cases}$$

The general gap Hamming distance problem $\text{GHD}_{n,t,g}$ is defined as follows. Let $x, y \in \{-1, +1\}^n$. The function $\text{GHD}_{n,t,g}(x, y)$ is defined as,

$$\operatorname{GHD}_{n,t,g}(x,y) = \begin{cases} -1 & \text{if } \langle x,y \rangle \leq t-g \\ \\ +1 & \text{if } \langle x,y \rangle \geq t+g \end{cases}$$

Note that both ORT_n and $GHD_{n,t,g}$ are partial functions. The function GHD_N is just $GHD_{N,0,\sqrt{N}}$.

23.3 Proof Details

First we establish the first stage from the proof outline.

Claim 23.3. ORT_n reduces to GHD_N, where N = O(n).

Proof. In the last lecture, we saw that $\text{GHD}_{n,t,g}$ reduces to GHD_N , using a padding technique. The idea is to first reduce ORT_n to $\text{GHD}_{n,t,g}$ which in turn reduces to GHD_N .

Let $x, y \in \{-1, +1\}^n$ which satisfies the promise (i.e., $ORT_n(x, y)$ is defined). Then $ORT_n(x, y)$ can be solved using 2 calls to $GHD_{n,t,q}(x, y)$, as follows.

$$\operatorname{ORT}_{n}(x,y) = \begin{cases} -1 & \text{if } \operatorname{GHD}_{n,\frac{3\sqrt{n}}{16},\frac{\sqrt{n}}{16}}(x,y) = -1 \ \& \ \operatorname{GHD}_{n,-\frac{3\sqrt{n}}{16},\frac{\sqrt{n}}{16}}(x,y) = +1 \\ +1 & \text{if } \operatorname{GHD}_{n,-\frac{3\sqrt{n}}{16},\frac{\sqrt{n}}{16}}(x,y) = -1 \ \& \ \operatorname{GHD}_{n,\frac{3\sqrt{n}}{16},\frac{\sqrt{n}}{16}}(x,y) = +1 \end{cases}$$

We know that $\text{GHD}_{m,t,g}$ can be reduced to GHD_N using padding. Examining the parameters m, t, g in the calls here relative to n, we see that $N \in O(n)$ suffices.

Thus, we have shown that ORT_n reduces to GHD_N .

Now consider the Stage 3(a) from the proof outline.

Claim 23.4. $\mu(ORT^{-1}(-1)) = \Theta(1).$

Proof. Let $x, y \in \{-1, +1\}^n$. We know that $\langle x, y \rangle = n - 2\Delta(x, y)$ (where $\Delta(.,.)$ is the Hamming distance). Note that if $\Delta(x, y) \in [\frac{n}{2} - \frac{\sqrt{n}}{8}, \frac{n}{2} + \frac{\sqrt{n}}{8}]$ then $|\langle x, y \rangle| \leq \frac{\sqrt{n}}{8}$. For each fixed x, we count number of y's such that $|\langle x, y \rangle| \leq \frac{\sqrt{n}}{8}$. Using the fact that there is an absolute constant c > 0 such that for k close to n/2, $\binom{n}{k} \geq \frac{2^n}{c\sqrt{n}}$, we see that

Number of
$$y's$$
 with $\left[|\langle x,y\rangle| \le \frac{\sqrt{n}}{8}\right] = \sum_{k=\frac{n}{2}-\frac{\sqrt{n}}{8}}^{\frac{n}{2}+\frac{\sqrt{n}}{8}} \binom{n}{k} \ge \frac{\sqrt{n}}{4} \cdot \frac{2^n}{c\sqrt{n}} = \frac{2^n}{4c}$

Thus, the total number of $x, y \in \{-1, +1\}^n$ such that $|\langle x, y \rangle| \leq \frac{\sqrt{n}}{8}$ is at least $\frac{2^{2n}}{4c}$. Since μ is the uniform distribution, we have

$$\mu(\text{ORT}^{-1}(-1)) \ge \frac{2^{2n}}{4c} \cdot \frac{1}{4^n} = \frac{1}{4c}$$

The rest of the lecture is devoted to proving Stage 3(b) of the proof outline; that is, showing that any rectangle that is not 1-corrupted must in fact be small. We proceed via the following steps.

Step 0. For parameters ε, α to be chosen later, let $\rho = 2/2^{\alpha n}$. Assume to the contrary that some rectangle $R = S \times T$ is not 1-corrupted and is large.

Large: $\mu(R) \ge \rho$. Since $\mu(R) \le |S|/2^n$, we can then conclude that $|S| \ge \rho 2^n =$ $2 \cdot 2^{(1-\alpha)n}$. Similarly, we can conclude that $|T| \ge 2 \cdot 2^{(1-\alpha)n}$.

Not 1-corrupted: $\mu(\text{ORT}^{-1}(+1) \cap (S \times T)) \leq \varepsilon \mu(\text{ORT}^{-1}(-1) \cap (S \times T)) \leq \varepsilon \mu(S \times T).$

- **Step 1.** Using the assumption that R has a "very high" density of -1s (because it is not 1-corrupted), find $A \subseteq S$ with a "fairly high" density of -1s (to be formally defined below) in each row, such that $|A| \geq \frac{|S|}{2}$.
- **Step 2.** Using the assumption that S is large, and hence that A is large, show that there exists a set $A' \subseteq A$ of $k = \frac{n}{10}$ "near-orthogonal" vectors x_1, \ldots, x_k .
- **Step 3.** Show that for any set W of m near-orthogonal vectors $x_1, ..., x_m$, a random y is, with high probability, far from orthogonal to at least one x_i (and so the corresponding $ORT(x_i, y)$ is +1).
- **Step 4.** Since $A' \subseteq A$, $A' \times T$ has a fairly high density of -1s. Find a $B \subseteq T$ with a moderately high density of -1s within $A' \times B$ such that |B| > |T|/3. Using the assumption that T is large, conclude that B is quite large. From Steps 2,3, conclude that B cannot be quite large. This gives a contradiction.

Proof of Step 1:

Define the set A as follows:

$$A = \{x \in S \mid \# +1 \text{'s in } \{x\} \times T \le 2\varepsilon |T|\}$$

An averaging argument shows that $|A| \ge \frac{|S|}{2} \ge 2^{(1-\alpha)n}$. (If $|A| < \frac{|S|}{2}$, then there are at least $(\frac{|S|}{2} + 1)$ rows in S such that each row has more than $2\varepsilon |T|$ entries as +1. Thus, we have more than $\varepsilon |T||S|$ entries as +1 in the rectangle $S \times T$, contradicting the assumption that R is not 1-corrupted.)

Proof of Step 2:

Say that a set of vectors $x_1, ..., x_k$ in $\{+1, -1\}^n$ is near-orthogonal if for each $i \in [k-1]$, the vector x_{i+1} is almost orthogonal to (has a very small projection on) the subspace spanned by x_1, \ldots, x_i . Specifically, for each i, $||\operatorname{proj}_{\operatorname{span}\{x_1, \ldots, x_i\}} x_{i+1}|| \leq \frac{\sqrt{n}}{3}$. We prove the following. Let $A \subseteq \{-1, +1\}^n$. For a sufficiently small constant $\alpha > 0$,

which will be specified at the end of this Step, if $|A| > 2^{(1-\alpha)n}$ then A contains a set A' of $k = \lfloor \frac{n}{10} \rfloor$ near-orthogonal vectors $x_1, ..., x_k$.

Pick $x_1 \in A$ aribitrarily. Using Talagrand's inequality (see Appendix), a randomly

picked x is unlikely to have a large projection on the space spanned by x_1 .

$$\begin{split} \Pr_x \left[||\operatorname{proj}_{x_1} x|| > \frac{\sqrt{n}}{3} \right] &\leq \Pr_x \left[\ ||\operatorname{proj}_{x_1} x|| - 1| > \frac{\sqrt{n}}{3} - 1 - c + c \right] \\ &< \exp(-\frac{(\frac{\sqrt{n}}{3} - c - 1)^2}{c}) \\ &\leq 2^{-\beta_1 n} \quad \text{for some constant } \beta_1 \text{ that depends only on } c. \end{split}$$

Also, since |A| is large, a randomly picked x is likely to be in A with good probability; $\Pr_{x \in r\{-1,+1\}^n}[x \in A] > 2^{-\alpha n}$. Putting these two together, a randomly picked x is likely to be both in A and have a small projection on the space spanned by x_1 . That is,

$$\begin{aligned} \Pr_x \left[||\operatorname{proj}_{x_1} x|| &\leq \frac{\sqrt{n}}{3} \text{ AND } x \in A \setminus \{x_1\} \right] &= 1 - \Pr_x \left[||\operatorname{proj}_{x_1} x|| > \frac{\sqrt{n}}{3} \text{ OR } x \notin A \setminus \{x_1\} \right] \\ &\geq 1 - [2^{-\beta_1 n} + 1 - 2^{-\alpha n}] \quad (\text{union bound}) \\ &= 2^{-\alpha n} - 2^{-\beta_1 n} \end{aligned}$$

Let $\alpha < \beta_1$. Then the RHS is strictly positive. Therefore, there exists $x_2 \in A$ that is near orthogonal to x_1 . Let's fix it.

We continue adding vectors this way. If x_1, \ldots, x_j span space V, then $\dim(V) \leq j$.

$$\begin{aligned} \Pr_x \left[||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_j)} x|| &> \frac{\sqrt{n}}{3} \right] &\leq \Pr_x \left[\ ||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_j)} x|| - \sqrt{j}| &> \frac{\sqrt{n}}{3} - \sqrt{j} - c + c \right] \\ &< \exp(-\frac{(\frac{\sqrt{n}}{3} - c - \sqrt{j})^2}{c}) \\ &\leq \exp(-\beta_j n) \end{aligned}$$

Here β_j is a constant depending only on c and j. By a similar argument as above, a random x will, with non-zero probability, be a new element of A and have a small projection with respect to the already chosen vectors. So we can find x_{j+1} .

Choose $\alpha < \beta_j$ for $1 \le j \le k = \frac{n}{10}$. In fact, let α be slightly smaller than the smallest β_j , to account for the fact that each x_{j+1} must be chosen not just from A but from $A \setminus \{x_1, \ldots, x_j\}$. Then we can choose $k = \lfloor \frac{n}{10} \rfloor$ near-orthogonal vectors in A.

Proof of Step 3:

Let $m \leq n/10$, and fix any set W of vectors $x_1, ..., x_m \in \{-1, +1\}^n$ that are near-orthogonal. We want to show that with high probability, a random y is far-from-orthogonal to at least one x_i . Considering the complement event, we want to show that

$$\Pr_{y}\left[\forall i, |\langle y, x_i \rangle| \leq \frac{\sqrt{n}}{4}\right] \in \exp(-\Omega(m))$$

Consider the $m \times n$ matrix M whose i^{th} row is x_i (We omit the notation for transpose; clear from the context). We want to show that $\Pr_y[||My||_{\infty} \leq \frac{\sqrt{n}}{4}] \leq \exp(-\Omega(m))$. Since $||My||_{\infty} \leq ||My|| \leq \sqrt{m} ||My||_{\infty}$, it suffices to instead prove that

$$\Pr_{y}\left[||My||^{2} \ge \frac{mn}{16}\right] \ge 1 - \exp(-\Omega(m)).$$

Consider a singular value decomposition SVD of M as $M = UDV^t$ where U, V are unitary matrices of order m and n respectively, and D is a "rectangular diagonal" $m \times n$ matrix with diagonal entries $\sigma_1 \geq ... \geq \sigma_m$. D is uniquely defined by M. Let u_i, v_i denote the columns of U, V respectively. Then for any vector y, $||My||^2 = (My)^t (My) = (UDV^t y)^t (UDV^t y) = (DV^t y)^t (DV^t y) = \sum_{i=1}^m \sigma_i^2 \langle v_i, y \rangle^2$.

To show that $||My||^2$ is large for many y, we prove the following:

Claim 23.5. Many σ_i are large. Specifically, $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_{\lceil \frac{m}{4} \rceil} \geq 0.51\sqrt{n}$.

First, let us see why proving this claim is enough. Let $V = \{v_i : \sigma_i \ge 0.51\sqrt{n}\}$. By the claim, dim span $(V) \ge \frac{m}{4}$. For every vector y,

$$||My||^{2} = \sum_{i=1}^{m} \sigma_{i}^{2} \langle y, v_{i} \rangle^{2} \ge (0.51\sqrt{n})^{2} \sum_{v_{i} \in V} \langle y, v_{i} \rangle^{2} \ge 0.26n ||\operatorname{proj}_{\operatorname{span}(V)} y||^{2}$$

Using Talagrand's inequality, we can now conclude that

$$\Pr_{y}\left[||My||^{2} \ge \frac{mn}{16}\right] \ge \Pr_{y}\left[||\operatorname{proj}_{\operatorname{span}(V)}y||^{2} \ge \frac{m}{16 \times 0.26}\right] \ge 1 - \exp(-\Omega(m))$$

Proof. (Of Claim 23.5) We now prove the claim. First, we get a set of orthogonal vectors $x'_1, ..., x'_m$ from $x_1, ..., x_m$: For each *i*, define $x'_i = x_i - \text{proj}_{\text{span}(x_1,...,x_{i-1})} x_i$. (These are the vectors that would be returned by the Gram-Schmidt procedure.) Then we can show (see below) that $n \ge ||x'_i||^2 \ge \frac{8n}{9}$.

$$\begin{aligned} ||x_i||^2 &= ||x_i'||^2 + ||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_{i-1})} x_i||^2 & (\text{since these are orthogonal components of } x_i) \\ n &= ||x_i'||^2 + ||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_{i-1})} x_i||^2 & (\because x_i \in \{-1,+1\}^n \) \\ n &\leq ||x_i'||^2 + \frac{n}{9} & (\because ||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_{i-1})} x_i|| \leq \frac{\sqrt{n}}{3}, \text{ by near-orthogonality }) \\ n &\geq ||x_i'||^2 & (\because ||\operatorname{proj}_{\operatorname{span}(x_1,\dots,x_{i-1})} x_i|| \geq 0 \end{aligned}$$

Let M' denote the $m \times n$ matrix whose i^{th} row is x'_i .

Now consider the Frobenius norm of M, defined as $||M||_F = \sqrt{\sum_{i,j} M_{ij}^2}$. We will use the following proposition, to be proved later.

Proposition 23.6. For all N, $\sigma_{r+1}(M) \ge \frac{1}{\operatorname{rank}(M)-r} \left(\frac{\langle M, N \rangle}{\sigma_1(N)} - ||M||_F \sqrt{r} \right)$

Using the above proposition with N being the Gram-Schmidt matrix M', we get

$$\langle x_i, x_i' \rangle = ||x_i'||^2 \ge \frac{8n}{9}; \qquad \langle M, M' \rangle \ge \frac{8mn}{9}$$
$$\sigma_1(M') \le \max_i ||x_i'|| = \sqrt{n}; \qquad ||M||_F = \sqrt{mn}$$
Hence
$$\sigma_{r+1}(M) \ge \frac{1}{m-r} \left(\frac{\frac{8}{9}mn}{\sqrt{n}} - \sqrt{mn}\sqrt{r}\right)$$

Hence for $r = \lceil \frac{m}{4} \rceil$, $\sigma_{r+1}(M) \ge 0.51\sqrt{n}$.

All that remains in this Step is to prove Proposition 23.6).

Proof. (Of Proposition 23.6)

The largest r singular values satisfy

$$\sigma_1 + \dots + \sigma_r \leq \sqrt{r} \sqrt{(\sigma_1^2 + \dots + \sigma_r^2)} \text{ by Cauchy-Schwartz} \\ \leq \sqrt{r} ||M||_F$$

The remaining singular values satisfy

$$\sigma_{r+1} + \dots + \sigma_m \leq (\operatorname{rank}(M) - r)\sigma_{r+1}$$
Also, by SVD, $\sum_{i=1}^m \sigma_i \geq \frac{\langle M, N \rangle}{\sigma_1(N)}$ $(\because \langle M, N \rangle = \sum \sigma_i u_i^T N v_i \leq \sum \sigma_i \sigma_1(N))$
Hence $||M||_F \sqrt{r} + (\operatorname{rank}(M) - r)\sigma_{r+1} \geq \sigma_1 + \dots + \sigma_r \geq \frac{\langle M, N \rangle}{\sigma_1(N)}$
 $\therefore \sigma_{r+1}(M) \geq \frac{1}{\operatorname{rank}(M) - r} \left(\frac{\langle M, N \rangle}{\sigma_1(N)} - ||M||_F \sqrt{r}\right)$

Proof of Step 4:

Recall that $A' = \{x_1, \ldots, x_k\}$ is contained in A. Hence by choice of A, each row of $A' \times T$ has at most $2\varepsilon |T|$ entries that are +1.

Define the set B as follows:

$$B = \{y \in T \mid \# +1\text{'s in } A' \times \{y\} \le 3\varepsilon |A'|\}$$

An averaging argument similar to that in Step 1 shows that $|B| \ge \frac{|T|}{3} \ge (\frac{2}{3})2^{(1-\alpha)n}$.

We now give an upper bound on the size of B. If $y \in B$, then we can pick a set $A'' \subseteq A'$, of size exactly $(1-3\varepsilon)|A'| = (1-3\varepsilon)k$, such that $A'' \times \{y\}$ has only -1s. Let W be a subset of A' of size exactly $(1-3\varepsilon)k$, and define the set $B_W \subseteq T$ as follows:

$$B_W = \{ y \in T \mid W \times \{y\} \text{ has only } -1s \}$$

Then $B \subseteq \bigcup_{W \subseteq A'; |W| = (1-3\varepsilon)k} B_W$
and hence $|B| \leq \sum_{W \subseteq A'; |W| = (1-3\varepsilon)k} |B_W|$

By Step 3, for any such W, $\Pr[y \in B_W] \in \exp(-\Omega(|W|)) = \exp(-\Omega((1-3\varepsilon)k))$. Hence $|B_W| \leq 2^n \exp(-\Omega((1-3\varepsilon)k))$. The number of choices for W is $\binom{k}{(1-3\varepsilon)k} = \binom{k}{3\varepsilon k}$. Hence

$$|B| \le \binom{k}{3\varepsilon k} 2^n \exp(-\Omega((1-3\varepsilon)k)) \le 2^{-H(3\varepsilon)k} 2^n \exp(-\Omega((1-3\varepsilon)k))$$

By choosing suitable α, ε , we can see that the bounds on B

$$\left(\frac{2}{3}\right)2^{(1-\alpha)n} \le |B| \le 2^{-H(3\varepsilon)k}2^n \exp(-\Omega((1-3\varepsilon)k))$$

are not simultaneously possible.

References

- [CR11] AMIT CHAKRABARTI and ODED REGEV. An optimal lower bound on the communication complexity of gap-Hamming-distance. In Proc. 43rd ACM Symp. on Theory of Computing (STOC), pages 51-60. 2011. arXiv:1009.3460, eccc:TR10-140, doi:10.1145/1993636. 1993644.
- [She11] ALEXANDER A. SHERSTOV. The communication complexity of gap Hamming distance. Technical Report TR11-063, Electronic Colloquium on Computational Complexity (ECCC), 2011. eccc:TR11-063.
- [Vid11] THOMAS VIDICK. A concentration inequality for the overlap of a vector on a large set, with application to the communication complexity of the gap-Hamming-distance problem. Technical Report TR11-51, Electronic Colloquium on Computational Complexity (ECCC), 2011. eccc:TR11-051.

23.4 Appendix

23.4.1 Corruption Bound

Lemma 23.7. Let $f : X \times Y \to \{0, 1\}$ be a Boolean function and μ be a probability distribution on $X \times Y$ such that for every rectangle $R = S \times T \subseteq X \times Y$ with $\mu(R) > \rho$, we have $\mu(R \cap f^{-1}(1)) > \varepsilon \cdot \mu(R \cap f^{-1}(0))$. Then, for every $\delta > 0, 2^{R_{\delta}(f)} \ge \frac{1}{\rho} \cdot (\mu(f^{-1}(0) - \frac{\delta}{\varepsilon}))$.

23.4.2 Talagrand's Inequality

Let $V \subseteq \mathbb{R}^n$ be a linear subspace of dimension d. Talagrand's inequality states that for a randomly chosen $x \in_r \{-1, +1\}^n$, with high probability, the projection of x on V is of length close to \sqrt{d} . Formally:

There exists a c > 0 such that $\forall t > 0$,

$$\Pr_{x \in {}_{r}\{-1,+1\}^{n}} \left[\mid || \operatorname{proj}_{V} x|| - \sqrt{\dim V} \mid > t + c \right] < 4 \exp\left(-\frac{t^{2}}{c}\right)$$