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25. Pattern Matrix Method

Lecturer: Prahladh Harsha Scribe: Nitin Saurabh

Last lecture, we saw a duality-based approach to bound the discrepancy via the thresh-
old degree of a function. Today, we will see a more general approach called the pattern
matrix method due to Sherstov [She11]. The main reference for today’s lecture are the
pattern matrix paper [She11] and Sherstov’s survey on application of dual polynomials in
communication complexity [She08].

25.1 Generalized discrepancy method

Recall the discrepancy method to lower bound the randomized complexity.

Theorem 25.1. For every function f : X ×Y → {0, 1}, every probability distribution µ on
X × Y and every ε ≥ 0,

R 1
2
−ε(f) ≥ Dµ

1
2
−ε(f) ≥ log

2ε

discµ(f)

Thus, an inverse exponential upper bound on the discrepancy gives polynomial upper
bounds on the randomized communication cost. In fact, one of the strengths of this approach
is that it gives bounds even for protocols with error very close to 1/2. But this also happens
to be one of the reasons it fails to give good bounds for functions, such as DISJ, which have
constant bit protocols that achieve error at most 1/2 − 1/poly(n). Thus, the discrepancy
of DISJ is at least 1/poly(n) and the discrepany method will not give any better than
logarithmic lower bound on the randomized communication cost.

We will now discuss an extension of the discrepancy method, originally due to Razborov
and formalized by Klauck, called the generalized discrepancy method, which will help get
around this weakness of the discrepancy approach for certain functions.

Let f : X × Y → {1,−1} be a function whose communication complexity is of interest.
Suppose there exist h : X × Y → {1,−1} and a distribution µ on X × Y such that the
following holds.

1. f and h are well correlated with respect to µ:

E(x,y)∼µ[f(x, y)h(x, y)] ≥ ε

2. If Π is a randomized protocol for h with cost c, then

E(x,y)∼µ,Π[h(x, y)Π(x, y)] ≤ 2O(c)ν

In other words, no low cost protocol Π has large advantage in computing h under µ.
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Let Π′ be the best cost protocol with cost c that computes f and

Pr[Π′(x, y) 6= f(x, y)] ≤ ε/3

for all (x, y). Hence we get,

2O(c)ν ≥ E(x,y)∼µ,Π′ [h(x, y)Π′(x, y)] ≥ E(x,y)∼µ[f(x, y)h(x, y)]− 2 · ε
3
≥ ε

3

This implies

Rε/3(f) = c = Ω(log
ε

ν
)

Thus, to show that f has large communication cost it is sufficient to show that f is well-
correlated with another function h (under some distribution) µ that has large communica-
tion cost. Specializing this to the discrepancy method, we get the following theorem.

Theorem 25.2. Let f : X × Y → {1,−1} and ε ∈ [0, 1/2). Then1 ,

2Rε(f) ≥ max
H,P

{
〈H ◦ P, F 〉 − 2ε

discP (H)

}
where F is the sign matrix corresponding to f , and the maximization is over all H that are
±1 sign matrices and P that are probability matrices (i.e, P ≥ 0 and ‖P‖1 = 1).

Proof. Let H : X×Y → {1,−1} viewed as a sign matrix and P be a distribution on X×Y
such that

1. f and H are well correlated wrt. P , that is, 〈F,H ◦P 〉 = E(x,y)∼P [f(x, y)h(x, y)] ≥ δ.

2. discP (H) is small.

Let Π be a cost c protocol that computes f with error at most ε with respect to µ. Then,

Prµ,Π[Π(x, y) = h(x, y)] ≥ Prµ,Π[Π(x, y) = f(x, y)]−Prµ[f(x, y) 6= h(x, y)] ≥ 1−ε−1− δ
2
≥ 1

2
+
δ − 2ε

2

Hence, by Theorem 25.1, we get c ≥ log δ−2ε
discµ(h) . Therefore,

2Rε(f) ≥ max
H,P

{
〈H ◦ P, F 〉 − 2ε

discP (H)

}
where H = [h(x, y)]x∈X,y∈Y and P = [µ(x, y)]x∈X,y∈Y .

1Here, 〈A,B〉 denotes
∑

AijBij while H ◦ P denotes the matrix obtained by the Hadamard product of
H and P i.e., (H ◦ P )ij = HijPij
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Spectral approach: Recall that the discrepancy discP (H) can be bounded using the
spectral norm of the matrix K = H ◦ P given by ‖K‖ = σ1(K) = max‖x‖=1 ‖Kx‖ as
follows.

discP (H) = max
S,T
|1TS ·K · 1T | ≤ max

S,T
‖1S‖ · ‖K‖ · ‖1T ‖ = ‖K‖

√
|X||Y |.

Substituting this into Theorem 25.2, we get the following theorem.

Theorem 25.3. Let F : X × Y → {±1} and K = [Kxy]x∈X,y∈Y be any real matrix with
‖K‖1 = 1. Then for any ε > 0,

2Rε(f) ≥ 〈F,K〉 − 2ε

‖K‖
√
|X||Y |

.

What is a good choice for K? Does F itself work? Indeed, when the function is parity
function we can take K = 1

22n
F . But, in general, its clear from Theorem 25.3 that we want

K with small spectral norm such that 〈F,K〉 is large, that is, good correaltion with F . In
the rest of today’s lecture, we will see how to get hold of such a K using the notion of
approximate degree.

25.2 Approximate degree

Let f : {1,−1}n → {1,−1}. The ε-approximate degree of f , degε(f), is the least degree of
a real polynomial p(x1, x2, . . . , xn) such that |f(x) − p(x)| ≤ ε for all x ∈ {1,−1}n. The
dual characterization of approximate degree is given by the following theorem.

Theorem 25.4. let f be a boolean function and ε ≥ 0. Then, degε(f) ≥ d if and only if
there exist a function ψ : {1,−1}n → R such that

ψ̂(S) = 0, |S| < d (25.2.1)∑
x∈{±1}n

|ψ(x)| = 1 (25.2.2)

∑
x∈{±1}n

ψ(x)f(x) > ε (25.2.3)

Comparison to threshold degree: Consider the function g : {1,−1}n → {1,−1} given
by g(x) = sign(ψ(x)) and the distribution µ(x) = |ψ(x)| where ψ is as in the theorem above.
Equations (25.2.1) and (25.2.2) imply that deg±(g) ≥ d and the distribution µ is the dual
witness to this fact as defined in the last lecture. Inequality (25.2.3) is equivalent to stating
that Eµ [g(x)f(x)] > ε. In other words, if f has large approximate degree, then f has large
correlation with a large threshold degree function wrt. the distribution that witnesses the
large threshold degree. Recall that in last lecture we showed that if g has large threshold
degree, then a related G has large communication complexity via the discrepancy method.
Similarly, we will show in today’s lecture that if f has large approximate degree, then a
related function F has large communication complexity via the generalized discrepancy
method.
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Proof of Theorem 25.4. The proof is based on LP-duality. Consider the following primal
LP:

Minimize: δ

subject to: |f(x)−
∑
|S|<d

aSχS(x)| ≤ δ ∀x ∈ {1,−1}n

aS ∈ R ∀S
δ ≥ 0

Its dual is given as follows:

Maximize:
∑

x∈{±1}n
ψxf(x)

subject to:
∑
x
|ψx| = 1∑

x
ψxχS(x) = 0 ∀S

ψx ∈ R ∀x ∈ {1,−1}n

Since both LPs are feasible, they have same finite optimum and Note that degε(f) ≥ d iff
opt(primal-LP) > ε. Hence, by duality degε(f) ≥ d iff opt(dual-LP) > ε, which proves the
theorem.

25.2.1 Large approximation degree to large communication complexity

Let N and n be positive integers such that n divides N . Let f : {1,−1}n → {1,−1}. Define
F : {1,−1}N × Γ(N,n)→ {1,−1}, where Γ(N,n) ⊆

(
[N ]
n

)
and

F (y, V ) = f(y|V )

where y|V denotes the projection of y onto the indices in V . Let us also assume that Γ
contains only the following types of sets V , V = {i1, i2, . . . , in} such that

i1 ∈
{

1, . . . ,
N

n

}
, i2 ∈

{
N

n
+ 1, . . . ,

2N

n

}
, . . . , in ∈

{
(n− 1)N

N
+ 1, . . . , N

}
Clearly, |Γ(N,n)| = (N/n)n.

Our main theorem relating approximate degree to communication complexity is as fol-
lows.

Theorem 25.5 (approximate degree implies large communication). Let F be defined as
above. Then,

R1/5(F ) ≥ 1

2
deg2/3(f) log

⌊
N

2n

⌋
− 2.

Setting N = 4n, we have following corllary.
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Corollary 25.6. Let f : {0, 1}n → {0, 1}. Define F : {0, 1}4n × {0, 1}4n → {0, 1} where

F (x, y) = f
(
x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4,

x5y5 ∨ x6y6 ∨ x7y7 ∨ x8y8,

...

x4n−3y4n−3 ∨ . . . ∨ x4ny4n

)
where xiyi = (xi ∧ yi). Then,

R1/5(F ) ≥ 1

2
deg1/3(f)− 2.

Instead of applying the generalized discrepancy method to F (as in Theorem 25.5), we
will find it more convenient (for reasons that will become evident shortly) to apply the
generalized discrepancy method to a related function, called the pattern matrix function.

25.3 The pattern matrix method

Definition 25.7 (pattern matrix). Let f : {1,−1}n → R. The (N,n, f)-pattern matrix is

the real matrix AN,n,f ∈ R{±1}N×(Γ(N,n)×{±1}n), given by

AN,n,f (y, (V,w)) = f(y|V ⊕ w).

Observe that it is almost similar to the definition of F from above, except that Bob gets
an additional input w and the function is f(y|V ⊕ w) instead of just f(y|w). The matrix
AN,n,f is a matrix consisting of several permuted copies of the matrix F (one for each w)
and hence, the name, pattern matrix.

Theorem 25.8 (pattern matrix theorem). Let AN,n,f be the (N,n, f)-pattern matrix. Then,

R1/5(AN,n,f ) ≥ 1

2
deg2/3(f) log

N

n
− 2

Before proving the theorem, let us see how it implies Theorem 25.5.

Proof of Theorem 25.5. The (N2 , n, f)-pattern matrix is actually a submatrix of F = [f(y|V )](y,V )

in the following sense.
AN

2
,n,f (y, (V,w)) = f(y′|V ′),

where y′ and V ′ are defined as follows: if y = (y1, y2, . . . , yN/2) ∈ {±1}N/2, then y′ =

(y1,−y1, . . . , yN/2,−yN/2)) ∈ {±1}N . If V = {i1, . . . , in} where ij ∈ {(j − 1)N/2n +
1, · · · , jN/2n} and w = (w1, . . . , wn), then V ′ = {i′1, . . . , i′n} where i′j ∈ {(j − 1)N/n +
1, · · · , jN/n} is defined as

i′j =

{
2ij − 1 if wj = 1

2ij if wj = −1
.

Hence, Theorem 25.5 follows from Theorem 25.8.
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Now, onto the proof of Theorem 25.8.

Proof of Theorem 25.8. By Theorem 25.4, there exist a function ψ : {±1}n → R such that:

ψ̂(S) = 0, |S| < d

‖ψ(x)‖1 = 1∑
x∈{±1}n

ψ(x)f(x) > ε

A natural choice for the matrix K in the generalized discrepancy approach (see Theo-
rem 25.3) is the pattern matrix corresponding to ψ (suitably scaled). More precisely, let

K be the
(
N,n, ψ

(N/n)n2N

)
-pattern matrix. From the second and third equations above, it

follows that
‖K‖1 = 1, 〈K,AN,n,f 〉 > 2/3

Now all we need to show is that the spectral norm ‖K‖ is small. For this, we will analyse
the singular values of K.

Let ψ =
∑

S ψ̂(S)χS be the Fourier decomposition of ψ. It follows thatK =
∑

S ψ̂(S)AS ,

where AS is the
(
N,n, χS

(N/n)n2N

)
-pattern matrix. Since 〈χS , χT 〉 = 0 if S 6= T , we have

ATSAT = ASA
T
T = 0 if S 6= T .2 Suppose if we could obtain the singular values of K from

AS ’s and show that ‖AS‖ is upper bounded, then we shall be through. This is exactly what
we do using the following two lemmata which we will prove later.

Lemma 25.9. Let A, B be real matrices such that ATB = ABT = 0. Then the non-zero
singular values of A + B, even respecting multiplicities, are {non-zero singular values of
A} ∪ {non-zero singular values of B} as a multiset.

Lemma 25.10. Let g : {1,−1}n → R and AN,n,g be the (N,n, g)-pattern matrix. Then the
non-zero singular values of AN,n,g, counting multiplicities, are:

⋃
S:ĝ(S) 6=0

{√
2N+n

(
N

n

)n
· |ĝ(S)|

( n
N

)|S|/2}
.

By Lemma 25.10 and using the fact the ‖K‖ = σ1(K), we have,

‖K‖ = max
S⊆[n]

√
2N+n

(
N

n

)n
· |ψ̂(S)|

(N/n)n2N
·
( n
N

)|S|/2
·

But ‖ψ(x)‖1 = 1, implies |f̂(S)| ≤ 2−n, and ψ̂(S) = 0, for |S| < d. Hence,

‖K‖ ≤
( n
N

)d/2(
2N+n

(
N

n

)n)−1/2

2Note that this is not true if we had worked with the matrix F = [f(y|V )](y,V ) as opposed to [f(y|V ⊕
w)](y,(V,w)). This is the reason for working with the pattern matrix instead of the matrix F .
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Since 〈K,AN,n,f 〉 > 2/3 and ε = 1/5, using Theorem 25.3 we get,

R1/5(AN,n,f ) ≥ 1

2
deg2/3(f) log

N

n
− 2

Proof of Lemma 25.9. The singular values of (A + B) are exactly the square roots of the
eigenvalues of (A+B)(A+B)T .

(A+B)(A+B)T = AAT +BBT +ATB +ABT

= AAT +BBT

Let AAT =
∑rankA

i=1 σ2
i (A)uiu

T
i and BBT =

∑rankB
j=1 σ2

j (B)viv
T
i be the singular value de-

composition of AAT and BBT respectively. Then,∑
i,j

σ2
i (A)σ2

j (B)〈ui, vj〉2 = 〈AAT , BBT 〉

= tr(AATBBT ) = 0

This implies that u′is and v′js are orthonormal. Hence, the singular values of (A + B) are
infact, σ1(A), . . . , σrankA(A), σ1(B), . . . , σrankB(B), with multiplicities.

Proof of Lemma 25.10. Let g =
∑

S⊆[n] ĝ(S)χS . Hence, AN,n,g =
∑

S⊆[n] ĝ(S)AS , where

AS is (N,n, χS)-pattern matrix. We have seen earlier that ASA
T
T = ATSAS = 0, if S 6= T .

By Lemma 25.9, the non-zero singular values of A are the union of the non-zero singular
values of ĝ(S)AS , counting multiplicities. So lets look at ATSAS :

ATSAs = [χS(w)χS(w′)]w,w′ ⊗

[∑
y

χS(y|V )χS(y|V ′)

]
V,V ′

The first term in above equation is a rank 1 matrix with entries ±1. Therefore, its singular
value is 2n with multiplicity 1. The second term is of the form

2N


J

J
. . .

J


where J is the all ones matrix of order

(
N
n

)n−|S|
. This implies that its singular value is

2N (N/n)n−|S| with multiplicity (N/n)|S|. Hence, the non-zero singular value of ATSAS is
2N+n(N/n)n−|S|, with multiplicity (N/n)|S| and the lemma follows.
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