Recursive Function Theory

Abhishek Kr Singh

TIFR Mumbai.

21 August 2014
Primitive Recursive Functions

- Initial Functions.
 - \(s(x) = x + 1 \)
 - \(n(x) = 0 \)
 - \(u^n_i (x_1, \ldots, x_n) = x_i \), where \(1 \leq i \leq n \).

- Composition:
 - Let \(h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)) \).
 - Then \(h \) is said to be obtained from \(f \) and \(g_1, \ldots, g_k \) by composition.

- Primitive Recursion:
 - Let \(h(x_1, \ldots, x_n, 0) = f(x_1, \ldots, x_n) \), and
 \(h(x_1, \ldots, x_n, t + 1) = g(t, h(x_1, \ldots, x_n, t), x_1, \ldots, x_n) \).
 - Then \(h \) is said to be obtained from \(f \) and \(g \) by primitive recursion, or simply recursion.

Definition: A function is called **primitive recursive** if it can be obtained from the initial functions by a finite number of applications of composition and recursion.
Some Primitive Recursive Functions

1. \(x + y \)
2. \(x \cdot y \)
3. \(x! \)
4. \(x^y \)
5. \(p(x) \) the predecessor function
6. \(x \div y \)
7. \(|x - y| \)
8. \(\alpha(x) \) the IsZero predicate
9. \(x = y \)
10. \(x \leq y \)
11. \(x < y \)
12. \(y \mid x \) y divides x
13. \(\text{Prime}(x) \)
14. \(\lfloor x/y \rfloor \)
15. \(R(x, y) \)
16. \(p_n \) the nth prime number
17. \(< x, y > \) the pairing function
18. \([a_1, ..., a_n] \) the Godel number
19. \(Lt(x) \) where \(x = [a_1, ..., a_n] \)
20. \(([a_1, ..., a_n])_i \)
Bounded Quantifiers:

- If the predicate $P(t, x_1, \ldots, x_n)$ is primitive recursive then so are the predicates $(\forall t)_{\leq y} P(t, x_1, \ldots, x_n)$ and $(\exists t)_{\leq y} P(t, x_1, \ldots, x_n)$.

Bounded Minimalization:

- If the predicate $P(t, x_1, \ldots, x_n)$ is primitive recursive then so is the predicate $\min_{t \leq y} P(t, x_1, \ldots, x_n)$.

Programs and Computable Functions

- Programming language S.

 - Our concept of computable function will be based on programming language S which has following instruction types.

 1. $V \leftarrow V$
 2. $V \leftarrow V + 1$
 3. $V \leftarrow V - 1$
 4. $\text{IF } V \neq 0 \text{ GOTO } L$

- A program in S is a sequence of labeled or unlabeled instructions of above type.
Syntax of the language S

- Conventions:
 - Input variables X_1, X_2, X_3, \ldots
 - Output variable Y and
 - Local Variables Z_1, Z_2, Z_3, \ldots

- State σ and snapshot $s = (i, \sigma)$ of program P.

- A Computation of a program P is defined to be a sequence $s_1, s_2, s_3, \ldots s_k$ of snapshots of P such that s_{i+1} is the successor of s_i for each i and s_k is the terminal snapshot.

Computable Functions

- For any program P and any positive integer m, $\psi_P^m(x_1, \ldots, x_m)$ represents the value of function computed by program P on input x_1, \ldots, x_m.

- A given partial function g is said to be partially computable if it is computed by some program.

- A function g is called computable if it is both total and partially computable.
Primitive recursive Vs computable functions.

- Every primitive recursive function is computable.
- Coding program by numbers
 - \(\#(I) = < a, < b, c > \)
 - \(\#(P) = [\#(I_1), \#(I_2), \ldots, \#(I_k)] - 1 \).
- Universality Theorem:
 - Let \(\phi^n(x_1, \ldots, x_n, y) = \psi_P^n(x_1, \ldots, x_n) \), where \(\#(P) = y \).
 - Then for each \(n > 0 \), the function \(\phi^n(x_1, \ldots, x_n, y) \) is partially computable.
- Step-Counter Theorem:
 - Let \(STP^n(x_1, \ldots, x_n, y, t) \leftrightarrow \) Program number \(y \) halts after \(t \) or fewer steps on inputs \(x_1, \ldots, x_n \)
 - Then for each \(n > 0 \), the predicate \(STP^n(x_1, \ldots, x_n, y, t) \) is primitive recursive.
- Normal Form Theorem:
 - Let \(f(x_1, \ldots, x_n) \) be a partially computable function. Then there is a primitive recursive predicate \(R(x_1, \ldots, x_n, y) \) such that \(f(x_1, \ldots, x_n) = l(min_z R(x_1, \ldots, x_n, z)) \).