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26. Multiparty Communication – NOF model

Lecturer: Prahladh Harsha Scribe: Fahad Panolan

Today, we discuss multiparty communication complexity where the goal is for k parties to
evaluate a function defined of on k inputs and these inputs are distributed among k players.
We have already seen one instance of multiparty communication – the NIH (number-in-
hand) model wherein the input is partitioned among the k players. Today, we will focus on a
different model - the NOF (number-on-forehead) model and discuss lower bound techniques
for this model. In the NOF model, the input is not partitioned among the k players as in the
NIH model, but there is considerable overlap in the distribution of inputs. The references
for today’s lecture include Sections 6.1–6.4 of Kushilevitz-Nisan’s book [KN97].

26.1 The multiparty model

Let f be a Boolean function defined on k inputs.

f : X1 ×X2 × · · · ×Xk → {0, 1}.

We will typically consider domains Xi of the form {0, 1}n. The Input (x1, x2, . . . , xk) is
distributed among the k players A1, . . . , Ak and they need to compute f(x1, x2, . . . , xk)
by communicating amongst themselves. We will restrict ourselves to the broadcast (also
called blackboard) model of communication, i.e any message sent by any player is seen
by all players. No two (or less than k) players can have a private conversation amongst
themselves. This is modeled as follows: each player writes it’s message on a black board
which is seen by all players. Hence, the name blackboard model. The communication cost
is the total number of bits written in the black board.

There are two commonly considered models depending on how the k inputs is distributed
among the k players. The obvious generalization of the two-party model is to partition the
inputs among the players, this is the number-in-hand (NIH) model. That is, in NIH model,
player Ai gets input xi. Observe that the lower bounds in the two-party case naturally
extend to the NIH model. In fact, one expects even better lower models as the number of
player grows. As observed in the earlier lectures, this aspect of the NIH model is useful for
proving lower bound for streaming algorithms. A different and non-obvious generalization
of the two party case is the number-in-forehead (NOF) model. In the NOF model, player
Ai gets as input (x1, x2, . . . , xi−1, xi+1, . . . , xk), i.e player Ai knows all parts of the input
except co-ordinate xi. In some sense, xi is printed on the forehead of player Ai, a player
can see what is written on other players’ foreheads but not his own forehead. The NOF
model abstracts situations in which the input is distributed among various parties and there
is overlap of information amongst the k players. Observe that in the two party case, the
NOF and NIH model are equivalent. We will use the notation Dk(f),Rk(f) to denote the
deterministic and randomized communication cost of the k-party protocol to compute f
(the model NOF or NIH will be clear from context).
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Due to the overlap, most of the lower bound techiques for the two-party case do not
extend to the NOF model unlike the NIH model. In fact, the only known lower bound
technique in the NOF model is the discrepancy bound. In general, the NOF model is not
as well understood as the two-party case and lower bounds seem to be harder to obtain in
this case.

Overlap of information in NOF model helps to reduce communication cost. Consider
the function EQkn, which is equal to 1 iff all the k inputs are equal (ie., x1 = x2 = · · · = xk).
We know that D(EQ2

n) = n + 1 for the two party case. On the other hand, for k ≥ 3,
Dk(EQkn) ≤ 2: Player 1 writes 1 if x2 = x3 = · · · = xn and player 2 writes 1 if x1 = x3.

Recall that in the two party communication, any determnistic protocol can be thought of
as binary tree where the internal nodes are labeled by the two players and the leaves by the
outputs and the depth of the tree is the cost of the protocol. The multiparty deterministic
protocol (in both the NIH and NOF models) can be similarly be thought as binary trees
where each internal node is labeled by one of the k players and the leaves are labeled with
0 or 1. As before, The cost of the protocol is the depth of the tree. In NIH model, if an
internal node is labeled by player i, then one of the two edges (which is labeled 0 or 1) is
selected based on a function depending only on xi whereas in the NOF model this function
is defined on (x1, x2, . . . , xi−1, xi+1, . . . , xn), ie., all but the ith part of the input.

In the 2-party case, a protocol partitions the input space into rectangles. In the NIH
model, rectangles are replaced with cubes while in the case of NOF model rectagles are
replaced with more complicated objects, called “cylinder intersections”

26.1.1 Cylinder intersections

Definition 26.1 (cylinder, cylinder intersection). S ⊆ X1 ×X2 × · · · ×Xk is a cylinder in
axis i if

(x1, x2, . . . , xi−1, xi, xi+1, . . . , xk) ∈ S =⇒ ∀x′i ∈ Xi, (x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xk).

A subset S is called a cylinder intersection if it can be represented as an intersection of
cylinders (in any axis), i.e, S = ∩ki=1Si where Si is a cylinder in axis i1.

It is easy to check that the set of inputs that reach a particular leaf in a deterministic
NOF protocol from a cylinder intersection. Sometimes cylinder intersections are specified
via the equivalent star formulation.

Definition 26.2 (star property). A star in X1 ×X2 × · · · ×Xk is a set of k points of the
form (x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), · · · , (x1, x2, . . . , x′k) where for each i, xi, x

′
i ∈ Xi. The

point (x1, x2, . . . , xk) is called the center of the star (note that center does not necessarily
belongs to star).

A set S satisfies the star property if

∀i, xi, x′i ∈ Xi,
(
(x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k) ∈ S =⇒ (x1, x2, . . . , xk) ∈ S.

)
.

I.e, for every star S contains, S also contains its center.

1Here, we have used the fact that intersections of cylinders in the same axis is a cylinder (in the same
axis).
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Lemma 26.3. A set S is a cylinder intersection iff S satisfies the star property.

Proof. (⇒) : Let S be a cylinder intersection. i.e, S = ∩ki=1Si where Si is a cylinder in axis
i. Assume S contains a star (x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k).

⇒ ∀i, (x1, x2, . . . , x
′
i, . . . , xk) ∈ Si

⇒ ∀i, (x1, x2, . . . , xi, . . . , xk) ∈ Si (∵ Si is a cylinder in axis i)

⇒ (x1, x2, . . . , xi, . . . , xk) ∈ S

(⇐) : Asuume S satisfies star property. Define the set

Si = {(x1, x2, . . . , xi, . . . , xk)|∃x′i ∈ Xi, (x1, x2, . . . , x
′
i, . . . , xk) ∈ S}.

By definition Si is a cylinder in axis i. We will show that if S satisfies star property then S =
∩iSi. S ⊆ ∩iSi is true from the definition of Si. Consider a point (x1, x2, . . . , xi, . . . , xk) ⊆
∩iSi. Then ∀i,∃x′i such that (x1, x2, . . . , x

′
i, . . . , xk) ∈ S (from the definition of Si). This

set of k points is a star in S, which implies (x1, x2, . . . , xi, . . . , xk) is also in S

Cylinder intersection property A deterministic multiparty communication (NOF model)
protocol of cost C partitons the input space into cylinder intersections and since the depth
of the tree is at most C, there are at most 2C disjoint cylinder intersections in this partition.

26.2 Randomized multiparty protocols

A (public coins) randomized multiparty protocol is, as in the 2-party case, a distribution over
deterministic protocols. Thus, a public coins multiparty protocol of cost C can be modeled
as a distribution over protocol trees where each tree partitions the input space into at most
2C disjoint cylinder intersections. Yao’s characterization of randomized communication cost
in terms of distributional communication cost also extends to the multiparty setting.

Theorem 26.4 (Yao’s Theorem). Rk
ε(f) = maxµ Dµ,k

ε (f).

Here, Dµ,k
ε (f) denotes the communication cost of the best deterministic k-party protocol

that makes error on at most ε fraction of the inputs according to the distribution µ.

26.2.1 Discrepancy Lower Bound for NOF model

Recall that the discrepancy of a set S is defined as

discµ(f ;S) =

∣∣∣∣ Pr
x∼µ

[
f(x) = 1 ∧ x ∈ S

]
− Pr
x∼µ

[
f(x) = 0 ∧ x ∈ S

]∣∣∣∣
=

∣∣∣∣∣∑
x∈S

µ(x) · (−1)f(x)

∣∣∣∣∣ .
We will denote µ(x) · (−1)f(x) by ψ(x) = ψf,µ(x). Thus, discµ(f ;S) = |

∑
x∈S ψ(x)|.

The only lower bound techinque from the 2-party case that generalizes to the multiparty
case is the discrepency method.Analogous to the theorem in two party communication
complexity we have the following theorem
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Theorem 26.5.

Dµ,k
1
2
−ε(f) ≥ log

(
2ε

disckµ(f)

)
,

where disckµ(f) = maxS discµ(f ;S) where the maximum is taken over all k-cylinder inter-
sections S.

Proof of this theorem is very similer to the proof in the case of 2-party case. Here
cylinder intersections replaces rectangles.

The discrepancy bound proved in Lecture 24 for the 2-party case has a natural multiparty
generalization.

Lemma 26.6. Let f : X1×, . . . ,×Xk → {0, 1} and µ be a distribution on input space.
Then(

disckµ(f)

|X1| · · · · · |Xk|

)2k−1

≤ E
x01∈X1

x11∈X1

E
x02∈X2

x12∈X2

. . . E
x0k−1∈Xk−1

x1k−1∈Xk−1

∣∣∣∣∣∣ E
xk∈Xk

∏
z∈{0,1}k−1

ψ(xz11 , x
z2
2 , . . . , x

zk−1

k−1 , xk)

∣∣∣∣∣∣ .
Proof is similer to the proof of discrepancy bound lemma in the 2-part case. Here we

need to apply Cauchy-Schwartz inequality k − 1 times.

Proof. Let S = ∩ki=Si be the cylinder intersection such that disckµ(f) = discµ(f ;S). Define
k random variables α1, . . . , αk : X1 × · · · × Xk → {±1} based on the k cylinders Si’s as
follows.

αi(x) =

{
1 if x ∈ Si,
±1 with equal probability if x /∈ Si.

Observe that αi is independent of xi, i.e., αi(x1, . . . , xk) = αi(x1, . . . , xi−1, xi+1, . . . , xk) =

αi(x−i). It follows from the definitions that disckµ(f) =
∣∣∣E [∑x∈

∏k
i=1Xi

ψ(x) ·
∏k
i=1 αi(x)

]∣∣∣
where the expectation is over the random αi. We now choose the functions αi’s such that

disckµ(f) ≤

∣∣∣∣∣∣
 ∑
x∈

∏k
i=1Xi

ψ(x) ·
k∏
i=1

αi(x)

∣∣∣∣∣∣ .
Rewriting the summation in terms of an expectation, we have(

disckµ(f)

|X1| · · · · · |Xk|

)
≤

∣∣∣∣∣ E
x1∈X1

· · · E
xk∈Xk

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

]∣∣∣∣∣ .
Applying Jenson’s inequality k − 1 times and observing that αi is independent of xi and
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(αi(x))2 = 1, we have(
disckµ(f)

|X1| · · · · · |Xk|

)2k−1

≤

(
E
xk

E
xk−1

· · · E
x2

E
x1

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

])2k−1

≤ E
xk

(
E

xk−1

· · · E
x1

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

])2k−1

≤ E
xk

 E
xk−1

(
E

xk−2

· · · E
x1

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

])2k−22

≤ E
xk

 E
xk−1

 E
xk−2

(
E

xk−3

· · · E
x1

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

])2k−32


2

...

≤ E
xk

 E
xk−1

· · ·
E
x2

(
E
x1

[
ψ(x1, . . . , xk) ·

k∏
i=1

αi(x1, . . . , xk)

])2
2

· · ·

2


2

= E
xk

E
x0k−1,x

1
k−1

. . . E
x01,x

1
1

 ∏
z∈{0,1}k−1

(
ψ
(
xz11 , . . . , x

zk−1

k−1 , xk
)
·
k∏
i=1

αi
(
xz11 , . . . , x

zk−1

k−1 , xk
))

= E
x01,x

1
1

. . . E
x0k−1,x

1
k−1

E
xk

 ∏
z∈{0,1}k−1

ψ
(
xz11 , . . . , x

zk−1

k−1 , xk
) ·

 ∏
z∈{0,1}k−1

αk
(
xz11 , . . . , x

zk−1

k−1
)

≤ E
x01,x

1
1

. . . E
x0k−1,x

1
k−1

∣∣∣∣∣∣Exk
 ∏
z∈{0,1}k−1

ψ
(
xz11 , . . . , x

zk−1

k−1 , xk
)∣∣∣∣∣∣

Thus, proved.

26.3 Generalized Inner Product

We will now consider a generalization of the inner product function to k inputs and study
its communication complexity in the NOF model. Recall, that IP(x1, x2) is the parity of
the number of co-ordinates for which both x1 and x2 are 1. Generalized Inner Product
(denoted by GIP) is a natural extension of this to k inputs: it is the parity of the number
of co-ordinates in which all the k inputs are 1. More precisely, if we consider the k inputs
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(x1, . . . , xk) ∈ {0, 1}nk as a k×n matrix whose rows are x1, x2, . . . , xk, then GIPkn is defined
as

GIPkn(x1, x2, . . . , xk) =

{
1 if # of all 1s columns are odd
0 otherwise.

It will be useful that GIPkn is given by the following expression.

GIPkn(x1, x2, . . . , xk) =
n∑
j=1

k∏
i=1

xij (mod 2).

We begin with a surprising upper bound due to Grolmusz [Gro94] that improves with
the number of players.

Theorem 26.7 (GIP – upper bound [Gro94]). Dk(GIPkn) = O
(
kn
2k

)
.

Proof. The input is considered as a k × n matrix. To begin with, the k players divide the
columns of matrix into blocks of size atmost 2k−1 − 1. If we compute GIP for every block
and then summ the results (mod 2), we get the required answer. Hence the communication
cost will be n

2k−1−1 times the cost for one block. Now consider the following protocol for a
block.

Step 1 : Player 1 announces a vector α ∈ {0, 1}k which is not of the columns in the block
as follows. Note that Player 1 needs to do this despite not knowing the first row.
Consider player 1’s restricted view of the block – a matrix with k − 1 rows. Since,
there are at most 2k−1− 1 columns in this matrix and and each column is a vector of
k − 1 bits, there is at least one vector of length k − 1 which is not a column in the
matrix formed by the k− 1 rows in the block. Player 1 then extends this k− 1 vector
by putting 1 in the first co-ordinate to obtain a vector that is not of the columns in
the block.

Step 2 : Now all players know a column α which is not in the block. If α = (1, . . . , 1) then
ouput 0. Otherwise α contains atleast one 0. Without loss of generality, assume α
is in the form (0, . . . , 0, 1, . . . , 1) , i.e, l 0’s followed by k − l 1’s (if this is not the
case we re-permute the rows). Let yi be the number of column vectors of the form
(0, . . . , 0, 1, . . . , 1), i.e, i 0’s followed by k − i 1’s. Let zi be the number of columns of
the form (0, . . . , 0, ?, 1, . . . , 1), i.e, i − 1 0’s followed by a ? and k − i 1’s. Note that
zi = yi−1+yi and yl = 0 (because α(= yl) is not a column in the block). Furthermore,
Player i knows the value of zi. For each i ∈ [l], Player i announce zi mod 2. Given
this, the players can now compute y0.

Cost of the protocol is O
(
kn
2k

)
, because GIP for a block have a cost of at most 2k bits.

We will now show a lower bound, due to Babai, Nisan and Szegedy [BNS92], which
was proved prior to Grolmusz’s result. This lower bound was later improved to Ω(n/2k) by
Chung and Tetali [CT93].

Theorem 26.8 (GIP – lower bound [BNS92]). Rk1
2
−ε(GIP

k
n) ≥ Dunif,k

1
2
−ε (GIPkn) = Ω

(
n
4k
− log

(
1
ε

))
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Proof. Let µ represent uniform distribution over inputs.
Let ψ(x1, . . . , xk) = (−1)GIP

k
n(x1,...,xk)µ(x1, . . . , xk).

Due to discrepancy bound lemma 26.6,(
disckµ(GIPkn)

2nk

)2k−1

≤ E
x01∈X1

x11∈X1

E
x02∈X2

x12∈X2

. . . E
x0k−1∈Xk−1

x1k−1∈Xk−1

∣∣∣∣∣∣ E
xk∈Xk

∏
z∈{0,1}k−1

ψ(xz11 x
z2
2 . . . x

zk−1

k−1 xk)

∣∣∣∣∣∣
≤ 1

(2nk)
2k−1 E . . .E

∣∣∣∣∣∣ E
xk∈Xk

∏
z∈{0,1}k−1

(−1)GIP
k
n(x

z1
1 x

z2
2 ...x

zk−1
k−1 xk)

∣∣∣∣∣∣
i.e,

(
disckµ(GIPkn)

)2k−1

≤ E . . .E
∣∣∣∣ E
xk∈Xk

(−1)
∑

z∈{0,1}k−1
∑n

j=1

∏k−1
i=1 x

zi
ij xkj

∣∣∣∣
≤ E . . .E

∣∣∣∣Exk [(−1)T
]∣∣∣∣

where T =
∑

z∈{0,1}k−1

n∑
j=1

k−1∏
i=1

xziijxkj

=
n∑
j=1

xkj
∑

z∈{0,1}k−1

k−1∏
i=1

xziij

=
n∑
j=1

xkj

k−1∏
i=1

(x0ij + x1ij)

E
xk

[
(−1)T

]
=

{
0 if ∃j such that

∏k−1
i=1 (x0ij + x1ij) 6= 0 (mod 2)

1 otherwise

Pr

[
k−1∏
i=1

(x0ij + x1ij) 6= 0 (mod 2) for a fixed j

]
=

1

2k−1

Pr

[
∀j

k−1∏
i=1

(x0ij + x1ij) = 0 mod 2

]
=

(
1− 1

2k−1

)n
Therefore

(
disckµ(GIPkn)

)2k−1

≤
(

1− 1

2k−1

)n
≤ e

−n

2k−1

Hence, disckµ(GIPkn) ≤ e
−n

4k−1

Hence Dunif,k
1
2
−ε (GIPkn) = Ω

(
n
4k

+ log ε
)

(due to Theorem 26.5).

Theorem 26.4 and Claim 26.8 implies Rk1
2
−ε(GIP

k
n) = Ω

(
n
4k

+ log ε
)
.
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