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Communication Complexity 21 Nov, 2011 (@ TIFR)

27. Multiparty communication complexity of disjointness

Lecturer: Jaikumar Radhakrishnan Scribe: Swagato Sanyal

In this lecture we shall derive a lower bound on multiparty communication complexity
of the Disjointness problem, in the “Number on forehead” model introduced in the last
lecture. Recall that earlier we proved lower bound of the complexity of the same problem
in “Number in hand” model.

27.1 Multiparty Set Disjointness Problem

We have a universe [n] and we have k subsets of the universe b1, . . . , bk, each given as a bit
vector of size n. In such a bit vector, the i-th entry is 1 iff the element i is a member of
that set. There are k players, and bi is the input to i-th player. According to our model,
each player i has access to every bj such that j 6= i. The goal is to decide whether the
intersection of b1, . . . , bk is non-empty.

DISJn,k(b1, . . . , bk) =

{
1 (if ∩ki=1bi = ϕ)
0 (otherwise)

In this lecture we shall prove the following theorem by Sherstov:

Theorem 27.1. R1/3(DISJn,k) = Ω
(

n
4k

) 1
4 .

We will move to the −1,+1 world from the 0, 1 world. Thus −1 and +1 will stand for 1
and 0 respectively. For proving the above theorem we shall use the following claim without
proof. ANDn is the n variable logical AND function.

Claim 27.2. There exists a constant δ0 > 0 such that any polynomial that 1/3-approximates
ANDn has degree at least δ0

√
n.

For any function g, let degδ(g) denote the degree of a polynomial with least degree
which δ-approximates g. The broad idea of the proof is showing that if there is a cheap
communication protocol for multiparty disjointness, then there is a low degree polynomial
that closely approximates ANDn.
For some r, define a function F : {0, 1}nrk −→ {0, 1} as follows. Think of the input as n
matrices, each of dimension r × k. Treat each matrix as an input to DISJr,k. Apply the
function DISJr,k to each matrix to get one bit for each of them. Finally define F to be the
logical AND of those bits. Note that F is actually disjointness with k players and a larger
universe. Let degδ(ANDn) = dδ. We will prove the following theorem:

Theorem 27.3.

∀ε, δ ≥ 0, 2Rε(F ) ≥ (δ − 2ε)
(

dδ
√
r

2ken

)dδ
.
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27.2 Proof of Theorem 27.3

Let Π be a ε-error randomized protocol for F . Let µ+1
r,k and µ−1

r,k be two distributions (to

be fixed later) on {0, 1}rk supported on negative and positive instances of DISJr,k respec-

tively. Let µ =
µ+1
r,k+µ−1

r,k

2 . We obtain a randomized process for computing ANDn from Π as
follows: Given n bits z1, · · · , zn (by bits we mean +1,−1 values), we draw DISJr,k instances
X1, · · · , Xn from probablity distributions µz1r,k, . . . , µ

zn
r,k respectively. Clearly Π(X1, · · · , Xn) =

AND(X1, · · · , Xn) with probability at least 1− ε. Let P (z1, . . . , zn) be the expected value
computed by the randomized process on inputs z1, · · · , zn (the expectation is over the

random choices that the process makes). Let
∑
S⊆[n]

γS .
∏
i∈S

zi be the Fourier expansion of

P (z1, · · · , zn). For each S ⊆ [n], γS is Ez1∼U{0,1},··· ,zn∼U{0,1}[P (z1, . . . , zn)Πi∈Szi]. Let
Π(X) be the expected output of Π on X. Check that,

γS = EX1∼µ,··· ,Xn∼µ[Π(X1, · · · , Xn)
∏
i∈S

DISJr,k(Xi)] (27.2.1)

In the last lecture we saw that in NOF model, each leaf of the protocol tree of any de-
terministic protocol corresponds to intersection of k cylinders. The i-th cylinder is a set
of inputs, where the membership does not depend on the i-th input. For every cylinder
intersection K, let K() denote the indicator function of membership in K. Let C be the set
of all cylinder intersections of a deterministic protocol Ψ. Then Ψ can be written as:

Ψ(X) =
∑
K∈C

aKK(X)

where X is the input to the protocol, and aK is the output (ı.e. a +1/ − 1 value) of Ψ
when X belongs to the cyliner intersection K. Since a randomized protocol’s output is a
probability distribution over outputs of some deterministic protocols, we can write

Π(X) =
∑
K∈C

aKK(X)

where Π(X) is the expected output of Π on X, and aK is the expected output of Π when
X is in K. Both expectations are over internal randomizations of Π. aK is a real between

−1 and +1, and
∑
K
|aK| ≤ 2c, where c is the communication complexity of Π. Thus from

27.2.1 we have

γS =
∑
K∈C

aXEX1∼µ,··· ,Xn∼µ[X (X1, · · · , Xn)
∏
i∈S

DISJr,k(Xi)]

Now we will analyze how well does the polynomial
∑

S⊆[n],|S|<dδ

γS .Πi∈Szi approximate P (z1, · · · , zn).

Let the error on input z1, · · · , zn resulted because of dropping all monomials with degree
greater than dδ be ε′(z1, · · · , zn). Then,

ε′(z1, · · · , zn) =
∑
X∈C

∑
S⊆[n],|S|≥dδ

aXEX1∼µ,··· ,Xn∼µ[X (X1, · · · , Xn)
∏
i∈S

DISJr,k(Xi)]
∏
i∈S

zi
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≤
∑
X∈C

∑
S⊆[n],|S|≥dδ

aXEX1∼µ,··· ,Xn∼µ[X (X1, · · · , Xn)
∏
i∈S

DISJr,k(Xi)]

≤
∑
X∈C
|aX |

∑
S⊆[n],|S|≥dδ

|EX1∼µ,··· ,Xn∼µ[X (X1, · · · , Xn)
∏
i∈S

DISJr,k(Xi)]|

To bound this sum, we use a lemma which we will prove in the next lecture. Let α(s) =(
2k−1
√
r

)s
.

Lemma 27.4. There exist distributions µ+1
r,k and µ−1

r,k, such that for all S ⊆ [n] with |S| = s,

|EX1∼µ,··· ,Xn∼µ[X (X1, · · · , Xn)Πi∈SDISJr,k(Xi)]| ≤ α(s).

For the choice of µ+1
r,k and µ−1

r,k given by the lemma, this gives us

ε′(z1, · · · , zn) ≤
∑
X
|aX |

n∑
s=d

α(s).

(
n

s

)

≤
∑
X
|aX |

n∑
s=d

(
2k−1.en√

rs

)s
≤
∑
X
|aX |

n∑
s=d

(
2k−1.en√

rd

)s
If 2k−1.en√

rd
< 1 the sum is geometrically decreasing, and hence bounded above by 2c

(
2k.en√
rd

)d
.

If 2k−1.en√
rd
≥ 1, the quantity 2c

(
2k.en√
rd

)d
is at least 1 and hence bounds the error from above.

We know that the randomized process approximates AND within error ε. So the expected
output of the randomized process (denoted by P ()) is within an additive error of 2ε of

ANDn. Thus the above polynomial approximates AND within error 2ε+ 2c
(

2k.en√
rd

)d
. But

since the polynomial is of degree less than dδ, it should not approximate AND better than
δ. This gives us

2ε+ 2c
(

2k.en√
rd

)d
≥ δ

⇒ 2c > (δ − 2ε)
(

dδ
√
r

2ken

)dδ
This proves Theorem 27.3.

27.3 Proof of Theorem 27.1

Putting δ = 1/3 gives us dδ ≥ δ0
√
n (claim 27.2). Take r = 4kn. From Theorem 27.1

2R1/9(F ) = 2Ω(
√
n).

Note that F is disjointness on inputs of size N = 4kn2. Thus,

2R1/9(F ) = 2

(
N
4k

)1/4

.

This proves Theorem 27.1 as we can improve the error from 1/3 to 1/9 by increasing
communication by a constant factor.
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