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ABSTRACTIn this thesis, we prove un
onditional lower bounds on resour
es needed to 
om-pute expli
it fun
tions in the following three models of 
omputation: 
onstant-depthboolean 
ir
uits, multivariate polynomials over 
ommutative rings and the `Numberon the Forehead' model of multiparty 
ommuni
ation. Apart from using tools fromdiverse areas, we exploit the ri
h interplay between these models to make progresson questions arising in the study of ea
h of them.Boolean 
ir
uits are natural 
omputing devi
es and are ubiquitous in the mod-ern ele
troni
 age. We study the limitation of this model when the depth of 
ir
uitsis �xed, independent of the length of the input. The power of su
h 
onstant-depth
ir
uits using gates 
omputing modular 
ounting fun
tions remains undetermined,despite intensive e�orts for nearly twenty years. We make progress on two fronts:let m be a number having r distin
t prime fa
tors none of whi
h divides ℓ. We�rst show that 
onstant depth 
ir
uits employing AND/OR/MODm gates 
annot
ompute e�
iently the MAJORITY and MODℓ fun
tion on n bits if `few' MODmgates are allowed, i.e. they need size nΩ( 1
s
(log n)1/(r−1)) if s MODm gates are allowed inthe 
ir
uit. Se
ond, we analyze 
ir
uits that 
omprise only MODm gates. We showthat in sub-linear size (and arbitrary depth), they 
annot 
ompute AND of n bits.Further, we establish that in that size they 
an only very poorly approximate MODℓ.Our �rst result on 
ir
uits is derived by introdu
ing a novel notion of 
ompu-tation of boolean fun
tions by polynomials. The study of degree as a resour
e inpolynomial representation of boolean fun
tions is of mu
h independent interest. Ourv



notion, 
alled the weak generalized representation, generalizes all previously stud-ied notions of 
omputation by polynomials over �nite 
ommutative rings. We provethat over the ring Zm, polynomials need Ω(log n)1/(r−1) degree to represent, in oursense, simple fun
tions like MAJORITY and MODℓ. Using ideas from argumentsin 
ommuni
ation 
omplexity, we simplify and strengthen the breakthrough work ofBourgain showing that fun
tions 
omputed by o(logn)-degree polynomials over Zmdo not even 
orrelate well with MODℓ.Finally, we study the `Number on the Forehead' model of multiparty 
ommuni-
ation that was introdu
ed by Chandra, Furst and Lipton [CFL83℄. We obtain freshinsight into this model by studying the 
lass CCk of languages that have 
onstant
k-party deterministi
 
ommuni
ation 
omplexity under every possible partition ofinput bits among parties. This study is motivated by Szegedy's [Sze93℄ surprisingresult that languages in CC2 
an all be extremely e�
iently re
ognized by very shal-low boolean 
ir
uits. In 
ontrast, we show that even CC3 
ontains languages ofarbitrarily large 
ir
uit 
omplexity. On the other hand, we show that the advan-tage of multiple players over two players is signi�
antly 
urtailed for 
omputing twosimple 
lasses of languages: languages that have a neutral letter and those that aresymmetri
.Extending the re
ent breakthrough works of Sherstov [She07, She08b℄ for two-party 
ommuni
ation, we prove strong lower bounds on multiparty 
ommuni
ation
omplexity of fun
tions. First, we obtain a bound of nΩ(1) on the k-party random-ized 
ommuni
ation 
omplexity of a fun
tion that is 
omputable by 
onstant-depth
ir
uits using AND/OR gates, when k is a 
onstant. The bound holds as long asvi



proto
ols are required to have better than inverse exponential (i.e. 2−no(1)) advantageover random guessing. This is strong enough to yield lower bounds on the size ofan important 
lass of depth-three 
ir
uits: 
ir
uits having a MAJORITY gate at itsoutput, a middle layer of gates 
omputing arbitrary symmetri
 fun
tions and a baselayer of arbitrary gates of restri
ted fan-in.Se
ond, we obtain nΩ(1) lower bounds on the k-party randomized (bounded er-ror) 
ommuni
ation 
omplexity of the Disjointness fun
tion. This resolves a majoropen question in multiparty 
ommuni
ation 
omplexity with appli
ations to proof
omplexity. Our te
hniques in obtaining the last two bounds, exploit 
onne
tionsbetween representation by polynomials over reals of a boolean fun
tion and 
ommu-ni
ation 
omplexity of a 
losely related fun
tion.
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ABRÉGÉNous 
her
hons dans 
ette thèse à établir des bornes inférieures sur la quantitéde ressour
es de 
al
ul né
essaires au 
al
ul de 
ertaines fon
tions expli
ites. Cetteétude est 
entrée sur trois modèles importants: les 
ir
uits booléens de profondeurbornée, les polyn�mes multivariés dans des anneaux 
ommutatifs et le modèle de
omplexité de 
ommuni
ation à plusieurs joueurs appelé �modèle de données sur lefront�. Pour avan
er sur 
es questions, nous utilisons une variété d'outils mathéma-tiques mais exploitons aussi les ri
hes intera
tions entre l'étude de 
es trois modèles.Les 
ir
uits booléens sont des engins de 
al
ul très naturels et sont omniprésentsdans l'ère te
hnologique. Nous étudions les limites de tels 
ir
uits lorsque leur pro-fondeur est bornée par une 
onstante ne dépendant pas de la longueur des données.Malgré vingt ans de re
her
he sur le sujet, leur puissan
e dans 
e 
as est en
ore trèsmal 
omprise lorsque les portes 
omposant les 
ir
uits 
al
ulent des sommes mod-ulo un entier. Nous progressons sur deux fronts. Nous 
onsidérons d'abord que les
ir
uits de profondeur bornée employant des portes et/ou/modm. Nous montronsqu'ils ne peuvent 
al
uler e�
a
ement les fon
tions majorité et modℓ (pour ℓ et m
o-premiers) lorsque le nombre de portes modm est limité. D'autre part, nous 
on-sidérons les 
ir
uits ne 
ontenant que des portes modm et prouvons qu'un tel 
ir
uitne peut 
al
uler la fon
tion et sur n bits lorsque sa taille est o(n) et 
e, peut-importesa profondeur. Nous montrons même que 
es 
ir
uits ne peuvent 
al
uler que desapproximations très pauvres de la fon
tion modℓ.Notre premier résultat sur les 
ir
uits est basé sur une nouvelle notion de 
al
ulviii



d'une fon
tion par des polyn�mes. Dans 
e type d'étude, le degré des polyn�mes estvu 
omme une ressour
e de 
al
ul à minimiser. Notre notion de représentation faiblegénéralisée étend toutes les notions pré
édentes de représentations par des polyn�messur l'anneau 
ommutatif Zm. Nous montrons que, dans 
e nouveau 
adre, les fon
-tions majorité et modℓ ne peuvent être représentées par des polyn�mes de petitdegré. Par ailleurs, nous utilisons des idées venant de la 
omplexité de 
ommu-ni
ation pour simpli�er et renfor
er les per
ées de Bourgain qui a montré que lespolyn�mes de Zm de degré o(log n) n'ont qu'une faible 
orrélation ave
 la fon
tionmodℓ.Finalement, nous étudions le modèle de 
ommuni
ation multipartie �donnéessur le front� proposé par Chandra, Furst et Lipton [CFL83℄. Nous tentons de mieux
omprendre la nature du modèle en 
onsidérant la 
lasse CCk des langages de 
om-plexité bornée dans le modèle déterministe et �pire partition� pour k joueurs. Cestravaux sont motivés par les résultats surprenants de Szegedy [Sze93℄ qui montrenten parti
ulier que les langages de CC2 peuvent tous être re
onnus e�
a
ement pardes 
ir
uits booléens de très petite profondeur. Nous montrons qu'à l'opposé, il existedes langages de CC3 qui ont une 
omplexité de 
ir
uit arbitraire. Cependant, nousprouvons aussi que l'avantage des joueurs multiples est grandement limité lorsque lelangage à re
onnaître est symmétriques ou muni d'une lettre neutre.En généralisant les résultats ré
ents et novateurs de Shershtov [She07, She08b℄sur le modèle à deux joueurs, nous obtenons de fortes bornes inférieures sur la 
om-plexité de 
ommuni
ation pour k joueurs de fon
tions expli
ites. Pour toute 
on-stante k, nous établissons d'abord une borne de nΩ(1) sur la 
omplexité de proto
olesix



randomisés pour k joueurs, 
al
ulant une fon
tion 
al
ulé par des 
ir
uits et/oude taille polynomiale et de profondeur 
onstante. Cette borne reste valide pourtout proto
ole dont l'avantage par rapport à une réponse aléatoire est supérieure àl'inverse d'une fon
tion exponentielle (i.e. 2−no(1)). Le résultat est su�samment fortpour obtenir des bornes inférieures sur la taille d'une 
lasse importante de 
ir
uits,soit 
eux formés d'une porte majorité en sortie, d'un niveau intermédiaire forméde portes 
al
ulant une fon
tion symmétrique arbitraire et d'un niveau de base oùl'entran
e des portes utilisées est bornée.De plus, nous obtenons une borne inférieure de nΩ(1) sur la 
omplexité à k joueursdes proto
oles randomisés (ave
 erreur bornée) pour la fon
tion disjointness. Cetteborne résoud une question très importante qui a des appli
ations nombreuses, en-tre autre dans le domaine de la 
omplexité des preuves. Nos résulats exploitent lesliens entre les représentations de fon
tions booléennes par des polyn�mes réels et la
omplexité de 
ommuni
ation de fon
tions qui leur sont intimement liées.
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CHAPTER 1Introdu
tion1.1 Origins of the Theory of ComputationEvery reasonable 
urri
ulum in elementary s
hool is replete with tri
ks to �
om-pute�. Starting with skills to perform arithmeti
 operations like addition, multipli-
ation, division in primary s
hool, through taking square-roots of numbers (up to arequired pre
ision) and solving quadrati
 equations in middle s
hool, kids move on tolearn performing mu
h more sophisti
ated 
omputational tasks like di�erentiating orintegrating whole fun
tions. Indeed, many people like to measure a 
hild's progressin s
hool by testing how qui
kly he/she 
an perform su
h tasks. In light of this, itmay seem surprising that it took until the beginning of the last 
entury for someoneto ask the right question that made people realize that, something as fundamentalas 
omputation had gone unformalized!In 1900, David Hilbert posed the following problem1 to the leading �gures ofthe period in mathemati
s : Is there a �nitary pro
edure to determine if a givenmultivariate polynomial with integral 
oe�
ients has an integral solution? Hilbert,as the legend goes, was expe
ting a positive answer. In retrospe
t now, one maywell say that `fortunately' the answer was `no'. Had the answer been `yes' and1 It featured as the tenth problem in Hilbert's list of twenty three problems.1



had someone dis
overed su
h a pro
edure, arguably that would have delayed thebeginning of the inevitable `Theory of Computation'.Hilbert's question led Turing, more than thirty �ve years later, to provide asatisfa
tory model of 
omputation now known as the Turing ma
hine. The Turingma
hine remains the universal model of 
omputation as we understand today. Ev-erything that 
an be done by a real 
omputer or any other known devi
es2 
an be`reasonably e�
iently' performed on a Turing ma
hine. A pro
edure running on aTuring ma
hine is 
alled an algorithm. On the other hand, Turing's work led tosu
h remarkable 
on
lusions as that not every task has an algorithm that halts onall inputs. Using this result about Turing ma
hines, in 1972, Matiassevi
h resolvedHilbert's tenth problem in the negative, building upon the earlier breakthrough workof Davis, Putnam and Robinson.While Turing's work and Hilbert's problem were motivated from foundationalquestions of mathemati
al logi
, the notion of `e�
ient 
omputation' is easily moti-vated from more mundane a�airs. Many salesmen have wondered how to 
halk outan itinerary su
h that they tou
h upon every 
ity pre
isely on
e and return to theirstarting point. Modern network designers are routinely 
onfronted with the problemof determining an optimal 
ost network with a given redundan
y. Se
retaries havea hard time s
heduling a time table meeting everyone's demands. Indeed, life wouldhave been mu
h more pleasant if several su
h tasks from di�erent spheres of a
tivity2 Stri
tly speaking, devi
es whose operations are limited by the 
lassi
al laws ofphysi
s. 2



had e�
ient algorithms. Unfortunately, all these tasks seem intra
tably di�
ult inthe sense that every known algorithm for them runs for very long before they outputa solution. In parti
ular, the number of steps that the algorithm exe
utes beforegiving the 
orre
t answer tends to grow exponentially with the size of the input,measured in any reasonable sense.One of the basi
 goals of 
omputer s
ien
e and the guiding theme of Com-putational Complexity is to 
lassify algorithmi
 problems into 
omplexity 
lassesa

ording to the amount of minimum resour
es needed to solve them in a given 
om-putational model. The most powerful model or devi
e that is 
onsidered for su
htask is the Turing ma
hine. The two resour
es that have 
lassi
ally been lookedat, 
orresponding to the running time and memory requirements respe
tively of amodern 
omputer, are time and spa
e measured with respe
t to the size of the in-put. The usage of resour
es is de�ned by the behavior of the algorithm on theworst-
ase input (as opposed to let us say its behavior on the average3 input). Theuniversally a

epted mathemati
al 
on
ept of e�
ient (and feasible) 
omputation isthe notion of algorithms running in polynomial time. This gives rise to the widelyknown 
lass P that 
ontains those de
ision problems that admit polynomial timealgorithms. None of the problems mentioned in the last paragraph, when de�nedformally as de
ision problems in a reasonable way, seem to be in P. However, there3 Average-
ase 
omplexity is an interesting growing sub-�eld of ComputationalComplexity, surveyed by Bogdanov and Trevisan [BT06℄ re
ently.
3



are no known arguments that show there does not exist polynomial time algorithmsfor these problems.On the other hand, these problems share the property that every guessed solu-tion 
an be e�
iently veri�ed. For instan
e, given an itinerary a salesman 
an quiteeasily verify if it satis�es the need of tou
hing every 
ity pre
isely on
e. Computa-tion where guessing is allowed gives rise to the important notion of non-determinism.The 
lass of problems whose guessed solution 
an be veri�ed in polynomial time bya Turing ma
hine is the 
elebrated 
lass NP. The Holy Grail of 
omputational 
om-plexity theory, and an outstanding problem in modern mathemati
s, is to separate(or 
ollapse) these two 
lasses.1.2 The Theory of Lower BoundsProving impossibility results about 
omputation is a formidable 
hallenge. Mu
hof 
omputer s
ien
e is �lled with various tri
ks on how to perform 
ertain thingsrather than to show the impossibility of the existen
e of tri
ks to a
hieve a task.Indeed, powerful algorithms exist drawing upon entirely 
ounter-intuitive ideas fromvarious bran
hes of 
lassi
al mathemati
s. The tremendous rate of growth of su
htri
ks (see for example [LU97, AKS04, Rei05, CKSU05, AHT07℄) strongly suggeststhat we have barely s
rat
hed the surfa
e of algorithmi
 te
hniques. In this light,Turing's theorem about the existen
e of non-
omputable tasks does seem quite im-pressive. It is surprising that his result follows simply by employing the te
hniqueinvented by Cantor to prove the non-existen
e of a bije
tion from the set of realsto the set of natural numbers. This powerful method is 
alled diagonalization in
4



logi
. Interesting and fundamental separation results like the time and spa
e hier-ar
hy theorems have been dis
overed, also employing the method of diagonalization.These results roughly say that the 
lass of fun
tions 
omputable by a Turing ma
hinestri
tly grows if either more time or more spa
e is allowed.Unfortunately, diagonalization has strong limitations. In parti
ular, diagonal-ization proofs relativize i.e. if two 
omplexity 
lasses A and B are separated usingdiagonalization, then for every language C, A with a

ess to C for free (denoted by
AC) is di�erent from B with similar a

ess to C (denoted by BC). A very interestingresult of [BGS75℄ establishes that there exists languages C,D su
h that PC = NPCand PD 6= NPD. This result proves that P 
annot be separated from NP usinga pure diagonalization argument. This made resear
hers look for non-relativizingte
hniques.One way of developing new methods is to 
onsider expli
it fun
tions and provelower bounds against them in other natural (and simpler) models of 
omputation.Interesting natural models bring out new fa
ets of 
omputation. The e�ort of under-standing their limitations often forges links with other dis
iplines of mathemati
s.More surprisingly, and perhaps a little dis
omfortingly, it highlights how little weunderstand 
omputation when we are unable to determine the 
omplexity of a fun
-tion in a simple model. Arguably, this goes on to show that although the P vs. NPquestion de�ned our �eld, it is by no means the only question. While proving lowerbounds for expli
it fun
tions in natural models of 
omputation is of fundamentalimportan
e, the theory of lower bounds is just in its infan
y.
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We 
ontribute to the further development of this theory by exploring three well-known and important models of 
omputation: boolean 
ir
uits of 
onstant depth,low degree multivariate, multilinear polynomials over rings and the `Number on theForehead' (NOF) model of multiparty 
ommuni
ation.An important feature of the Turing ma
hine is its uniformity, i.e. for everytask, one algorithm handles inputs of every possible length. This is an extremedegree of uniformity. One 
ould enfor
e a milder notion of uniformity by havinga family of algorithms, one for every input length and then have a relationshipbetween ea
h su
h algorithm in the family. Vollmer [Vol99℄ provides an exposition ofthis approa
h to 
ir
uit 
omplexity. On the other hand, our approa
h with all threemodels is that we 
onsider non-uniform versions as opposed to the Turing ma
hinemodel. In other words, we 
onsider a family of algorithms (i.e a 
ir
uit or a proto
olor a polynomial as the 
ase may be), one for ea
h input length n and there doesnot exist any a priori relationship among algorithms in the family. Disregardinguniformity allows one to fo
us on the 
ombinatorial weakness of a model. We believesu
h investigations bring out deep 
ombinatorial questions that are interesting intheir own right. Su
h questions then allow fruitful ex
hange with other areas ofmathemati
s, making available a wider tool-set to make progress.1.3 Boolean Cir
uitsAlthough the Turing ma
hine is the model employed by theoreti
ians to argueabout 
omputation in general, it is fair to say that it is not used in pra
ti
e as adevi
e. In 
ontrast, 
ir
uits indeed are implemented by engineers and are ubiquitousin modern life. The integrated 
ir
uit, abbreviated as IC, has revolutionized our6



ele
troni
 age. They are the building blo
ks of not just modern 
omputers, butevery sophisti
ated devi
e. We des
ribe this natural model of 
omputation moreformally below.A 
ir
uit is a dire
ted a
y
li
 graph whose nodes are gates and edges are wires,where ea
h gate 
omputes a boolean fun
tion of the wires feeding into it. In general,
ir
uits have multiple outputs. In this work, we fo
us on 
ir
uits 
omputing a booleanfun
tion. Hen
e, our 
ir
uits have a spe
ial node with out-degree 1 
alled the outputgate. The value it outputs on a parti
ular input instan
e is the output of the 
ir
uiton that input. As stated before, a 
ir
uit operates on inputs of a �xed length n. Morepre
isely, we 
onsider a family of 
ir
uits {. . . , Cn, . . .}, one for ea
h input length.Similarly, when we de�ne a boolean fun
tion, we do so by de�ning one for ea
h inputlength. To keep our notation simple, we do not expli
itly mention the input lengthas in most 
ases it 
an be easily understood from the 
ontext. For example, we de�nethe THRESHOLD fun
tion as THRk(x) = 1 i� ∑n
i=1 xi ≥ k, where k is a positiveinteger. Here, k need not be �xed. In fa
t, THR⌈n/2⌉ is 
alled the MAJORITYfun
tion. Similarly, MODq(x) = 0 i� ∑n

i=1 xi ≡ 0 (mod q), for any positive integer
q. The following �gure shows a 
ir
uit having only AND and OR gates 
omputingthe MOD2 fun
tion (also known as PARITY) for the input length n = 3. It worksby exhaustively verifying if the input instan
e 
orresponds to any one of strings withodd parity.The size of a 
ir
uit is the number of non-input gates used. The depth of a
ir
uit is the maximum of all input node to output node distan
es. The fan-in of a

7
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Figure 1�1: A 
ir
uit of size 5 and depth 2 
omputing PARITY of 3 bits
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gate is its in-degree. The �gure above, depi
ts a family of 
ir
uits whose size growsexponentially in the input length n and whose depth remains a 
onstant.Size in 
ir
uits roughly 
orresponds to time in Turing ma
hines. Indeed, itis not hard to verify that any problem that 
an be solved in time T (n) with aTuring ma
hine 
an be solved by 
ir
uits 
omprising AND/OR gates of size (T (n))2,whi
h follows from the proof of the famous Cook's Theorem. In fa
t, 
ir
uits ofjust size O(T (n) logT (n)), as shown by [PF77℄, 
an simulate an algorithm runningon the Turing ma
hine for time T (n). Proving strong lower bounds on the sizeof 
ir
uits thus yields strong lower bounds on the running time of algorithms ona Turing ma
hine. Several resear
hers in the eighties felt that 
ir
uits provide a
lean 
ombinatorial handle on 
omputation as one 
an avoid dealing with messyfeatures of Turing ma
hines like moving heads and 
hanging states. This feelingre
eived a big impetus from the 
elebrated work of Razborov [Raz86℄. Using abeautiful 
ombinatorial argument, he showed that monotone 
ir
uits, i.e. 
ir
uitshaving AND/OR gates that do not a

ess negated input variables, 
annot 
omputethe CLIQUE fun
tion in polynomial size.The restri
tion to monotone 
ir
uits does not appear serious be
ause the targetfun
tion is itself monotone, i.e. if we add edges to our graph it does not destroy any
lique that was present in the original graph. Intuitively, one expe
ts that mono-tone fun
tions have near-optimal 
ir
uits that are monotone. However, Razborovshowed that MATCHING does not have polynomial size monotone 
ir
uits. A fa-mous algorithm due to Edmonds shows that MATCHING has a polynomial time
9



algorithm and hen
e poly-size non-monotone 
ir
uits4 . This destroyed the intuitionabout 
omputing monotone fun
tions. Indeed, the progress on general 
ir
uits hasbeen abysmally low. The best known lower bound on the size of unrestri
ted 
ir
uits
omputing an expli
it fun
tion is less than 4.5n [LR01℄.1.3.1 Cir
uits of Constant DepthDepth in 
ir
uits 
orresponds to the notion of `parallel time'. Indeed, the delayin propagating signal in digital devi
es is roughly proportional to the depth of theunderlying 
ir
uit (assuming that all gates involved have same laten
y). Investigatingdepth needed for 
omputing fun
tions is thus a natural resear
h dire
tion. Thisdire
tion was quite fruitfully pursued in the eighties. It has yielded some of the mostbeautiful results in the theory of lower bounds.An obvious starting point here is to 
onsider 
ir
uits of 
onstant depth. It isnot hard to see that if gates of su
h 
ir
uits have bounded fan-in, then the fun
tion
omputed 
an only depend on a 
onstant number of input variables. On the otherhand, allowing AND/OR gates of unbounded fan-in with 
onstant-depth results innon-trivial 
omputational power. Proving lower bounds against su
h 
ir
uits requireeven more non-trivial insight into 
omputation. A series of dramati
 work by Ajtai[Ajt83℄, Furst, Saxe and Sipser [FSS84℄, Yao [Yao85℄ and Håstad [Hås86℄ establishedthe fundamental result that su
h 
ir
uits in sub-exponential size (i.e. 2no(1) size)4 Mu
h more re
ently, there are indi
ations that MATCHING may be doable e�-
iently in parallel (see [AHT07℄)
10




annot 
ompute the parity of n boolean variables. More generally, the result showsthat modular 
ounting using AND/OR gates is inherently di�
ult.On the other hand, modular 
ounters are very mu
h part of the basi
 buildingblo
ks in modern digital hardware design. A natural next step is to pre
isely deter-mine what advantage is gained by allowing modular 
ounting gates into our 
ir
uits.For any integer m ≥ 2, de�ne a MODm gate to be a boolean gate that outputs 1 ifthe number of its input bits that are set to one is not divisible by m. Unfortunately,the powerful te
hniques introdu
ed in [Ajt83, FSS84, Yao85, Hås86℄ fail to work wellin the presen
e of MODm gates. The best that one 
ould say using this method wasworked out in [Hås86℄ where it was essentially shown that few PARITY gates (fewerthan Ω((log n)3/2)) does not help in signi�
antly redu
ing (below 2Ω(log n)3/2) the sizeof a 
onstant-depth 
ir
uit 
omputing the MAJORITY fun
tion.MAJORITY has two 
ru
ial properties. It is a robust fun
tion whose value doesnot get determined by revealing the assignment to any sublinear number of its inputbits. This is quite di�erent from the AND and OR fun
tions whose value gets �xedif any of its input bit is �xed to 0 and 1 respe
tively. The 
ru
ial te
hni
al ingredientof the works of [Ajt83, FSS84, Yao85, Hås86℄ showed that this weakness of AND andOR gates are propagated in some sense to the whole 
ir
uit if it is of 
onstant depthand is entirely 
omposed of these gates. The se
ond property of the MAJORITYfun
tion is that it is severely aperiodi
. MODm gates are of 
ourse periodi
 with asmall period of m for any 
onstant m. This makes MAJORITY a tempting target onwhi
h to prove lower bounds for size of 
ir
uits 
omprising AND/OR/MODm gates.
11



Developing a powerful ma
hinery for approximating boolean fun
tions by mul-tivariate, multilinear polynomials of low degree over �nite �elds, Razborov [Raz87℄proved exponential size lower bounds on the size of 
ir
uits having AND/OR/PARITYgates for 
omputing MAJORITY. Building on this breakthrough work, Smolensky[Smo87℄ generalized the argument by repla
ing the PARITY with MODpk gates,where p is any arbitrary �xed prime and k is a �xed positive integer. A spe
ial 
aseof Smolensky's argument yields (with a slight degradation of parameters) a new proofof the earlier exponential lower bounds on the size of 
onstant depth 
ir
uits 
omput-ing PARITY. After more than twenty years of its dis
overy, the Razborov-Smolenskyargument remains a true gem of theoreti
al 
omputer s
ien
e.Yet, the seemingly inno
uous extension to 
omposite modular 
ounting has re-sisted atta
ks from a long list of several resear
hers (for example, see [BS95, BS99,BST90, Gre04, Gro94b, Gro98, GT00, KW91, HM04, MPT91, Smo90, ST06℄). Nonon-trivial lower bounds are known for general 
onstant depth 
ir
uits that employMODm gates when m has two distin
t prime fa
tors. While three generations ofalgorithm designers have in frustration 
alled NP-
omplete problems intra
table, itremains 
onsistent with our 
urrent knowledge that 
ir
uits 
omprising only MOD6gates in depth three and linear size 
an 
ompute these problems. Separating su
hdepth-three 
ir
uits from NP is indeed one of the 
urrent frontiers in the theory oflower bounds.Another dire
tion, also very natural, is to 
onsider 
onstant depth 
ir
uits aug-mented with gates 
omputing MAJORITY. We 
all them MAJ gates. The in�uentialwork of Minsky and Papert [MP88℄ 
onsidered a spe
ial 
ase of su
h 
ir
uits 
alled12



per
eptrons. These are boolean gates that generalize a MAJ gate: every input to aper
eptron is weighted by some real number and the gate outputs one i� the weightedsum of its inputs is positive and otherwise outputs -1. Arti�
ial neural networks, us-ing the per
eptron as a building blo
k, have been widely studied in the Arti�
ialIntelligen
e and Ma
hine-Learning 
ommunities as a reasonable model of neural a
-tivity in the human brain. It is known that su
h 
onstant depth neural networks 
anbe e�
iently simulated by 
ir
uits 
omprising ordinary unweighted MAJ gates.A series of results [ABFR94, BRS91b, Bei94, BS94℄ in the early nineties es-tablished strong lower bounds on 
onstant-depth 
ir
uits augmented with few MAJgates. Spe
i�
ally, these series of results showed that 
ir
uits 
omprising AND,ORand MAJ gates 
annot 
ompute5 in sub-exponential size the MODm fun
tion as longas the number of MAJ gates is restri
ted to no(1). On the other hand, it is knownthat allowing more MAJ gates in
reases signi�
antly the 
omputational power ofsu
h 
ir
uits. In linear size and depth-two, 
ir
uits 
omprising only MAJ gates
ompute the MODm fun
tion, for every m. More surprisingly, in depth-three andquasi-polynomial size (i.e. nO((log n)d) for some 
onstant d), 
ir
uits with only MAJgates 
ompute every fun
tion that 
an be 
omputed by 
ir
uits of quasi-polynomialsize and 
onstant depth having AND/OR/MODm gates [Yao90, BT94℄.This brings us to another frontier in the theory of lower bounds. Currently, we
annot prove a superlinear lower bound on the size of depth-three 
ir
uits 
omprising5 In fa
t, Barrington and Straubing [BS94℄ show that su
h 
ir
uits 
annot evenapproximate well the MODm fun
tion. 13



only MAJ gates 
omputing any fun
tion in NP. In other words, for every intra
tableproblem, there may exist a shallow depth and small size neural network that solvesthe problem.1.4 Polynomials over RingsMultivariate polynomials over rings are 
lassi
al obje
ts in mathemati
s thathave been studied in a wide variety of 
ontexts sin
e long. More re
ently, theyhave aroused major interest in the 
omputing 
ommunity after a string of impressiveresults in 
ir
uit 
omplexity [Raz87, Smo87, ABFR94℄, intera
tive proofs [LFKN92℄,
ommuni
ation 
omplexity [She07℄, learning theory [LMN93, Kli02℄ and quantum
omputing [AS04, BCW98, Raz03, She08b℄ have been obtained with polynomialsplaying a 
entral role.Many of these results use polynomials as a tool to analyze a given problem.A little di�erently, the Razborov-Smolensky argument for showing limitations of
onstant-depth 
ir
uits having AND/OR/MODp gates, impli
itly views polynomialsas non-uniform models of 
omputation. The work of Barrington, Beigel and Rudi
h[BBR94℄ and Nisan and Szegedy [NS94℄ initiated a systemati
 study of the power ofpolynomials in representing/
omputing boolean fun
tions.More pre
isely, let a polynomial P over Zm with n variables x1, . . . , xn representthe boolean fun
tion f : {0, 1}n → {0, 1} if there exists an a

epting set A ⊆ Zm su
hthat f(x) = 1 i� P (x) ∈ A, for ea
h x ∈ {0, 1}n. It is worth noting that sin
e ourinterest is on the behavior of P over the boolean hyper
ube where x2
i = xi for ea
hvariable xi, we 
onveniently hen
eforth assume w.l.o.g that P is multilinear. Theresour
e that is of interest in this model is the degree of P . The basi
 question of14



the subje
t is �How mu
h degree is needed by a polynomial to represent the booleanfun
tion f over Zm?� when m is �xed. This quantity is 
alled the MODm-degree of
f . The work of Razborov-Smolensky provides answers to su
h questions, when mis a prime power. For instan
e, one 
an show that the OR fun
tion has Ω(n) degreeif m is a prime power. But the method fails, as explained in detail by Barrington[Bar92℄, as soon as m 
ontains two distin
t prime fa
tors. Quite surprisingly, themodel of polynomials reveals a non-trivial 
omputational advantage of 
ompositenumbers over their primal 
ounterparts. Barrington et.al. [BBR94℄ show that thereexists a polynomial of degree O(n1/r) over Zm 
omputing the OR fun
tion when mhas r distin
t prime fa
tors. Similar advantages to represent the MODq fun
tion,for some spe
ial q that are 
o-prime with m, have been subsequently dis
overed byHansen [Han06b℄.Our la
k of understanding of the 
omputational power of modular 
ounting isbest exempli�ed in the setting of low degree polynomials. Indeed, it is perplexing thatno fun
tion f ∈ NP is known su
h that the MOD6-degree of f is super-logarithmi
i.e. ω(logn). A simple 
ounting argument, on the other hand, reveals that mostfun
tions have linear degree.1.5 `Number on the Forehead' Model of Communi
ationA beautiful theory of 
ommuni
ating pro
esses has been developed starting withthe seminal paper of Yao [Yao79℄. In the model proposed by Yao, there are twoplayers, Ali
e and Bob, who wish to 
ollaboratively 
ompute a boolean fun
tion f .The problem is that the set of input bits of the fun
tion is partitioned into two sets15



XA and XB. Ali
e has only a

ess to the bits of XA and Bob to those in XB. Theyde
ide, a priori, upon a proto
ol for 
ommuni
ating with ea
h other with the goalthat both of them 
an determine the value of f on any assignment to its input bits.Further, they want to minimize the amount of bits they need to ex
hange with ea
hother for a
hieving this goal. In order to entirely fo
us on bits 
ommuni
ated as aresour
e, Ali
e and Bob are endowed with unlimited 
omputational power in termsof time and spa
e. The simple question that is of intrinsi
 interest is �How many bitsdo Ali
e and Bob need to 
ommuni
ate to 
ompute f with the best proto
ol?�. Theamount of 
ommuni
ation taking pla
e is measured with respe
t to the size of theset of input bits assigned to ea
h player. Assuming that ea
h player holds n-bits ofinformation, every fun
tion 
an be 
omputed trivially by 
ommuni
ating n+ 1 bits.Exploration around this theme has un
overed a ri
h underlying stru
ture of themodel. A thorough exposition of this theory, now known as Communi
ation Com-plexity, is given in the ex
ellent book by Kushilevitz and Nisan [KN97℄. Surprisingly,an ever expansive set of diverse appli
ations of this theory to other �elds in theo-reti
al 
omputer s
ien
e is being dis
overed. For instan
e, a powerful te
hnique toprove lower bounds on the depth of monotone boolean 
ir
uits was developed usinga variant of this model by Kar
hmer and Wigderson [KW88℄ that was further de-veloped in the work of [KRW95, RW92, RM97℄. Very interesting trade-o� resultsbetween the resour
es of time and spa
e have been derived using 
ommuni
ation
omplexity in the work of [BSSV00, BV02℄. Conne
tions with randomness extra
-tion from imperfe
t random sour
es was established in the work of Vazirani [Vaz85℄,
16



Chor and Goldrei
h [CG85℄. Indeed, the list of appli
ations goes on and on and Com-muni
ation Complexity has been fondly 
alled the `Swiss-army Knife' of 
omplexitytheorists.The two-party model of Yao extends to the multiparty model in more than oneway. The �rst one is 
alled the `Number in the Hand' model where the set of inputbits is partitioned into k sets X1, . . . , Xk. Player i gets Xi. In this model, the moreplayers there are, the less information is dire
tly a

essible to ea
h player (assumingea
h player gets a

ess to equal number of bits). This is known to weaken the powerof the two-player model, although it has been studied for appli
ations in areas likedata-streams [CKS03, CCM08℄. Our 
on
ern here is with the other extension tomultiparty introdu
ed by Chandra, Furst and Lipton [CFL83℄ 
alled the `Number onthe Forehead' (NOF) model. In this model, input bits of Xi are held on the foreheadof Player i. In other words, ea
h player has a

ess to all input bits (written on theforeheads of other players) ex
ept those that are held on his own forehead.There are several features that make the model quite powerful. In parti
ular,there is an overlap of information a

essible to players whi
h 
an be used to save 
om-muni
ation signi�
antly even with three players. Grolmusz [Gro94a℄ devised a 
leverproto
ol exhibiting the surprising power of log n players, where n is the number ofbits written on the forehead of ea
h player. Other non-obvious k-party proto
ols havebeen dis
overed (see, for example, [Amb96, CFL83℄). Proving both lower bounds andupper bounds for this model is very 
hallenging. On the other hand, many rewardingappli
ations of strong lower bounds on the multiparty 
ommuni
ation 
omplexity ofa fun
tion exist. They 
an be used to prove lower bounds on resour
es needed in17



various other important models like bran
hing programs [CFL83℄, 
onstant-depth
ir
uits [HG91℄ and proof systems [BPS05℄. In fa
t, many other su
h appli
ationsare known, while proving the lower bounds themselves in the model have evadede�orts [KN97℄.One su
h appli
ation is of great interest for the resear
h des
ribed in this the-sis. Re
all that no superlinear lower bounds exist on the size of depth-three 
ir
uits
omprising only MOD6 gates. It is however known from the work of Yao [Yao90℄and Beigel-Tarui [BT94℄, that super-polylogarithmi
 (i.e. (logn)ω(1)) lower boundson the k-party 
ommuni
ation 
omplexity of a fun
tion f for some very restri
tedproto
ols is enough to show that 
onstant-depth 
ir
uits having AND/OR/MODmgates 
annot 
ompute f in quasipolynomial size, provided k = (log n)O(1). The sem-inal work of Babai, Nisan and Szegedy [BNS92℄ introdu
ed6 a powerful method,
alled the Dis
repan
y Method, to obtain the �rst strong lower bounds on the mul-tiparty 
ommuni
ation 
omplexity of fun
tions. However, the te
hnique in [BNS92℄stopped short of proving non-trivial bounds for log n players. It is now believed thatfundamentally new ideas are needed to sail past the log n players barrier.On the other hand, there is eviden
e that we do not quite understand the modeleven when fewer players are involved. There are several simple and natural fun
tionswhose three-party 
ommuni
ation 
omplexity is not known. In fa
t, until re
ently,6 The Dis
repan
y Method existed in mathemati
s before the work of [BNS92℄.Here we mean that it was introdu
ed to multiparty 
ommuni
ation 
omplexity by[BNS92℄. 18



no superlogarithmi
 (i.e. ω(logn)) lower bound was known for three players for thesefun
tions. A systemati
 study of the di�erent aspe
ts of this model is 
ompelling inits own right.1.6 Our ContributionsConstant-depth 
ir
uits. In Chapter 3, we make progress towards under-standing the 
omputational power of 
ir
uits of 
onstant depth 
omprising AND,ORand MODm gates, when m is an arbitrary �xed positive integer. We approa
h thisfrom two dire
tions. In the �rst part of the 
hapter, we probe the limitations of su
h
ir
uits when the number of MODm gates allowed in the 
ir
uit is restri
ted. Weshow that indeed 
omputing MAJORITY and MODℓ by su
h 
ir
uits requires super-polynomial size when ℓ 
ontains a prime fa
tor that does not divide m. This resultis expressed formally in Theorem 3.1. The result �rst appeared in joint work withKristo�er Arnsfelt Hansen [CH05℄ and at the time represented the best known lowerbounds on the size of su
h 
ir
uits (with few MODm gates) 
omputing MODℓ. It stillremains the best known lower bound for 
omputing MAJORITY. The main te
hni
alnovelty introdu
ed in this part is a 
onne
tion with a new notion of 
omputation ofboolean fun
tions by polynomials that we des
ribe in the next se
tion.In the se
ond part of Chapter 3, we shed light on the limitations of modular
ounting by allowing only MODm gates in our 
ir
uits. We show that (non-
onstant)fun
tions 
omputed by su
h 
ir
uits of sublinear size (and arbitrary depth) shouldhave a large support set (see Theorem 3.4). Consequently they 
annot 
ompute ANDin sublinear size, as AND has a support set of size one. Su
h a result was �rst provedby Thérien [Thé94℄, but our bounds are sharper and our te
hniques are di�erent.19



The main te
hni
al ingredient used is a result about linear maps that is stated inTheorem 3.19. We further show that su
h 
ir
uits in sublinear size 
annot 
omputeMODℓ when m and ℓ are 
o-prime. This result is a signi�
ant improvement over theprevious best lower bound of log n due to Smolensky [Smo90℄. Smolensky's resultsaid nothing about the approximability of MODℓ by su
h 
ir
uits. On the other hand,Theorem 3.5 shows that su
h 
ir
uits of sublinear size do not even approximate MODℓwell: a MAJORITY gate needs to seek votes from exponentially many su
h 
ir
uitsto 
orre
tly 
ompute MODℓ. We derive this result by proving a Uniformity Lemma(see Lemma 3.20) for every system of linear polynomials. Uniformity Lemmas areinteresting in their own right and we prove ours using an exponential sum argument.We believe that exponential sums will play a 
ru
ial role in developing new te
hniquesfor 
ir
uit 
omplexity. Results in this part are based on a joint work with NavinGoyal, Pavel Pudlák and Denis Thérien [CGPT06℄.In Chapter 7, we prove lower bounds on the size of some depth-three 
ir
uitsthat follow as a 
onsequen
e of our work on Communi
ation Complexity in Chap-ter 6. Re
all that we do not know if depth-three 
ir
uits 
omprising only MAJ gates
an 
ompute every fun
tion in NP. On the other hand, Yao [Yao90℄ has shown thatsu
h depth-three 
ir
uits in quasipolynomial size 
an simulate every fun
tion 
om-putable by 
onstant-depth 
ir
uits of quasipolynomial size and 
omprising AND,ORand MODm gates, even when the fan-in of the bottom gates are restri
ted to poly-logarithmi
. In 
ontrast, we show that if the bottom fan-in is further restri
tedto o(log log n) then su
h 
ir
uits 
annot 
ompute mu
h simpler fun
tions e�
iently.
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In parti
ular, in quasipolynomial size they 
annot 
ompute a fun
tion that is 
om-puted by a linear size depth-three 
ir
uit 
omprising only AND and OR gates (seeTheorem 7.1). This result �rst appeared in [Cha07b℄.Polynomials over rings. In Chapter 3, we relax the notion of 
omputationby a polynomial over Zm of a boolean fun
tion to a weak 
omputation that allowsfor errors. The polynomial is allowed to give false negative answers but no falsepositives and it must output a positive answer on at least one input. This modelgeneralizes all models of 
omputation by polynomials over �nite rings 
onsidered sofar in the literature. We prove lower bounds on the degree needed by any polynomialover Zm to represent the MAJORITY (Theorem 3.10) and MODℓ (Theorem 3.11,
m, ℓ are 
o-prime) fun
tion in this generalized sense. Our argument for establishingTheorem 3.11 makes a novel 
ombination of a 
ombinatorial argument due to Tardosand Barrington [TB98℄ and a Fourier theoreti
 argument due to Green [Gre00℄. Aswe show, our bounds are strong enough to yield lower bounds on the size of 
ir
uitswith MODm gates 
omputing the same fun
tions. These bounds are not known tofollow dire
tly from either the work of [TB98℄ or [Gre00℄.In Chapter 7, we simplify the breakthrough work of Bourgain [Bou05℄ that set-tled a long line of resear
h [CGT96, Gre99, AB01, Gre04℄ on the 
orrelation of lowdegree polynomials over Zm and MODℓ fun
tion. In this model, polynomials areallowed to err on both positive (true) and negative (false) inputs of the booleanfun
tion that they represent. However, unlike the previous model, we 
ount thenumber of errors that the polynomial makes. Bourgain's work proves exponentiallysmall upper bounds on the 
orrelation between fun
tions 
omputed by low degree21



polynomials over Zm and MODℓ. We sharpen this result (see Lemma 7.7). Moreover,we show a 
lose 
orresponden
e between the proof te
hnique of the seminal resultof Babai, Nisan and Szegedy [BNS92℄ for obtaining upper bounds on dis
repan
y inthe 
ontext of 
ommuni
ation 
omplexity and our argument to upper bound the 
or-relation of polynomials over Zm with MODℓ. In retrospe
t, the result on 
orrelationshould have been obtained mu
h earlier.Communi
ation 
omplexity. One 
an naturally de�ne the notion of proto-
ols deterministi
ally, non-deterministi
ally and randomly 
omputing fun
tions. Ourwork 
on
erns all three models and their relationship to ea
h other.In Chapter 5, we obtain new insight into the multiparty model by 
onsideringthe 
lass of fun
tions that 
an be 
omputed deterministi
ally by k players in 
onstant
ost (denoted by CCk), for some �xed k. A priori, there is no reason to suspe
t thatthis 
lass is related in some way to 
ir
uit 
omplexity 
lasses. Yet, Szegedy [Sze93℄obtained several beautiful algebrai
 and 
ombinatorial 
hara
terizations for the 
lassCC2. Consequently, he was able to show that every fun
tion in CC2 
an be 
om-puted by linear size shallow 
ir
uits 
omprising AND/OR/MODm gates. In 
ontrast,Corollary 5.6 shows, making use of spe
ially 
rafted 
odes, that even three playersin 
onstant 
ost 
an 
ompute fun
tions with exponentially large 
ir
uit 
omplexity,ruling out any simple 
hara
terization for CCk with k ≥ 3. Our proof of this resultexploits the following two features of the model: a) Overlap of information, i.e. everyinput bit is visible to two other players. b) Ea
h player knows the pre
ise positionof every input bit that it sees. While it was already known that removal of the �rstfeature renders the model weaker than the two player 
ase, the signi�
an
e of the22



se
ond feature had never been investigated before. We 
onsider two simple 
lassesof fun
tions in whi
h intuitively one expe
ts that the se
ond feature does not a�ordany advantage. Using Ramsey theoreti
 arguments we prove the following: a) Everyfun
tion f having a neutral letter that is in CCk, for some �xed k, is regular7 (seeTheorem 5.7). b) A symmetri
 fun
tion is in CCk, for some �xed k, i� it is in CC2(Theorem 5.8). These results �rst appeared in a joint work with Andreas Krebs,Mi
hal Kou
ky, Mario Szegedy, Pas
al Tesson and Denis Thérien [CKK+07℄.In the �rst part of Chapter 6, we prove strong lower bounds for the multiparty
ommuni
ation 
omplexity of some simple fun
tions that had resisted atta
ks fromseveral resear
hers in the past. In parti
ular, there was no known fun
tion 
omputede�
iently in 
onstant depth by 
ir
uits 
omprising AND/OR gates that requiredlarge three party 
ommuni
ation. Extending the work of Sherstov [She07℄, we ex-hibit su
h a simple fun
tion that requires large 
ommuni
ation by even randomizedproto
ols that are required to perform better than random guessing by a very thinmargin (see Theorem 6.1). The main te
hni
al 
omponent of this work, 
alled theOrthogonality-Dis
repan
y Lemma, is a new relationship between the property of aboolean fun
tion being orthogonal to low degree polynomials and the dis
repan
y ofa 
losely related fun
tion (see Lemma 6.8). This allows passage from a well-known7 Fun
tion f has neutral letter e, if inserting or deleting e at any pla
e in ea
hinput word does not 
hange the value of f on the word. Note that a boolean fun
tion
f indu
es a language Lf in an obvious way i.e. x ∈ Lf i� f(x) = 1. Fun
tion f is
alled regular pre
isely if Lf is regular.
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algebrai
 measure of 
omplexity of boolean fun
tions, 
alled voting degree, to 
om-muni
ation 
omplexity (see Corollary 6.12). Su
h a passage was �rst devised, in the
ontext of two-player 
ommuni
ation proto
ols, by Sherstov [She07℄. Our result �rstappeared in [Cha07b℄.In the se
ond part of Chapter 6, we exhibit a fun
tion whose non-deterministi

ommuni
ation 
omplexity is small (log n) but requires large (nΩ(1)) 
ommuni
ationby k-party randomized proto
ols a
hieving a bounded advantage over random guess-ing (see Theorem 6.2). This settles a major open question in multiparty 
ommuni-
ation 
omplexity (see [BPS, BPSW06, BDPW07, Cha07a, VW07b℄). Determiningthe relative power of determinism, non-determinism and randomization is a 
entraltheme of theoreti
al 
omputer s
ien
e. The 
elebrated P vs. NP question is an ex-ploration of this theme in the Turing ma
hine model. Our result answers a questionon the same theme in the model of multiparty 
ommuni
ation. Further, it provessuperpolynomial lower bounds on the length of proofs in an important 
lass of proofsystems, 
alled Lovász-S
hrijver proofs (see [BPS℄ for details). Our result appearedas a joint work with Anil Ada [CA08℄. A similar result has been independently ob-tained by Lee and Shraibman [LS08℄. Finally, in Se
tion 6.6, we extend the re
entwork of Shi and Zhu [SZ07℄ to the multiparty model. It was not known if su
h an ex-tension existed and was suggested as a dire
tion of investigation in the re
ent surveyby Sherstov [She08a℄. We, on the other hand, show that our extension is powerfulenough to also yield nΩ(1) lower bounds on the k-party 
ommuni
ation 
omplexityof Disjointness. This provides a se
ond proof of an important result.
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CHAPTER 2Ba
kground for Boolean Cir
uitsIn this 
hapter, we formally de�ne the 
omplexity 
lasses for boolean 
ir
uits.We also re
all some of the known arguments for proving lower bounds for 
onstantdepth 
ir
uits that serve as the starting point of our investigation. We further high-light the di�
ulties that are fa
ed when one tries to employ similar arguments formore powerful 
ir
uits. In the pro
ess, we develop the Razborov-Smolensky theoryof polynomial representation of boolean fun
tions.We point out that while our review of 
omplexity 
lasses is brief and targetedtowards pla
ing our work in the larger 
ontext, an interested reader 
an 
onsult anyex
ellent textbook on Computational Complexity (for example [AB09, Pap94℄) toget a more thorough treatment of issues.2.1 Boolean Cir
uitsWe re
all from Chapter 1 that the �rst key resour
e of the model of boolean
ir
uits is its size i.e. the total number of gates used in the 
ir
uit. Size, quite 
losely,
orresponds to running time in Turing ma
hines. The 
lass of boolean fun
tions that
an be 
omputed by boolean 
ir
uits of polynomial size is denoted by P/poly. This
orresponds to the non-uniform version of the 
lass P de�ned for the Turing ma
hine.Most proponents of the 
onje
ture P 6= NP, in fa
t, have the stronger belief that the
lass NP is not 
ontained in even P/poly. This stronger statement is a more naturaltarget to aim for in the 
ontext of boolean 
ir
uits.25



As we said earlier, Razborov's result [Raz86℄, showing that monotone 
ir
uitsof polynomial size 
annot de
ide if an input graph has a 
lique of pres
ribed size, isthe 
losest that we have 
ome to proving this 
onje
ture.Unfortunately, Razborov himself [Raz89℄ showed that the method of approxima-tions that he employed to obtain his results 
annot yield super-linear lower boundson the size of non-monotone 
ir
uits. Subsequently, other obsta
les in the form of�natural proofs� [RR97℄ were identi�ed. Re
ently, Aaronson and Wigderson [AW08℄pointed out an additional barrier 
alled `algebrization'. The idea of these papers is toshow that most known lower bound proofs naturalize [RR97℄ and algebrize [AW08℄.Further, they show that, widely believed 
ryptographi
 assumptions get violated ifone �nds su
h proofs (that algebrize or naturalize) showing that a fun
tion in NP isnot 
ontained in P/poly. However, fresh hope emerges from the very re
ent work ofChow [Cho08℄ that shows there are no known barriers to obtaining su
h a results by`slightly tweaking' natural proofs. In any 
ase, most of the the 
omplexity 
lassesthat we study in this work are not known to present any great barrier. Yet, progresson them has been limited.Our interest is to 
onsider 
ir
uits of restri
ted depth. Besides being a nat-ural restri
tion, su
h 
ir
uits also intuitively 
apture the notion of highly parallel
omputation. For every integer i ≥ 0, let NCi denote the 
lass of 
ir
uits thathave polynomial size, O(log n)i depth and use binary AND and OR gates. De�ne
26



NC = ∪iNCi. The following sums up the known relationship (among non-uniform
lasses)1 : NC0 ( NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P/poly (2.1)A fairly straightforward 
ounting argument shows that a random fun
tion, withprobability asymptoti
ally tending to one, needs exponential size 
ir
uits to be 
om-puted (even when depth is unrestri
ted). It however is a re
urring theme of thesubje
t, that �nding an expli
it fun
tion that 
annot be 
omputed using limited re-sour
es is very 
hallenging even though one knows that most fun
tions are hard forthe model. No expli
it fun
tion in NP is known to be not in NC1. In fa
t, as weshall see below, we 
annot prove any su
h expli
it fun
tion to be not 
ontained ineven some sub
lasses of NC1 where 
ir
uits are further restri
ted to have 
onstantdepth.A word about our `abuse' of notation for 
ir
uit 
omplexity 
lasses is in order.Assume A is a 
ir
uit 
lass. We use A with two di�erent 
onnotations. The �rstrefers to the 
lass of fun
tions that have polynomial size 
omputations over 
ir
uitsof a 
ertain type over whi
h the 
omplexity 
lass A is de�ned. In the se
ond use,
A means the underlying 
ir
uit model (as opposed to a 
lass of fun
tions). This1 NC stands for �Ni
k's 
lass� as 
oined by Steve Cook to honor Ni
k Pippenger.Pippenger re
ipro
ated the gesture by 
oining �Steve's 
lass� (SC). We will not havethe o

asion to 
onsider the 
lass SC in this work.27



is illustrated by the following two simple examples that respe
tively invoke these
onnotations: The fun
tion MAJORITY is in NC1. The fun
tion PARITY 
an be
omputed by linear size NC1 
ir
uits. The parti
ular sense in whi
h we are referringto a 
ir
uit 
omplexity 
lass is 
lear from the 
ontext.2.1.1 Cir
uits of Constant DepthBefore we move on, let us �x some more terminology. Conventionally, theoreti
al
omputer s
ientists have visualized the �ow of information in a 
ir
uit upwards i.e.the input variables are at the bottom and the output gate is at the top2. Hen
eforth,we further assume that our 
ir
uits are layered in the following sense: Layer 0 
onsistsof input variables and their negations. Ea
h gate in Layer i re
eives its inputs onlyfrom gates in Layer i − 1, for i ≥ 1. Ea
h gate in Layer 1 is 
alled a bottom gate.The maximum fan-in of a bottom gate is 
alled the bottom fan-in of the 
ir
uit.The fan-in of the output gate is 
alled the top fan-in of the 
ir
uit. Let gates ofa 
ir
uit of depth k have gates of type Gi at Layer i. We denote su
h a 
ir
uit by
Gk ◦Gk−1 ◦ · · · ◦G1.Note that NC0 is the 
lass of fun
tions 
omputable by 
ir
uits with 
onstantdepth, polynomial size and binary fan-in AND/OR gates. Thus, su
h fun
tions donot even depend on all of the input bits. Consequently, this 
lass is quite weak3 :2 It seems to us that depi
ting the �ow of information from top to bottom is morereasonable. To save 
onfusion, we however follow 
onvention.3 Note that this 
lass is interesting in other 
ontexts. For instan
e, there is eviden
enow that many 
ryptographi
 primitives 
an be 
omputed in NC0 [AIK04℄.28



for instan
e, they do not 
ontain the simple boolean AND and OR fun
tions. Thismotivates the introdu
tion of the 
lass AC0 : fun
tions 
omputable by 
ir
uits havingunbounded fan-in AND/OR gates and 
onstant depth. It is worthwhile to note thatsu
h 
ir
uits in depth-2 and exponential size 
an 
ompute every boolean fun
tion.More interestingly, they 
an add two n-bit integers in depth �ve and 
ubi
 size.In depth two and polynomial size, they 
an 
ompute THRk for any 
onstant k byan exhaustive veri�
ation. Mu
h more surprisingly, in polynomial size they 
an
ompute THR(logn)c , for any 
onstant c (see [FKPS85, WWY90, RW91℄). There areother quite non-trivial algorithms that 
an be exe
uted by su
h 
ir
uits. One maywell expe
t4 that proving lower bounds on resour
es in a model that allows su
hsubtle 
omputations to take pla
e, will be a 
hallenge!A natural question to probe, is if the weakness of a bounded depth 
ir
uit is
losely related to the weakness of its 
onstituent gates. The weakness of an AND(OR) gate is that �xing any one of its input to 0 (1) �xes its output. This gives thehope that if an AC0 
ir
uit has not too many gates, then it should be possible to�x the output of the 
ir
uit by just �xing a few input variables to zero and one. Ifthat were true, su
h 
ir
uits in small size would not 
ompute a `robust' fun
tion likePARITY, whi
h does not get �xed even when all but one variable gets �xed. Thisintuition �rst got formalized and veri�ed by the work of Ajtai [Ajt83℄ followed by4 It is worth noting that most of these positive results with AC0 were obtainedafter strong lower bounds had been shown.
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that of Furst, Saxe and Sipser [FSS84℄. Furst, Saxe and Sipser deliver a beautifulprobabilisti
 argument by introdu
ing the powerful notion of a random restri
tion.We sket
h below the essen
e of the argument in [FSS84℄. Let ρ = {0, 1, ∗}nde�ne a restri
tion of the input variables, where an assignment of ∗ to a variablesigni�es that the restri
tion leaves it free (i.e. does not set it). De�ne a probabilitydistribution µ on restri
tions in the following way: Independently assign ea
h variableto ∗ with probability 1/
√
n and with equal probability, i.e. (1− 1/

√
n)/2, assign itto 1 and to 0. De�ne a gate wide if it has fan-in at least c lnn and otherwise 
all itnarrow. It is not hard to verify then the following key observation:Observation 2.1 A restri
tion ρ 
hosen randomly a

ording to µ satis�es the fol-lowing:

• A wide AND/OR gate is not for
ed to 0/1 with probability o(n−c/4).
• Ea
h narrow gate has more than c inputs assigned to ∗ with probability at most
o(n−c/4).Additionally, we expe
t a random ρ to leave √n input variables of the 
ir
uitassigned to ∗. Thus, with c = 8k, a 
ir
uit of size nk when hit by a random restri
tion,results in a 
ir
uit with at least √n/2 variables left free and all of whose base gateshave fan-in at most c. As a �nal step, Furst, Saxe and Sipser analyze depth-2 
ir
uitswhose base gates have small (
onstant) fan-in. With a more involved argument, theyshow the following:Lemma 2.2 For �xed integers c, k > 0, there exists a 
onstant bc = 4k + 24kbc−1satisfying the following: Every depth-2 
ir
uit of size nk, all of whose base 
ir
uits ofdepth 1 have fan-in at most c, when hit with a restri
tion 
hosen randomly a

ording30



to µ 
omputes a fun
tion of at most bc input variables with probability at least 1 −

o(n−k).The power of the lemma above be
omes evident by applying it repeatedly toobtain a swit
hing e�e
t as following: applying Observation 2.1, we �rst �nd arestri
tion that leaves enough (at least√n/2) variables free and de
reases the bottomfan-in to a 
onstant c. Applying a se
ond round of random restri
tion on the erstwhilefree variables, Lemma 2.2 ensures that ea
h depth-2 
ir
uit 
omputes a fun
tion ofa 
onstant (i.e. bc) number of variables. Every su
h fun
tion 
an be written as botha AND ◦OR and a OR ◦AND 
ir
uit of size at most 2bc (whi
h is a 
onstant). Thisallows us to swit
h from a 
ir
uit of type AND ◦OR to a 
ir
uit of type OR ◦ANDor vi
e-versa. On
e the depth-2 
ir
uits are appropriately swit
hed, the se
ond andthird layers 
an be merged de
reasing the depth of our original 
ir
uit by one, i.e.we move from depth d to d − 1. Meanwhile our bottom fan-in has 
hanged from cto bc (a double exponential blow-up in k). The bootstrapping pro
ess is 
ompleteand we go on applying su

essive random restri
tions, ea
h of whi
h de
reases thedepth of our 
ir
uit by one, in
reases its size by a 
onstant fa
tor and in
reases thebottom fan-in (that still remains a 
onstant). At ea
h step, we also de
rease the sizeof the set of free variables by about a quadrati
 fa
tor. We do this a 
onstant (d−2)number of times to rea
h a state where our restri
ted 
ir
uit is 
omputing a fun
tionof 
onstant number of variables despite the fa
t that there are about Ω(n1/2d−1
)variables remaining free. The robustness of a fun
tion like PARITY �nishes theargument by supplying a 
ontradi
tion. The restri
ted 
ir
uit has to 
ompute either
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PARITY or its 
omplement on the remaining variables whi
h 
ontradi
ts the fa
tthat it is 
omputing a fun
tion of merely a 
onstant number of variables.Tra
ing the various blow-ups 
arefully as one applied Lemma 2.2 to su

essiverestri
tions, one 
on
ludes a lower bound of nΩ(log n) on the size of AC0 
ir
uits
omputing PARITY. The key ingredient in the argument is the ability to swit
hfrom a DNF to a CNF with small blow-up. A lemma like Lemma 2.2 that allowsone to do so is 
alled a Swit
hing Lemma in the literature. Swit
hing Lemmas haveplayed a major role in obtaining lower bounds in various other models. In the 
ontextof 
onstant-depth 
ir
uits, after improvements made by Yao [Yao85℄, work on themin the mid-eighties 
ulminated in the powerful work of Håstad [Hås86℄. Håstad'sSwit
hing Lemma also yields optimal (exponential) lower bounds on the size of AC0
ir
uits 
omputing PARITY.We state a version of the Swit
hing Lemma that is due to Beame [Bea94℄ and is
onvenient to use in our work. In order to do so, let us re
all the well-known notionof a de
ision tree. A de
ision tree is a rooted binary tree, ea
h of whose internalnodes are labeled by one of the n input variables. For every node, one of its outgoingar
 is labeled 0 and the other 1. The leaves of a de
ision tree are labeled 0 and 1and along ea
h path from the root to a leaf no label on a node is repeated. Given anassignment of input variables, 
omputation by a tree pro
eeds along a path in thefollowing way: starting from the root, ea
h node queries the variable used to label itand then follows the ar
 labeled with the answer to rea
h the next node. The pro
essis repeated with the next node until we hit a leaf at whi
h point the tree outputsthe label of the leaf. It is easy to verify that the set of inputs that 
orrespond to32



a 
omputation along a given path in the tree is disjoint from the set of inputs that
orrespond to 
omputation along a di�erent path. This simple feature of a de
isiontree makes it very handy for our appli
ations.As with any other tree, the height of a de
ision tree is the length of the longestpath and it size is the number of internal nodes. It is straightforward to verify thatevery boolean fun
tion has a de
ision tree of at most linear height and exponentialsize. The resour
es in this model are the height and size of the tree. They are, of
ourse, not unrelated as for instan
e a tree of logarithmi
 depth 
an have at mostpolynomial size.Remark 2.3 A boolean fun
tion 
omputed by a de
ision tree of height h has a DNF(and a CNF) formula with ea
h term of size at most h.Armed with these notions, we are ready to express the powerful e�e
t of randomrestri
tions on 
onstant depth 
ir
uits. Let Rℓ
n be the set of all restri
tions thatleave pre
isely ℓ of n variables free.Lemma 2.4 (Beame's Swit
hing Lemma) Let f be a DNF (or CNF) formulain n variables with terms of length at most r. Let ℓ = pn and pi
k ρ uniformly atrandom from Rℓ

n. Then the probability that fρ 
annot be 
omputed by a de
ision treeof height at most d is less than (7pr)d.Beame's version of the Swit
hing Lemma readily yields an exponential lowerbound on size of 
onstant-depth 
ir
uits 
omputing PARITY.Corollary 2.5 A 
ir
uit of depth d, using unbounded fan-in AND/OR gates 
annot
ompute PARITY if it has size less than 2Ω(n1/d−1).
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Proof:[adapted from Beame [Bea94℄℄ Let the size of the 
ir
uit 
omputing PARITYbe S. We su

essively apply random restri
tions, one for ea
h layer of the 
ir
uit.Let p1 = 1/14 and pi = 1/(14 logS) for i = 2, . . . , d − 1. W.l.o.g. assume that thebase layer is of OR gates. Ea
h OR gate 
an be thought of as a DNF with termsize 1. We apply the Swit
hing Lemma with p = p1 = 1/14 and d = log S and
r = 1 to ea
h OR gate in the �rst layer. Under a random restri
tion from R

n/14
n ,ea
h restri
ted gate fails to be 
omputed by a de
ision tree of height at most logSwith probability less than 2− log S = S. Sin
e there are at most S gates in the �rstlayer, there exists a restri
tion ρ1 ∈ Rn/14

n that su

eeds in restri
ting the height ofde
ision tree to log S for ea
h OR gate at the base layer.We show by indu
tion of depth that there exists (d − 1) su

essive restri
tions
ρ1, ρ2,. . .,ρd−1 with ρi ∈ Rni

ni−1
where ni = pini−1 and n0 = n, su
h that after applying

ρi the output of ea
h gate at the ith layer is 
omputed by a de
ision tree of height atmost logS. The base 
ase of this indu
tion has been established above for the baselayer, i.e. i = 1. If the i + 1th layer is that of AND (OR) gates, we 
ompute the
orresponding CNF (DNF) formula for ea
h restri
ted gate in the ith layer from itsde
ision tree as per Remark 2.3. Thus, the output of ea
h gate in the i+1th layer ofthe restri
ted 
ir
uit 
an be again expressed as a CNF (DNF) formula. Then applythe Swit
hing Lemma to ea
h su
h formula by 
hoosing a random restri
tion from
R

ni+1
ni . Again, ea
h formula fails to be restri
ted to a de
ision tree of height logSwith probability less than (1/2pi+1 logS)log S = S. So, there exists a restri
tion thatdoes not fail for any formula. This 
ompletes the indu
tion.
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Thus, after applying d− 1 restri
tions, we have nd−1 variables free and a depth-2 
ir
uit with bottom fan-in logS either 
omputing PARITY or its 
omplement onthese free variables. Hen
e, log S ≥ nd−1 = n/(14(14 logS)d−2), yielding the requiredbound on S.The above bound is not only an exponential lower bound for 
onstant d but isquite 
lose to being optimal as the following fa
t shows:Fa
t 2.6 Let d > 0 be an even number. There is an AC0 
ir
uit of size 2O(n2/d) anddepth d that 
omputes PARITY.Proof: The 
ir
uit is built using a simple divide and 
onquer strategy. The 
ir
uithas d/2 se
tions and the outputs of Se
tion i are fed into the inputs of Se
tion
i + 1. Ea
h se
tion has depth 2 and the total number of inputs in Se
tion i is
ni = n/(n2(i−1)/d). Further, ni is split into equal blo
ks of size n2/d. In Se
tion i,we 
ompute in parallel the parity of ea
h blo
k. This is a

omplished by using theobvious depth-2 exponential size 
ir
uit for ea
h blo
k. Thus, the total number ofgates in a se
tion is 2n2/d × (ni/n

2/d) < n2n2/d . As there are d/2 se
tions, we get atotal depth of d and total size less than nd2n2/d.2.1.2 Modular and Threshold Counting gatesThe previous 
ir
uit for PARITY 
an be easily modi�ed to show that in log ndepth, one 
an 
ompute PARITY in linear size using binary fan-in AND/OR gates5 .5 In fa
t, using the same divide and 
onquer strategy, every regular language 
anbe 
omputed in linear size and logarithmi
 depth using bounded fan-in AND/ORgates. The non-boolean letters of the alphabet may be en
oded as boolean stringsin any reasonable way. 35



Thus, Parity witnesses a 
lean separation of AC0 from NC1. This is one of therare un
onditional expli
it separations of 
omplexity 
lasses. Several other naturalfun
tions are also not in AC0 (as �rst observed in [FSS84℄) be
ause PARITY redu
esto them.The notion of a redu
tion is a very standard one in 
omplexity theory to expressthe relative hardness of two problems. This is the notion that gives rise to the ideaof 
ompleteness of a problem in a 
omplexity 
lass (for instan
e NP-
ompleteness).In the 
ontext of 
ir
uits, we say a boolean fun
tion f AC0 redu
es to fun
tion g,denoted by f ≤AC0
g, if one 
an 
ompute f in 
onstant depth and polynomial sizeusing AND/OR gates and gates 
omputing the fun
tion g.Observation 2.7 Thrt ≤AC0 MAJORITY.Proof: If t ≤ n/2 (t > n/2), then by feeding (n

2
−1) 
onstant ones (zeroes) to a MAJgate, we make it 
ompute Thrt.Observation 2.8 (Furst, Saxe and Sipser [FSS84℄) PARITY ≤AC0 MAJORITY.Proof: The basi
 intuition is that MAJORITY allows you to 
ount pre
isely thenumber of ones o

urring in a boolean string. This is be
ause the number of ones ina n-bit string x is t i� Thrt(x) = 1 and Thrt+1(x) = 0. Thus,PARITY(x) = ∨0≤2i≤n

(Thr2i(x) ∧ ¬Thr2i+1(x)
)Observing that ¬Thrk(x1, . . . , xn) = Thrn−k+1(¬x1,¬x2, . . . ,¬xn) and using Obser-vation 2.7, we are done.The argument above shows something slightly stronger. A boolean fun
tion is
alled a symmetri
 fun
tion if its value depends just on the number of input bits set36



to 1. PARITY, MAJORITY, Thrt are all symmetri
 fun
tions. The argument aboveshows the following:Fa
t 2.9 Let SYMM be an arbitrary symmetri
 fun
tion. Then, SYMM ≤AC0 MA-JORITY.In the light of these observations, a series of natural questions emerge fromthe separation of AC0 from NC1: How does the 
omputational power of the modelget 
hanged, if we allow PARITY or other modular 
ounting gates in addition toAND/OR gates in our 
ir
uit? How is it altered, if we allow gates 
omputing MA-JORITY (denoted by MAJ) in our 
ir
uits? De�ne ACC0[m] to be the 
lass offun
tions 
omputed by 
onstant depth polynomial size 
ir
uits 
onsisting of un-bounded fan-in AND, OR and MODm gates. Barrington [Bar86℄ de�ned ACC0 as
∪m≥2ACC0[m]. De�ne TC0 to be the 
lass of fun
tions that 
an be 
omputed by
ir
uits using only MAJ gates in 
onstant depth and polynomial size. Note thatby our previous observations, augmenting TC0 
ir
uits with AND/OR/SYMM gatesdoes not give us additional power, where a SYMM gate 
omputes an arbitrary sym-metri
 fun
tion. In fa
t, Hajnal et.al. [HMP+93℄ observe that slightly modifying theproof of Observation 2.8 shows that every symmetri
 fun
tion 
an be 
omputed byTC0 
ir
uits in depth-2 and linear size. Thus, the 
lass of fun
tions 
omputable by
onstant-depth 
ir
uits of polynomial size using gates 
omputing arbitrary symmet-ri
 fun
tions is pre
isely TC0. A non-trivial fa
t is that MAJORITY of n bits 
anbe 
omputed by a 
ir
uit of polynomial size and O(logn) depth that has only binaryfan-in AND/OR gates. To sum up, we have the following re�ned view:
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NC0 ( AC0 ( ACC0 ⊆ TC0 ⊆ NC1 ⊆ L/poly ⊆ NL/poly ⊆ P/polyACC0 is the smallest naturally arising 
omplexity 
lass whi
h 
annot be sepa-rated from NP. Yet, no fun
tion in ACC0 is known whose 
omputation makes `
lever'use of modular 
ounting gates. In 
ontrast, several interesting 
omputations existwith TC0. Modifying the argument of Observation 2.8, one 
an show that everysymmetri
 fun
tion 
an be 
omputed in linear size by depth-2 MAJ ◦MAJ 
ir
uits.With more 
are, one 
an sort n integers, ea
h n-bit long in TC0. One even 
an multi-ply n integers (n-bits long) and divide6 two su
h integers [BCH86, Rei87℄. Althoughmost resear
hers believe that ACC0 is a stri
t sub
lass of NC1 (and even of TC0), asubstantial number of resear
hers believe that TC0 and NC1 are the same (see, forexample, [AW93℄). An interesting 
onsequen
e of su
h a 
ollapse is that TC0 in that
ase 
an be simulated by polynomial size threshold 
ir
uits of some �xed depth k.2.1.3 Polynomials and the Case of Prime ModulusAlthough we do not know the power of ACC0[m] in general, a beautiful argumentdue to Smolensky [Smo87℄, generalizing the earlier breakthrough work of Razborov[Raz87℄, pins down the weakness of su
h 
ir
uits when m 
ontains only one primefa
tor, i.e. m = pk for some prime p. It shows that ACC0[pk] 
ir
uits 
annot 
omputethe MODq fun
tion in sub-exponential size if p, q are two distin
t primes.6 More re
ently, in a breakthrough work [HAB02℄, it has been shown that division
an be done by an `extremely uniform' version of TC0.38



Theorem 2.10 (Razborov-Smolensky) ACC0[pk] 
ir
uits of depth d 
annot 
om-pute the MODq fun
tion using 2no(1/2d) AND and OR gates.The work in [Raz87, Smo87℄ introdu
ed the powerful notion of approximatingboolean fun
tions by polynomials over �nite �elds for proving Theorem 2.10. In thisthesis, the study of su
h polynomials plays an important role. We introdu
e thisma
hinery below. Although [Smo87℄ worked with polynomials over a �nite �eld Zpfor a prime p, we work with the more general setting of polynomials over the ring Zmas in Barrington et.al.[BBR94℄, where m is an arbitrary but �xed positive 
ompositeinteger.Consider the spa
e Vm of fun
tions from {0, 1}n → Zm. For ea
h w ∈ {0, 1}n,de�ne the fun
tion δw : {0, 1}n → Zm as δw(x) = 1 if w = x and otherwise δw(x) = 0.Consider the set of fun
tions ∆ = {δw |w ∈ {0, 1}n}. It is easy to see that everyfun
tion f ∈ Vm 
an be uniquely expressed as a Zm linear 
ombination of su
hfun
tions. Indeed if m is a prime, then ∆ forms a basis of the asso
iated ve
torspa
e.Another useful set that spans Vm is the setM of all n-variate multilinear mono-mials, i.e. M = {χS =
∏

i∈S xi |S ⊆ [n]}, where [n] = {1, . . . , n}. To see that
M spans Vm, it is enough to show that ea
h element of ∆ 
an be expressed as a
Zm-linear 
ombination of the monomials. Indeed, this gets veri�ed by observing that

δw(x) =
( ∏

i:wi=1

xi

)( ∏

i:wi=0

(1− xi)
)and then expanding out the produ
t as a sum over Zm. On the other hand, thereare pre
isely m2n possible linear 
ombinations of su
h monomials. This is exa
tly39



the number of fun
tions in Vm. Thus, every f ∈ Vm 
an be uniquely expressed asa sum of monomials. Any su
h linear 
ombination of monomials is formally 
alleda multilinear polynomial over Zm. Sin
e in this thesis we ex
lusively deal withmultilinear polynomials, the term `multilinear' is hen
eforth omitted but is alwaysimplied. The degree of a polynomial is the 
ardinality of the largest subset S of [n]su
h that the 
oe�
ient of χS is non-zero in the polynomial. The exa
t or strongMODm-degree of a boolean fun
tion is the degree of the unique polynomial over Zmexpressing it. For example,
AND(x) = x1x2 · · ·xn

OR(x) = 1−
n∏

i=1

(1− xi)showing that the strong MODm-degree of OR and AND is n, for ea
h integer m ≥ 2.In order to express MODp fun
tion, when p is prime we re
all the following simplebut very useful fa
t:Fa
t 2.11 (Fermat's Little Theorem) For any prime p and any integer a 6≡

0 mod p, ap−1 ≡ 1 mod p.Using this fa
t, we get for a prime pMODp(x) ≡ (x1 + · · ·+ xn)p−1 (mod p)establishing that the strong MODp-degree of the boolean fun
tion MODp is a 
on-stant, i.e. p− 1. It is interesting to verify the following identity:MODpk(x) ≡
∑

S⊂[n]:|S|≤pk−1

(−1)|S|−1
∏

i∈S

xi (mod p).40



This implies that the strong MODp-degree of MODpk is pk − 1, for any k. A slightlystronger statement is true. With ea
h symmetri
 boolean fun
tion f , one naturallyasso
iates its spe
trum fun
tion f : {0, . . . , n} → {0, 1}, su
h that f(x) = f(x1 +

· · ·+xn) for ea
h x ∈ {0, 1}n. A symmetri
 f is 
alled periodi
 with period a pre
iselyif f(t) = f(t + a), for ea
h 0 ≤ t ≤ n − a. Then, the following useful fa
t appearsimpli
itly in the work of Barrington et.al. [BBR94℄.Lemma 2.12 For any prime p and any integer k ≥ 1, every symmetri
 booleanfun
tion f with period pk has strong MODp-degree at most pk − 1.The exa
t/strong degree of a boolean fun
tion is a natural algebrai
 
omplexitymeasure of a boolean fun
tion.Based on the fa
t that OR and AND have very high degree (read 
ompli
ated),it is reasonable to guess that modular 
ounting with prime modulus alone shouldnot help 
ompute these high-degree fun
tions. This notion gets veri�ed by an ele-gant argument below. Before we state the argument, we re
all a useful property of
omposition of polynomials.Observation 2.13 Let P (y1, . . . , ym) be a polynomial over Zm of degree r and ea
h
yi = Pi(x1, . . . , xn) be a polynomial of degree at most s. Then the 
omposed poly-nomial P (P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)) is a polynomial of degree at most rs in
xi's.Theorem 2.14 (impli
it in [Smo87℄) Constant-depth 
ir
uits using only MODpk
ounting gates 
annot 
ompute the AND and OR fun
tion if p is a �xed prime and
k is a �xed positive integer.

41



Proof: The basi
 idea is to show that the fun
tion 
omputed by a 
ir
uit of 
onstantdepth having only MODp gates has 
onstant MODp-degree. The theorem then followsimmediately. We show by indu
tion of depth that the fun
tion output by su
h a depth
d 
ir
uit has MODp-degree at most (pk− 1)d. The base 
ase of d = 0 is obvious. Let
y1, . . . , ys be the inputs of the output MODpk gate in a 
ir
uit of depth d. Treating
y1, . . . , ys as our input variables, we know that the output of the 
ir
uit is representedby a polynomial P (y1, . . . , ys) of degree at most pk − 1. Sin
e ea
h yi is the outputof a depth d − 1 
ir
uit, the indu
tive hypothesis yields that yi is represented by apolynomial Pi over Zp of degree at most (p−1)d−1 in the input variables x1, . . . , xn ofthe 
ir
uit. Thus, using Observation 2.13, polynomial P has degree at most (p− 1)din x1, . . . , xn.Theorem 2.14 is a ni
e dual to the fa
t that AND/OR gates 
annot 
ompute theMODp fun
tion in sub-exponential size and 
onstant depth. The dual we have provenhappens to be mu
h stronger as it is independent of the size of 
ir
uits. Cir
uits of
onstant depth 
omposed of prime mod-
ounting gates are not even universal, i.e.they 
annot 
ompute all fun
tions even when no restri
tion is imposed on their size.The key ingredient in the above argument was the fa
t that MODp fun
tion has
onstant MODp-degree when p is prime. We note this below:Fa
t 2.15 The MODp-degree of a fun
tion 
omputed by a 
onstant-depth 
ir
uithaving only MODpk gates is 
onstant.This fa
t is indeed very sensitive to the primality of p (or it being a primepower). As soon as m has two distin
t prime fa
tors, the MODm-degree of the
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MODm fun
tion shoots up to linear. As we see later, one 
annot even approximatethe MODm fun
tion well anymore by low degree polynomials.Let us relax the notion of exa
t representation of boolean fun
tions to approxi-mation of them by polynomials. A polynomial P over Zm approximates a fun
tion fwith error ǫ if Prx[P (x) 6= f(x)] ≤ ǫ where x is 
hosen at random, a

ording to a givendistribution. Note that under the uniform distribution over inputs, the 
onstant zeropolynomial is a good approximation of the OR fun
tion. On the other hand, tremen-dous savings is made in terms of degree when one moves from exa
t to approximaterepresentations for any distribution over inputs as the following sequen
e of resultsfrom [Raz87, Smo87℄ show:Proposition 2.16 For every x ∈ {0, 1}n, if we pi
k a random linear polynomial Pover Zp, then (P (x)
)p−1 is equal to OR(x) with probability at least a half.Proof: Pi
king a random linear polynomial is the same as pi
king ea
h of its n
oe�
ients c1, . . . , cn independently at random from Zp and then letting P (x) =

c1x1 + · · ·+ cnxn. If x is the all zero input, then P (x) = 0 with probability one andthere is no error. Otherwise, there is some i for whi
h xi = 1. For every 
hoi
e of allother 
oe�
ients, there is exa
tly one 
hoi
e of ci that is bad, i.e. makes P (x) = 0.Thus with probability (1 − 1/p), polynomial (P (x))p−1 evaluates to 1 and we aredone.Lemma 2.17 For ea
h 0 < ǫ < 1 and for every 
ir
uit C in ACC0[pk] of depth dand size s, there exists a distribution UC over polynomials over Zp of degree at most
(
(pk − 1)(log(s/ǫ))

)d , su
h that for ea
h input x to C, PrP∼UC
[P (x) 6= C(x)] ≤ ǫ.Proof: For ea
h gate G in the 
ir
uit, we do the following:43



If G is an OR gate, pi
k t = log(s/ǫ) random linear polynomials P1, . . . , Ptindependently. Let yi = (Pi(x))
p−1. Let PG be the polynomial that exa
tly 
omputesOR(y1, . . . , yt). Note that PG is a random polynomial of degree at most (p − 1)t =

(p − 1) log(ǫ/s). If G outputs zero, then PG outputs zero with probability one. If
G outputs one, using Proposition 2.16, PG outputs zero with probability at most
1/(2t) = ǫ/s. Thus PG disagrees with G with probability at most ǫ/S.If G is an AND gate we think of it as the 
omplement of an OR gate using deMorgan's law. We 
hoose a random polynomial P ′G for this OR gate as pres
ribedbefore and then set PG = 1 − P ′G. The same 
on
lusions on the degree and errorprobability as before for a polynomial 
orresponding to an OR gate holds for PG.If G is a MODpk gate we repla
e it by the unique polynomial of degree at most
pk − 1 that exa
tly 
omputes it.We 
ombine polynomials for all gates by 
omposing them, layer by layer, toobtain the polynomial PC 
orresponding to 
ir
uit C. Using Observation 2.13, PC hasdegree at most (pk−1)d(log(s/ǫ))d. Using the union bound, PC errs with probabilityat most ǫ and we are done.Corollary 2.18 Let C be an ACC0[pk] 
ir
uit of depth d and size s. For ea
hdistribution µ on {0, 1}n and 0 < ǫ < 1, there exists a polynomial P of degree atmost ((pk − 1)(log(s/ǫ))

)d su
h that Prx∼µ[P (x) 6= C(x)] ≤ ǫ.Proof: Follows dire
tly from Lemma 2.17 using an obvious 
ounting argument.Corollary 2.18 shows the remarkable savings in degree that approximations 
anbring in.
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Remark 2.19 Even though the exa
t degree of an AND/OR gate is as high as it
an get, fun
tions 
omputed by ACC0[pk] 
ir
uits of quasi-polynomial size 
an beapproximated with inverse-quasipolynomial error by polynomials over Zp that havemerely poly-logarithmi
 degree, if p is prime.However, there are some natural fun
tions that are even hard to approximate.Based on the fa
t that modular 
ounting over two di�erent prime moduli are verydi�erent from ea
h other, it is tempting to guess that low degree polynomials over
Zp do not approximate well the MODq fun
tion when p, q are two distin
t primes.This was formally veri�ed by Smolensky [Smo87℄. We re
all his neat argument.We assume that p, q are two primes su
h that the �eld Zp has a non-trivial q-throot of unity g i.e. g ∈ Zp, g 6= 1 and gq = 1 mod p (for instan
e p = 3 and q = 2form su
h a pair of primes as a = 2 is a square-root of unity in Z3). The 
ase whenthis is not satis�ed 
an be handled like this 
ase by using a simple algebrai
 tri
kthat we des
ribe later.Consider the linear transformation yi = (g − 1)xi + 1 for 1 ≤ i ≤ n. Thismaps 0, 1 to 1, g respe
tively. Using this map, we naturally identify the spa
e Vpof fun
tions from {0, 1}n → Zp with the spa
e Wp of fun
tions from {1, g}n → Zp.Note that

xi =
yi − 1

g − 1is well de�ned as g 6= 1 by assumption. Also, for xi ∈ {0, 1},
y−1

i = (g−1 − 1)xi + 1 =
g−1 − 1

g − 1
(yi − 1) + 1. (2.2)45



Using these identities, one 
an go ba
k and forth between every polynomial Px in thevariables xi's representing a fun
tion f in Vp and a polynomial Py in yi's representingthe fun
tion 
orresponding to f inWp. Further, it is simple to verify that the degreesof Px and Py are identi
al. Let R ∈Wp be the fun
tion given by ∏n
i=1 yi.Lemma 2.20 Every polynomial Pf in variables y1, . . . , yn 
an be written as Pf =

Pg · R + Ph, su
h that ea
h polynomial Pg, Ph has degree at most n/2.Proof: Ph is the sum of all monomial terms of Pf that have degree at most n/2.The Lemma follows by showing that ea
h monomial of degree more than n/2 
anbe written as P · R, where P is a polynomial of degree at most n/2. Consider anymonomial M =
∏

i∈S yi, where S ⊆ [n] and |S| > n/2. Then, using the de�nition of
R and (2.2), we see that

M = R
(∏

i/∈S

y−1
i

)
= R

[∏

i/∈S

(
g−1 − 1

g − 1
(yi − 1) + 1

)]
= R · Pand 
learly P has degree less than n/2.For any 0 ≤ s ≤ q − 1, (abusing notation) de�ne MODs

q to be the fun
tion in Vp(Wp) that outputs 1 if the number of input bits set to 1 (g) is 
ongruent to s modulo
q and otherwise outputs zero. Then the following is obvious:Observation 2.21

R =

q−1∑

i=0

giMODi
qWe are ready to prove the main result of this se
tion.
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Lemma 2.22 (Main Lemma, [Smo87℄) Every polynomial over Zp of degree d dis-agrees with one of the boolean fun
tions in {MODi
q|0 ≤ i ≤ q − 1} in at least

2n (1/2q − d/Ω(q
√
n)) input points.Proof: Re
all that every polynomial in Vp of degree d has a polynomial P of degree

d in Wp. Thus, using Observation 2.21, it will be su�
ient to show every su
h Pdi�ers with R on at least 2n(1/2− d/Ω(
√
n)) points.Let A ⊆ {1, g}n be the set of points on whi
h P and R agree. ApplyingLemma 2.20, every fun
tion (Zp)

A is spanned by the set of monomials of degreeat most n/2+d. The total number of su
h fun
tions should therefore be at most thetotal number of polynomials of degree at most n/2 + d. Hen
e,
p|A| ≤ p

Pn/2+d
i=0 (n

i)yielding (using Stirling's approximation)
|A| ≤ 2n−1 +

2n

√
n
d.Our result follows readily.Summarizing what we have seen so far will immediately yield Theorem 2.10that 
laims an exponential lower bound on the size of ACC0[pk] 
ir
uits 
omputingMODq, if p, q are distin
t primes.Proof:[of Theorem 2.10℄ Re
all that Corollary 2.18 showed us that every fun
tion
omputed by su
h a 
ir
uit of size s and depth d 
an be approximated by a polynomialof degree O(log(s/ǫ))d that errs at only ǫ fra
tion of inputs. Thus, if log s = o(n1/2d),then this says that the approximating polynomial has degree o(√n) and makes o(1)47



errors. Combining this with Lemma 2.22, we see that one of the MODi
q fun
tions
annot be approximated this well and therefore needs 
ir
uits of size 2Ω(n1/2d). Onthe other hand, observing that if 
ir
uits of size s and depth d 
an 
ompute MODq,then in (almost) that size and depth they 
an 
ompute MODi

q for all i gives us ourtheorem.The proof of Theorem 2.14 shows that MODpk gates for a �xed prime p, arenot universal. On the other hand, MODm gates are universal, if m has two distin
tprime fa
tors. In fa
t in depth-two, 
ir
uits 
omprising only su
h MODm gates 
an
ompute every fun
tion. However, it appears implausible that MODm gates, with
m having two or more distin
t prime fa
tors, should give us signi�
ant advantageover the 
ase when m has only a single prime fa
tor in 
omputing MODℓ if m, ℓ are
o-prime numbers. This motivated Smolensky to make the following outstanding
onje
ture:Conje
ture 2.23 (Smolensky's Conje
ture [Smo87℄) ACC0[m] 
ir
uits 
annot
ompute the MODℓ fun
tion in size 2no(1), if m, ℓ are relatively prime numbers.This beautiful 
onje
ture drives our work on 
onstant-depth 
ir
uits having mod-ular gates. Re
alling MODℓ ≤AC0 MAJORITY for any �xed ℓ, it is simple to verifythat Smolensky's 
onje
ture implies that MAJORITY /∈ ACC0.2.1.4 The Weakness of a Single MAJ GateAlthough we do not understand the 
omputational power of even depth-threeTC0 
ir
uits, we des
ribe one weakness of MAJ gates that does provide tra
tion insome interesting 
ases. Consider a 
ir
uit with a MAJ gate at the output 
omputing
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a fun
tion f . Intuition suggests that at least one of the sub-
ir
uits Ci must `approx-imate' the fun
tion f well if the fan-in of the MAJ gate is small. The simple reasonto expe
t this is that a MAJ gate de
ides what the majority of its sub-
ir
uits de
ideon a given input.We make this formal as follows: Let A and B be subsets of inputs on whi
h
f evaluates to 1 and 0 respe
tively i.e. A ⊆ f−1(1) and B ⊆ f−1(0). Let µ bea probability distribution with support A ∪ B. Then, a fun
tion g is said to ǫ-dis
riminate f if the following holds:

∣∣∣∣ Pr
x∼µ

[
g(x) = 1

∣∣x ∈ A
]
− Pr

x∼µ

[
g(x) = 1

∣∣ x ∈ B
]∣∣∣∣ ≥ ǫ. This notion then highlights the weakness of a MAJ gate through the followinglemma of Hajnal et.al. [HMP+93℄Lemma 2.24 (Dis
riminator Lemma) Let f be a fun
tion 
omputed by a MAJgate that gets its inputs from t sub-
ir
uits C1, . . . , Ct. Then, for every pair of subsets

A ⊆ f−1(1) and B ⊆ f−1(0) and distribution µ on inputs, there exists a sub-
ir
uit
Ci that 1/t-dis
riminates f .Proof: Let µA (µB) be the distribution indu
ed on A (B) by µ 
onditioned on event
x ∈ A (x ∈ B). Then, from the de�nition of a MAJ gate,

Ex∼µA

[ t∑

i=1

Ci(x)
]
≥
⌈ t
2

⌉and
Ex∼µB

[ t∑

i=1

Ci(x)
]
≤
⌊ t
2

⌋
.49



Subtra
ting the se
ond inequality from the �rst, and using the triangle inequal-ity, along with the linearity of expe
tation, we have
1 ≤

t∑

i=1

∣∣∣∣Ex∼µA

[
Ci(x)

]
− Ex∼µB

[
Ci(x)

]∣∣∣∣

=
t∑

i=1

∣∣∣∣ Pr
x∼µ

[
Ci(x) = 1

∣∣x ∈ A
]
− Pr

x∼µ

[
Ci(x) = 1

∣∣x ∈ B
]∣∣∣∣.Applying an averaging argument to the above yields the lemma.To illustrate the usefulness of the Dis
riminator Lemma, we show the followingsimple fa
t:Fa
t 2.25 Depth-two 
ir
uits with a MAJ gate at the output that is fed by ANDgates of fan-in at most n− 1 i.e. MAJ ◦ANDn−1 
annot 
ompute the PARITY of nbits.Proof: Let A and B be set of inputs that have odd and even parity respe
tively. Let

µ be simply the uniform distribution. It is not hard to verify that the probability ofa given AND gate �ring a 1 is una�e
ted by events x ∈ A or x ∈ B. Consequently,ea
h AND gate does not ǫ-dis
riminate PARITY for any non-zero ǫ.A 
ombination of the Dis
riminator Lemma with Håstad's Swit
hing Lemmaresults in a mu
h more interesting fa
t that was �rst proved by Green [Gre91℄:Theorem 2.26 Consider a 
ir
uit having a single MAJ gate at the output that isbeing fed by AC0 sub-
ir
uits of depth d, i.e. MAJ◦AC0
d. Any su
h 
ir
uit needs size

2Ω(n1/d) to 
ompute PARITY.Proof: The idea of the proof is the following. We hit all AC0 sub-
ir
uits withrandom restri
tions simultaneously just as we did to prove that PARITY requires50



exponential size AC0 
ir
uits to 
ompute (Corollary 2.5). We show the following: ifthe size of the 
ir
uit is 2o(n1/d), then with non-zero probability, ea
h restri
ted AC0sub-
ir
uit 
an be repla
ed by a few AND gates of fan-in less than the number of freevariables. We 
hoose one restri
tion that satis�es the above. Under this restri
tion,the restri
ted 
ir
uit still 
omputes PARITY (or ¬PARITY) of the remaining freevariables. Fa
t 2.25 provides a 
ontradi
tion �nishing the proof.This idea is 
arried out by 
omposing d random restri
tions exa
tly like in theproof of Corollary 2.5. Hen
e, if S is the sum of the sizes of all the AC0 
ir
uits,there exists a restri
tion with the following property: the output of ea
h restri
tedsub-
ir
uit Ci has a de
ision tree Ti of depth at most logS. The restri
tion leaves
nd = n/(14(14 logS)d−1) variables free.We do the following surgery on ea
h Ti. For ea
h path P that leads Ti to output1, we 
reate an AND gate whose input variables are exa
tly the ones that Ti queriesalong P . Let there be ki su
h paths in Ti whi
h then results in ki AND gates being
reated, ea
h of fan-in at most log S. The key observation is that, for a given inputassignment, at most one of these ki AND gates outputs 1. Thus, if we feed (ki − 1)
onstant 1's in addition to the ki AND gates dire
tly to the output MAJ gate, thenwe 
ompute the same fun
tion as the restri
ted 
ir
uit. As argued before, Fa
t 2.25implies that the fan-in of one of these AND gates is the number of free variables.Hen
e,

logS ≥ nd = n/(14(14 logS)d−1)whi
h provides the required bound on S, the size of the 
ir
uit.
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It remains a very interesting open question to determine whether super-polynomiallower bounds 
an be proven on the size of su
h 
ir
uits when the sub-
ir
uits feedinginto the MAJ gate are augmented with MODm gates for any odd m. This remainsopen even for prime m. In Chapter 3 and Chapter 7, we 
onsider restri
ted 
ir
uitswith MODm gates feeding into a MAJ gate and prove strong lower bounds for them.

52



CHAPTER 3Lower Bounds for Cir
uits with Modular GatesIn the last 
hapter, we saw that random restri
tions provide a powerful 
ombina-torial tool for proving (optimal) lower bounds for AC0 
ir
uits. Unfortunately, theredoes not seem to be any way to apply restri
tions to �x a modular 
ounting gatewithout �xing almost all of its inputs. This renders the te
hnique ine�e
tive to dealeven with 
ir
uits that 
ontain only modular gates. This di�
ulty was over
ome bythe ingenious arguments of Razborov and Smolensky using the �polynomial method�.The se
ond part of Smolensky's argument shows that low degree polynomials over
Zp 
annot even approximate well the MODq fun
tion, if p, q are distin
t primes.Ironi
ally, this result itself spells doom for the Razborov-Smolensky approa
h whenmodular gates involved have a modulus m that 
ontains two su
h primes p, q. In-deed, it shows that the MODm fun
tion 
annot be well approximated by a low degreepolynomial over the ring Zm when m = pq. This fails the �rst part of the Razborov-Smolensky approa
h to approximate fun
tions 
omputed by ACC0[m] by low degreepolynomials.No satisfa
tory method is yet known for general 
onstant-depth 
ir
uits withmodular gates of 
omposite modulus. In this 
hapter, we make progress, 
ontinuing along line of intensive resear
h ( see for example [BS95, BS99, BST90, Gre04, Gro94b,Gro98, GT00, HM04, KW91, MPT91, Smo90, ST06, Thé94℄). Our strategy is two-pronged. First we view ACC0 
ir
uits as AC0 
ir
uits augmented with modular53



gates. Besides being a natural point of view, this is inspired by a similar point ofview on TC0 being AC0 
ir
uits augmented with MAJ gates. This led to a series ofinteresting results [ABFR94, BRS91b, Bei94, BS94℄. A natural question, with thispoint of view, then is the following: Can lower bounds be proved if we limit theamount of MODm gates used? We pursue this theme in Se
tion 3.1 and prove thatfew MODm gates do not aid an AC0 
ir
uit signi�
antly in 
omputing MAJORITYand MODℓ. More pre
isely, we show the following:Theorem 3.1 Let m be a positive integer with r ≥ 2 distin
t prime fa
tors. AnyAC0 
ir
uit augmented with s MODm gates requires size nΩ( 1
s
log

1
r−1 n) to 
ompute MAJor MODℓ, if ℓ has a prime fa
tor not dividing m.To get a feel for the meaning of this theorem, note that it implies that AC0 
ir-
uits augmented with o(logn) MOD6 gates, 
annot 
ompute MOD5 or MAJORITYin polynomial size. It is interesting to note that our Theorem 3.1 
omplements theresult obtained by [BS94℄ whi
h shows that AC0 augmented with polylogarithmi
number of MAJ gates 
annot 
ompute MODℓ e�
iently. They deal with polylog-arithmi
 number of MAJ gates using the result of Beigel [Bei94℄ whi
h shows thatevery 
ir
uit with polylogarithmi
 number of MAJ gates 
an be simulated by onewith a single MAJ gate, in
reasing the size of the original 
ir
uit by at most aquasipolynomial fa
tor. No analogous simulation of 
ir
uits with a few MODm gatesby a 
ir
uit with a single MODm gate is known.We extend the ma
hinery of polynomials over rings, introdu
ing a new notionof polynomial representation of boolean fun
tions. Our lower bounds on degrees ofsu
h representations in Se
tion 3.1.1 are of independent interest. These bounds are54



then 
ombined with random restri
tions on AND/OR gates to yield Theorem 3.1.Results 
ontained in this part appeared in joint work with K. A. Hansen in [CH05℄.In the se
ond part, we aim to understand the 
lass of fun
tions 
omputable by
ir
uits of polynomial size, 
omprising only MODm gates and having 
onstant depth.We denote this 
lass by CC0[m]. De�ne CC0 = ∪m≥2CC0[m]. While developingte
hniques to prove lower bounds on the size of CC0 
ir
uits is a signi�
ant steptowards understanding ACC0, Caussinus [Cau96℄ points out that it is not even knownif in depth-two and linear size CC0 
ir
uits 
an 
ompute SATISFIABILITY whenthe modular gates are allowed to be generalized. A generalized MODm gate, denotedby MODS
m, has an asso
iated a

epting set S ⊂ Zm and outputs 1 i� the sum of theinput bits modulo m is an element of S.Let the support set of a boolean fun
tion f be the set of inputs at whi
h f isnon-zero. Slightly abusing terminology, we 
all the size of the support set of f assupport. One weakness of a MODm gate is that the size of its support set is large i.e.roughly 2n/m. It is tempting to postulate that 
onstant-depth 
ir
uits of small size
annot quite over
ome the weakness of its 
onstituent gates. This intuition leads tothe following 
onje
ture:Conje
ture 3.2 (M
Kenzie, Peladeau and Thérien [MPT91℄) The AND of nbits 
annot be 
omputed in 
onstant depth and polynomial size by 
ir
uits 
omprisingonly MODm gates , for any �xed modulus m, i.e. AND /∈ CC0.Observe that this 
onje
ture is the dual of the 
lassi
al result that MODm 
annotbe 
omputed e�
iently in 
onstant depth using only AND and OR gates. The ANDfun
tion has the smallest support that any non-
onstant fun
tion 
an have. On the55



other hand, it is not even known if a fun
tion with a sub-exponential size support isin CC0. We dare 
onje
ture the following:Conje
ture 3.3 (Small Support Set) There exists a fun
tion h : N → N, su
hthat any non-
onstant fun
tion 
omputed by a CC0 
ir
uit of size s and depth d hasa support set of size at least 2n

2Ω(log s)h(d) .Re
all that Fa
t 2.15 in Chapter 2 states that the MODp-degree of fun
tions
omputed by CC0[pk] 
ir
uits of arbitrary size is a 
onstant. It 
an be shown thatfun
tions represented by 
onstant degree polynomials over Zp have a support set1 ofexponential size. Thus, the Small Support Set Conje
ture holds in a very strongsense for CC0[pk].In Se
tion 3.2, we make small but non-trivial progress on this 
onje
ture. Spe
if-i
ally, we prove the following: let CC[m] denote the 
lass of fun
tions 
omputableby polynomial size 
ir
uits having only MODm gates but arbitrary depth. Then,Theorem 3.4 For every positive integer m, there exists a positive 
onstant c su
hthat every non-
onstant boolean fun
tion with support size less than 2n/cs 
annot be
omputed by any CC[m] 
ir
uit whose Layer 1 has size less than s.Thérien [Thé94℄ gives a similar but weaker result that fun
tions with supportset of size less than ( α(m)
α(m)−1

)n 1
α(m)s require CC[m] 
ir
uits of size s, where α(m) isa growing fun
tion of m. In parti
ular, su
h results imply that AND 
annot be
omputed by sublinear size CC[m] 
ir
uits. In 
ontrast to Thérien's te
hnique of1 The result of Péladeau and Thérien [PT88℄ shows that this 
ontinues to holdeven for polynomials over Zm when m is an arbitrary 
omposite number.56



using Fourier Analysis over �nite �elds, we 
ombine analysis over 
omplex numberswith notions from additive number theory. As Smolensky [Smo87℄ remarked, analysisover 
hara
teristi
 zero may lead to further te
hniques being developed by makinguse of metri
 inequalities.In the �rst part of this 
hapter, Theorem 3.1 makes progress towards Smolen-sky's Conje
ture. In Se
tion 3.2, we make progress on it from a di�erent dire
tion.Smolensky's 
onje
ture implies that CC0[m] 
ir
uits require exponential size to 
om-pute MODℓ when m, ℓ are 
o-prime. Proving this will 
onstitute signi�
ant advan
e-ment in our understanding of the limitations of modular 
ounting. We report thefollowing progress on this front: let CCo(n)[m] denote the 
lass of 
ir
uits, 
omprisingonly MODm gates, having sublinear size and arbitrary depth.Theorem 3.5 Any 
ir
uit of type MAJ ◦ CCo(n)[m] 
omputing MODℓ requires theoutput gate to have fan-in 2Ω(n) if m, ℓ are 
o-prime.This result 
onsiderably improves the previous best lower bound due to Smolen-sky [Smo90℄ who showed an Ω(log n) lower bound on the number of gates neededby CC0[m] 
ir
uits to 
ompute the MODℓ fun
tion. We obtain Theorem 3.5, on theother hand, by showing that fun
tions in CCo(n)[m] have exponentially small 
orre-lation with MODℓ. Results in this se
tion appeared in the joint work with N. Goyal,P. Pudlák and D. Thérien [CGPT06℄.3.1 Cir
uits with Few Modular Gates3.1.1 Preliminaries of Polynomial RepresentationRe
all that Razborov and Smolensky [Raz87, Smo87℄ introdu
ed polynomialsover �nite �elds mainly as a tool to analyze 
ir
uits with modular gates. Their57



work was 
losely followed up by a number of other works (see for example [All89,Yao90, BRS91a, ABFR94, BT94℄), where polynomials (over �nite �elds, �nite ringsand �elds of 
hara
teristi
 zero) played a key role in obtaining strong lower boundson various 
ir
uits. There is a ni
e (though somewhat outdated) survey of theseworks by Beigel [Bei93℄. While these early works looked at polynomials mainly as atool for obtaining lower bounds, the work of Barrington, Beigel and Rudi
h [BBR94℄and that of Nisan and Szegedy [NS94℄ treat polynomials as an independent modelof 
omputation with degree being the most important resour
e. In this 
hapter, wefo
us on polynomials over the �nite 
ommutative ring Zm, for a �xed integer m.Interestingly, polynomials over reals show up as an invaluable tool in Chapter 6 toanalyze the 
ommuni
ation 
omplexity of boolean fun
tions.A polynomial P over a ring is a strong representation of a boolean fun
tion fif f(x) = P (x) for all x ∈ {0, 1}n. Note that this makes sense be
ause rings, byde�nition, have 0 and 1 elements. Razborov and Smolensky, for instan
e, use thestrong representation by polynomials over the spe
ial �eld Zp, where p is prime. Aswe saw in the last 
hapter, ea
h boolean fun
tion has a unique strong representationby a polynomial over Zm for any integer m ≥ 2. In order to make use of the fullpower of the underlying ring Zm, this notion 
an be naturally relaxed in more thanone way:
• P is a one-sided representation of f if f(x) = 0⇔ P (x) ≡ 0 (mod m) for all
x ∈ {0, 1}n.
• P is a weak representation of f if P (x) 6≡ 0 (mod m) for some x ∈ {0, 1}n, and
P (x) 6≡ 0 (mod m)⇒ f(x) = 1 for all x ∈ {0, 1}n.58



• P is a generalized2 representation of f if there is an a

epting set S ⊂ Zm su
hthat f(x) = 1⇔ P (x) ∈ S.The minimal degree of a polynomial satisfying the above properties is 
alled thestrong, one-sided, weak and generalized MODm-degree, respe
tively. Note that astrong representation is also a one-sided representation. A one-sided representationis also a weak representation as well as a generalized representation (with a

eptingset Zm − {0}).Tardos and Barrington [TB98℄ obtained the following lower bound on the gen-eralized degree of the OR fun
tion.Theorem 3.6 ([TB98℄) Let m be a positive integer with r ≥ 2 distin
t prime fa
-tors, and let q be the smallest maximal prime power divisor of m. The generalizedMODm-degree of the OR fun
tion on n variables is at least (( 1
q−1
− o(1)

)
logn

) 1
r−1 .In
identally, this is the best lower bound on the generalized MODm-degree ofthe OR fun
tion for a 
omposite m. The best upper bound is due to Barrington,Beigel and Rudi
h [BBR94℄. They showed that there is a symmetri
 polynomial over

Zm of degree O(n1/r) that one-sidedly represents the OR fun
tion, when m has rdistin
t prime fa
tors. This is one of a few results that shows that 
omposites havenon-trivial advantage over primes in a reasonable model of 
omputation. It is notknown if the advantage in this 
ase is exponential, but that is 
ertainly not expe
ted.2 This notion was a
tually 
alled weak representation in [TB98℄, but we prefer toreserve this name for the representation introdu
ed by Green [Gre00℄, whi
h is anal-ogous to the weak degree of a voting polynomial de�ned by Aspnes et al [ABFR94℄.59



Improving the lower bound of Tardos and Barrington remains an outstanding openproblem in the �eld of polynomial representation of boolean fun
tions.Although proving strong lower bounds on the generalized MODm-degree of ex-pli
it boolean fun
tions has been hard, the situation is mu
h better when one dealswith one-sided and weak degree. Linear lower bounds on one-sided MODm-degree ofthe MODℓ fun
tion is known when m, ℓ are relatively prime. This was �rst proved byBarrington et.al.[BBR94℄ and Tsai [Tsa96℄. Finally these results were subsumed bythe stronger result of Green [Gre00℄ on the weak MODm-degree of MODℓ. Green'sbound does not even require m to be �xed or a slowly growing number as needed by[BBR94, Tsa96℄. We point out to the interested reader that Green's proof-methodis also of independent interest as it uses novel algebrai
 arguments that 
ould be offurther use for proving degree lower bounds.Theorem 3.7 (Green [Gre00℄) Let m and ℓ be positive relatively prime integers.The weak MODm-degree of the MODℓ and ¬MODℓ fun
tions on n variables is atleast ⌊ n
2(ℓ−1)

⌋.Finally, we need a te
hni
al Lemma that allows us to move from a polynomialover Zpk to a polynomial over Zp with a small blow-up of degree, provided p is prime.This Lemma is derived from Lemma 2.12 in the last 
hapter that said that everyperiodi
 symmetri
 fun
tion of period pk has strong MODp-degree at most pk − 1. .Lemma 3.8 (Tardos and Barrington [TB98℄) Let P be a polynomial of degree
d in n variables over Zpk and let S ⊆ Zpk be any set. Then there exists anotherpolynomial P ′ of degree at most (pk − 1)d in n variables over Zp su
h that P (x) ∈

S ⇒ P ′(x) = 1 and P (x) 6∈ S ⇒ P ′(x) = 0 for all x ∈ {0, 1}n.60



We in
lude a proof for 
ompleteness, using ideas from [BBR94℄.Proof: Let P have t monomials enumerated in some way. Let yi be a boolean variablethat takes the same value as the ith monomial of P . Despite the fa
t that the yi'sare not independent of ea
h other, the boolean fun
tion represented by P naturallyde�nes a partial fun
tion on {0, 1}t that is symmetri
 and periodi
3 with period pk.Applying Lemma 2.12, there exists a polynomial P ′ in variables y1, . . . , yt over Zp ofdegree at most pk − 1 that strongly represents the fun
tion represented by P witha

epting set S. As ea
h yi is of degree at most d, 
omposing P ′ with the monomialsrepresenting yi results in degree at most (pk − 1)d.Remark 3.9 For a prime p, the strong MODp-degree of a boolean fun
tion f is atmost (pk − 1) times the generalized MODpk-degree of f .3.1.2 Weak Generalized RepresentationWe introdu
e a new representation of boolean fun
tions over polynomials thatis ne
essary to obtain our lower bounds on the size of 
ir
uits. We say P is a weakgeneralized representation of f if there is an a

epting set S ⊂ Zm and an x̄ ∈ {0, 1}nsu
h that P (x̄) ∈ S and that for all x ∈ {0, 1}n we have P (x) ∈ S ⇒ f(x) = 1. Theminimal degree of a polynomial satisfying the above property w.r.t. a fun
tion f , is
alled the weak generalized MODm-degree of f .3 Symmetri
ity in this 
ontext simply means that if x and y are two inputs of iden-ti
al Hamming weight on whi
h the fun
tion is de�ned, then the fun
tion evaluatesidenti
ally on them. The notion of periodi
ity 
an be likewise extended to partialfun
tions.
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Observe that all three representations that we dis
ussed in the last se
tion arespe
ial 
ases of this new notion. Further, for a weak generalized representation we
an assume that |S| = 1. In fa
t, if P is a weak generalized representation thereexists a ∈ Zm su
h that P − a is a weak generalized representation with a

eptingset {0} of the same boolean fun
tion.We �rst show a simple 
onsequen
e of the lower bound on the generalized degreeof the OR fun
tion for the weak generalized degree of the MAJ and ¬MAJ fun
tions.Theorem 3.10 Let m be a positive integer with r ≥ 2 distin
t prime fa
tors, andlet q be the smallest maximal prime power divisor of m. The weak generalized MODm-degree of the MAJ and ¬MAJ fun
tions on n variables is at least (( 1
q−1
− o(1)

)
log n

) 1
r−1 .Proof: We �rst observe that MAJ and ¬MAJ have almost the same degree. This isobvious from the following fa
t: if n is odd, MAJ(x) = ¬MAJ(1−x1, 1−x2, . . . , 1−xn)and otherwise MAJ(x1, . . . , xn−1) = ¬MAJ(1− x1, . . . , 1− xn−1, 0).We now prove the lower bound on the degree of ¬MAJ by deriving a generalizedrepresentation of the OR fun
tion from a weak generalized representation of ¬MAJ.Let P be a polynomial over Zm of degree d that is a weak generalized representationof ¬MAJ with a

epting set S. Let y ∈ {0, 1}n be an input with maximal Hammingweight su
h that P (y) ∈ S. Let J ⊂ [n] be the set of indi
es where y has a 1. Clearly,

|J | < n/2. For every i ∈ J set xi = 1 in P . Let P ′ be the resulting polynomialon variables having indi
es in [n] − J . Then, it is simple to verify that P ′ w.r.ta

epting set Zm−S is a generalized representation of the OR fun
tion over at least
n/2 variables. The lower bound on d follows from Theorem 3.6.
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We 
ombine te
hniques introdu
ed in [TB98℄ and Green's lower bound on theweak MODm-degree of MODℓ. This new 
ombination proves the following result onthe weak generalized MODm-degree of MODp.Theorem 3.11 Let m be a positive integer with r ≥ 2 distin
t prime fa
tors, let
pk be the smallest maximal prime power fa
tor of m. Let q be a prime not dividing
m. For all a ∈ Zq, the weak generalized MODm-degree of the MODa

q and ¬MODa
qfun
tions on n variables is at least (( 1

2(q−1)2(pk−1)
− o(1)

)
logn

) 1
r−1 .The general idea of proving this theorem is to su

essively 
onvert a given rep-resentation over modulus m to another representation of a similar fun
tion of fewervariables over a new modulus m′, where m′ has one less prime fa
tor than m. Ap-plying this pro
edure a 
onstant number of times, we are left with a representationover a modulus that has just one prime fa
tor. At this point, we apply the followingfa
t that follows from Theorem 3.7 and Lemma 3.8.Fa
t 3.12 The weak generalized MODpk-degree of the MODq and ¬MODq fun
tionson n variables is at least 1

(pk−1)
⌊ n

2(q−1)
⌋, if p is a prime that does not divide q.The s
heme to move down from a given modulus to another simpler one withoutlosing too many variables was �rst designed in [TB98℄ with respe
t to the OR fun
-tion. We suitably modify this to work in our 
ontext. The main tri
k is the following:let m = pkm′ for some prime p. Then any polynomial over Zm 
an be de
omposed,using Chinese Remaindering, into a polynomial over Zpk and a polynomial over Zm′ .We swit
h o� the 
ontribution of the �rst polynomial towards the representation ofthe MODℓ fun
tion in the following way: identify disjoint sets of variables S1, . . . , St63



su
h that the polynomial over Zpk is redu
ed to a 
onstant polynomial if variablesin a given set Si are restri
ted to take the same value. In this 
ase, 
ollapsing vari-ables in ea
h set Si to a single variable yi, for
es the other polynomial over Zm′ torepresent the MODℓ fun
tion of the new auxiliary variables y1, . . . , yt. This allowsthe indu
tion step of our pro
edure to be 
arried out.With the general idea of the argument des
ribed, let us state formally our resultthat allows us to swit
h o� a polynomial over a modulus that is a prime power. For asubset S ⊆ {1, . . . , n}, let χ(S) ∈ {0, 1}n denote its 
hara
teristi
 ve
tor. Converselyfor x ∈ {0, 1}n, let σ(x) ⊆ {1, . . . , n} be the set of indi
es where xi = 1.Lemma 3.13 Let P be a polynomial of degree d in n variables over Zpk for aprime p, and let ℓ be a positive integer not divisible by p. Let t satisfy the 
on-dition n ≥ 2(ℓ − 1)
(
t+ (pk − 1)

∑d
i=1(d+ 1− i)

(
t
i

)). Then, there exists pairwisedisjoint non-empty sets S1, . . . , St ⊆ {1, . . . , n} su
h that for every y ∈ {0, 1}t wehave P (
∑t

i=1 yiχ(Si)) ≡ P (0) (mod pk) and furthermore we have |Si| 6≡ 0 (mod ℓ)for all i.Proof: Assume without loss of generality that P (0) = 0. We will �nd sets Si re-
ursively with |Si| ≤ si, where si = 2(ℓ− 1)
(
1 + (pk − 1)

∑d−1
j=0

(
i−1
j

)
(d− j)

). Firstpi
k a set S of s1 = 2(l − 1)(d(pk − 1) + 1) variables. Consider the polynomialobtained from P by substituting 0 for all variables not in S. Sin
e the degree ofthis new polynomial is at most d, Fa
t 3.12 implies that it is not a weak generalizedrepresentation of ¬MODℓ with respe
t to the set {0}. Thus there is a subset S1 ⊆ Ssu
h that P (χ(S1)) = 0 = P (0) and ¬MODℓ(χ(S1)) = 0. Hen
e, |S1| 6≡ 0 (mod ℓ).
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In the general 
ase, assume that for i < t we have found sets S1, . . . , Si, where
|Sj| ≤ sj and |Sj| 6≡ 0 (mod ℓ) for all j ≤ i, su
h that P (

∑i
j=1 yjχ(Sj)) = 0 = P (0)for all y ∈ {0, 1}i. Pi
k a set S of size si+1 from the remaining variables. For any

y ∈ {0, 1}i, let Py be the polynomial obtained from P by substituting yj for allvariables in Sj for all j, and further substituting 0 for all remaining variables not in
S. We show below that there exists a subset S ′ of S su
h that Py(χ(S ′)) ≡ 0

(mod pk) for all y and |S ′| 6≡ 0 (mod ℓ). This �nishes the argument as we set
Si+1 = S ′.Let P ′y be the polynomial over Zp, obtained using Lemma 3.8, that is a strongrepresentation of the boolean fun
tion of whi
h Py is a generalized representation withrespe
t to {0}. That is P ′y(x) ≡ 0 (mod p) ⇔ Py(x) 6≡ 0 (mod pk) and P ′y(x) ≡ 1

(mod p)⇔ Py(x) ≡ 0 (mod pk).Let R =
∏

y∈{0,1}i P
′
y. Note that R only takes values in {0, 1}modulo p, and that

R(x) ≡ 1 (mod p) i� P ′y(x) ≡ 1 (mod p) for all y, that is, i� Py(x) ≡ 0 (mod pk)for all y. Further, by 
onstru
tion R(0n) ≡ 1 (mod p). Hen
e, showing that R isnot a weak representation of ¬MODℓ for variables in S is su�
ient for �nding ourdesired set S ′ ⊂ S su
h that R(S ′) = R(0n) = 1 (mod p). However, the degree of Ris 2i(pk − 1)d. This is unfortunately too big (when i >> d) 
ompared to the size of
S (that needs to be at most si+1, whi
h grows roughly at the rate of id, to 
ompleteour indu
tion). We over
ome this problem below by using an idea of Tardos andBarrington [TB98℄.
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We use in
lusion-ex
lusion sums of Py's to 
onstru
t a set of new polynomialswhose degrees are slightly less than that of Py's, but have identi
al 
ommon zeroesas the Py's. More pre
isely, for z, y ∈ {0, 1}i say z ≤ y if zj ≤ yj for ea
h 1 ≤ j ≤ i.For any y ∈ {0, 1}i, de�ne polynomial Qy with variables in S over Zpk as follows:
Qy ≡

∑

z≤y

(−1)|z|Pz.The following 
laim is simple to verify.Claim 3.14 Any x ∈ {0, 1}si+1, is a 
ommon zero of polynomials Qy's (over Zpk)i� it is a 
ommon zero of polynomials Py's (over Zpk).We prove that the high-degree monomial terms of P vanish in Qy.Claim 3.15 The degree of Qy is at most d− |y|.Proof:[adapted from [TB98℄℄ Consider any monomialM in P . Let yj be 1 and assumethat M does not depend on any variable in Sj. Consider z1, z2 ∈ {0, 1}i su
h thatthey di�er only in their jth bit. Clearly, the 
ontribution of M to Qy for z1 and z2
an
el ea
h other out. Pairing up points below y in this fashion, it is not di�
ultto see that the total 
ontribution of M to Qy zeroes out. Thus, a monomial M hasnon-zero 
ontribution to Qy only if it 
ontains a variable from ea
h Sj su
h that
yj = 1. Hen
e, every monomial term of degree d in P is restri
ted to a polynomialof degree at most d− |y| in Qy.As before, using Lemma 3.8, we repla
e Qy over Zpk by Q′y over Zp su
h that
Qy(z) ≡ 0 (mod pk) i� Q′y(z) ≡ 1 (mod p) and Q′y is 0/1 valued over Zp. We
onstru
t R as before repla
ing P ′y by Q′y i.e. R ≡ ∏y∈{0,1}i Q

′
y. Claim 3.15 yields
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the following bound on the degree of R:deg(R) ≤ (pk − 1)

d−1∑

j=0

(
i

j

)
(d− j).From Fa
t 3.12 and the 
hoi
e of si+1 we have that R is not a weak representationof ¬MODℓ. We 
an thus �nd Sj+1 ⊆ S su
h that R(χ(Si+1)) 6≡ 0 (mod p) and

¬MODℓ(χ(Sj+1)) = 0. It follows that Py(χ(Si+1)) = 0 for all y and |Si+1| 6≡ 0

(mod ℓ). To allow the indu
tion to go through, we need that n ≥∑t
i=1 si. Using the
ombinatorial identity∑t−1

i=0

(
i
j

)
=
(

t
j+1

), we see that the relationship between n and
t is pre
isely what we need.We are ready to prove our bound of Ω((log n)

1
r−1 ) on the weak generalized MODm-degree of MODq, where m is a number having r distin
t prime fa
tors none of whi
his the prime q.Proof:[of Theorem 3.11℄ Let us re
all the idea of the proof: su

essively use Lemma 3.13to 
onvert a given representation into another representation on fewer (auxiliary)variables over a modulus that 
ontains less prime fa
tors. Finally use Fa
t 3.12when there is just one prime fa
tor left in the modulus.Let n = n(m, d) denote the maximal number of variables, for whi
h there isa weak generalized representation over Zm of degree d, for any of the MOD{a}q and

¬MOD{a}q fun
tions. We need to prove that
logn(m, d) ≤ (2(q − 1)2(pk − 1) + o(1))dr−1.Let m = pk1

1 m1 where pk1
1 is a maximal prime power divisor of m di�erent from pk.
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Assume that P is a polynomial in n variables of degree d over Zm whi
h is aweak generalized representation of f with respe
t to {0}, where f is either MOD{a}qor ¬MOD{a}q for some a ∈ Zq. In order to apply Lemma 3.13, we need to have
P (0) ≡ 0 whi
h may not be the 
ase. But this is simple to deal with. By de�nitionthere exists x̄ ∈ {0, 1}n su
h that P (x̄) ≡ 0 (mod m) and f(x̄) = 1. If |σ(x̄)| < n

2let P ′ be the polynomial obtained from P by setting the variables indexed by σ(x̄)to 1. Otherwise, if |σ(x̄)| ≥ n
2
we 
an let P ′ be the polynomial where variable xi issubstituted with 1− xi if i ∈ σ(x̄) and otherwise set to 0.In either 
ase, the number

n′ of unset variables in P ′ is at least n
2
and P ′(0) ≡ 0 (mod m).For a given integer t, let t′ = (p− 1)t and assume that the following holds:

n′ ≥ 2(q − 1)

(
t′ + (pk1

1 − 1)
d∑

i=1

(d+ 1− i)
(
t′

i

))
.Then using Lemma 3.13 we 
an �nd pairwise disjoint nonempty sets S ′1, . . . , S ′t′ ⊆

{1, . . . , n′} su
h that for every y ∈ {0, 1}t′ we have P ′(Σt′

i=1yiχ(S ′i)) ≡ P ′(0) ≡ 0

(mod pk1
1 ) and furthermore we have |S ′i| 6≡ 0 (mod q) for all i. Choosing the mosto

urring residue b ∈ Zq \ {0} among |S ′i| modulo q and extending the sets to

{1, . . . , n}, we have pairwise disjoint nonempty sets S1, . . . , St ⊆ {1, . . . , n} su
hthat P (x̄ + Σt
i=1yiχ(Si)) ≡ P (x̄) ≡ 0 (mod pk1

1 ) for every y ∈ {0, 1}t, and |Si| ≡ b

(mod q) for all i.If f is ¬MOD{a}q , then P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m) implies that |σ(x̄)| +

∑t
i=1 yi|Si| 6≡ a (mod q). This further implies ∑t

i=1 yi 6≡ b−1(a − |σ(x̄)|) (mod q).On the other hand, if f is MOD{a}q , then P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m) impliesthat |σ(x̄)|+∑t

i=1 yi|Si| ≡ a (mod q). In this 
ase, |σ(x̄)| ≡ a (mod q) by de�nition.68



Hen
e,∑t
i=1 yi ≡ 0 (mod q). By our 
hoi
e of sets S1, . . . , St, P (x̄+Σt

i=1yiχ(Si)) ≡ 0

(mod m1) i� P (x̄ + Σt
i=1yiχ(Si)) ≡ 0 (mod m). Let Q be the polynomial obtainedfrom P by setting variables in σ(x̄) to 1 and repla
ing every o

urren
e of a variablein the set Si by the auxiliary variable yi. Combining our observations, we 
on
ludethat Q is a weak generalized representation over Zm1 of either MOD{b−1(a−|σ(x̄)|)}

q or
¬MOD{0}q on the auxiliary variables, w.r.t. the a

epting set {0}.Thus, setting t = n(m1, d) + 1 (and re
all t′ = (q − 1)t) we have the followingre
ursion:

n(m, d)/2 ≤ n′ < 2(q − 1)

(
t′ + (pk1

1 − 1)
d∑

i=1

(d+ 1− i)
(
t′

i

))
. (3.1)If r = 2, then m1 = pk and from Fa
t 3.12 we have that

n(m1, d) ≤ 2(q − 1)
(
(pk − 1)d+ 1

)
.But (3.1) implies that n(m, d) ≤ O

(
d2(q−1)n(m1,d)

). Hen
e,
log n(m, d) ≤ O(log d) + (q − 1)n(m1, d) ≤

(
2(q − 1)2(pk − 1) + o(1)

)
d,proving our result for r = 2.If r > 2, we have by indu
tion that

log (n(m1, d)) ≤ (2(q − 1)2(pk − 1) + o(1))dr−2.On the other hand, (3.1) yields that n(m, d) ≤ O
(
(q − 1)dn(m1, d)

d
). Taking loga-rithms on both sides,

logn(m, d) ≤ O(1) + d (log(q − 1) + log(n(m1, d)) .69



Plugging in our indu
tive estimate of log(n(m1, d)) from above, we get
log (n(m, d)) ≤ (2(q − 1)2(pk − 1) + o(1))dr−1,
ompleting the indu
tion.As said before, weak generalized representations are interesting in their own right.We show that lower bounds on the degree of su
h representations have interestingappli
ations for boolean 
ir
uits. For ease in des
ribing su
h appli
ations, we 
onsiderthe representation of a boolean fun
tion by more than one polynomial. Let f be asbefore and let P1, . . . , Ps be polynomials in n variables over Zm. We say P1, . . . , Psis a simultaneous weak MODm-representation of f if there exits a y ∈ {0, 1}n su
hthat for ea
h i, Pi(y) 6≡ 0 (mod m) and if it holds that whenever Pi(x) 6≡ 0 (mod m)for all i, we have that f(x) = 1. The degree of a simultaneous weak representationis simply the maximal degree of P1, . . . , Ps. The s-simultaneous weak MODm-degreeof f is the degree of the simultaneous weak representation of f that has minimaldegree.The following lemma shows, that s-simultaneous weak degree and weak gener-alized degree are essentially the same, when s is a 
onstant.Lemma 3.16 Let m be a positive integer and let m = q1 · · · qt be the fa
torizationinto prime powers with qi = pki

i . Further, let m′ = p1 · · · pt and let f be a booleanfun
tion. The weak generalized MODm′-degree of f is at most s(q − 1) times the
s-simultaneous weak MODm-degree of f , where q is the largest prime power fa
tor of
m.
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On the other hand, the (m−1)-simultaneous weak MODm-degree of f is at mostas large as the weak generalized MODm degree of f .Proof: Let the s-simultaneous weak degree of f be d. Then, there exists a simultane-ous weak representation of f by polynomials P1, . . . , Ps over Zm, where deg(Pi) ≤ dfor ea
h i. Let y ∈ {0, 1}n be su
h that Pi(y) 6≡ 0 (mod m) for all i.Using Chinese Remaindering, ea
h Pi splits into t 
omponents P 1
i , . . . , P

t
i where

P j
i is over Zqj

and deg(P j
i ) ≤ deg(Pi) ≤ d. From the de�nition of simultaneousrepresentation, for ea
h i, there exists an ij su
h that P ij

i (y) 6≡ 0 (mod qij ). ApplyingLemma 3.8, let Qij be the polynomial over Zpij
of degree at most (qij − 1)d su
hthat P ij

i (x) 6≡ 0 (mod qij ) i� Qij 6≡ 0 (mod pij). For ea
h 1 ≤ k ≤ t, 
onsider thefollowing polynomial over Zpk

Qk ≡def ∏
i:ij=k

QijLet P ′ denote the polynomial over m′ = p1 · · · pt that is obtained by 
ombining, viaChinese Remaindering, the polynomials Q1, . . . , Qt. Clearly, the degree of P ′ is atmost s(q−1)d. Viewing ea
h element of Zm′ to be a t-tuple with the ith 
o-ordinatebeing an element of Zpi
, de�ne S ≡ {(a1, . . . , at) : ai ∈ Zpi

, ai 6= 0} ⊂ Zm′ . Re
allingthat ea
h pi is prime, it is not hard to verify that P ′ w.r.t. a

epting set S is a weakgeneralized representation of f .3.1.3 Appli
ation to Cir
uitsIn this se
tion, we 
ombine ma
hinery from the previous se
tion with the Swit
h-ing Lemma to derive lower bounds on AC0 
ir
uits augmented with few MODm gates.
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To illustrate how they may be 
ombined, we 
onsider the 
ase of an AC0 
ir
uit feed-ing into a single MODm gate at the output.Theorem 3.17 (Hansen and Miltersen [HM04℄) An AC0 
ir
uit of depth d aug-mented with a single MODm gate at the output, i.e. a 
ir
uit of type MODm ◦ AC0
dneeds size 2

1
14

(cn)1/d to 
ompute MODℓ, for some 
onstant c = c(m, ℓ) provided m, ℓare relatively prime.Proof: The idea is to hit the AC0 part with random restri
tions just as we did inChapter 2 to prove that AC0 
ir
uits 
annot 
ompute Parity. Let the size of the AC0part be S. As in the proof of Corollary 2.5, we 
hoose a random restri
tion ρ that isa 
omposition of d random restri
tions ρ1, . . . , ρd. Ea
h ρi is 
hosen randomly fromthe spa
e of all restri
tions, denoted by Rni
ni−1

, on ni−1 variables that leave exa
tly
ni free. Here, ni = pini−1, where pi is the probability with whi
h ea
h variable isleft free and n0 = n. Setting p1 = 1/14, pi = 1/(14 logS) for i = 2, . . . , d, andusing Beame's Swit
hing Lemma, one observes that after applying ρ1 ◦ ρ2 ◦ · · · ρithe output of ea
h gate at the ith layer is 
omputed by a de
ision tree of height atmost log S. Thus, the output of ea
h sub-
ir
uit feeding into the MODm gate 
anbe 
omputed by a de
ision tree of height log S under the e�e
t of ρ. At this point,Hansen and Miltersen [HM04℄ make the following 
ru
ial observation, showing theutility of de
ision trees in this 
ontext:Observation 3.18 A fun
tion 
omputed by a de
ision tree of height at most h hasan exa
t/strong representation over Zm of degree at most h, for every integer m ≥ 2.Proof: The idea is quite simple. Consider a path in the tree that leads to a leaflabeled one. Let S be the set of indi
es of the variables queried along the path. Let72



i ∈ S. If the path follows the edge labeled 0 
oming out of node labeled xi thenset yi = 1 − xi, otherwise set yi = xi. Then, the polynomial ∏i∈S yi evaluates to 1(0) pre
isely if this path is followed (not followed) by the de
ision tree on a givenassignment. Taking the sum of su
h terms over all paths in the de
ision tree thatlead to a leaf labeled one, yields the desired polynomial of degree at most h.Applying Observation 3.18, with positive probability the restri
ted 
ir
uit hasthe following property: one 
an express exa
tly the output of ea
h gate feeding intothe single MODm gate by a 0/1 valued polynomial of degree at most log S over Zm.Summing up these polynomials yields a one-sided representation (of degree at most
log S) over Zm of the restri
ted fun
tion on the remaining n/(14(14 logS)d−1) freevariables. Setting at most an additional (ℓ−1) variables to 1, the restri
ted fun
tionbe
omes the MODℓ fun
tion. Finally, applying Green's bound (Theorem 3.7) on theweak MODm-degree of MODℓ, we get

logS ≥
⌊

1

2(ℓ− 1)

(
n

14(14 logS)d−1
− ℓ+ 1

)⌋when
e the desired bound on S follows.The reader may have noti
ed that using Green's lower bound on the weakMODm-degree is not stri
tly needed for the above argument. Indeed, it is su�
ientto use lower bounds of [BBR94, Tsa96℄ on the one-sided MODm-degree of MODℓ.However, Green's bound has its own advantage. Using it, Hansen and Miltersen[HM04℄ showed exponential lower bounds on the size of su
h 
ir
uits with a singleMODm gate that is allowed to appear anywhere in the 
ir
uit. Our Theorem 3.1,signi�
antly extends their result. For instan
e, it follows from Theorem 3.1 that73



super-polynomial size is still needed to 
ompute the MODℓ fun
tion even if we allow
o(logn)1/r−1 many MODm gates, when m is a �xed 
omposite number having atmost r distin
t prime fa
tors. The key to this improvement is the use of our notionof weak generalized representation of boolean fun
tions.Proof:[of Theorem 3.1℄ We �rst assume that ℓ is a prime. The 
ase of a 
omposite ℓis handled easily at the end by invoking the 
ase of a prime ℓ.Let C be a depth d AC0 
ir
uit of size n ǫ

s
log

1
r−1 n 
ontaining s MODm gates

g1, . . . , gs 
omputing a fun
tion f . Assume there is no path from the output of gj to
gi if i < j. For ea
h α ∈ {0, 1}s let Cα

i be the MODm ◦ AC0 sub
ir
uit of C with
gi as output, where every gj for j < i is repla
ed by the 
onstant αj . Similarly, let
Cα be the AC0 
ir
uit obtained from C by repla
ing every gi with αi. We 
hoose arandom restri
tion ρ ∈ R√n

n . We show that for every δ > 0, there exists an ǫ > 0su�
iently small su
h that with high probability, for every α there are polynomials
pα

i and qα, of degree at most δ
s
log

1
r−1 n, su
h that Cα

i,ρ(x) = 1 i� pα
i (x) 6≡ 0 (mod m)and Cα

ρ (x) = qα(x), for all x and for ea
h 1 ≤ i ≤ s.Pi
k su
h a restri
tion ρ. We 
onstru
t a simultaneous weak representation,using s + 1 polynomials, of either fρ or ¬fρ as shown next: Pi
k a maximal set
G of the MODm gates that are 1 at the same time for some assignment x to thefree variables of the restri
tion. De�ne α su
h that αi = 1 i� gi ∈ G. If thereexists x ∈ {0, 1}√n su
h that all gates in G evaluate to 1 on x and Cρ(x) = 1,then {pα

i | gi ∈ G} ∪ {qα} is a simultaneous weak representation of fρ. Otherwise,
{pα

i | gi ∈ G} is a simultaneous weak representation of ¬fρ.
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Note that if f is MODℓ, then fρ is MODZm−{a}
ℓ for some a ∈ {0, . . . , ℓ− 1}. If fis MAJ and the number of 0 and 1 assigned by ρ di�er by at most 1 (whi
h happenswith probability Ω(n−

1
2 )), we �x at most one extra variable su
h that fρ 
omputesMAJ. In both 
ases, we pi
k δ su�
iently small and obtain a 
ontradi
tion to thedegree lower bounds in Theorem 3.10 and Theorem 3.11, using Lemma 3.16.It only remains to show that under the e�e
t of ρ, with high probability, for ea
h

α one 
an �nd the polynomials pα
i for every i ≤ s and qα. To show this, we analyzethe e�e
t of ρ simultaneously on at most 2s(s+ 1) di�erent AC0 
ir
uits of depth dand size S ′ = n

ǫ
s

log
1

r−1 n obtained by varying α and i. This analysis is 
arried out likein the proof of Theorem 3.17. We apply a series of random restri
tions ρ1, . . . , ρd,where ρi ∈ Rni
ni−1

, ni = pini−1 and n0 = n. Set pi = n−1/2d. Let us say that ρ fails ifthere is a MODm gate g su
h that the fun
tion 
omputed by one of the sub
ir
uitsfeeding into g does not have a de
ision tree of height δ
s
(logn)1/(r−1) under ρ. Then,using Beame's Swit
hing Lemma, as in the proof of Theorem 3.17, one 
on
ludes thefollowing:

Pr[ρ fails] ≤ 2s(s+ 1)n
ǫ
s
(log n)

1
r−1 ×

(
7n−

1
2d
δ

s
(logn)

1
r−1

) δ
s
(log n)

1
r−1

.This further simpli�es, under the assumption s = o(logn)
r

r−1 , to the following:
Pr[ρ fails] ≤ exp(− ln 2(logn)

r
r−1

1

s

[
δ

2d
− ǫ− s+ log s+O(log logn)

(logn)
r

r−1

])

= exp(− ln 2(logn)
r

r−1
1

s

[
δ

2d
− ǫ− o(1)

])
.75



Pi
king ǫ < δ
2d

and re
alling s = o(log n)
1

r−1 , the probability above vanishes to zero,as δ is a 
onstant. We �x the 
onstant δ by 
ombining Lemma 3.16 with eitherTheorem 3.10 or Theorem 3.11 depending on whether f is MAJ or MODℓ.Finally, we handle the 
ase of a non-prime ℓ. Let p be a prime dividing ℓ. Itis su�
ient to show that a 
ir
uit C 
omputing MODℓ of n variables dire
tly yieldsa 
ir
uit 
omputing MODp of ⌊np/ℓ⌋ variables. This is done as follows: �x at most
ℓ
p
− 1 variables to zero so that the number of remaining variables is a multiple of

ℓ
p
. Form disjoint 
lusters of the un�xed variables, ea
h of size ℓ/p. Consider onlyassignments in whi
h every variable in a 
luster is assigned the same way. Cir
uit Ca
ting over su
h 
lustered assignments is pre
isely the 
ir
uit we need.3.2 Cir
uits with Only Modular GatesIn Se
tion 3.1.1, we noted a 
onne
tion between s-simultaneous weak represen-tations and weak generalized representations of boolean fun
tions via Lemma 3.16.Coupling this with our lower bounds of Ω(log n)1/(r−1) on the weak generalizedMODm-degree of MODℓ, one 
on
ludes that Ω(log n)1/(r−1) polynomials of 
on-stant degree d over Zm are needed to form a simultaneous weak representation ofMODℓ. A similar argument, 
ombining the lower bound for the weak generalizeddegree4 of NOR and Lemma 3.16, yields identi
al 
on
lusion about the simultaneousweak representability of NOR. These 
on
lusions do not rule out the possibility of4 Tardos and Barrington prove a lower bound on the generalized degree ofOR/AND (Theorem 3.6). The lower bounds translate to the NOR fun
tion as well.Note that for NOR/AND, the generalized degree and the weak generalized degreeare identi
al. 76



AND/OR/MODℓ having (logn)1/(r−1)-simultaneous weak degree of one. Our �rstte
hni
al result, in this se
tion, rules this out for the 
ase of AND/OR by showingthat o(n)-simultaneous weak degree of OR/AND is more than one.More pre
isely, let L = {θ1, . . . , θs} be a set of s n-variate linear forms over Zm.Su
h a set forms a linear map L : Zn
m → Zs

m. Conversely, given su
h a linear map,there exists a 
orresponding set of linear forms. For v ∈ Zs
m, let KL(v) represent theset of points in {0, 1}n, that satisfy θi = vi for all 1 ≤ i ≤ s. Then, we show thefollowing:Theorem 3.19 For every positive integer m, there exists a positive 
onstant c su
hthat the following holds. Let L : Zn

m → Zs
m be a linear map. For any v ∈ Zs

m, if
KL(v) is non-empty, then

|KL(v)| ≥ 2n

cs
. (3.2)A simple averaging argument shows that for every L : Zn

m → Zs
m, there existsa v ∈ Zs

m su
h that KL(v) has size at least 2n/ms. Theorem 3.19 is a kind of
on
entration result in the sense that it shows that every KL(v) is of size 
lose to theaverage size if it is non-empty. We note that the results in [Thé94℄, based on methodsintrodu
ed in [BST90℄, imply a lower bound of ( α
α−1

)n · 1
αs on the size of KL(v) whenit is non-empty, and α is an in
reasing fun
tion of m. This is still exponentiallysmaller than the average size.We next rule out the possibility that o(n)-many linear polynomials over Zm forma weak simultaneous representation of MODℓ. For any b ∈ {0, . . . , q − 1}, de�ne the
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bth MODℓ-residue 
lass of {0, 1}n by
Mn,ℓ(b) = {x = (x1, . . . , xn) ∈ {0, 1}n |

n∑

i=1

xi = b (mod ℓ)}Lemma 3.20 (Linear Uniformity Lemma) For all positive 
o-prime integersm, ℓ,there exists a positive 
onstant γ = γ(m, ℓ) < 1 su
h that for all n and linear map-pings L : Zn
m → Zs

m,
∣∣∣∣
∣∣KL(v) ∩Mn,ℓ(b)

∣∣−
∣∣KL(v)

∣∣/ℓ
∣∣∣∣ ≤ (2γ)n (3.3)for ea
h b ∈ {0, . . . , ℓ− 1} and v ∈ Zs

m.The Linear Uniformity Lemma shows that if |KL(v)| is large 
ompared to (2γ)n,then every MODℓ residue 
lass o

urs with roughly the same frequen
y in KL(v).In other words, intuitively speaking, KL(v) looks random5 to a MODℓ 
ounter. A
ombination of the Linear Uniformity Lemma and Theorem 3.19 yields the following:Corollary 3.21 There does not exist a set of linear polynomials over Zm of size
o(n) that forms a simultaneous weak representation of the MODℓ fun
tion over nvariables, if m, ℓ are relatively prime to ea
h other.5 It is worthwhile to note that a set `looking random' to a ma
hine is an importantnotion in 
omputational 
omplexity. The ma
hine 
onsidered here is weak: just aMODℓ 
ounter. However it is 
onje
tured that `e�
ient 
onstru
tion' of sets `lookingrandom' to polynomial size 
ir
uits, is possible. If true, su
h a 
onje
ture has farrea
hing impli
ations on derandomization of algorithms.
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Proof: Assume that su
h a set L = {θ1, . . . , θs} exists, with s = o(n). By thede�nition of weak simultaneous representation, there exists x ∈ {0, 1}n su
h that
L(x) = v ∈ Zs

m and v 6= 0s. Applying Theorem 3.19, |KL(v)| is at least 2n/cs for some
onstant c. The Linear Uniformity Lemma then implies that at least 2n

ℓcs (1 − o(1))elements of Mn,ℓ(b) are in KL(v), for ea
h b. As s is sublinear, 
hoosing b = 0 yieldsa 
ontradi
tion to the fa
t that L is a simultaneous weak representation of MODℓ.3.2.1 Fourier Analysis over Abelian GroupsLet G be a �nite abelian group. We analyze the ve
tor spa
e of fun
tions from Gto the set of 
omplex numbers C, denoted by CG. As the boolean 
ube is the n-folddire
t produ
t of the two-element 
y
li
 group Z2, analysis of boolean fun
tions is aspe
ial 
ase of this analysis. Of 
ourse, it is not ne
essary to view boolean fun
tionssitting inside a ve
tor spa
e with an underlying �eld of 
hara
teristi
 zero. One 
anthink of them sitting inside a spa
e with the underlying �eld being �nite (as done byRazborov-Smolensky and several authors later, for instan
e [BST90, ST06℄) or evensitting inside a module, with �elds repla
ed by 
ommutative rings, as initiated by[BBR94℄ and further worked on in the �rst part of this 
hapter. In this se
tion, weuse 
omplex numbers as it fa
ilitates the powerful use of metri
 inequalities. Withthe seminal work of Kahn, Kalai and Linial [KKL88℄, 
omplex Fourier analysis overthe boolean 
ube has found numerous appli
ations in 
omputer s
ien
e and dis
retemathemati
s. An important di�eren
e between these works and what we do here isthat our G in general will not be the boolean 
ube, but an m-ary 
ube i.e. Zn
m.
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We equip CG with the following inner produ
t: let z denote the 
omplex 
onju-gate of z ∈ C. For every f, g ∈ CG, de�ne
〈f, g〉 =

1

|G|
∑

x∈G

f(x)g(x).Below, we �nd an interesting orthonormal basis for CG, 
alled the Fourier basis.Let C∗ represent the multipli
ative group of 
omplex numbers, i.e. C − {0}. As
G is abelian, we denote the group operation in G additively. A 
hara
ter χ of Gis a homomorphism χ : G → C∗, i.e. χ(a + b) = χ(a)χ(b), for every a, b ∈ G.Then, it is easy to verify that χ maps the identity of G, denoted by 0, to theidentity of C∗, denoted by 1. Further, if G has order m, then for any a ∈ G,
χ(a)m = χ(ma) = χ(0) = 1. Thus, χ(a) is an mth root of unity, for ea
h a ∈ G.This immediately shows that the set of 
hara
ters of G, denoted by Ĝ, is a �nite setas G is �nite.De�ne the produ
t of two 
hara
ters χ1, χ2 ∈ G as the following: χ1 ◦ χ2(x) =

χ1(x)χ2(x). It is easy to verify that χ1 ◦ χ2 is indeed a 
hara
ter. The trivial
hara
ter, denoted by χ0, that maps every element of G to 1 is 
alled the prin
ipal
hara
ter of G. Further, for ea
h χ ∈ Ĝ, de�ne the homomorphism χ−1 by imposing
χ−1(x) = χ(x)−1. Then, 
learly χ ◦ χ−1 = χ0. Thus, Ĝ with the operation ◦ formsa �nite abelian group with χ0 serving as the identity. We state two basi
 propertiesof 
hara
ters:Proposition 3.22 The following is true for any abelian group G:1. ∑x∈G χ(x) is equal to zero if χ 6= χ0, otherwise is equal to |G|.
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2. Dually, if x is a non-zero element of G, then ∑χ∈Ĝ χ(x) is zero, otherwise itis |G|.Proof: We prove the se
ond property and the �rst 
an be proved analogously. Forany x 6= 0, we 
laim that there exists a χ′ ∈ Ĝ su
h that χ′(x) 6= 1. Modulo this
laim, we establish our property. Let S =
∑

χ∈Ĝ χ(x). Then,
χ′(x)S =

∑

χ∈Ĝ

(
χ′ ◦ χ

)
(x) = S.The last identity holds be
ause the a
tion of χ′ is just a permutation of Ĝ. Thus,

S(1− χ′(x)) = 0. This implies S = 0 as χ′(x) 6= 0. It remains to prove that indeedsu
h a χ′ exists.Let the order of x in G be ℓ. De�ne χ′(x) to be any primitive ℓth root of unity.This naturally de�nes a homomorphism from the 
y
li
 subgroup generated by x,denoted by Gx, to C∗. This is extended to whole of G as follows. Let Gxai for
i = 1, . . . , k = |G|/ℓ be the 
osets of Gx. Set χ′(ai) = 1 for all i. This extends χ′naturally to all of G.For any x ∈ G, let δx be the fun
tion that maps x to 1 and every other elementof G to 0. Clearly, ∆ = {δx|x ∈ G} forms a basis for CG. Using the se
ond propertyin Proposition 3.22, one veri�es that the following holds:

δx ≡
1

|G|
∑

χ∈Ĝ

χ
(
− x
)
χThis immediately yields the following essential fa
t:
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Fa
t 3.23 The set of 
hara
ters of a �nite abelian group G spans the ve
tor spa
e
CG. Further,Lemma 3.24 The set of 
hara
ters forms an orthonormal basis for the ve
tor spa
e
CG, i.e. the following holds:1. Any two distin
t 
hara
ters χ1, χ2 are orthogonal to ea
h other, i.e. 〈χ1, χ2〉 =

0.2. 〈χ, χ〉 = 1 for all χ ∈ Ĝ.Proof:
〈χ1, χ2〉 ≡

1

|G|
∑

x∈G

χ1(x)χ2(x).Observe that χ1(x) lies on the unit 
ir
le. Hen
e, χ1(x) = χ−1
1 (x). Thus,

〈χ1, χ2〉 =
1

|G|
∑

x∈G

(
χ−1

1 ◦ χ2

)
(x).Observe that χ1 6= χ2 i� χ−1

1 ◦χ2 is non-prin
ipal. Hen
e, applying the �rst propertyof Proposition 3.22, we are done.Combining Fa
t 3.23 and Lemma 3.24, we obtain the following fa
t that formsthe basis of Fourier analysis:Theorem 3.25 If G is a �nite abelian group, then every fun
tion f ∈ CG 
an beuniquely expressed as a linear 
ombination of the 
hara
ters i.e. for every x ∈ G,
f(x) =

∑

χ∈Ĝ

f̂
(
χ
)
χ(x) (3.4)
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where, for every χ ∈ Ĝ the following holds:
f̂
(
χ
)

= 〈f, χ〉 =
1

|G|
∑

x∈G

f(x)χ(x). (3.5)In parti
ular, this means that G and Ĝ have the same order. A more 
arefulanalysis shows that G and Ĝ are isomorphi
 to ea
h other. Hen
e, (3.5) de�nesa linear invertible operator on CG, 
alled the Fourier transform. The values f̂(χ)are 
alled Fourier 
oe�
ients. Interesting information about a fun
tion is revealedby inspe
ting its Fourier 
oe�
ients. The following very useful fa
t shows that theEu
lidean norm of a fun
tion 
an be easily evaluated from its Fourier 
oe�
ients:Theorem 3.26 (Parseval's Identity) If G is an abelian group, the following holdsfor any f ∈ CG:
Ex

∣∣f(x)
∣∣2 =

∑

χ∈Ĝ

∣∣f̂(χ)
∣∣2. (3.6)Proof: Using (3.4), one writes

Ex

∣∣f(x)
∣∣2 = Ex

[( ∑

χ1∈Ĝ

f̂
(
χ1

)
χ1(x)

)( ∑

χ2∈Ĝ

f̂
(
χ1

)
χ1(x)

)]
.This simpli�es to the following:

Ex

∣∣f(x)
∣∣2 =

∑

χ1,χ2∈Ĝ

f̂
(
χ1

)
f̂
(
χ1

)
〈χ1, χ2〉.Finally, (3.6) is established from the above by making use of the orthonormality ofthe set of 
hara
ters as stated in Lemma 3.24.
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We re
all below a beautiful and well-known trade-o�, 
ommonly referred to asthe Un
ertainty Prin
iple, between the size of support set of a fun
tion and the size ofthe support set of its Fourier transform. Let the support set of a fun
tion f , denotedby supp(f), be the set of points at whi
h the fun
tion evaluates to a non-zero value.Theorem 3.27 (Un
ertainty Prin
iple) For any f ∈ CG that is not identi
allyzero, the following holds:
|supp(f)| · |supp(f̂)| ≥ |G|.Proof: Let ||f ||∞ ≡ max{|f(x)| : x ∈ G}. Then,

Ex

∣∣f(x)
∣∣2 ≤

∣∣supp(f)
∣∣

|G| ||f ||2∞.Using the Fourier expansion of f given by (3.4), re
alling that ∣∣χ(x)
∣∣ ≤ 1 forany χ ∈ Ĝ, x ∈ G and using the triangle inequality gives us the following:

||f ||2∞ ≤
(∑

χ∈Ĝ

∣∣f̂(χ)
∣∣
)2

≡
∣∣∣∣f̂
∣∣∣∣2

1where ||f̂ ||1 is the ℓ1 norm of f̂ . Combining things we get
Ex

∣∣f(x)
∣∣2 ≤

∣∣supp(f)
∣∣

|G|
∣∣∣∣f̂
∣∣∣∣2

1
. (3.7)
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On the other hand, applying su

essively Parseval's identity and the Cau
hy-S
hwartzinequality yields the following:
Ex

∣∣f(x)
∣∣2 =

∑

χ∈Ĝ

∣∣f̂(χ)
∣∣2 ≥ 1∣∣supp(f̂)∣∣∣∣∣∣f̂ ∣∣∣∣21. (3.8)A 
ombination of (3.7) and (3.8) easily proves the un
ertainty prin
iple..3.2.2 Davenport 
onstantWe draw on a notion from 
ombinatorial group theory. Consider a �xed �niteabelian group G. The Davenport 
onstant of G, denoted by s(G), is the smallestinteger k su
h that every sequen
e of elements of G of length at least k, has a non-empty subsequen
e that sums to zero. The pigeon-hole-prin
iple shows that s(G) is�nite if G is �nite. This is be
ause if we have a sequen
e of length larger than |G|2,then some element a of G is repeated at least |G| times. The sub-sequen
e formedby the �rst |G| instan
es of a indeed sums to zero as the order of every elementin G divides |G|. Thus, s(G) ≤ |G|2, whi
h gives a quadrati
 upper bound on theDavenport 
onstant w.r.t. the size of the group.For spe
i�
 groups, one 
an show mu
h better bounds. For instan
e, if thegroup is Zp, then one 
an show, using the polynomial method, that s(Zp) is p.Clearly, the lower bound follows by 
onsidering the sequen
e of (p− 1) o

urren
esof the identity element. Su
h a sequen
e has no non-empty subsequen
e summing tozero. The upper bound 
an be established as follows: Let a1, . . . , ap be a sequen
eof elements from Zp. Assume that no zero-sum subsequen
e of it exists. In otherwords, the polynomial a1x1 + · · ·+apxp over Zp evaluates to zero only at one point inthe boolean 
ube {0, 1}p, whi
h is the all zero point. Thus, applying Fermat's Little85



Theorem, the polynomial P ≡ 1 − (a1x1 + · · · + apxp)
p−1, strongly represents theOR fun
tion of p boolean variables over Zp. However, re
all that in the last 
hapterwe showed that the strong MODm-degree of OR is p. Hen
e, P of degree p− 1 is a
ontradi
tion of the above and we are done.Olson [Ols69a℄ showed a more general statement: Let G be an abelian p-groupof the form Zpk1 ⊕ Zpk2 ⊕ · · · ⊕ Zpkr , where ⊕ denotes dire
t sum. Olson showsthat s(G) = 1 +

∑r
i=1

(
pki − 1

) in this 
ase. We show below that s(Zr
m) is at most

c(m)r, where c(m) is a 
onstant that just depends on m. Before doing that, we re
allanother result by Olson [Ols69b℄ that 
onne
ts s(G) with the set of boolean solutionsto the equation g1x1 + . . .+ gnxn = 0, denoted by K(G, n), where ea
h gi ∈ G.Theorem 3.28 (Olson's Theorem) |K(G, n)| ≥ max{1, 2n+1−s(G)}.Proof:[adapted from [Ols69b℄℄ We prove this by indu
tion of n. For n ≤ s(G) − 1,the theorem is va
uously true. Assuming it is true for n, we prove it for n + 1.Let the equation be g1x1 + · · · + gn+1xn+1 = 0. By the de�nition of s(G), there isa subsequen
e of g1, . . . , gs(G) that has a subsequen
e that sums to zero. W.l.o.g.,assume this subsequen
e to be g1, . . . , gt. Then 
onsider the equation (−g2)x2 + · · ·+

(−gt)xt + gt+1xt+1 + · · · + gn+1xn+1 = 0. By our hypothesis, this equation on nvariables has at least 2n+1−s(G) solutions. For ea
h su
h solution point u, we obtaina solution to the original equation over n + 1 variables in whi
h the value of x1 isset to 1 in the following way: x1 = 1, for 2 ≤ i ≤ t, xi is set to the value that is the
omplement of its value in u, and for t < i ≤ n + 1, xi is set to its 
orrespondingvalue in u. Finally, extend the solutions of g2x2 + · · ·+ gn+1xn+1 = 0 to our original
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equation by simply �xing x1 = 0 to obtain at least another 2n+1−s(G) solutions. Thus,we have at least 2n+2−s(G) solutions in total, proving the theorem.3.2.3 Towards large supportThe usefulness of Olson's Theorem for our purpose is evident from its followingimmediate 
orollary6:Corollary 3.29 Let L : Zn
m → Zs

m be a linear map. Then, for all v ∈ Zs
m su
h that

KL(v) is non-empty, we have |KL(v)| ≥ 2n+1−s(Zs
m).Proof: Let L ≡ {θ1, . . . , θs} be the underlying linear forms, where θi = ai,1x1 + · · ·+

ai,nxn. As KL(v) is non-empty, there exists b ∈ {0, 1}n su
h that θi(b) = vi. Consider
θ′i = a′i,1x1 + · · · + a′i,nxn, where a′i,j = −ai,j if bj = 1 and otherwise a′i,j = ai,j, forea
h 1 ≤ j ≤ n and 1 ≤ i ≤ s. De�ne L′ ≡ {θ′1, . . . , θ′s}. Then, it is straight-forwardto verify that sets KL(v) and KL

′
(0s) are in one-to-one 
orresponden
e with ea
hother. The result follows by observing that Olson's Theorem impliesKL′

(0s) has sizeat least 2n+1−s(Zs
m).In view of Corollary 3.29, it is su�
ient to establish an O(r) upper bound on

s(Zr
m) for proving Theorem 3.19. This is where Fourier analysis over groups of theform Zs

m 
omes into play. Let em(t) denote the tth primitive m-th root of unity, i.e.
em(t) ≡ exp(2πit

m

)

6 We have overloaded the symbol s in the statement of Corollary 3.29, but itsmeaning is 
lear from the 
ontext. 87



where i is the pure imaginary number, i.e. 
omplex square-root of −1. Then, notethat for ea
h s-variate linear form7 θ(x) ≡ a1x1 + · · ·+asxs (with 
onstants ai ∈ Zmand variable xi taking value in Zm), em(θ(x)) : Zs
m → C∗ is a 
hara
ter of Zs

m. Hen
e,using the se
ond property of 
hara
ters from Proposition 3.22, we get8Fa
t 3.30 Let S(y) = 1
m

∑m−1
j=0 em(jy). Then, S(y) = 0 if y 6≡ 0 (mod m) and

S(y) = 1 otherwise.We are prepared to establish an upper bound on the Davenport 
onstant of Zr
mthat is linear in r.Theorem 3.31 If m is even, s(Zr

m) ≤ cr, where c = log m
log m−log(m−1)

is a 
onstant.Proof: Let L ≡ {θ1, . . . , θr} be a linear map from Zs
m to Zr

m, su
h that KL(0r) isa singleton set, i.e. 
ontains only the point 0s. Let λS : Zs
m → {0, 1} denote the
hara
teristi
 fun
tion for any set S ⊆ Zs

m. Then, using Fa
t 3.30, one writes
λ{0,1}s(x) ≡

1

ms

s∏

j=1

[m−1∑

a=0

em

(
axj

)
+

m−1∑

a=0

em

(
a(xj−1)

)]
=

1

ms

s∏

j=1

[m−1∑

a=0

(
1+em(−a)

)
em

(
axj

)]
.Let m = 2ℓ. Then 
learly for a = ℓ, we have (1 + em(a)) = 1 + em(π) = 0 usinga basi
 trigonometri
 identity. Thus, noting that |supp(f̂ g)| ≤ |supp(f̂)| · |supp(ĝ)|,we see that |supp(λ̂{0,1}s)| ≤ (m− 1)s. Further,

λKL(0r)(x) ≡
[ r∏

j=1

(
1

m

m−1∑

a=0

em

(
aθj(x)

))]
λ{0,1}s

(
x
)
.

7 There are pre
isely ms su
h linear forms whi
h is also the size of the group Zs
m.8 This has a dire
t proof using identities for summing geometri
 progressions.88



Thus, one 
on
ludes
∣∣∣∣supp(λ̂KL(0r)

)∣∣∣∣ ≤ mr

∣∣∣∣supp(λ̂{0,1}s
)∣∣∣∣ ≤ mr(m− 1)s.Applying the Un
ertainty Prin
iple, we get

mr(m− 1)s ≥ |Zs
m| = mswhen
e the result follows.The 
ase of an odd m 
an be dealt with by the following simple tri
k. Multiplyea
h linear form θi by 2. Viewing ea
h modi�ed linear form to be over Z2m (insteadof over Zm), we obtain a new map L′ : Zs

2m → Zr
2m. It is easily veri�ed thatsets KL(0r) and KL′

(0r) are in one-to-one 
orresponden
e with ea
h other. Hen
e,applying Theorem 3.31 to KL′
(0r) yields bounds on KL(0r) as well, though with avery slight worsening of the 
onstant c.Corollary 3.32 For every m, s(Zr

m) ≤ cr, where c = log(2m)
log(2m)−log(2m−1)

is a 
onstantthat just depends on m.Combining Corollary 3.29 with bounds on s(Zr
m) as given above, we immediatelyderive Theorem 3.19 whi
h states that the size of ea
h non-empty KL(v) is at least

2n

cs .3.2.4 UniformityOur proof of the Uniformity Lemma uses an exponential sum argument. Use ofexponential sums in 
ir
uit 
omplexity was, as far as we know, introdu
ed by Cai,Green and Thierauf [CGT96℄ and further pursued by Green [Gre99, Gre04℄. Green'sestimates were improved in a breakthrough work by Bourgain [Bou05℄ and further89



re�ned by Green, Roy and Straubing [GRS05℄. The fo
us of these works is to showthat the output of a restri
ted 
ir
uit with a single MODm gate at its output, ispoorly 
orrelated with the fun
tion MODℓ, when m, ℓ are 
o-prime. The idea ofusing exponential sums to analyze the output of a 
ir
uit 
omprising several MODmgates is novel to our work.Proof:[of the Linear Uniformity Lemma℄ We �rst write |KL(v)∩Mn,ℓ(b)| as an expo-nential sum and then estimate this exponential sum by grouping the terms appro-priately. The key to writing this out is the use of the basi
 identity from Fa
t 3.30,that we 
ru
ially used also while estimating the Davenport 
onstant of Zr
m in theproof of Theorem 3.31.

|KL(v) ∩Mn,ℓ(b)| =
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

c=0

eℓ(c(

n∑

k=1

xk − b))
][ s∏

i=1

( 1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

)))]
.(3.9)Separating out the c = 0 
ase, we rewrite the right hand side (RHS) of (3.9) as

∑

x∈{0,1}n

1

ℓ

s∏

i=1

( 1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

)))

+
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

a=1

eℓ(a(
n∑

k=1

xk − b))
][ s∏

i=1

1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

))]
.The �rst term in the RHS is easily identi�ed to be |KL(v)|/ℓ. Hen
e we get
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∣∣|KL(v) ∩Mn,ℓ(b)| − |KL(v)|/ℓ
∣∣

=

∣∣∣∣∣
∑

x∈{0,1}n

[
1

ℓ

ℓ−1∑

a=1

eℓ(a(
n∑

k=1

xk − b))
][ s∏

i=1

1

m

m−1∑

j=0

em

(
j
(
θi(x)− vi

))]
∣∣∣∣∣. (3.10)We now estimate the RHS of (3.10). To do this, let us multiply out the terms in thesummand inside the absolute value and then sum the resulting terms. We obtain

ms(ℓ−1) terms after multiplying out the terms in the summand, ea
h of whi
h givesrise to a sum of the form
eℓ(−cb)em(j)

msℓ

∑

x∈{0,1}n

[
em(j1θ1(x) + . . .+ jsθs(x))eℓ(c

n∑

k=1

xk)

] (3.11)where (j1, . . . , js) ∈ {0, . . . , m− 1}s, j = j1v1 + · · ·+ jsvs and c ∈ {1, . . . , ℓ− 1}.Bounding the absolute value of the expression in the previous equation is stan-dard. We in
lude it here for making our proof self-
ontained. Let the sum j1θ1(x) +

. . .+ jsθs(x) give rise to a linear form that is denoted by a1x1 + . . .+anxn. Using thetrigonometri
 identity 1+ exp(i2ρ) = 2exp(iρ) cos(ρ), and taking absolute values, wehave
|(3.11)| = ∣∣∣∣ 1

msℓ

n∏

i=1

(1 + em(ai)eℓ(c))

∣∣∣∣ =
∣∣∣∣

2n

msℓ

n∏

i=1

cos
(
π(
ai

m
+
c

ℓ
)
)∣∣∣∣. (3.12)Let γ = maxai∈Zm; c∈Zℓ

| cos
(
π(ai

m
+ c

ℓ
)|. Sin
e, m and ℓ are 
o-prime and c 6= 0, it 
anbe veri�ed that γ < 1. Hen
e,
|(3.12)| ≤ 2nγn

msℓ
. (3.13)
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Using the triangle inequality in the RHS of (3.10) and plugging in the bound of(3.13), we get
∣∣|KL(v) ∩Mn,ℓ(b)| − |KL(v)|/ℓ

∣∣ ≤ ms(ℓ− 1)
(2γ)n

msℓ
. (3.14)

3.2.5 Lower Bounds for CC0In this se
tion, we show that our results on linear forms dire
tly translate intolower bounds on the number of MODm gates in a CC[m] 
ir
uit 
omputing the AND(or MODℓ) fun
tion.Consider a CC[m] 
ir
uit C having s MODm gates g1, . . . , gs. For ea
h gate
gi, we de�ne the linear form θi =

∑n
j=1 ci,jxj , where ci,j is the number (modulo m)of 
opies of input bit xj feeding into gi. We thus get at most s non-trivial linearforms that give rise to the linear map θ : {0, 1}n → Zs

m. One 
an easily verify thatif θ(x) = θ(y) for x, y ∈ {0, 1}n, then ea
h gate of C outputs the same value on xand y. Consequently, C 
annot distinguish x and y. Let V ⊆ Zs
m be the set of thoseve
tors whi
h 
orrespond to C outputting 1, i.e. for every y in V , θ(x) = y impliesthat C(x) = 1. If C is 
omputing a non-
onstant fun
tion, then indeed there is a

y ∈ V su
h that Kθ(y) is non-empty. Applying Theorem 3.19, we immediately get
|Kθ(y)| ≥ 2n/cs.Theorem 3.33 (restatement of Theorem 3.4) The support of a non-
onstantfun
tion 
omputed by a CC[m] 
ir
uit of size s has size at least 2n/cs, where c isa 
onstant for �xed m.
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Combining Theorem 3.4 with the Uniformity Lemma allows us to 
on
lude thatthe support of C is almost equidistributed among the various residue 
lasses of aMODℓ 
ounter. More pre
isely, one gets that for ea
h b ∈ {0, . . . , ℓ− 1},
∣∣C−1(1) ∩Mn,ℓ(b)

∣∣ ≥ 2n

cs
(1− γncs) =

2n

cs
(1− o(1)).This already shows that C 
annot be 
omputing the MODℓ fun
tion. In fa
t,we show that C is very far from 
omputing MODℓ in a sense that is made pre
isebelow.The �rst step in that dire
tion is the following:Lemma 3.34 Consider any positive integers ℓ,m that are 
o-prime to ea
h otherand numbers a, b ∈ {0, . . . , ℓ− 1}. Then, for every CC[m] 
ir
uit C of size o(n), wehave

∣∣∣∣Pr
x

[C(x) = 1|x ∈ Mn,ℓ(a)]− Pr
x

[C(x) = 1|x ∈Mn,ℓ(b)]

∣∣∣∣ ≤ 2−Ω(n). (3.15)Proof: Let C have s gates. As before, we obtain a linear map θ : {0, 1}n → Zs
m from

C. Re
all that V is the set of points in Zs
m su
h that C outputs 1 on input x i�

θ(x) ∈ V . Thus, we obtain the following:
∣∣Pr

x
[C(x) = 1 ∧ x ∈Mn,ℓ(a)] − Pr

x
[C(x) = 1 ∧ x ∈Mn,ℓ(b)]

∣∣

=

∣∣∣∣
∑

y∈V

[
Pr
x

[θ(x) = y ∧ x ∈Mn,ℓ(a)] − Pr
x

[θ(x) = y ∧ x ∈Mn,ℓ(b)]
]∣∣∣∣. (3.16)
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Using (3.3) from the Linear Uniformity Lemma and the triangle inequality, one
an easily show that the summand in the RHS of (3.16), for every y ∈ V is at most
2γn, where the 
onstant γ is de�ned in the Uniformity Lemma. Combining this withthe fa
t that |V | ≤ ms and s = o(n), we obtain

(3.16) ≤ |V | · 2γn ≤ ms · 2γn = 2−Ω(n). (3.17)Sin
e MODℓ is an almost balan
ed fun
tion, i.e.
|Pr

x
[x ∈Mn,ℓ(a)]− Pr

x
[x ∈Mn,ℓ(b)]| ≤ 2−Ω(n),(3.17) implies Lemma 3.34.Re
all, from Se
tion 2.1.4 in Chapter 2, that Dis
riminator lemma of Haj-nal et. al. states that if a 
ir
uit with a MAJ gate at the output 
omputes a fun
tion fand the fan-in of the output MAJ gate is s, then for every A ⊆ f−1(1) andB ⊆ f−1(0)at least one of the sub-
ir
uits feeding into the output gate (1/s)-dis
riminates f .Lemma 3.34 above implies that CC[m] 
ir
uits of sublinear size do not dis
rimi-nate well the MODℓ fun
tion. In parti
ular, 
hoose A = Mn,ℓ(1) ⊂ MOD−1

q (1) and
B = Mn,q(0) ⊂ MOD−1

q (0). Then it is easy to verify that Lemma 3.34 along withthe Dis
riminator Lemma yields the following:Theorem 3.35 (restatement of Theorem 3.5) Any 
ir
uit of type MAJ◦CCo(n)[m]
omputing MODℓ requires the output gate to have fan-in 2Ω(n) if (m, ℓ) = 1.Thus, unless we take the majority vote of exponentially many CCo(n)[m] 
ir
uits, we
annot 
ompute MODℓ. This is the sense in whi
h CCo(n)[m] 
ir
uits are far from
omputing MODℓ. 94



3.3 Con
lusionIn the �rst part of this 
hapter, we have demonstrated a new 
onne
tion betweenthe degree-
omplexity of a boolean fun
tion in a natural notion of representationby polynomials and its size-
omplexity in 
onstant-depth boolean 
ir
uits with fewMODm gates. Moreover, we have proved new lower bounds on the degree-
omplexityof MAJORITY and MODℓ. These lower bounds on the degree-
omplexity are of in-dependent interest, in addition to making progress on Smolensky's Conje
ture viaTheorem 3.1. Improving the lower bounds on the degree-
omplexity of OR is longoverdue. Our work makes it an even more 
ompelling resear
h dire
tion. For in-stan
e, a polylogarithmi
 lower-bound on the generalized MODm-degree of OR willresult in a superpolynomial lower bound on the weak-generalized MODm-degree ofMAJORITY (re
all proof of Theorem 3.10). This will show that AC0 
ir
uits aug-mented with a polylogarithmi
 number of MODm gates, require superpolynomialsize for 
omputing MAJORITY (proof of Theorem 3.1). No su
h lower bounds areknown.In the se
ond part of the 
hapter, we made progress towards Smolensky's Con-je
ture from another dire
tion by 
onsidering 
ir
uits 
omprising only MODm gates.We proved that in sublinear size they 
annot 
ompute the AND and MODℓ fun
-tion if m and ℓ are 
o-prime. This involved the development of new te
hniques bynovel 
ombinations of Fourier analysis over 
omplex numbers, exponential sums andadditive number theory. We believe that these ingredients will be useful in makingfurther progress. In parti
ular, it is interesting to �nd out if these te
hniques 
an be
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ombined to yield superlinear lower bounds on the size of depth-two 
ir
uits 
om-prising only MODm gates. No su
h bound is known for any expli
it fun
tion in NPif the output gate is a generalized gate.Finally, we point out the following: subsequent to our work, Hansen [Han06a℄has re
ently improved Theorem 3.1 w.r.t. 
omputing MODℓ. Hansen uses the break-through work of Bourgain [Bou05℄ on estimating the 
orrelation between fun
tions
omputed by low-degree polynomials over Zm and MODℓ. We remark that in these
ond part of Chapter 7, we simplify and improve Bourgain's work.
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CHAPTER 4Multiparty Communi
ation with Input on the ForeheadHere, we formally de�ne the model of 
omputation that will o

upy us in thenext two 
hapters. Yao [Yao79℄ introdu
ed the two party model of 
ommuni
ationto investigate the mathemati
al stru
ture and inherent 
omplexity theoreti
 issues ofdistributed 
omputing. He endowed his players with unlimited 
omputational powerin terms of time and spa
e, in order to entirely fo
us on the 
ommuni
ation neededamong players as a resour
e. This model has inspired great resear
h and too manybeautiful results to 
ite. Indeed, the book by Kushilevitz and Nisan [KN97℄ providesan ex
ellent exposition of this subje
t now known as Communi
ation Complexityand surveys some of the diverse appli
ations of this theory.Our obje
t of interest lies in a generalization of Yao's two player game to multipleplayers that was �rst de�ned by Chandra, Furst and Lipton in [CFL83℄. In orderto appre
iate the subtleties of the multiparty model and its key di�eren
es from thetwo player version, we begin with the latter.4.1 Two Player GamesIn the basi
 model, there are two players often 
alled Ali
e and Bob with unlim-ited 
omputational power, who want to 
ompute a 
ertain fun
tion f : Σn → {0, 1}.The n input letters are partitioned into two sets XA and XB that are respe
tively
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assigned to Ali
e and Bob. The obje
tive is that players devise a pro
edure before-hand so that given an arbitrary assignment to input letters, ea
h player 
ollabora-tively determines the output of the fun
tion on the given assignment. They do soby 
ommuni
ating with ea
h other a

ording to a mutually agreed upon proto
ol.The proto
ol pro
eeds by players taking turns, as spe
i�ed by the proto
ol, in 
om-muni
ating with ea
h other. We assume that the players 
ommuni
ate with ea
hother using the binary alphabet {0, 1}1 . The 
ost of a proto
ol is the number ofbits that the players 
ommuni
ate on the worst assignment of input letters. The
ommuni
ation 
omplexity of a fun
tion f with respe
t to the above partition is the
ost of the best proto
ol for 
omputing it.Notions of determinism, randomization and non-determinism manifest naturallyin this setting. In a deterministi
 proto
ol Π, what Ali
e (Bob) 
ommuni
ates getsuniquely determined by the assignment to letters in XA (XB) and what has been
ommuni
ated thus far by both players, 
alled the 
ommuni
ation history. Theoutput of Π on any assignment is 
ompletely determined by the 
ommuni
ationhistory at termination of Π. We say Π 
omputes f pre
isely if f(x, y) = Π(x, y) forea
h x ∈ ΣXA and y ∈ ΣXB .1 This is w.l.o.g. as a proto
ol utilizing a �xed �nite alphabet 
an be easily simu-lated by one with a binary alphabet with the 
ost blowing up by at most a 
onstantfa
tor.
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In a randomized proto
ol, players are allowed to toss 
oins. In other words,players jointly sele
t a random string r at the beginning and then follow a determin-isti
 proto
ol that pro
eeds assuming Ali
e has input (x, r) and Bob has (y, r), where
x, y are the original input assignments of Ali
e and Bob respe
tively. A randomizedproto
ol is further allowed to err. Su
h a proto
ol Π 
omputes f with advantage ǫ if
Pr[f(x, y) = Π(x, y)] ≥ 1/2+ ǫ for every x, y, where the probability is taken over therandom 
oin tosses r of Π. This is 
alled the publi
 
oin model as the random stringis a

essible to ea
h player without 
ommuni
ation. In the private 
oin model, ea
hplayer sele
ts a random string that is not shared with the other player. As shown byNewman [New91℄, any proto
ol with publi
 
oin tosses 
an be simulated by a private
oin proto
ol where the 
ost blows up by essentially an additive fa
tor of at most
O(logn). In this work, unless otherwise mentioned, proto
ols are assumed to toss
oins publi
ly.In a non-deterministi
 proto
ol, the prover, 
alled `God', furnishes a proof string
s 
laiming that f(x, y) = 1. There is a deterministi
 veri�
ation proto
ol, denotedby Π, that players then use to verify the proof. More pre
isely, a non-deterministi
proto
ol 
omputes f if for every x, y su
h that f(x, y) = 1, there exists a proof string
s su
h that Π(x, y, s) = 1. Further, if f(x, y) = 0, then Π(x, y, s) = 0 for all s .The 
ost of the proto
ol now in
ludes the length of the proof string and the bits
ommuni
ated by players to verify the proof.Let D(f), Rǫ(f) and N(f) denote respe
tively the deterministi
, randomizedwith advantage ǫ and non-deterministi
 
ommuni
ation 
omplexity of the fun
tion
f . Then, trivially for every f : ΣXA × ΣXB , its deterministi
, non-deterministi
 and99



randomized 
ommuni
ation 
omplexity is at most min{|XA|, |XB|} log(Σ) + 1 as theplayer with the minimum number of input letters 
ommuni
ates his/her input tothe other, who just outputs the value of the fun
tion. Further, from the de�nitionsabove, we see that N(f) ≤ D(f) and Rǫ(f) ≤ D(f) for any f and ǫ. The examplebelow shows that both non-determinism and randomization 
an o�er huge savingsin the 
ost of a proto
ol for 
omputing some fun
tions when 
ompared with theirdeterministi
 
ounterparts.Example. De�ne the Equality fun
tion EQ : {0, 1}n × {0, 1}n → {0, 1} as
EQ(x, y) = 1 i� x = y. The 
omplement2 of the equality fun
tion, 
alled non-equality, is denoted by NEQ. It is not hard to verify that the best determinis-ti
 proto
ol essentially for
es one player to 
ommuni
ate all its bits to the otheri.e. D(EQ) = D(NEQ) ≥ n + 1. On the other hand, the following simple non-deterministi
 proto
ol to 
ompute NEQ provides exponential advantage in terms of
ost: Let `God' provide a logn bit string indi
ating an index i su
h that xi 6= yi.Ali
e just 
ommuni
ates the value of the bit xi to Bob who 
an now verify if xi and
yi are di�erent. The 
ost in
urred is logn + 2, when
e N(NEQ) = O(logn).Randomization o�ers more dramati
 
ost savings for NEQ. Ali
e and Bobjointly 
hoose a random n bit string r. Ali
e sends the bit representing the innerprodu
t modulo 2 of her input and the random string, i.e. 〈x, r〉2, and Bob simplyveri�es if 〈x, r〉2 6= 〈y, r〉2. The 
ost of this proto
ol is just two bits. Its 
orre
tness2 It is trivial to verify that the deterministi
 and randomized 
ommuni
ation 
om-plexity of a fun
tion and its 
omplement are the same.100



follows from the fa
t that if x and y are di�erent, then with probability exa
tlya half Ali
e and Bob dete
t it, i.e. Prr[〈x, r〉2 6= 〈y, r〉2] = 1/2 for ea
h x 6= y.Note that this proto
ol errs only on one side, i.e. if x = y, then Ali
e and Bobgive the right answer with probability one. Further, the proto
ol 
an be repeateda 
onstant number of times to redu
e the error to any desired 
onstant. Thus,
Rǫ(NEQ) = Rǫ(EQ) = O(1) for any �xed ǫ.Before we move on further, let us make formal the last step of repeating aproto
ol enough number of times to boost its probability of su

ess.Observation 4.1 Let Π be a randomized proto
ol that a
hieves advantage ǫ to 
om-pute a boolean fun
tion f . Then, the proto
ol Π′ that runs cǫ log(2/δ) independentinstan
es of Π and outputs the majority answer, a
hieves an advantage of at least δto 
ompute f .This implies that the 
ost of a
hieving any �xed advantage for 
omputing afun
tion is within a 
onstant fa
tor of the 
ost of a
hieving any other �xed advantagefor 
omputing the same fun
tion.4.1.1 Lower Bound Te
hniques for Deterministi
 Proto
olsA very 
onvenient obje
t for understanding the 
omplexity of a fun
tion f isits 
ommuni
ation matrix Mf . This is a boolean matrix that has |Σ||XA| manyrows, one for ea
h possible assignment to letters in XA (the input letters of Ali
e),and |Σ||XB| many 
olumns, one for ea
h possible assignment to Bob's assignment.
Mf [x, y] = f(x, y).For a deterministi
 proto
ol Π, we say that an input pair (x1, y1) is indistinguish-able from the input pair (x2, y2) if Π generates the same 
ommuni
ation history for101



both pairs. The basi
 weakness of deterministi
 proto
ols stems from the followingsimple observation on indistinguishability of input pairs.Observation 4.2 If a deterministi
 proto
ol Π does not distinguish (x1, y1) from
(x2, y2), then in fa
t it �nds the following four pairs indistinguishable from ea
hother: (x1, y1), (x2, y2), (x1, y2) and (x2, y1).This motivates the following de�nition: a set R ⊆ ΣXA×ΣXB is 
alled a re
tangleif for any two pairs (x1, y1), (x2, y2) ∈ R we have that ea
h of the four pairs (xi, yj)is in R for i, j ∈ {1, 2}. Further, a re
tangle R is 
alled mono
hromati
 (w.r.t. afun
tion f) if f evaluates to the same value at ea
h element of R. Noting that aproto
ol of 
ost c 
an generate at most 2c 
ommuni
ation histories, Observation 4.2immediately yields the following ni
e 
ombinatorial fa
t:Fa
t 4.3 A deterministi
 proto
ol Π for f of 
ost c partitions the 
ommuni
ationmatrix Mf into at most 2c many mono
hromati
 re
tangles.One 
onvenient way of utilizing the above fa
t to prove lower bounds lies in thefollowing idea: For obtaining a lower bound of c on the deterministi
 
ommuni
ation
omplexity of a target fun
tion f , we exhibit a set of input pairs of 
ardinality 2csu
h that no two element from the set 
an lie in the same mono
hromati
 re
tangle.If they do, the proto
ol gets fooled to output a wrong answer on some input. Su
h aset is 
alled a fooling set. The above method is 
alled the fooling set method to provelower bounds on the deterministi
 
ommuni
ation 
omplexity of a fun
tion. Themethod is best illustrated by two text-book examples from [KN97℄. For simpli
ity,let us assume that we have the binary alphabet i.e. Σ = {0, 1}.
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Example 1. We show that the equality fun
tion EQ is hard for deterministi
proto
ols by an appli
ation of the Fooling Set Method. Choose the set of pairs ofequal strings along the diagonal of the matrix MEQ. In any partition of MEQ intomono
hromati
 re
tangles, no two su
h pairs 
an lie in the same re
tangle. Thus, weneed at least 2n re
tangles to partition MEQ, one for ea
h element of its diagonal.Additionally, we need at least one more re
tangle to 
over the zeroes ofMEQ, when
e
D(EQ) = n+ 1.Example 2. De�ne the fun
tion DISJ by saying DISJ(x, y) = 1 i� there isno 
o-ordinate i su
h that both x, y have their ith bit set to 1. This is 
alled theDisjointness fun
tion as one may view x, y to be 
hara
teristi
 ve
tors of subsets of
{1, . . . , n}. DISJ then evaluates to 1 pre
isely if the two subsets are disjoint. Itis a simple exer
ise to show that the set of pairs of the form (x, xc) form a foolingset, where xc is the 
hara
teristi
 ve
tor 
orresponding the 
omplement of the setrepresented by x. As the size of this set is 2n and we additionally need at least onere
tangle to 
over the zeroes of MDISJ , the Fooling Set Method yields D(DISJ) =

n+ 1.4.1.2 Lower Bounds for Randomized Proto
olsSo far we have assumed that deterministi
 proto
ols are for
ed to give alwaysthe 
orre
t answer in 
ontrast to their randomized 
ounterparts that are allowed toerr. Introdu
ing errors of a di�erent nature, this 
ondition 
an be relaxed to allowerror in deterministi
 proto
ols giving rise to the important notion of distributional
ommuni
ation 
omplexity of a fun
tion. Given a probability distribution µ on theset of inputs ΣXA × ΣXB , a deterministi
 proto
ol Π 
omputes f with advantage ǫ103



with respe
t to µ if Pr(x,y)∼µ[f(x, y) = Π(x, y)] ≥ 1/2 + ǫ. The (ǫ, µ)-distributional
omplexity of f , denoted by Dǫ,µ, is then the 
ost of the best deterministi
 proto
ol
omputing f with advantage ǫ under distribution µ.It turns out that the two notions of randomized and distributional 
ommuni
a-tion 
omplexity are not unrelated.Fa
t 4.4 For every distribution µ on ΣXA × ΣXB , and for every ǫ > 0, we have
Dǫ,µ(f) ≤ Rǫ(f).Proof: Consider a randomized proto
ol Π of 
ost c 
omputing f with advantage
ǫ. Noti
e that for ea
h possible 
hoi
e of its internal random string r, Π indu
es adeterministi
 proto
ol Πr, where Πr(x, y) = Π(x, y, r). Now by the de�nition of Π,

∑

r

Pr[r] · Pr
(x,y)∼µ

[Πr(x, y) = f(x, y)] ≥ 1/2 + ǫ.This immediately yields that there exists at least one r for whi
h Πr has advantageat least ǫ and we are done.In fa
t, the relationship between randomized and distributional 
omplexity of afun
tion is more tight, as shown by Yao3 [Yao83℄:
Rǫ(f) = max{Dǫ,µ(f) | µ is a distribution}.3 Yao shows that su
h a relationship between the randomized and distributional
omplexity of a fun
tion holds mu
h more generally and is not spe
i�
 to the modelof 
omputation 
onsidered here. In parti
ular, it is easy to verify that the proof ofFa
t 4.4 is a simple 
ounting argument, not using any spe
i�
s of the model.104



Fa
t 4.4 turns out to be quite helpful for proving lower bounds. The basi
 idea is thatwe �nd a 
onvenient distribution µ and argue that all deterministi
 proto
ols withlow 
ost will fail to attain the required advantage against our target fun
tion. Sin
ewe have to argue against deterministi
 proto
ols that are allowed to err, we de�nethe following measure 
alled dis
repan
y : given a re
tangle R ⊆ ΣXA×XB , de�ne itsdis
repan
y under µ w.r.t. a fun
tion f , denoted by dis
R
µ (f), to be the absolutevalue of the di�eren
e between the probability mass of inputs in R where f evaluatesto 1 and the probability mass of inputs in R where f evaluates to 0. We re
all thefamiliar algebrai
 tri
k4 of mapping the boolean set {0, 1} to the set {1,−1}. Underthis mapping, dis
repan
y has the following ni
e expression:dis
R

µ (f) =

∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣. (4.1)Hen
e, 0 ≤ dis
R
µ (f) ≤ µ(R). Dis
repan
y thus measures how far a re
tangleis from being mono
hromati
 in the following sense: It attains the value of theprobability mass µ(R) of the re
tangle itself when R is mono
hromati
 or 
ompletelyunbalan
ed and is zero when the re
tangle is perfe
tly mixed or balan
ed. Thedis
repan
y of f under µ is simply the maximum over dis
repan
ies of all re
tangles,i.e. max{dis
R

µ (f) |R is a re
tangle}. The reason we are interested in this quantity4 A more general form of this tri
k was used in the Razborov-Smolensky polyno-mial method des
ribed in Se
tion 2.1.3.
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is the following probabilisti
 variant of the fooling set method, widely known as theDis
repan
y Method.Lemma 4.5 (The Dis
repan
y Method) For every distribution µ and any fun
-tion f ,
Rǫ(f) ≥ Dǫ,µ(f) ≥ log

(
2ǫdis
µ(f)

)
. (4.2)Proof: Consider any deterministi
 proto
ol Π that 
omputes f with advantage atleast ǫ and 
ost c. Let R be the set of re
tangles into whi
h Π partitions Mf .Clearly |R| ≤ 2c. Assume, w.l.o.g, f and Π evaluate to 1/-1.

2ǫ ≤
∣∣∣∣
∑

(x,y)

f(x, y)Π(x, y)µ(x, y)

∣∣∣∣ ≤
∑

R∈R

∣∣∣∣
∑

(x,y)∈R

f(x, y)Π(x, y)µ(x, y)

∣∣∣∣.Noting that Π is 
onstant-valued over every R ∈ R and re
alling the de�nition ofdis
repan
y in (4.1), we are done by the following:
2ǫ ≤

∑

R∈R
dis
R

µ (f) ≤ 2cdis
µ(f). (4.3)
The Dis
repan
y Method thus boils down to �nding a 
onvenient distribution

µ su
h that that the dis
repan
y of the target fun
tion f is indeed very small. Thisyields good lower bounds on the 
ommuni
ation 
omplexity of f , using (4.2). Chorand Goldrei
h [CG85℄ used this method to obtain optimal lower bounds on theInner Produ
t (IP ) fun
tion that is de�ned on the boolean alphabet as follows:106



IP (x, y) =
∑n

i=1 xiyi (mod 2). They showed that the dis
repan
y of IP was atmost 1/2n under the uniform distribution. This estimate along with (4.2) yieldsthe following strong bound: any randomized proto
ol 
omputing IP must have 
ost
Ω(n) even if the advantage ǫ is an inverse sub-exponential fun
tion i.e. ǫ = 1/2o(n).However, the dis
repan
y method does not yield strong lower bounds (betterthan poly-logarithmi
) for several natural fun
tions in
luding Disjointness. Razborov[Raz90℄, simplifying the earlier work of Kalyanasundaram and S
hnitzer [KS92℄, de-veloped a method proving linear lower bounds on the 
ommuni
ation 
ost of proto
ols
omputing the Disjointness fun
tion with a 
onstant advantage. Razborov's subtle
al
ulations roughly show that under an appropriate distribution µ, every re
tanglethat assigns large weight to its set of disjoint points must also assign large weight toits set of non-disjoint points. As µ assigns 
onstant weight to the set of all disjointpoints, an averaging argument yields the desired bound.Another interesting method based on tools from information theory was de-veloped in Bar-Yossef et.al.[BYJKS04℄ that re�ned the earlier work of Chakrabartiet.al.[CSWY01℄. This te
hnique introdu
es a new measure 
alled the information
ost of a proto
ol. The idea is to measure the information that the 
ommuni
a-tion history of a proto
ol reveals about inputs given to the player. Variants of thismethod have found more appli
ations in both 
lassi
al and quantum 
ommuni
ation
omplexity (see for example [JKS03, JRS03℄). We, however, do not delve more intoRazborov's method or the information theoreti
 method as no generalization of them
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are yet known5 that extend to the multiparty NOF model of 
ommuni
ation whi
his our 
hief interest here. Extending either of these te
hniques to the NOF modelremains an ex
iting 
hallenge.4.2 Number/Input in the Forehead modelOne natural extension of Yao's two player model to k players is to partitionthe set of input letters into k sets and asso
iate ea
h su
h set with a player withevery player having pre
isely one set. This results in the weakening of the model as
k grows. For instan
e, in a partition where the size of ea
h su
h set is equal, everyplayer has no information about (k−1)/k fra
tion of the input. However, this model,
alled the `Number in the Hand' model, has important appli
ations to other areaslike data streams (see for example [CCM08, CKS03℄).On the other hand, we 
onsider a model, introdu
ed by Chandra, Furst andLipton [CFL83℄, that is a signi�
ant strengthening of the two-player model. This isa
hieved by assigning inputs to the foreheads of players instead of assigning them totheir hands. More pre
isely, let the sets X1, . . . , Xk form a k-wise partition of the in-put letters as before. Player i's forehead is assignedXi and i sees every other foreheadex
ept his own. Just as in the last se
tion on two players, k-player 
ommuni
ationproto
ols 
an be de�ned for 
omputing fun
tions f : ΣX1 × · · · ×ΣXk → {0, 1}. The
ost of a proto
ol, as before, is the worst 
ase 
ost. Generalizing the notions from thelast se
tion, we denote by Dk(f), Nk(f), Rǫ

k(f), and Dµ,ǫ
k (f) respe
tively the k-party5 Information theoreti
 te
hniques have had some su

ess for restri
ted multipartyproto
ols (see for example [Cha07a, GP08℄).108



deterministi
, non-deterministi
, randomized and distributional (with advantage ǫ)
ommuni
ation 
omplexity of f .In order to illustrate the power of the new model, we 
onsider the following:Example. Re
all the Equality fun
tion EQ from the last se
tion. We gen-eralize it: Let EQk(x1, . . . , xk) = 1 pre
isely if all the k strings are equal i.e.
x1 = x2 = · · · = xk. While EQ2 was shown to be hard for two players, it iseasy for k players to 
ompute EQk i.e. Dk(EQk) = 2 for any k ≥ 3. To see this,note that if two strings xi and xj di�er, then Player k, for ea
h k 6= i, j, spots thisdi�eren
e without 
ommuni
ating with others. Thus, the proto
ol simply boils downto the following: Player 1 announ
es if he/she spots any di�eren
e followed by Player2 doing the same.Remark 4.6 The key feature of the `Input on the Forehead' model that gets used inthe proto
ol for k-wise Equality is that every (k − 1)-tuple of input bits is a

essibleto some player.The multiparty model di�ers from the two party one in another key feature: theinformation available to two players overlap a lot. The following example illustratesthe fa
t that this feature provides substantial 
omputational power to multipartyproto
ols as opposed to two-player ones where there is no overlap of information.Example. Generalize the Disjointness fun
tion de�ned earlier to k-wise Dis-jointness, denoted by DISJk :

(
{0, 1}n

)k → {0, 1}, in the following way: 
onsiderthe k × n boolean matrix A formed from the k input strings x1, . . . , xk in the argu-ment of DISJk by pla
ing xi in the ith row of A. Thus, A[i, j] = xi[j] for 1 ≤ i ≤ kand 1 ≤ j ≤ n. Then DISJk(x1, . . . , xk) ≡def 1 i� there does not exist a j su
h109



that A[i, j] = 1 for all 1 ≤ i ≤ k i.e. A does not 
ontain an all-one 
olumn. Re
allthat we showed, by a simple appli
ation of the Fooling Set Method, DISJ2 requires
Ω(n) bits to be 
ommuni
ated by two players employing the best deterministi
 pro-to
ol. Grolmusz [Gro94a℄ found a surprisingly powerful proto
ol for k-players thatimplies the 
omplexity of DISJk de
reases exponentially with k. We des
ribe thisremarkable phenomenon using an elegant proto
ol due to Pudlák [Pud06℄.Ea
h boolean string that 
an appear in a 
olumn of A is 
alled a pattern. Hen
e,the set of all patterns is the boolean 
ube {0, 1}k. Given an instan
e of A, we assignweights to the verti
es (patterns) and edges of the 
ube in the following way: apattern's weight is the number of times it o

urs in the 
olumns of A. The weightof an edge e 
onne
ting patterns u, v is the sum of the weights of u and v. Edge eis in the ith dire
tion if patterns u, v di�er only in their ith bit. Hen
e, the value ofthe bit held by the ith player of a 
olumn is irrelevant for determining if the 
olumn
ontributes to the weight of an edge in the ith dire
tion. Thus, the following holds.Observation 4.7 The weight of ea
h edge in the ith dire
tion 
an be determinedpre
isely by the ith player without any 
ommuni
ation.Lemma 4.8 Given the weight of pattern u, there is a deterministi
 k-player proto
ol,denoted by Πu,v, of 
ost O(k log n) that outputs the weight of pattern v.Proof: Fix a path P = e1e2 · · · et of length t ≤ k in the 
ube from u to v. Let thesequen
e of patterns visited along this path be v0v1 · · · vt with u = v0 and v = vt. Theplayers 
ompute the weight of v by su

essively 
omputing weights of v1, v2, . . . , vtalong P in the following way: assume the weight of vi is known. Let the edge e goingout of vi be along the jth dire
tion in the 
ube. Then, by Observation 4.7, Player j110



knows the weight of e and thus 
an 
ompute the following: weight(vi+1) = weight(e)−weight(vi). As weight(vi+1) ≤ n, he 
an announ
e this weight by 
ommuni
ating log nbits. Repeating this step t times, on
e for every vertex in the path P , we determinethe weight of pattern v.Note that proto
ol Πu,v exploits one of the key features of the k-party model:every (k−1)-tuple of inputs is a

essible to some player. Re
all that the same featurewas used by the 
onstant 
ost proto
ol for EQk.Lemma 4.8 shows that if players 
an somehow determine the weight of somepattern in low 
ost, then they 
an �nd the weight of the all-one pattern with littleadditional 
ost yielding a proto
ol to 
ompute Disjointness e�
iently. In order to doso, let us note the following:Observation 4.9 For any assignment of inputs, there is always one pattern whoseweight is at most n/2k.Observation 4.9 is utilized to yield a proto
ol that �nds a pattern and its weight.Lemma 4.10 There is a deterministi
 proto
ol, denoted by Πstart, of 
ost at most
O(n/2k + k + log n), involving just the �rst two players, that for every assignmentoutputs a pattern and its weight.Proof: Both Player 1 and Player 2 see foreheads of other players that make up thesub-matrix of A, obtained by deleting the two rows o

upied by the foreheads ofPlayer 1 and 2, of size (k − 2) × n. Denote this sub-matrix by A′. Players 1 and
2 
hoose (without 
ommuni
ating among themselves) the pattern in A′ with least
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weight6 . Denote this pattern by u. Applying Observation 4.9 to A′, we 
on
ludethat weight(u) ≤ n/2k−2. Player 1 
ommuni
ates the bits held on the forehead ofPlayer 2 at positions that 
orrespond to the 
olumns at whi
h pattern u o

urs in A′.This requires weight(u) many bits of 
ommuni
ation. Player 2, reading the foreheadof Player 1, then determines the weight of the four patterns 00u, 01u, 10u and 11u.He 
hooses one of these patterns and 
ommuni
ates both his 
hoi
e and its weightusing at most (log n+ k) bits.Remark 4.11 The overlap in information a

essible to Player 1 and Player 2 isplaying a key role in the proto
ol Πstart.The proto
ol for 
omputing DISJk is easily derived by running Πstart followedby Πu,1n , where u is the pattern whose weight is determined by Πstart. This yields
Dk(DISJk) = O(n/2k + k logn). Thus, log n players 
an 
ompute Disjointness
ommuni
ating only O(log2 n) bits!In fa
t, noting that the above proto
ol is easily modi�ed to 
ount the numberof o

urren
es of any pattern in the input matrix A, one 
on
ludes the followingslightly more general fa
t: Any fun
tion that just depends on the number of o

ur-ren
es of a 
ertain pattern in its input 
an be 
omputed e�
iently by log n players.More formally, let D : {0, · · · , n} → {0, 1} be any predi
ate. For any pattern u oflength k, de�ne GD,u

k : ({0, 1}n)k → {0, 1} by insisting GD,u
k (x1, . . . , xk) be equal to

D(weight(u)), where weight(u) is the number of 
olumns 
ontaining the pattern u6 In 
ase of a tie, they resolve it a

ording to a predetermined, mutually agreed-upon preferen
e rule. 112



in the matrix A of size k × n indu
ed from the k binary strings x1, . . . , xk as before.Then, Dk(G
D,u
k ) = O(n/2k + k log n).The Generalized Inner Produ
t fun
tion, whi
h is the k-party analogue of InnerProdu
t, is obtained by setting D as the parity predi
ate. The result of Babai, Nisanand Szegedy [BNS92℄ shows that the above upper bound on GD,u

k is nearly tight forthe Generalized Inner Produ
t (more generally for any mod-
ounting predi
ate D asshown by Grolmusz [Gro92℄) by providing almost mat
hing lower bounds of Ω(n/4k).Te
hniques introdu
ed in Chapter 6, provide alternative proofs of su
h lower boundsin addition to deriving lower bounds for predi
ates D for whi
h earlier methods didnot work.The lower bounds 
ited above degrade exponentially fast with the number ofplayers k. It is of signi�
ant interest to �nd bounds that do not degrade that fast.This is wide open and no expli
it fun
tion is known for whi
h we 
an prove non-triviallower bounds for more than log n players. The di�
ulty of obtaining su
h boundsmay be partly explained by the following surprising 
onne
tion with ACC0. Buildingupon the work of Yao [Yao90℄, Beigel and Tarui [BT94℄ showed the following strongresult:Theorem 4.12 ([BT94℄) For every fun
tion f 
omputable by ACC0 
ir
uits ofquasipolynomial size, there exists a multivariate polynomial P of degree at most poly-logarithmi
 in n, over the ring of integers, that satis�es the following:
• There exists a 
onstant c su
h that the absolute value of the 
oe�
ient of everymonomial of P is at most 2(log n)c .
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• There exists a symmetri
 fun
tion SYMM, su
h that for every x ∈ {0, 1}n,
f(x) = SYMM (P (x)).The relevan
e of the above 
hara
terization of ACC0 for multiparty 
ommuni-
ation 
omplexity is evident from its following 
onsequen
e:Theorem 4.13 For ea
h fun
tion f in ACC0, there exists a 
onstant c su
h that f
an be 
omputed in polylogarithmi
 
ost by (logn)c players, under every partition ofinput bits, using a deterministi
 proto
ol.Proof: Consider the polynomial P over integers that 
omputes f in the sense de-s
ribed in Theorem 4.12. Let d be the degree of P . Assume there are d+ 1 players.Then, for any partition of input bits, every monomial of P 
an be 
omputed by someplayer without 
ommuni
ating with others. The players a

ordingly divide the mono-mials into d+1 
lasses so that Player i 
an 
ompute every monomial in Class i. Ea
hplayer announ
es the sum of the 
ontribution made by monomials in his/her 
lass,weighted by their 
oe�
ients in P . Observe that there at most 2d+1 many monomialsin a 
lass and re
all that ea
h 
oe�
ient in P has absolute value at most 2(log n)c .Thus, ea
h player 
ommuni
ates at most log(2d+12(log n)c

) = (d + 1) + (log n)c bits.Hen
e, in total, d (d+ 1 + (logn)c) bits of 
ommuni
ation su�
e. As d = (log n)c′and both c′, c are 
onstants independent of n, the 
ost of the proto
ol is merelypolylogarithmi
.4.3 Stars and Cylinders Interse
tionsThe �rst thing to note is that the notion of a two-dimensional 
ommuni
ationmatrix from the two-party model naturally generalizes to a k dimensional array ortensor in the k-player model. More pre
isely, given f : ΣX1×· · ·×ΣXk → {0, 1},Mf114



is the boolean 
ommuni
ation tensor, where Mf [x1, . . . , xk] is simply f(x1, . . . , xk),where xi ∈ ΣXi .We say that a set of k elements of ΣX1×...×Xk forms a star if it is of the form:
(x′1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)where the xi are values for the input letters in Xi for ea
h i with xi 6= x′i. In that
ase, we 
all (x1, x2, . . . , xk) the 
enter of this star. Further a set S is 
alled star-
losed if for every star in S, the 
enter of the star is also in S. Then, the followingobservation, �rst made in [CFL83℄, explains the importan
e of star-
losed sets formultiparty 
ommuni
ation 
omplexity.Observation 4.14 For any deterministi
 proto
ol Π, the set of inputs that lead Πto follow a given 
ommuni
ation history is star-
losed.Proof: Observe the following fa
t about deterministi
 
ommuni
ation proto
ol Π: atany point in the proto
ol, player i 
annot distinguish between inputs (x1, . . . , xi, . . . , xk)and (x1, . . . , x

′

i, . . . , xk) 
onditioned on the fa
t that the 
ommuni
ation history gen-erated by both inputs until that point in the proto
ol is the same. Thus, if the kinputs (x
′

1, x2, . . . , xk), . . . , (x1, . . . , x
′

i, . . . , xk), . . . , (x1, . . . , xk−1, x
′

k) share the same
ommuni
ation history τ , then Π 
ommuni
ates τ on the input (x1, . . . , xk) as well.An immediate but useful 
orollary of the above is the following generalizationof Fa
t 4.3:
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Corollary 4.15 A deterministi
 k-party proto
ol Π 
omputing a fun
tion f parti-tions the 
ommuni
ation tensor Mf into at most 2c f -mono
hromati
 star-
losedsets.However, unlike Fa
t 4.3 of two party proto
ols, Corollary 4.15 is mu
h harderto use in pra
ti
e. In parti
ular, there are no known super-polylogarithmi
 bound(i.e. bounds of the form (log n)ω(1)) for any expli
it fun
tion using Corollary 4.15dire
tly, even for three players. Chandra et.al.[CFL83℄, introdu
ing the method,used it in 
onjun
tion with Ramsey7 Theory, to obtain a super-
onstant bound onthe `exa
tly-N ' fun
tion, denoted by Ek
N . Let Ek

N (x1, . . . , xk) be 1 i� ∑k
i=1 xi = N ,where ea
h xi is a n-bit integer from the set {1, . . . , N}. Chandra et.al. 
har-a
terized the deterministi
 k-party 
ommuni
ation 
omplexity of Ek

N in terms ofa 
ombinatorial number χk (N) de�ned as follows: χk (N) is the smallest num-ber of 
olours needed to 
olour the set {1, . . . , N}k−1 su
h that for ea
h point
(x1, . . . , xk) and ea
h integer λ 6= 0 the following property holds: the k points
(x1, . . . , xk−1), (x1 + λ, x2, . . . , xk−1), (x1, x2 + λ, . . . , xk−1), . . . , (x1, x2, . . . , xk−1 + λ)do not re
eive the same 
olour if they all lie in {1, . . . , N}k−1. While [CFL83℄ showedthat Dk

(
Ek

N

)
= Θ (logχk(N)), determining good upper and lower bounds for χk (N)remain open problems. However, one knows that χk (N) = ω(1), when
e the super-
onstant lower bound on Ek

N follows.7 See the book by Graham et.al. [GRS90℄ for an ex
ellent introdu
tion to RamseyTheory.
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Before moving on, we note that we make further use of Ramsey Theory andCorollary 4.15 in the next 
hapter.In the following dis
ussion, we view star-
losed sets in a di�erent way. This pointof view was introdu
ed in the seminal work of Babai, Nisan and Szegedy [BNS92℄ andvery e�e
tively used along with the dis
repan
y method to obtain the �rst stronglower bounds on multiparty 
ommuni
ation 
omplexity of an expli
it fun
tion.A subset Si of ΣX1×...×Xk is a 
ylinder in the ith dimension if membership in
Si is independent of the ith 
oordinate, i.e. if for all x1, x2, . . . , xk and any x′i wehave (x1, . . . , xi, . . . , xk) ∈ Si i� (x1, . . . , x

′
i, . . . , xk) ∈ Si. We say that S is a 
ylinderinterse
tion if S =

⋂
1≤i≤k

Si where Si is a 
ylinder in the ith dimension. A 
ylinder in-terse
tion is 
alled f -mono
hromati
 if the fun
tion f evaluates to the same value onevery input instan
e in the interse
tion. The following lemma shows the equivalen
eof 
ylinder interse
tions and star-
losed sets:Lemma 4.16 A set S ⊂ ΣX1×...×Xk is a 
ylinder interse
tion i� it is star-
losed.Proof: It is not hard to verify that every 
ylinder interse
tion is star-
losed. Let usestablish the other dire
tion. Given a star-
losed set S, de�ne
φi

S ≡
{
(x1, . . . , xi, . . . , xk) ∈ ΣX1×···Xk | ∃x′

i : (x1, . . . , x
′

i, . . . , xk) ∈ S
}
.Then, one veri�es that φi

S is a 
ylinder in the ith dire
tion. Further, every element in
S is in φi

S for ea
h 1 ≤ i ≤ k. Consider any (x1, . . . , xk) that lies in the interse
tionof all these 
ylinders. For ea
h i, the de�nition of φi
S gives a point (x1, . . . , x

′

i, . . . , xk)in S. The 
enter of k su
h points is pre
isely (x1, . . . , xk) that must be in S as it isstar-
losed. Thus, we have established S = ∩k
i=1φ

i
S.117



Remark 4.17 We 
an restate Corollary 4.15 in terms of 
ylinder interse
tions inthe following manner: Let f : ΣX1×...×Xk → {0, 1} be a fun
tion of k-inputs. Any
k-party 
ommuni
ation proto
ol of 
ost c 
omputing f partitions the input spa
e intoat most 2c f -mono
hromati
 
ylinder interse
tions.4.3.1 Dis
repan
y of Cylinder Interse
tionsThe notion of dis
repan
y over re
tangles generalizes to dis
repan
y over 
ylin-der interse
tions in an obvious way: for a distribution µ over ΣX1×···×Xk the dis
rep-an
y of fun
tion f over a 
ylinder interse
tion C, denoted by dis
C

µ (f), as before isgiven by ∣∣∑(x1,...,xk)∈C f(x1, . . . , xk)µ(x1, . . . , xk)
∣∣. Here, we have assumed f to be1/-1 valued. If φ is the 0-1 valued 
hara
teristi
 fun
tion of C then we 
an fa
torize itas∏k

i=1 φ
i, where φi is the 
hara
teristi
 fun
tion of the 
ylinder in the ith dire
tion.It is straightforward to verify that one 
an rewrite things as follows:dis
C

µ,k(f) =

∣∣∣∣Ex∼µf(x)φ1(x) · · ·φk(x)

∣∣∣∣, (4.4)where x is a random k-tuple 
hosen a

ording to µ from ΣX1×···×Xk . This way ofexpressing the dis
repan
y of a 
ylinder interse
tion is very 
onvenient for the ma-nipulations done to estimate dis
repan
y of 
on
rete fun
tions in Chapter 6.Maximizing dis
C
µ,k(f) over all 
ylinder interse
tions C yields the dis
repan
y of

f over the distribution µ. An argument, identi
al to the two player 
ase, immediatelygives rise to the Dis
repan
y Method for multiple players:
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Lemma 4.18 (The Multiparty Dis
repan
y Method) For every fun
tion f andevery distribution µ and every integer k ≥ 2,
Rǫ

k(f) ≥ Dǫ,µ
k (f) ≥ log

(
2ǫdis
µ,k(f)

)
. (4.5)4.4 Communi
ation Complexity ClassesCommuni
ation 
omplexity is like a mini-world, existing independently insidethe bigger world of 
omputational 
omplexity. Indeed, for ea
h major 
omplexity
lass, one 
an de�ne its 
orresponding 
ommuni
ation 
omplexity analogue. Thiswas �rst done by Babai, Frankl and Simon [BFS86℄ for the two-player model. This
an be naturally extended to the k-player model. We de�ne dire
tly the multiparty
omplexity 
lasses below.The �rst thing to do is to �x our notion of �e�
ient� proto
ols. Noting thatevery fun
tion has 
ommuni
ation 
omplexity at most n, 
onventionally proto
ols ofpoly-logarithmi
 
ost have been viewed as e�
ient. This naturally gives rise to the
lasses Pcc

k , NPcc
k and BPPcc

k as the 
lass of those boolean fun
tions that have e�-
ient k-party deterministi
, non-deterministi
 and randomized (bounded advantage)proto
ols respe
tively. The 
lass 
oNPcc
k is the 
lass of fun
tions whose 
omplementhave e�
ient non-deterministi
 proto
ols. While other 
omplexity 
lasses 
an bede�ned in the same spirit, we fo
us on these 
lasses in this work.We summarize some of the results stated earlier in terms of these 
omplexity
lasses. The 
ommuni
ation 
omplexity of the fun
tion non-equality shows that Pcc

2is stri
tly 
ontained in NPcc
2 . The same fun
tion also witnesses the separation of Pcc

2119



from BPPcc
2 . Further, Equality separates BPPcc

2 from NPcc
2 by showing that the for-mer is not a subset of the latter. On the other hand, the 
ommuni
ation 
omplexityof non-Disjointness (through the results of [BFS86, KS92, Raz90℄) 
omplements thisby showing that NPcc

2 is not a subset of BPPcc
2 .While for two players we have ni
e expli
it separations of 
omplexity 
lasses, su
hseparations, until re
ently, were not known for three or more players. In Chapter 6,we obtain expli
it separation between BPPcc

k and NPcc
k , for every k = o(log log n).
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CHAPTER 5Languages with Bounded Symmetri
 Multiparty Communi
ationComplexity5.1 Introdu
tionIn the previous 
hapter, we dis
ussed the 
ommuni
ation 
omplexity of a fun
-tion with respe
t to a �xed partition of its input letters. In this 
hapter, we look atvariable partitions of the input and restri
t ourselves to deterministi
 proto
ols1 . The
k-party symmetri
 
ommuni
ation 
omplexity of a fun
tion f , denoted by Dsym

k (f),is de�ned to be the deterministi
 
ommuni
ation 
omplexity of f with respe
t to theworst partition of its input. Variable partition models are mainly motivated fromtheir appli
ability in proving lower bounds in other models of 
omputation with noexpli
it mention of 
ommuni
ation. Typi
ally, su
h appli
ations pro
eed by derivingan e�
ient 
ommuni
ation proto
ol for f , with respe
t to every partition of its inputletters, from the e�
ient algorithm for 
omputing f in the given model. E�
ient al-gorithms for f in the model are then ruled out by showing that f has large symmetri

ommuni
ation 
omplexity.We obtain new insight into the multiparty model by fo
using on fun
tions thathave bounded k-party symmetri
 
omplexity, where k ≥ 3 is an arbitrary 
onstant.1 In this 
hapter, every proto
ol is deterministi
 unless stated expli
itly otherwise.121



A priori, there is no reason to guess that the 
ommuni
ation 
omplexity of a fun
-tion has any bearing on its time-spa
e 
omplexity. Yet Szegedy [Sze93℄ shows thatlanguages with two party bounded symmetri
 
ommuni
ation 
omplexity 
an be
omputed e
onomi
ally by very shallow ACC0 
ir
uits. This surprising result is a
onsequen
e of the many beautiful 
hara
terizations of the 
lass of su
h fun
tionsobtained in [Sze93℄. A natural dire
tion to pursue is to generalize these 
hara
ter-izations to the k-party model. Su
h an e�ort was initiated in the work of Tesson[Tes03℄.We however show in Se
tion 5.2 that there are languages with arbitrarily largeuniform 
ir
uit 
omplexity whose three-party 
ommuni
ation 
omplexity is boundedby a 
onstant even for the worst-
ase partition of the input instan
es among theplayers. An analogous result for non-uniform 
ir
uit 
omplexity is also derived. Theselanguages are 
onstru
ted using spe
ially 
rafted error-
orre
ting 
odes. Be
ause ofthese results, we 
annot expe
t to obtain 
hara
terizations of languages of boundedsymmetri
 multiparty 
omplexity that are as ni
e as those for the two-player 
ase.As remarked and exempli�ed in the previous 
hapter, the following key featuresof the multiparty model 
an be used to devise 
lever proto
ols: �rst, every input bitis seen by several players, se
ond, every (k− 1)-tuple of input positions is seen by atleast one of the k players, and third, all players know the partitioning of the input,i.e., they know whi
h positions they a
tually see. In the next se
tion we show thatthis 
ombination of features gives three-party proto
ols enough power to 
omputefun
tions of arbitrarily high 
ir
uit-
omplexity in 
onstant 
ommuni
ation for everypossible partition. If we remove the �rst two properties then we obtain essentially122



the multiparty �input in the hand� model whi
h is 
omputationally even weaker thanthe two-party 
ommuni
ation model. To understand how 
ru
ial the last propertyis, we 
onsider two restri
ted 
lasses of languages/fun
tions in whi
h this advantageis in some sense taken away.First, we 
onsider in Se
tion 5.3.3 languages with a neutral letter [BS95, BIL+05℄,i.e. a letter whi
h 
an be inserted or deleted at will in an input word without a�e
tingits membership in the language. We show that every su
h language having bounded
k-party 
ommuni
ation 
omplexity for some �xed k is regular. On the other hand,it is worth noting that the 
lass of regular languages with a neutral letter that have
onstant k-party 
ommuni
ation 
omplexity has been ni
ely 
hara
terized by Tesson[Tes03℄ in terms of algebrai
 properties of their minimal automaton. Our resultsindi
ate that the presen
e of a neutral letter is a severe handi
ap in the multipartygame and suggests that it might be easier to prove 
ommuni
ation 
omplexity lowerbounds under this assumption.Finally, in Se
tion 6.5.2, we use the Generalized Van der Warden Theorem toprove that for any �xed k ≥ 3 the symmetri
 fun
tions that 
an be 
omputed inbounded k-party 
ommuni
ation 
omplexity by k-players are exa
tly the symmetri
fun
tions that have bounded 2-party 
omplexity.5.2 Fun
tions with bounded multiparty 
omplexity but high time/spa
e
omplexityIn this se
tion, we exhibit languages of arbitrarily large 
ir
uit 
omplexity butwith bounded multiparty 
ommuni
ation 
omplexity. For a language L and an en-
oding C : {0, 1}∗ → {0, 1}∗, we denote by C(L) the set {C(x); x ∈ L}. We provethat for a suitably 
hosen error-
orre
ting 
ode C, any language L is su
h that its123



en
oding C(L) has bounded multiparty 
ommuni
ation 
omplexity. We will 
hoose
C su
h that the 
orresponding en
oding and de
oding fun
tion are e�
iently 
om-putable and hen
e the time/spa
e/
ir
uit 
omplexities of L and C(L) will be 
loselyrelated.As a warm-up, we start with the unary en
oding CU de�ned as follows: for
x ∈ {0, 1}∗, CU(x) = 0x102n−x−1, where n is the length of x and x is interpretedas an integer between 0 and 2n − 1. Hen
e, CU en
odes bit strings of length n intostrings of length 2n having a single 1 in a one-to-one way.Lemma 5.1 For any language L and integer k ≥ 3, Dsym

k (CU(L)) ≤ 3.Proof: Without loss of generality k = 3. On an input w that is split among thethree parties, the players need to verify two things: 1) whether w is a valid en
odingof some string x, and 2) whether the 
orresponding string x is in L. To verify the�rst property, the players only need to 
he
k whether at least one of them sees a
1 and whether none of them sees two or more 1s. They 
an 
ommuni
ate theirobservations regarding this using six bits in total. Next, one of the players who seesthe one, determines the unique string x with CU(x) = w. He 
an do this solely basedon the position of the one sin
e he knows how w is partitioned. This player 
an alsodetermine whether x ∈ L and hen
e w ∈ CU(L). He 
ommuni
ates his 
on
lusion tothe other parties by sending one more bit. Hen
e in total players ex
hange at mostseven bits. The proto
ol 
an be optimized so that ea
h player simultaneously sendsone bit of information for the total of three bits.The disadvantage of the unary en
oding is its ine�
ien
y: be
ause 
odewordsare exponentially longer than the words they en
ode, we 
annot provide e�
ient124



redu
tions between L and C(L). A better en
oding 
an be obtained by 
on
atenatingReed-Solomon 
odes with the unary en
oding. In the 3-party s
enario at least oneof the parties has on its forehead at least a (1/3)-fra
tion of the input. Hen
e, ifthe 
hosen en
oding has the property that from an arbitrary (1/3)-fra
tion of theinput the whole word 
an be re
onstru
ted (assuming the input is an en
oding ofsome word, i.e., assuming that the input is a 
odeword) the other two parties 
anre
onstru
t the whole input and verify whether the parts on remaining foreheads are
onsistent with su
h an input. With the proper 
hoi
e of parameters Reed-Solomon
odes have this property.Let n be a large enough integer, m = ⌈log2 3n⌉ and d = n/m. Any string
x ∈ {0, 1}n 
an be interpreted as a sequen
e of d elements from GF [2m]. De�ne
px to be the degree d − 1 polynomial over GF [2m] whose 
oe�
ients are given by
x. De�ne the Reed-Solomon en
oding by CRS(x) = px(g0)px(g1) · · · px(g3d−1), where
GF [2m] = {g0, g1, . . . , g2m−1}, and we will en
ode ea
h gi as a binary string in {0, 1}m.Furthermore, de�ne the 
on
atenation of the Reed-Solomon en
oding with the unaryen
oding by CRS◦U(x) = CU(px(g0)) · · ·CU(px(g3d−1)). Codewords thus 
onsist of 3dblo
ks of 2m bits (
orresponding to the 3d symbols of the Reed-Solomon en
oding)with ea
h blo
k 
ontaining exa
tly one 1. Thus, CRS◦U en
odes strings of length ninto strings of length O(n2). Furthermore, CRS◦U 
an be en
oded and de
oded inpolynomial time and so the languages L and CRS◦U(L) are polynomial-time equiv-alent. Note that the de
oding task at hand does not require us to perform error
orre
tion in the usual sense: we simply want to identify if an input is a 
odeword
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(sin
e we reje
t all words that are not 
odewords) and we only 
are about de
odingtrue 
odewords.Lemma 5.2 For any language L and any k ≥ 3, Dsym
k (CRS◦U(L)) ≤ 6.Proof: Without loss of generality k = 3 as all but the �rst two players 
an pretendthey are the same party. Let m = ⌈log2 3n⌉ and d = n/m. To 
he
k if an inputis a 
odeword, the players 
an easily 
he
k that there are never two 1s in a singleblo
k of input bits. They 
annot, however, verify at 
onstant 
ost that ea
h of the 3dblo
ks 
ontains at least one 1 sin
e this task is essentially the partition problem whose
omplexity we lower bound as super
onstant through Lemma 5.11 in Se
tion 5.3.2.We pro
eed di�erently: an input w of length 3d · 2m 
an only be a 
odeword if atleast one player (say Player 1) has on its forehead at least d 1's and this player 
anbe identi�ed with three bits of 
ommuni
ation. These d 1's determine d elements of

GF [2m] hen
e players 2 and 3 
an ea
h privately re
onstru
t from them the uniquedegree d − 1 polynomial p that 
oin
ides with these elements. Players 2 and 3 nowknow that if the input is a 
odeword then it must be the one 
orresponding to
p and player 2 
an 
he
k that the bits on player 3's forehead are 
onsistent withthat hypothesis while player 3 
an similarly 
ross-
he
k the input bits on player 2'sforehead. If this 
ross-
he
king pro
edure is su

essful, player 2 
an determine theunique x su
h that px = p, verify x ∈ L and send the result to all parties. Overall,only six bits of 
ommuni
ation su�
e to de
ide if the input is from CRS◦U(L).As an immediate 
orollary to this lemma and the fa
t that the 
omplexity of
CRS◦U(L) is polynomially related to the 
omplexity of L we obtain:
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Corollary 5.3 The 
lass of languages with bounded multi-party 
ommuni
ation 
om-plexity 
ontains languages with arbitrarily large uniform time and spa
e 
omplexity.In order to obtain also languages with essentially the largest possible non-uniform 
ir
uit 
omplexity we need 
odes that map n bits into O(n) bits. We 
anobtain su
h 
odes by 
on
atenating 
odes provided by the following lemma with theunary 
ode CU .Lemma 5.4 For any integer n ≥ 1, there exists a linear map C8 : {0, 1}n →

GF [8]39n su
h that every w ∈ C8({0, 1}n) is uniquely determined by any one-third ofits 
oordinates.Proof:To prove the existen
e of our 
ode we only need to prove the following 
laim.Claim 5.5 For c ≥ 37, with high probability a random matrix over GF [8] of dimen-sion n × cn has the property that ea
h sub-matrix of dimension n × cn/3 has rank
n. For any n′ < n, n′ ve
tors over GF [8] of length cn/3 span less than 8n di�erentve
tors. Thus the probability that a new random ve
tor of length cn/3 falls intothe spa
e spanned by these ve
tors is at most 8n−cn/3. Hen
e, the probability that arandom matrix over GF [8] of dimension n by cn/3 is of rank less than n is at most
n·8n−cn/3. (We pi
k the ve
tors step by step and at ea
h step we fail to pi
k a linearlyindependent ve
tor with probability at most 8n−cn/3.) Thus the expe
ted number ofsingular n by cn/3 sub-matri
es of a random matrix of dimension n by cn is at most
n · 8n−cn/3 ·

(
cn

cn/3

). Sin
e ( cn
cn/3

)
≤ 2H(1/3)cn, if c ≥ 37 then 3− c+H(1/3)c < 0 and the
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expe
ted number of singular sub-matri
es is 2−ǫn for some ǫ > 0. The 
laim follows.Consider the 
on
atenation of the 
ode C8 and the unary 
ode and denote itby C8◦U. Re
all the argument that showed that the three-party 
ommuni
ation
omplexity of the language CRS◦U(L) is 
onstant, for every language L. Repla
ingReed-Solomon 
odes in this argument by C8 shows that C8◦U(L) has 
onstant three-party 
ommuni
ation 
omplexity for any L. Further, noti
e that C8 is over the �xedalphabet GF [8]. Thus, C8◦U(L) maps n bits to O(n) bits. As a 
onsequen
e, weobtain the following:Corollary 5.6 For any k ≥ 3, the 
lass of languages with bounded k-party 
ommu-ni
ation 
omplexity 
ontains languages with 2Ω(n) 
ir
uit 
omplexity.5.3 Two Spe
ial Classes of LanguagesWe 
onsider two natural 
lasses of fun
tions for whi
h the 
oding tri
k of theprevious se
tion fails. A letter e ∈ Σ is said to be neutral with respe
t to a language
L if for ea
h word the addition or deletion of the letter e does not a�e
t its mem-bership in L i.e. for all u, v ∈ Σ∗ we have uv ∈ L i� uev ∈ L. The neutral letterhypothesis was helpful in obtaining length lower bounds on bounded-width bran
h-ing programs [BS95℄, was 
entral to the Crane-Bea
h Conje
ture [BIL+05, LTT06℄,and the re
ent work of Roy and Straubing [RS07℄.

L is 
alled a symmetri
 language if for ea
h word w permuting its letters does nota�e
t its membership in L i.e. the membership of w in L is 
ompletely determinedby the 
ount of the o

urren
es of ea
h letter of the alphabet in w.
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If a language is symmetri
 or has a neutral letter, then membership in L 
annotdepend, as in Lemma 5.1, on having spe
i�
 value on a spe
i�
 input position.Intuitively, the feature of the model 2 that ea
h player knows the exa
t position inthe input word of every letter that he sees, should not help de
iding languages havinga neutral letter and symmetri
 languages.The rest of this se
tion is devoted to proving the following two theorems that
orroborate the above intuition:Theorem 5.7 If f is a fun
tion with a neutral letter su
h that Dsym
k (f) = O(1) forsome �xed k, then f is regular.Theorem 5.8 If f : Σn → {0, 1} is symmetri
 and has bounded k-party symmetri

ommuni
ation 
omplexity for some �xed k, then in fa
t f has bounded two-partysymmetri
 
ommuni
ation 
omplexity.Both proofs use notions from Ramsey theory that we qui
kly review.5.3.1 A Primer on Ramsey Theory�In any 
olle
tion of six people, either three of them mutually know ea
h otheror three of them mutually do not know ea
h other�.These are the opening lines of the ex
ellent book by Graham, Roths
hild andSpen
er [GRS90℄ on Ramsey theory whi
h is a 
lassi
al bran
h of extremal 
ombina-tori
s. These lines highlight the fa
t that there 
annot be perfe
t 
haos. Whenevera system is large enough, interesting stru
ture emerges. Perhaps a little surpris-ingly, this 
on
eptually simple prin
iple has found powerful appli
ations in diverse2 This feature is also present in the two-party model.129



areas of mathemati
s like number theory, algebra and geometry and of 
ourse, 
om-putational 
omplexity. The �rst appli
ation of Ramsey theory to 
ommuni
ation
omplexity was made in the work of Chandra et. al. [CFL83℄ that introdu
ed thevery model of `Number in the Forehead'.Let Cn
t denote the n-dimensional 
ube over t elements, i.e.

Cn
t ≡def {(x1, . . . , xt) | xi ∈ {0, . . . , t− 1}

}
.Su
h 
ubes are fundamental obje
ts appearing in many di�erent 
ontexts. We how-ever want to view 
ubes purely 
ombinatorially. The t points v1, . . . , vt ∈ [t]n aresaid to form a 
ombinatorial line in Cn

t if the vj's are distin
t and for ea
h 1 ≤ i ≤ neither all the vj agree on 
o-ordinate i (i.e. vj
i = vj′

i for all 1 ≤ j ≤ j′ ≤ t) or wehave vj
i = j for all 1 ≤ j ≤ t. As an example, points 00, 01, 02 form a line in C2

3 andpoints 020, 121, 222 form a line in C3
3 . Every fun
tion χ : Cn

t → {1, . . . , c} is 
alled a
c-
olouring of Cn

t as ea
h point of the 
ube re
eives one of c 
olours. A set of points
P is rendered mono
hromati
 by χ if every point in P is 
oloured the same by χ.The following result shows that any 
olouring of a su�
iently large dimensional 
ubehas an interesting mono
hromati
 set of points.Theorem 5.9 (Hales-Jewett [GRS90℄) For any integers c, t there exists an in-teger n = HJ(c, t) su
h that every c-
olouring of Cn′

t generates a mono
hromati

ombinatorial line whenever n′ ≥ n.The Hales-Jewett Theorem is a 
entral result of Ramsey theory from whi
hseveral other results in the subje
t follow. It is not too di�
ult to derive from it
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the famous Van der Waerden's theorem3 that says every �nite 
olouring of the setof positive integers generates mono
hromati
 arithmeti
 progressions of arbitrarilylarge length. Let t, r > 0 be any number su
h that we want to �nd a mono
hromati
arithmeti
 progression of length t when the positive integers are r-
oloured. Mapthe �rst tn integers bije
tively into Cn
t where n = HJ(r, t) by writing ea
h integerin base t. Any r-
olouring of the �rst tn numbers thus indu
es a r-
olouring of Cn

t .By the Hales-Jewett theorem there exists a mono
hromati
 line. Van der Wareden'stheorem follows by merely observing that any line in Cn
t , in our mapping, 
orrespondsto an arithmeti
 progression of length t.What we need is the following generalization of Van der Waerden's theorem tohigher dimensions, whose short proof also follows from the Hales-Jewett theorem.Theorem 5.10 (Generalized Van der Warden) For any integers c, k,m > 0,there is an integer R = GVW (c, k,m) su
h that for ea
h c-
oloring of {0, . . . , R}k,there exist x0

1, . . . , x
0
k < R and 1 ≤ d < R su
h that all points of the set P =

{(x1, . . . , xk) : xi = x0
i + dyi, 0 ≤ yi ≤ m} have the same 
olor and P ⊆

{0, . . . , R}k.Proof: Let V ≡ [m]k ≡ {(y1, . . . , yk) | 0 ≤ yi < m}. Order the elements of V in somearbitrary way so that V = v1, v2, . . . , vt with t = mk. Let N = HJ(c, t) and let
R = mN . Consider the map ψ : CN

t → [R]k given by ψ(x1, . . . , xN ) =
∑N

i=1m
N−ixiwhere xi is viewed as a ve
tor in V . Note that ψ is bije
tive. Thus a c-
olouring3 Note that Van der Waerden's theorem is the starting point of su
h deep theoremsas Szemeredi's theorem that has stimulated strong resear
h re
ently.131



of [R]k indu
es a c-
olouring of CN
t . Applying the Hales-Jewett Theorem 5.9, wesee that a mono
hromati
 line exists in the c-
olouring of CN

t . It is not di�
ult toverify that the image of this line under ψ is the mono
hromati
 set P that we needto establish Theorem 5.10.5.3.2 Communi
ation Complexity of PartitionWe de�ne the k-wise partition problem, denoted by Partk. It takes as input a
k × n Boolean matrix A and we think of the ith row of A as representing a subset
xi of [n] = {1, . . . n}. We de�ne Partk(A) = 1 i� ea
h 
olumn of A 
ontains exa
tlyone 1 (i.e. the xi form a partition of [n]). It is 
lear that for the k-party game theworst input partition for Partk is the one where player Pi holds the bits of row i onhis forehead.Below, we re
all a super-
onstant lower bound, obtained by Pudlák and Tesson[Tes03℄, on the k-party 
ommuni
ation 
omplexity of Partk using the Hales-JewettTheorem. This is interesting in its own right and useful for our analysis. We re
allthe argument below, that is reminis
ent of the argument employed by Chandra et.al.to obtain super-
onstant lower bounds on the `exa
tly-N ' fun
tion (see Se
tion 4.3of Chapter 4).Lemma 5.11 ([Tes03℄) For all k, Dk(Partk) = ω(1).Proof: We identify a set of k-wise partitions of [n] that form a star. Additionally,the 
ommuni
ation history is the same on ea
h of these partitions. Observation 4.14from Chapter 4 then implies that the proto
ol generates the same 
ommuni
ationhistory on the 
enter of this star. The argument is �nished by observing that the
enter point is not a partition of [n]. 132



For identifying the star, we use the Hales-Jewett Theorem. More pre
isely,
onsider the set of valid k-wise partitions of [n]. This set is in one-to-one 
orrespon-den
e with the 
ube Cn
k in the following way: we map a partition {S1, . . . , Sk} to

(x1, . . . , xn), where xi = j if i ∈ Sj for ea
h 1 ≤ i ≤ n. This is a 
orre
t map be
auseea
h i ∈ [n] lies pre
isely in one Sj as the sets form a partition. Hen
e, a proto
ol of
ost c for Partnk indu
es a 2c 
olouring of Cn
k , where ea
h point of the 
ube is 
olouredby the 
ommuni
ation history of the proto
ol on the 
orresponding partition. Set

n ≥ HJ(2c, k). Then, Theorem 5.9 guarantees the existen
e of a mono
hromati
 linein Cn
k .It is not hard to verify that a line in Cn

k 
orresponds to a set of k partitions of thefollowing type: {S1 ∪ T, S2, . . . , Sk}, {S1, S2 ∪ T, . . . , Sk}, . . . , {S1, S2, . . . , Sk ∪ T} forsome non-empty T ⊆ [n]. This forms a star. The fa
t that the line is mono
hromati
further means that the proto
ol generates the same 
ommuni
ation history on ea
hof these partitions. So it generates the same history on the 
enter {S1, . . . , Sk} whi
his not a star as T is non-empty. Hen
e, the proto
ol is in
orre
t.The proof of Lemma 5.11 only 
onsiders those instan
es of Partk in whi
h anytwo subsets held by the k players are disjoint. Further, it is easily veri�ed thatthe input instan
e (the 
enter of the star) on whi
h the players are for
ed to makean error, also has this disjointness property. These observations yield the followingslightly stronger result : de�ne the problem RPartnk to be Partk with the restri
tionthat the k sets given to players are pairwise disjoint and are subsets of [n].Corollary 5.12 For ea
h k, RPartnk 
annot be solved using c bits of 
ommuni
ationwhenever n ≥ HJ(2c, k). 133



Note that a k×n matrix A belongs to Partk i� none of its 
olumns 
ontains two
1 and the total number of 1 entries in A is n. If k ≥ 3 then k players 
an 
he
k the�rst 
ondition using k bits of 
ommuni
ation sin
e any pair of input bits is a

essibleto at least one player. They are then left with verifying that the sum of the inputbits is n whi
h 
an, surprisingly, be a
hieved with a 
ommuni
ation 
ost mu
h lessthan the trivial O(logn) [CFL83, GGK08℄.5.3.3 Languages with a Neutral LetterIn this se
tion, we show that languages with a neutral letter that have bounded
k-party 
omplexity for some �xed k are all regular. In order to prove this, weintrodu
e a 
onvenient notion of redu
tion among problems for the 'Number on theForehead' model.A k-re
tangular redu
tion r from L ⊆ {0, 1}n×k to K ⊆ {0, 1}l(n)×k is a k-tupleof fun
tions (r1, . . . , rk) with ea
h ri : {0, 1}n → {0, 1}l(n) su
h that (x1, . . . , xk) ∈ Li� (r1(x1), . . . , rk(xk)) ∈ K. We 
all l the length of the redu
tion. The fa
t that in a
k-player game, ea
h ri 
an be 
omputed by every player individually ex
ept the ith,gives rise to the following useful observation:Observation 5.13 Let L ⊆ {0, 1}n×k and K ⊆ {0, 1}l(n)×k be languages su
h thatthere exists a re
tangular redu
tion from L to K of length l. Then, Dk(L)(n) ≤

Dk(K)(l(n)).Let C ≥ 0 be an integer and let G be a family of fun
tions over Σ∗ with �niterange R. We say that inputs with weight at most C determine the fun
tions of G ifevery fun
tion g : Σ≤C → R has at most one extension to Σ∗ in G. Now, let Ck,c bethe family of fun
tions with a neutral letter and k-party 
ommuni
ation 
omplexity134



at most c. In order to show that every fun
tion f in Ck,c is regular, we �rst provethe following strong property of f :Lemma 5.14 Fun
tions of Ck,c are determined by inputs of weight at most C =

HJ(k, 22c), a 
onstant.We obtain the above lemma as a 
onsequen
e of the following one:Lemma 5.15 For any C > 0, if the fun
tions of Ck,c are not determined by inputsof size C then there exists a n > C su
h that RPartnk 
an be solved by k parties
ommuni
ating at most 2c bits.Observe that Lemma 5.15 and Corollary 5.12 together imply Lemma 5.14 immedi-ately.Proof:(Lemma 5.15) For any word w ∈ Σ∗, we shall denote by we the word obtainedfrom w by deleting all o

urren
es of e in w. The ith letter of w will be denoted by
wi. Also, for k words w1, . . . , wk, ea
h of length ℓ, let w = w1♦ . . .♦wk denote theword obtained by interleaving the k words in the following way : |w| = ℓk and forall 1 ≤ i ≤ ℓk, wi = wm

j if i = (m − 1)k + j with 0 < j < k + 1. Let us assumethat f and g are in Ck,c, su
h that they are not identi
al, but the minimal string
v ∈ {Σ− e}∗ su
h that f(v) 6= g(v) has length at least C. We show below a k partyproto
ol that solves RPart|v|k by 
ommuni
ating at most 2c bits.Our proto
ol will work using a k-re
tangular redu
tion r to languageH ⊂ Σ|v|×k,where (y1, . . . , yk) ∈ H i� v = (y1♦ · · ·♦yk)e. Consider an instan
e of RPart|v|k inwhi
h player i's forehead holds a |v| bit ve
tor representing set Ii. Then, Ii ∩ Ij = ∅if i 6= j. We de�ne ri as follows : let yi = ri(Ii). Then, yj

i = vj if j ∈ Ii, otherwise
yj

i = e. Let u = (y1♦ · · ·♦yk)e. The simple observation that is key to our argument,135



is that u is v if ∪k
i=1Ii = [|v|] and otherwise |u| < |v|. This shows that r is indeed aredu
tion from RPart

|v|
k to H .The observation above and the property of v (i.e. f(u) = g(u), whenever |u| <

|v|) imply the following : y = y1♦ . . .♦yk is in H i� f(y) 6= g(y). The 
ondition
f(y) 6= g(y) 
an be 
he
ked with 2c bits of 
ommuni
ation by running the c-bitproto
ol on f and g separately. Thus, 2c bits of 
ommuni
ation are enough to solve
H and hen
e RPart|v|k .Remark 5.16 It follows immediately that the number of languages in Ck,c over any�xed alphabet Σ is �nite for a �xed k, c i.e. there are at most 2(|Σ|−1)C su
h languageswhere C = HJ(k, 22c).The �rst main theorem of the se
tion is easily established below.Proof: (Theorem 5.7) Let f : Σ∗ → {0, 1} be a fun
tion in Ck,c: For a word w ∈ Σ∗,we de�ne the fun
tion fw : Σ∗ → {0, 1} by fw(z) = f(wz). It is easy to verify that forea
h w, fw is also in Ck,c. De�ne the equivalen
e relation∼f on Σ∗ by insisting u ∼f vi� f(uz) = f(vz) for all z ∈ Σ∗ i.e. fu and fv are identi
al. Remark 5.16 ensures that
∼f has �nite index. The 
lassi
al Myhill-Nerode Theorem (see for example [HU79℄)guarantees that if ∼f has �nite index then f is regular and we are done.5.3.4 Symmetri
 Fun
tionsFor w ∈ Σ∗, we denote as |w|a the number of o

urren
es of a in w. The valueof a symmetri
 fun
tion f : Σ∗ → {0, 1} on w thus is entirely determined by thevalues |w|a for ea
h a ∈ Σ. We remind the reader of the intuition that k ≥ 3 parties
omputing a symmetri
 fun
tion only get limited bene�ts from the features of themultiparty model sin
e their proto
ol 
annot signi�
antly rely on the pre
ise set of136



input positions a

essible to ea
h player or on the fa
t that any (k− 1)-tuple of bitsis seen by one party. This intuition is formalized by Theorem 5.8 and in this se
tionwe prove this theorem.For simpli
ity, we �rst deal with fun
tions with boolean inputs. To any symmet-ri
 fun
tion f : {0, 1}n → {0, 1}, we naturally asso
iate the fun
tion f : {0, . . . , n} →

{0, 1} su
h that f(x) = f(|x|1) for every x ∈ {0, 1}n. We say that f is (ℓ, r, p)−periodi
if f(a) = f(a+ p) for ℓ ≤ a ≤ n− r.We �rst observe that one 
an assume the proto
ol to be non-intera
tive in thefollowing sense: a proto
ol is 
alled simultaneous if ea
h player sends a single mes-sage to an extra party, usually 
alled the referee, who then 
omputes the answersolely based on the messages he re
eived. In parti
ular, the message sent by a partydoes not depend on messages sent by other parties. It is easy to verify that a k-party proto
ol of 
ommuni
ation 
ost c 
an be simulated by a k-party simultaneousproto
ol with 
ost at most ck2c. This is done by making ea
h player 
ommuni
ateall the eventualities (that he foresees) to the referee. Thus fun
tions of bounded
omplexity in the simultaneous model are pre
isely those with bounded 
omplexityin the standard model. This point of view turns out to be useful for the analysis.Lemma 5.17 For any 
onstants k, c with k ≥ 1 there exists an integer Nk+1 =

N(k + 1, c) su
h that every symmetri
 boolean fun
tion f : {0, 1}n → {0, 1} that hasa k + 1-party simultaneous proto
ol of 
omplexity c for the input partition in whi
hplayers X1, . . . , Xk ea
h get Nk+1 bits and player Xk+1 gets the remaining n−kNk+1bits is (ℓ, r, p)-periodi
 for some ℓ, r ≤ kNk+1 and some p ≤ Nk+1.
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Theorem 5.8 then follows by observing that an (ℓ, r, p)-periodi
 fun
tion has 2-party simultaneous 
ommuni
ation 
omplexity roughly 2 · ⌈log(ℓ+r+p)⌉. The proofof Lemma 5.17 pro
eeds by indu
tion on k. Our indu
tion step uses a non-trivial�player elimination� te
hnique. More pre
isely, we use the generalization of Van-derWaerden's theorem as given by Theorem 5.10 to show that if f has a (k + 1)-partyproto
ol of bounded 
ost then there exists a large set of inputs P for the foreheads ofthe �rst k players on whi
h player Pk+1 always sends the same 
ommuni
ation. Thisrenders the (k+ 1)st player irrelevant if the input lies in P. The spe
ial stru
ture of
P allows the use of the indu
tion hypothesis.We de�ne N(k, c) indu
tively. The base 
ase of two players was �rst provedby Szegedy [Sze93℄. We in
lude the proof of this 
ase below for the sake of self-
ontainment.Claim 5.18 N(2, c) = 2c.Proof: Consider the partition where the �rst player's forehead gets the �rst 2c bitsand the se
ond player re
eives the remaining n − 2c bits. Consider the following
2c + 1 possible assignments: Player 1's forehead is assigned the string 1i02c−i for
0 ≤ i ≤ 2c. As Player 2 sends out at most 2c di�erent messages, there are at leasttwo su
h assignments to Player 1's forehead, for whi
h Player 2 sends out the samemessage. Let these two assignments 
orrespond to i being i1 and i2 respe
tively, with
i1 < i2. We prove the 
laim by showing that f(j) = f(j + i2 − i1), whenever i1 ≤
j ≤ n− 2c + i1 i.e. f is (ℓ, r, p)-periodi
 with ℓ = i1 ≤ 2c = N(2, c), r = N(2, c)− i1and p = i2 − i1 ≤ N(2, c).
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Let j be in the required range. Fix the assignment 1j−i10n−2c−j+i1 to the foreheadof Player 2. The 
laim gets established by observing that the proto
ol outputs thesame value for f when Player 1's forehead is assigned 1i102c−i1 or 1i202c−i2 .Using the above as the base 
ase, we prove our main lemma.Proof: (Lemma 5.17) We show that N(k + 1, c) = GVW (2c, k, N(k, c)! + (k −

1)N(k, c)) for k ≥ 2, where GVW is the Generalized Van der Waerden number.The main idea is the following: given a 
onstant 
ost (k + 1)-party proto
ol for thesymmetri
 fun
tion f , we use the Generalized Van-der-Waerden's Theorem to `elim-inate' the (k + 1)st player by restri
ting f to a set of inputs on whi
h that player'smessage is always the same. This enables us to 
onstru
t a bounded 
ost k-partysymmetri
 fun
tion f ′ 
losely related to f . Our indu
tive hypothesis applies to f ′and we show that the periodi
ity of f ′ implies the periodi
ity of f .Let Π be a simultaneous (k+1)-player proto
ol of 
ost c that 
omputes f undera partition of the following form. Players 1, . . . , k ea
h have Nk+1 bits assignedon his/her forehead, and Player k + 1 gets the remaining n − kNk+1 bits. Colourea
h point (x1, . . . , xk) ∈ {0, . . . , Nk+1}k by the message 
ommuni
ated by Player
k + 1 when 1xi0Nk+1−xi is on the forehead of Player i for i ≤ k. By GeneralizedVan der Waerden's Theorem, there is a set P of points in {0, . . . , Nk+1}k, su
h thatPlayer k + 1 sends the same message for every assignment to the �rst k−1 foreheadsthat 
orresponds to a point in P = {(x1, . . . , xk) : xi = x0

i + dyi, 0 ≤ yi ≤

Nk! + (k − 1)Nk}, for some d < Nk+1.
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Let ℓ = d(k − 1)Nk +
∑k

i=1 x
0
i , r = kNk+1 − ℓ, and p = d · Nk!. Clearly, theysatisfy required bounds required by Lemma 5.17. We prove below the 
laim that fis (ℓ, r, p)-periodi
.For any positive integer α, de�ne the spe
trum fun
tion f

′
α : {0, . . . , Nk! +

2(k − 1)Nk} → {0, 1} by f ′α(u) = f(α +
∑

i x
0
i + du). This spe
trum 
orrespondsto a symmetri
 boolean fun
tion f ′α on Nk! + 2(k − 1)Nk bits. We verify that thefun
tion f ′α has a c bit k-party 
ommuni
ation proto
ol for the partition where the�rst k − 1 players get Nk bits on their foreheads and the remaining Nk! + (k − 1)Nkbits are on Player k's forehead. The reason is that when players 1 through k haveon their foreheads strings of weights y1 through yk, they 
an simulate Π by doingthe following: For 1 ≤ i ≤ k, Player i's forehead is repla
ed by any string of weight

x0
i + dyi, and ea
h of these k players assume that Player k+ 1 has a string of weight
α on its forehead. They then 
ommuni
ate a

ording to Π and the referee, knowingthe 
onstant message sent out by Player k + 1, 
omputes the 
orre
t answer.The indu
tion hypothesis implies the following Observation:Observation 5.19 For ea
h α ≤ n − kNk+1, there exists ℓ′, r′ ≤ (k − 1)Nk and
p′ ≤ Nk su
h that f ′α is (ℓ′, r′, p′)-periodi
 i.e. f

′
α(u) = f

′
α(u + p′) for ℓ′ ≤ u ≤

Nk! + 2(k − 1)Nk − r′.Let x ≥ ℓ. Note that f(x) = f
′
α(u) with α = x − ℓ and u = (k − 1)Nk.Applying Observation 5.19, f ′α(u) = f
′
α(u + Nk!) as p′ divides Nk! and u + Nk! ≤

Nk! + 2(k − 1)Nk − r′. Thus f(x) = f(x + d · Nk!), when ℓ ≤ x ≤ n − kNk+1 + ℓestablishing the (ℓ, r, p)-periodi
ity of f .
140



We extend our result to any general �nite alphabet Σ = {a1, . . . , at}, where
t ≥ 2. Consider three t-dimensional ve
tors ℓ = (ℓ1, . . . , ℓt), r = (r1, . . . , rt) and
p = (p1, . . . , pt) where ℓi, ri and pi are positive integers. De�ne an equivalen
e relation
∼ℓ,r,p over Σn by setting x ∼ℓ,r,p y pre
isely if for ea
h i, either |x|ai

= |y|ai
OR

ℓi ≤ |x|ai
, |y|ai

≤ n− ri and |x|ai
≡ |y|ai

mod(pi). We 
all a fun
tion f : Σn → {0, 1}to be (ℓ, r, p)-periodi
 if f(x) = f(y) whenever x ∼ℓ,r,p y. We show the following:Lemma 5.20 If a symmetri
 fun
tion f : Σn → {0, 1} has bounded k-party sym-metri
 
ommuni
ation 
omplexity then f is (ℓ, r, p)-periodi
 with ℓi = ri = (k−1)Nkand pi = Nk! for ea
h i ≤ t, where t is the size of the alphabet Σ.Proof: Let Σ = {a1, . . . , at}. For any Σ0 ⊆ Σ and any word w in (Σ−Σ0)
∗, we de�nea symmetri
 fun
tion fΣ0

w : Σ
n−|w|
0 by letting fΣ0

w (x) = f(wx). We now argue byindu
tion of the 
ardinality t of Σ. It gets easily veri�ed that our base 
ase of t = 2is guaranteed by Lemma 5.17. Let t ≥ 3. Consider two string x, y with x ∼ℓ,r,p y.If for ea
h i |x|ai
= |y|ai

, then trivially f(x) = f(y). Otherwise, pi
k i 6= j su
hthat |x|ai
< |y|ai

and |x|aj
> |y|aj

. Assume w.l.o.g that ||x|ai
− |y|ai

| ≤ ||x|aj
− |y|aj

|.Let si = |x|ai
and sj = |x|aj

. Consider string u = (ai)
si(aj)

sj and a string α ∈
(Σ\{ai, aj})n−si−sj that is obtained from x by deleting all the o

urren
es of letters aiand aj . Clearly, f(x) = fα(u). The fun
tion f {ai,aj}

α has 
onstant k-party symmetri

omplexity over the binary alphabet {ai, aj}. Applying the base 
ase of our indu
tionto this fun
tion, fα is periodi
 and there exists a string v ∼ℓ′,r′,p′ u with |v|ai
= |y|aiand fα(v) = fα(u) = f(x). Noti
e that αv ∼ℓ,r,p y and |αv|ai

= |y|ai
= (say) r.Finally, let β = (ai)

r. Then f(x) = fβ(u′) where u′ ∈ (Σ \ {ai})n−r is obtained by141



deleting all o

urren
es of letter ai from αv. Applying the indu
tion hypothesis on
Σ \ {ai}, we 
on
lude that there exists a v′ in (Σ− {ai})n−r su
h that |v′|am = |y|amfor ea
h m 6= i and f(x) = fβ(u′) = fβ(v′) = f(y).Theorem 5.8 now follows from Lemma 5.20 as two players 
an 
ompute the 
ountof ea
h letter in Σ up to a 
onstant threshold and a 
onstant modulus in 
onstant
ommuni
ation.5.4 Consequen
es and Con
lusionThere are interesting 
onsequen
es of these results for low degree polynomialsand 
onstant depth 
ir
uits. For instan
e, it is already known by results of [PT88,TB98℄ that 
onstant degree multivariate polynomials over a �xed modulus4 m 
annot
ompute MAJORITY by a generalized representation. Our results on the multiparty
ommuni
ation 
omplexity of symmetri
 fun
tions yields a new proof of this result asfollows: 
onsider any polynomial P over Zm of degree d with a

epting set A ⊆ Zm.It gets readily veri�ed that the fun
tion f represented by P has 
onstant (d + 1)-party symmetri
 
ommuni
ation 
omplexity as in any partition, ea
h monomial of
P 
an be evaluated by some player without 
ommuni
ating with others. Thus, themonomials of P are partitioned into at most d+ 1 
lasses with ea
h player assignedone 
lass. Given an assignment, ea
h player 
omputes a logm bit answer that is thesum of all the monomials of P in the player's 
lass. Knowing all the answers (andthe a

epting set A) the referee 
an 
ompute the value of f . Applying Lemma 5.20,4 The modulus m is not ne
essarily a prime power.142



we know that f must be (ℓ, r, p)-periodi
, for 
onstants ℓ, r, p, and hen
e f 
annotbe MAJORITY.We next des
ribe an appli
ation of our result to 
onstant-depth 
ir
uits. Al-though in this thesis we have fo
ussed on models of 
omputation that are non-uniform, it is known that uniformity 
onditions 
an ease the task of proving lowerbounds. For instan
e, Allender and Gore [AG94℄ have shown that uniform ACC0
ir
uits 
annot 
ompute the Permanent fun
tion e�
iently5 . Our results on the
ommuni
ation 
omplexity of languages with neutral letters suggests that addinga neutral letter to fun
tions might be a simple but e�e
tive way of 
ontaining thepower of non-uniformity not only in the multiparty model, but also in the model of
onstant-depth 
ir
uits.Corollary 5.21 Every language with a neutral letter that 
an be 
omputed by CC0[pr]
ir
uits of arbitrary size is regular, if p is a �xed prime and r ≥ 1 is a �xed integer.Proof: Re
all that the output of ea
h gate of su
h a 
ir
uit 
an be exa
tly repre-sented as a polynomial of degree at most pr − 1 over Zpin the input variables of thegate. Thus, the output of the entire 
ir
uit is exa
tly represented by a polynomialof degree at most k = (pr− 1)d in the input variables of the 
ir
uit over Zp. We 
on-
lude that the fun
tion 
omputed has 
onstant k+1-party symmetri
 
ommuni
ation
omplexity. Applying Theorem 5.7, we are done.
5 We 
annot separate non-uniform ACC0 from NEXP.143



CHAPTER 6Communi
ation Complexity of Fun
tions in AC0In the last 
hapter, our fo
us was on understanding the stru
ture of the 
lass ofproblems that admit 
onstant 
ommuni
ation proto
ols under every possible parti-tion of the input letters. This investigation brought out further di�eren
es betweenthe 
hara
teristi
s of the multiparty model and the two player model. In parti
ular,we established that three players 
an 
ompute fun
tions of arbitrarily large 
ir
uit
omplexity in 
onstant 
ost under the worst possible partition of input letters. In the�rst part of this 
hapter, we explore the multiparty model from the other dire
tion.We want to answer the following question: �What is the lowest 
ir
uit 
omplexity
lass whi
h 
ontains a fun
tion of very large1 k-party 
ommuni
ation 
omplexity?�.We explore this question by restri
ting ourselves to the binary alphabet. Further,for ea
h fun
tion that we 
onsider, the input bits are partitioned among players insome �xed way, unlike in the last 
hapter.It is trivial to observe that if f lies in NC0, then it has 
onstant 
ost deterministi
proto
ols for two players. This is be
ause f depends on a 
onstant number of lettersand Ali
e 
an 
ommuni
ate to Bob the relevant letters from her partition in 
onstant1 By `very large', we typi
ally mean nΩ(1) 
omplexity. We say that a fun
tionhas `large' 
omplexity if it is superpolylogarithmi
, i.e. it does not have e�
ientproto
ols. 144




ost. While it is well known that for k = 2 there are fun
tions in shallow AC0 (likeEquality and Disjointness) that have linear deterministi
 
omplexity, no fun
tion inAC0 was known, until re
ently, that had superlogarithmi
 three party deterministi

ommuni
ation 
omplexity. The best that one 
ould say was that ACC0 
ontainsfun
tions of very large k-party 
omplexity for every k < δ logn, where the inputsize is kn and δ is a 
onstant. This followed from the work of Babai, Nisan andSzegedy [BNS92℄ who showed that the natural k-wise generalization of the InnerProdu
t fun
tion, 
alled Generalized Inner Produ
t, has large k-party randomized
omplexity, for k < δ log n. This work introdu
ed the powerful dis
repan
y methodthat has been the ba
kbone of almost2 all subsequent strong lower bound results (forexample [Gro92, Raz00, FG05℄) in the multiparty model. Unfortunately, it was notknown if this method 
ould be applied to a fun
tion in AC0 even for two players.Re
ently, Sherstov [She07℄ provided the �rst su

essful appli
ation of the dis-
repan
y method for a fun
tion in AC0 for two players. We extend this te
hnique tomultiple players yielding the following (�rst published in [Cha07b℄):Theorem 6.1 For ea
h k, there exists a fun
tion FMP
k 
omputable by depth-threeAC0 
ir
uits of linear size that has the following randomized k-party 
ommuni
ation
omplexity:

Rǫ
k

(
FMP

k

)
= Ω

(
n

1
2k+1

(
22k/(2k+1)2e(k − 1)

)k−1
+ log ǫ

)
.

2 In the few 
ases, like in [Cha07a, BPSW06, VW07a℄, where non-dis
repan
ybased te
hniques have been applied, they are only known to apply to restri
ted
ommuni
ation proto
ols. 145



Consequently, for k = o(log log n) there exist fun
tions in linear depth-threeAC0 that have no e�
ient (i.e polylogarithmi
 
ost) randomized k-party proto
ols
omputing them with an advantage ǫ that is better than any inverse-quasipolynomialfun
tion. This is in 
ontrast to the easily veri�able fa
t that every fun
tion havingpolynomial size depth-two 
ir
uits has an e�
ient two-player randomized proto
ol
omputing it with advantage that is at least an inverse polynomial fun
tion of thelength of its input. What happens if we demand more from our randomized proto
ols,i.e. we require them to have a �xed advantage over random guessing? Could we still
ompute every fun
tion in depth-two AC0 e�
iently?It is not di�
ult to see that every fun
tion that is 
omputable by a depth-twoAC0 
ir
uit of size s has either O(log s) non-deterministi
 or 
o-non-deterministi

ommuni
ation 
omplexity. As we point out later, the Dis
repan
y Method yieldspoor lower bounds on fun
tions that have e�
ient non-deterministi
 or 
o-non-deterministi
 proto
ols. This makes the method unsuitable to work well for fun
tions
omputable e�
iently by depth-two 
ir
uits. A spe
i�
 instan
e is the Disjointnessfun
tion for whi
h no superlogarithmi
 lower bounds were known for three or moreplayers until re
ently. Fueled by two very re
ent and independent breakthroughs,made by Sherstov [She08b℄ and Shi and Zhu [SZ07℄ respe
tively in the 
ontext ofquantum 
ommuni
ation lower bounds for two players, we develop the GeneralizedDis
repan
y Method for multiparty 
lassi
al 
ommuni
ation. This leads us to obtainthe following strong bound on the 
ommuni
ation 
omplexity of Disjointness:
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Theorem 6.2 For any 
onstant ǫ > 0,
Rǫ

k(DISJk) = Ω

(
n

1
k+1

22k(k − 1)2k−1

)
.A similar result was also obtained by Lee and Shraibman [LS08℄ independently.6.0.1 Our Approa
h and OrganizationRe
all the k-wise generalization of the Inner Produ
t fun
tion, 
alled GIPkfrom Se
tion 4.2 in Chapter 4. There, we viewed fun
tions like GIPk and k-wiseDisjointness to be generated by an underlying (base) symmetri
 predi
ate. We viewthings slightly more generally here by generating a fun
tion, to be 
omputed by

k-players, from a base fun
tion that is not ne
essarily symmetri
.Let y1, . . . , yk−1 be (k−1) binary strings, ea
h of length n. De�ne the (k−1)×nboolean matrix A obtained by pla
ing yi in the ith row of A. For x ∈ {0, 1}n, let
x⇐ y1, . . . , yk−1 be the n-bit string xi1xi2 . . . xit0

n−t, where i1, . . . , it are the indi
esof the all-one 
olumns of A. Further, let g : {0, 1}n → {−1, 1} be any fun
tion.We de�ne Gg
k : ({0, 1}n)k → {−1, 1} by Gg

k(x, y
1, . . . , yk−1) := g(x ⇐ y1, . . . , yk−1).We 
all g the base fun
tion of Gg

k. Observe that GPARITY
k is the Generalized InnerProdu
t fun
tion and GNOR

k is the Disjointness fun
tion. While both the aboveexamples use a symmetri
 base fun
tion, we use 
ru
ially a non-symmetri
 one toprove Theorem 6.1 in Se
tion 6.4.It is reasonable to expe
t that the 
ommuni
ation 
omplexity of a fun
tion isrelated to some intrinsi
 property of its base fun
tion. The result of Babai, Nisanand Szegedy 
an be interpreted as follows: if the base fun
tion is PARITY, thenthe generated fun
tion has low dis
repan
y under the uniform distribution. In this147



light, a natural question that emerges is �what happens if our base fun
tion is 
loseto PARITY in an appropriately de�ned sense?�. Fourier analysis over Zn
2 provides aspontaneous measure of 
loseness to PARITY. Re
all that this analysis de
omposesevery fun
tion as a linear 
ombination of 
hara
ters. It is easy to verify that ea
h
hara
ter of Zn

2 
orresponds to the PARITY fun
tion de�ned over a subset of the setof n variables. The size of the subset is 
alled the order of the parity. The fun
tionPARITY is orthogonal to every parity whose order is less than n. In this light, wesay that a fun
tion is 
lose to PARITY, if it 
an be expressed as a sum of high orderparities or equivalently, is orthogonal to low order parities.Our main te
hni
al ingredient, 
alled the Orthogonality-Dis
repan
y Lemma,extending the Degree/Dis
repan
y Theorem of Sherstov [She07℄, generalizes the re-sult of [BNS92℄. Babai et.al. prove that GPARITY
k has small dis
repan
y under theuniform distribution. For te
hni
al reasons, we look at a fun
tion F g

k , generated by gemploying another masking s
heme, that is 
losely related to Gg
k. Roughly speaking,the Orthogonality-Dis
repan
y Lemma states that if g is orthogonal to low-orderparities , then fun
tion F g

k has low dis
repan
y under an appropriate probabilitydistribution. The dis
repan
y method implies that F g
k has large randomized 
om-muni
ation 
omplexity. As the 
ommuni
ation tensor of F g

k is a sub-tensor of theone for Gg
k, it follows that Gg

k has large 
ommuni
ation 
omplexity as well.We prove Theorem 6.1 by �nding a base fun
tion in AC0 that has su
h ni
eorthogonality property. The key to �nding it is to use the well-known notion ofvoting representation of boolean fun
tions as introdu
ed by Aspnes et.al. [ABFR94℄
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(see Se
tion 6.1.1). The use of a well-known duality prin
iple, des
ribed in Se
-tion 6.3, allows passage from fun
tions of high voting degree to fun
tions with theabove orthogonality property. This passage was invented in the 
ontext of two-player
ommuni
ation in the elegant work of Sherstov [She07℄. Like Sherstov, we use theMinsky-Papert fun
tion, introdu
ed in [MP88℄ and reviewed in Se
tion 6.4 of this
hapter, as our base fun
tion of high voting degree that 
an be 
omputed by simpledepth-two AC0 
ir
uits.The base fun
tion generating k-wise Disjointness is the NOR fun
tion. Its vot-ing degree is merely one and hen
e the Orthogonality-Dis
repan
y Lemma 
annotbe dire
tly used for fun
tions generated by NOR. However, the breakthrough workof Razborov [Raz03℄ and the earlier work of Buhrman et.al.[BCW98℄ establisheda tight relationship between the two-party quantum 
ommuni
ation 
omplexity of
Gg

2 and a well studied property of the symmetri
 fun
tion g. This property is theapproximate degree of boolean fun
tions, whose study was begun systemati
ally inthe work of Nisan and Szegedy [NS94℄. In parti
ular, they show that NOR hashigh approximation degree. While Razborov's lower bound, employing the �multidi-mensional dis
repan
y method�, only worked for symmetri
 fun
tions, the notion ofapproximate degree extends to all boolean fun
tions.Re
ently, Sherstov [She08b℄ and independently Shi and Zhu [SZ07℄ showed thefollowing: a fun
tion g of high approximation degree (say d) 
orrelates well with afun
tion f under a distribution µ, where f has zero 
orrelation with low-order parities(order less than d) under µ. Thus, the Orthogonality-Dis
repan
y Lemma, appliedto f , shows that the fun
tion generated by f has high 
ommuni
ation 
omplexity. In149



order to reason about the 
ommuni
ation 
omplexity of Gg
k, an additional ingredient
omes into play. This is an ingenious modi�
ation of the Dis
repan
y Method thatoriginated in the work of Klau
k [Kla01℄ and got further generalized by Razborov[Raz03℄. This method, that we 
all the Generalized Dis
repan
y Method, is used to
on
lude that Gg

k has large (bounded error) randomized 
ommuni
ation 
omplexitybased on the fa
t that g and f 
orrelate well. We use this idea to prove Theorem 6.2in Se
tion 6.5.1. More generally, this leads us to obtaining lower bounds on the
k-party 
ommuni
ation 
omplexity of every fun
tion of the form Gg

k, where g isa non-
onstant symmetri
 fun
tion (Corollary 6.22 in Se
tion 6.5.2). Finally, weextend to the multiparty setting the work of [SZ07℄ in Se
tion 6.6 for blo
k-
omposedfun
tions. Both these extensions yield exponential improvements for lower bounds onthe k-party 
omplexity of Disjointness. They also provide bounds on other interesting
lasses of fun
tions.6.1 Preliminaries6.1.1 Voting and Approximation DegreeRe
all that we reviewed Fourier analysis over abelian groups in Se
tion 3.2.1of Chapter 3. There, we spe
i�
ally looked at the ve
tor spa
e of 
omplex-valuedfun
tions over the group Zn
m. Here, we restri
t ourselves to the spa
e of real valuedfun
tions over the boolean 
ube Zn

2 . The set of 
hara
ters of the 
ube is given by
Ẑn

2 = {(−1)
P

i∈S xi |S ⊆ [n]}. In this 
hapter, we map the 
ube {0, 1}n bije
tively to
{1,−1}n by mapping the ith 
o-ordinate of a point as follows: xi → (−1)xi . Underthis transformation, the set of 
hara
ters be
omes the familiar set of multilinear
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monomials3 M = {χS =
∏

i∈S xi |S ⊆ [n]}. Let us spe
ialize the standard innerprodu
t, de�ned in Se
tion 3.2.1, to the spa
e of real-valued fun
tions on the 
ube,i.e. for two fun
tions f, g : {1,−1}n → R,
〈f, g〉 = Exf(x)g(x).Then, a basi
 fa
t of Fourier analysis is M forms an orthonormal basis w.r.t tothe standard inner produ
t. Thus, every boolean fun
tion4 f : {1,−1}n → {1,−1}is uniquely represented by a real linear 
ombination of monomials from M, i.e.a polynomial with real 
oe�
ients. The exa
t degree of f is the degree of thispolynomial. However, in this se
tion, we de�ne two di�erent representations.De�ne sign(z) to be −1 if z < 0 and 1 if z > 0, for every non-zero z ∈ R. Apolynomial P =

∑
S⊆[n] aSχS, with aS ∈ R, is a voting representation of a booleanfun
tion f if f(x) = sign(P (x)

) for ea
h x ∈ {1,−1}n. Note that this requires Pnot to evaluate to zero at any point of the 
ube. For example, polynomials P1(x) =

x1+· · ·+xn−0.5 and P2(x) =
∏n

i=1 xi are voting representations of MAJORITY andPARITY respe
tively. It is not hard to verify that every boolean fun
tion f has avoting representation. In parti
ular, the polynomial that exa
tly represents f is alsoa voting representation of f . However, it is not ne
essarily the most e
onomi
al one3 Re
all that a very similar basis set was used by Razborov and Smolensky toanalyze the ve
tor spa
e of fun
tions from the 
ube to a �nite �eld (see Se
tion 2.1.3in Chapter 2).4 Note that we have 
hanged the range of f from {0, 1} to {1,−1}. Re
all thatwe have en
ountered this 
hange many times before.151



in terms of degree. For instan
e, the exa
t degree of MAJORITY is Ω(n) whereasour representation uses a linear polynomial.The degree of a voting representation is simply the degree of the polynomial Pinvolved. Thus, in our example before, the representation of PARITY uses degree n.The voting degree of a fun
tion f , denoted by deg(f), is the minimum degree overall possible voting representations of f .Fa
t 6.3 (from [ABFR94℄) The voting degree of PARITY is n.Proof: Let P be any polynomial that is a voting representation of PARITY. Then, byde�nition P (x)PARITY(x) > 0, for ea
h x. In other words, ExP (x) (
∏n

i=1 xi) > 0.But if the degree of P is less than n, then by the orthonormality of monomials,
ExP (x) (

∏n
i=1 xi) = 0 and we get a 
ontradi
tion.In fa
t, using Fourier analysis over the 
ube Zn

m, one 
an, more generally, show thatMODm has voting degree Ω(n), for any �xed integer m ≥ 2 (see Barrington andStraubing [BS94℄).Is there any fun
tion in AC0 that has high voting degree? It is easily veri�ed thatAND and OR have voting degree 1. On the other hand, a simple fun
tion in depth-two has high voting degree. Minsky and Papert [MP88℄ 
onsidered su
h a fun
tionthat we 
all the Minsky-Papert fun
tion and denote by MP. For any t, we de�ne MPover m = 4t3 variables as follows: MP(x) = ∨t
i=1 ∧4t2

j=1 xi,j. There is a simple votingrepresentation of MP having degree t. This is be
ause of the following observation:rewrite MP as an AND of OR's by distributing the outer OR over the inner ANDsusing basi
 boolean algebra. Ea
h OR is over t variables and 
an be representedexa
tly by a degree t polynomial that has range {1,−1}. We are left to represent152



the AND of su
h t4t2 polynomials, ea
h of degree t. Treating ea
h polynomial as aboolean variable and using the degree-one voting representation of AND, we get ourdesired representation of degree t of MP. Minsky and Papert showed that the degreeof this representation is optimal.Theorem 6.4 (from [MP88℄) The Minsky-Papert fun
tion de�ned on m = 4t3variables has voting degree t.Proof: We only need to show the lower bound of t for the voting degree. An im-portant te
hnique, 
alled symmetrization, was introdu
ed and used by [MP88℄ inthe argument. It goes this way: let the 
lauses of MP be numbered 1, . . . , t, ea
hhaving its own set of 4t2 variables disjoint from the others. Let Si represent the setof permutations of the variables of the ith 
lause. Consider a set of t permutations
σ1, . . . , σt, with σi ∈ Si. For any polynomial P , let Pσ1,...,σt be the polynomial ob-tained from P by letting σi permute its variables from the ith 
lause. Then, observethat if P is a polynomial of minimal degree d that is a voting representation of MP,then so is Pσ1,...,σt . Hen
e,

P ′ ≡def ∑
σi∈Si

Pσ1,...,σtis a voting representation of degree t of MP. By 
onstru
tion, P ′ is symmetri
 w.r.t.variables in the same 
lause of MP. This passage from an arbitrary polynomial to asymmetri
 (w.r.t. 
lauses) polynomial is 
alled symmetrization.Let ui represent the number of variables in Clause i of MP, set to 1. Thereexists a polynomial Q of degree d (same as that of P ′) on t variables u1, . . . , ut, with
ui ∈ {0, . . . , 4t2}, su
h that Q outputs a negative number if at least one ui is set153



to 4t2 and otherwise is positive. Obtain a univariate polynomial R(v) from Q, byrepla
ing the ui in Q by (4t2 − (2i− v)2). Clearly, the degree of R is at most twi
ethe degree of Q, i.e. at most 2d. On the other hand, 
onsider the behavior of R onthe set {0, . . . , 2t}. It is easily veri�ed that for odd values in this set R is positiveand for even values it is negative. Thus, R has at least 2t zeroes and hen
e musthave degree at least 2t. Hen
e, d ≥ t.We point out that the work of [ABFR94, OS03℄ are good sour
es for familiarizingoneself with further interesting properties of voting representations.A voting polynomial just maintains the sign of the fun
tion. In prin
iple, it 
ouldbe very far from the value of the fun
tion at a given point of the 
ube. One 
ouldnaturally tighten up this notion by demanding that a polynomial evaluate 
lose tothe value of the fun
tion represented, at ea
h point of the 
ube. A polynomial P thatis always within δ of the fun
tion f is a δ-approximation of f , i.e. |f(x)−P (x)| ≤ δfor ea
h x ∈ {1,−1}n and δ ≥ 0. The δ-approximation degree of f , denoted bydegδ(f), is the minimal degree su
h that there exists a polynomial of that degreewhi
h is a δ-approximation of f . Note that for any δ < 1, a δ-approximation of aboolean fun
tion is a spe
ial voting representation of the fun
tion.It follows that deg(f) ≤ degδ(f) for any δ < 1. The gap, between the twodegrees, 
an be quite large. Nisan and Szegedy5 [NS94℄ show that every booleanfun
tion that depends on ea
h variable has δ-approximation degree Ω(log n). Further,5 Nisan and Szegedy also related the approximation degree of a boolean fun
tionwith its 
omplexity in the model of de
ision trees.154



they show that the AND and OR fun
tions, ea
h having voting degree 1, have (1/3)-approximation degree Θ(
√
n). The work of [NS94℄ was followed by the work of Paturi[Pat92℄ who 
hara
terized the approximation degree of every symmetri
 fun
tion.Paturi's 
hara
terization is quite helpful for our investigation and let us statehis result. For any predi
ate D : {0, 1, . . . , n} → {1,−1}, de�ne
ℓ0(D) ∈ {0, 1, . . . , ⌊n/2⌋}

ℓ1(D) ∈ {0, 1, . . . , ⌈n/2⌉}su
h that D is 
onstant over the interval [ℓ0(D), n− ℓ1(D)] and ℓ0(D) and ℓ1(D) arethe smallest possible values for whi
h this happens. A symmetri
 fun
tion f indu
esa predi
ate Df in the following natural way: f(x) = Df(x1 + · · ·+xn). For example,for the OR fun
tion ℓ0(DOR) = 1 and ℓ1(DOR) = 0.Paturi's theorem provides bounds on the approximate degree of symmetri
 fun
-tions in terms of the properties of its underlying predi
ate.Theorem 6.5 ([Pat92℄) Let f : {0, 1}n → {1,−1} be any symmetri
 fun
tion in-du
ing the predi
ate Df : {0, . . . , n} → {1,−1}. Then,deg1/3(f) = Θ
(√

n(ℓ0(Df) + ℓ1(Df))
)
. (6.1)In parti
ular, the (1/3)-approximate degree of NOR is Θ(
√
n).6.1.2 Dis
repan
y under Produ
t DistributionsWe re
all a tri
k of repeatedly applying Cau
hy-S
hwartz to get an expressionthat upper bounds the 
ylindri
al dis
repan
y of a fun
tion under produ
t distri-butions. This tri
k to simplify the 
al
ulation of dis
repan
y appeared originally in155



the work of Babai et.al.[BNS92℄. The expli
it and 
onvenient form in whi
h we useit here is attributable to Raz [Raz00℄. Our presentation below seems to be slightlysimpler and more dire
t than Raz's.Let µx, µ1, · · · , µk−1 be probability distributions over �nite sets X, Y 1, . . . , Y k−1respe
tively. Let µ = µx×µ1×· · ·×µk−1 be the produ
t distribution generated and
f : {X × Y 1 × · · · × Y k−1} → {−1, 1} be any boolean fun
tion.Lemma 6.6 (Raz [Raz00℄) For 1 ≤ i ≤ k − 1 and j ∈ {0, 1} let yi

j be a randomvariable distributed a

ording to µi and let x be distributed a

ording to µx. Then,
(dis
k,µ(f)

)2k−1

≤ Ey1
0 ,y1

1 ,...,yk−1
0 ,yk−1

1

∣∣∣∣Ex

∏

u∈{0,1}k−1

f
(
x, y1

u1
, . . . , yk−1

uk−1

)∣∣∣∣. (6.2)Proof: We prove (6.2) by indu
tion of k. Thus, our Indu
tion Hypothesis is that(6.2) is true for every fun
tion when k = k− 1. Re
all that for an arbitrary 
ylinderinterse
tion φ,dis
φ
k,µ(f) =

∣∣∣∣E(x,y1,...,yk−1)∼µf
(
x, y1, . . . , yk−1

)
φ
(
x, y1, . . . , yk−1

)∣∣∣∣.Let us fa
tor the 
hara
teristi
 fun
tion φ in terms of the 
hara
teristi
 fun
tions ofthe 
ylinders interse
ting.
φ
(
x, y1, . . . , yk

)
= φx

(
y1, . . . , yk

) k−1∏

i=1

φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)
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where φx is the 
ylinder in the dire
tion of X and φi is in the dire
tion of Y i. Then,using the triangle inequality, one getsdis
φ
k,µ(f) ≤ Ex,y1,...,yk−2

∣∣∣∣φ
k−1
(
x, y1, . . . , yk−2

)
×

Eyk−1f
(
x, y1, . . . , yk−1

)
φx
(
y1, . . . , yk−1

) k−2∏

i=1

φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)∣∣∣∣.Noting that 
hara
teristi
 fun
tions are 0-1 valued, we further simplify:dis
φ
k,µ(f) ≤

Ex,y1,...,yk−2

∣∣∣∣Eyk−1f
(
x, y1, . . . , yk−1

)
φx
(
y1, . . . , yk−1

) k−2∏

i=1

φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−1

)∣∣∣∣.Squaring both sides and using the 
onsequen
e (Ez)2 ≤ Ez2 of Cau
hy-S
hwartz,one gets
(dis
φ

k,µ(f)
)2 ≤ Eyk−1

0 ,yk−1
1

G
(
yk−1

0 , yk−1
1

) (6.3)where
G
(
yk−1

0 , yk−1
1

)
=

Ex,y1,...,yk−1

∏

u∈{0,1}
f
(
x, y1, . . . , yk−2, yk−1

u

)
φx
(
y1, . . . , yk−1

u

) k−2∏

i=1

φi
(
x, y1, . . . , yk−2, yk−2

u

)
.In order to apply our Indu
tive Hypothesis, we make the following de�nitions forevery �xed yk−1

0 and yk−1
1 :

g
(
x, y1, . . . , yk−2

)
=def f(x, y1, . . . , yk−2, yk−1

0

)
f
(
x, y1, . . . , yk−2, yk−1

1

) (6.4)
γx
(
y1, . . . , yk−2

)
=def φx

(
y1, . . . , yk−2, yk−1

0

)
φx
(
y1, . . . , yk−2, yk−1

1

)157



and for 1 ≤ i ≤ k − 2,
γi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−2

)

=def φi
(
x, y1, . . . , yi−1, yi+1, . . . , yk−2, yk−1

0

)
φi
(
y1, . . . , yi−1, yi+1, . . . , yk−2, yk−1

1

)
.For ea
h yk−1

0 , yk−1
1 , let γ denote the (k − 1)-fold 
ylinder interse
tion formed bythe 
ylinders γx, γ1, . . . , γk−2. Further, let ν be the (k− 1)-fold produ
t distribution

µx × µ1 × · · · × µk−2. Then,
∣∣∣∣G
(
yk−1

0 , yk−1
1

)∣∣∣∣ = dis
γ
k−1,ν(g). (6.5)Noting that repeatedly applying Cau
hy-S
hwartz m times yields (Ez)2m ≤ Ez2m forany integer m ≥ 0, plugging (6.5) into (6.3) yields,

(dis
φ
k,µ

)2k−1

≤
(dis
γ

k−1,ν(g)
)2k−2

. (6.6)Applying the Indu
tive Hypothesis to the RHS of (6.6) further gives
(dis
φ

k,µ(f)
)2k−1

≤ Eyk−1
0 ,yk−1

1
Ey1

0 ,y1
1...,yk−2

0 ,yk−2
1

∣∣∣∣Ex

∏

u∈{0,1}k−2

g
(
x, y1

u1
, . . . , yk−2

uk−2

)∣∣∣∣.Substituting the de�nition of g given in terms of f by (6.4), the above expressionyields easily the RHS of (6.2). As φ is an arbitrary 
ylinder interse
tion, we aredone.
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6.2 Generating fun
tions with low dis
repan
y6.2.1 Masking S
hemesWe have already de�ned one masking s
heme through the notation x⇐ y1, . . . , yk.This allowed us to de�ne Gg
k for a base fun
tion g. Well-known fun
tions su
h asGIPk and DISJk are representable in this notation by GPARITY

k and GNOR
k respe
-tively. We now de�ne a se
ond masking s
heme whi
h plays a 
ru
ial role in lowerbounding the 
ommuni
ation 
omplexity of Gg

k. This masking s
heme is obtained by�rst slightly simplifying the pattern matri
es in [She08b℄ and then generalizing thesimpli�ed matri
es to higher dimensions for dealing with multiple players.Let S1, . . . Sk−1 ∈ [ℓ]m for some positive ℓ and m. Let x ∈ {0, 1}n where n =

ℓk−1m. Here it is 
onvenient to think of x to be divided into m equal blo
ks whereea
h blo
k is a (k − 1)-dimensional array with ea
h dimension having size ℓ. Thearray 
orresponding to the ith blo
k of x is denoted by x[i]. Further, ea
h Si isa ve
tor of length m with ea
h 
o-ordinate being an element from {1, . . . , ℓ}. The
(k−1) ve
tors S1, . . . , Sk−1 jointly unmaskm bits of x, denoted by x← S1, . . . , Sk−1,pre
isely one from ea
h blo
k of x, i.e.

x[1]
[
S1[1], S2[1], ..., Sk−1[1]

]
, . . . , x[m]

[
S1[m], S2[m], . . . , Sk−1[m]

]
.See Figure 6�1 for an illustration of this masking s
heme.For a given base fun
tion f : {0, 1}m → {−1, 1}, we de�ne F f

k : {0, 1}n ×

([ℓ]m)k−1 → {−1, 1} as F f
k (x, S1, . . . , Sk−1) = f(x ← S1, . . . , Sk−1), where n =

ℓk−1m.
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S2

1 0 1 1 1 0 1 1 0
x = 0 0 0 0 1 0 1 1 1

1 1 0 0 0 0 0 1 0

S1 x← S1, S2 = 001Figure 6�1: Illustration of the masking s
heme x ← S1, S2. The parameters are
ℓ = 3, m = 3, n = 27.Lemma 6.7 Let n = ℓk−1m. If f : {0, 1}m → {−1, 1} and f ′ : {0, 1}n → {−1, 1}are related by f(z) = f ′(z0n−m), then

Rǫ
k(F

f
k ) ≤ Rǫ

k(G
f ′

k ). (6.7)Proof:[Proof Sket
h℄ Observe that there are fun
tions Γi : [ℓ]m → {0, 1}n su
h that
F f

k (x, S1, . . . , Sk−1) = Gf ′

k (x,Γ1(S
1), . . . ,Γk−1(S

k−1)) for all x, S1, . . . , Sk−1. There-fore the players 
an privately 
onvert their inputs and apply the proto
ol for Gf ′

k .Note that the proof shows that (6.7) holds not just for randomized but any modelof 
ommuni
ation.6.2.2 Orthogonality and Dis
repan
yHere, we prove that if the base fun
tion f in our masking s
heme has a 
ertainni
e property, then the masked fun
tion F f
k has small dis
repan
y. To des
ribe thisproperty, let us de�ne the following: for a distribution µ on inputs, equip the spa
e
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with the biased inner produ
t 〈·〉µ, where for two fun
tions f, g,
〈f, g〉µ =def Ex∼µf(x)g(x).We say that f is (µ, d)-orthogonal if it is orthogonal, w.r.t. the above µ-biased innerprodu
t, to every parity/
hara
ter of order less than d , i.e. 〈f, χS〉µ = 0, for all

|S| < d.Lemma 6.8 (Orthogonality-Dis
repan
y Lemma) Let f : {−1, 1}m → {−1, 1}be any (µ, d)-orthogonal fun
tion for some distribution µ on {−1, 1}m and some in-teger d > 0. Derive the probability distribution λ on {−1, 1}n ×
(
[ℓ]m

)k−1 from µ asfollows: λ(x, S1, . . . , Sk−1) = µ(x←S1,...,Sk−1)

ℓm(k−1)2n−m . Then,
(dis
k,λ

(
F f

k

))2k−1

≤
(k−1)m∑

j=d

(
(k − 1)m

j

)(
22k−1−1

ℓ− 1

)j

. (6.8)Hen
e, for ℓ− 1 ≥ 22k
(k−1)em

d
and d > 2,dis
k,λ

(
F f

k

)
≤ 1

2d/2k−1 . (6.9)Proof: The starting point is the expression for dis
repan
y w.r.t. an arbitrary 
ylin-der interse
tion φ,dis
φ
k(F

f
k ) =

∣∣∣∣
∑

x,S1,...,Sk−1

F f
k (x, S1, . . . , Sk−1)φ(x, S1, . . . , Sk−1) · λ(x, S1, . . . , Sk−1)

∣∣∣∣.(6.10)
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This 
hanges to the more 
onvenient expe
ted value notation as follows:dis
φ
k(F

f
k ) = 2m

∣∣∣∣Ex,S1,...,Sk−1F f
k (x, S1, . . . , Sk−1)× φ(x, S1, . . . , Sk−1)µ

(
x← S1, . . . , Sk−1

)∣∣∣∣(6.11)where, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}ℓk−1m ×
(
[ℓ]m

)k−1.Thus, de�ningGf
k asGf

k(x, S
1, . . . , Sk−1) =def F f

k (x, S1, . . . , Sk−1)µ(x← S1, . . . , Sk−1),we have dis
k,λ(F
f
k ) = 2mdis
k,U(G

f
k)where U is the uniform distribution.Appli
ation of Equation (6.2) of Lemma 6.6 to the fun
tion Gf

k easily yields
(dis
k,λ(F

f
k )
)2k−1

= 2m2k−1(dis
k,U(G
f
k)
)2k−1

≤ 2m2k−1

ES1
0 ,S1

1 ,...,Sk−1
0 ,Sk−1

1
Hf

k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

) (6.12)where,
Hf

k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)

=

∣∣∣∣Ex∈{0,1}ℓk−1m

∏

u∈{0,1}k−1

(
F f

k (x, S1
u1
, . . . , Sk−1

uk−1
)µ(x← S1

u1
, . . . , Sk−1

uk−1
)

)∣∣∣∣. (6.13)We look at a �xed Si
0, S

i
1, for i = 1, . . . , k − 1. Let ri =

∣∣Si
0 ∩ Si

1

∣∣ and r =
∑

i ri for
1 ≤ i ≤ k − 1. We make two 
laims below.
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Claim 6.9
Hf

k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
≤ 2(2k−1−1)r

22k−1m
. (6.14)Claim 6.10 Let r < d. Then,

Hf
k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
= 0. (6.15)We prove these 
laims in the next se
tion. Claim 6.9 simply follows from the fa
tthat µ is a probability distribution and f is 1/-1 valued while Claim 6.10 uses the

(µ, d)-orthogonality of f . We now 
ontinue with the proof of the Orthogonality-Dis
repan
y Lemma assuming these 
laims. Applying them, we obtain
(dis
φ

k(F
f
k ))2k−1

≤
(k−1)m∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

Pr
[
r1 = j1 ∧ · · · ∧ rk−1 = jk−1

]
. (6.16)Sin
e the random variables r1, . . . , rk−1 are independent, Pr[r1 = j1 ∧ · · · ∧ rk−1 =

jk−1] = Pr[r1 = j1] · · ·Pr[rk−1 = jk−1]. Noting that Pr[ri = ji] =
(

m
ji

) (ℓ−1)m−ji

ℓm , wefurther obtain:
(dis
φ

k(F
f
k ))2k−1

≤
(k−1)m∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

(
m

j1

)
· · ·
(
m

jk−1

)
(ℓ− 1)m−j1 · · · (ℓ− 1)m−jk−1

ℓ(k−1)m
.(6.17)163



The following simple 
ombinatorial identity is well known:
∑

j1+···+jk−1=j

(
m

j1

)
· · ·
(
m

jk−1

)
=

(
(k − 1)m

j

)
.Plugging this identity into (6.17) immediately yields (6.8) of the Orthogonality-Dis
repan
y Lemma. Re
alling ((k−1)m

j

)
≤
(e(k−1)m

j

)j, and 
hoosing ℓ− 1 ≥ 22k
(k −

1)em/d, we get (6.9).6.2.3 Proofs of ClaimsWe identify the set of all assignments to boolean variables in X = {x1, . . . , xn}with the n-ary boolean 
ube {0, 1}n. For any u ∈ {0, 1}k−1, let Zu represent theset of m variables indexed jointly by S1
u1
, . . . , Sk−1

uk−1
. There is pre
isely one variable
hosen from ea
h blo
k of X. Denote by Zu[α] the unique variable in Zu that is inthe αth blo
k of X, for ea
h 1 ≤ α ≤ m. Let Z = ∪uZu. Abusing notation, weuse Zu in the 
ontext of expe
ted value 
al
ulations to also mean a uniformly 
hosenrandom assignment to the variables in the set Zu.Proof:[Proof of Claim 6.10℄

Hf
k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)

=

∣∣∣∣EZ
0k−1

f(Z0k−1)µ(Zu) EX−Z
0k−1

∏

u∈{0,1}k−1

u 6=0

f(Zu)µ(Zu)

∣∣∣∣. (6.18)Observe that for any blo
k α and any u 6= 0k−1, Zu[α] = Z0k−1 [α] i� for ea
h isu
h that ui = 1, Si
0[α] = Si

1[α]. Re
all that ri is the number of indi
es α su
h that
Si

0[α] = Si
1[α]. Therefore, there are at most r =

∑k−1
i=1 ri many indi
es α su
h that164



Zu[α] = Z0k−1[α] for some u 6= 0k−1. This means the inner expe
tation in (6.18) isa fun
tion that depends on at most r variables. Sin
e f is orthogonal under µ withevery polynomial of degree less than d and r < d, we get the desired result.Proof:[Proof of Claim 6.9℄ Observe that sin
e F f
k is 1/-1 valued, we get the following:

Hf
k

(
S1

0 , S
1
1 , . . . , S

k−1
0 , Sk−1

1

)
≤ Ex

∏

u∈{0,1}k−1

µ(x← S1
u1
, . . . , Sk−1

uk−1
)

= EX−Z EZ

∏

u∈{0,1}k−1

µ(Zu)

= EX−Z
1

2|Z|

∑

Z∈{0,1}|Z|

∏

u∈{0,1}k−1

µ(Zu) (6.19)
≤ EX−Z

1

2|Z|

∑

y1,...,y2k−1

∈{0,1}m

2k−1∏

i=1

µ(yi) (6.20)where the last inequality holds be
ause every produ
t in the inner sum of (6.19)appears in the inner sum of (6.20). Using the fa
t that µ is a probability distribution,we get: RHS of (6.20) = EX−Z
1

2|Z|

2k−1∏

i=1

∑

yi∈{0,1}m
µ(yi)

= EX−Z
1

2|Z|

=
1

2|Z|
.We �nd a lower bound on |Z|. Let tu denote the Hamming weight of the string

u and {j1, . . . , jtu} denote the set of indi
es in [k − 1] at whi
h u has a 1. De�ne
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Yu =
{
Zu[α] | Sjs

1 [α] 6= Sjs

0 [α]; 1 ≤ s ≤ tu; 1 ≤ α ≤ m
}
. (6.21)The following follow from the above de�nition.

• |Y0k−1| = m and |Yu| ≥ m−∑1≤s≤ti
rjs ≥ m− r for all u 6= 0k−1.

• Yu ∩ Yv = ∅, for u 6= v. This follows from the following argument: W.l.o.g.assume there is an index β where u has a one but v has a zero. Consider anyblo
k α su
h that Zu[α] is in Yu. It must be true that Sβ
1 [α] 6= Sβ

0 [α]. Thismeans that Zu[α] 6= Zv[α]. Therefore Zu[α] is not in Yv and we are done.
• Y := ∪u∈{0,1}k−1Yu = Z. This is be
ause if Zu[α] is not in Yu then there areindi
es j1, . . . , js where u 
ontains a one and Sji

0 [α] = Sji
1 [α]. Let v be the stringthat 
ontains a zero at positions j1, . . . , js and at other positions, 
orrespondsto u. Then by de�nition, Zu[α] = Zv[α] ∈ Yv.Thus, |Z| = |Y | =∑u |Yu| ≥ m+

∑
u 6=0(m− r) = 2k−1m− (2k−1 − 1)r and theresult follows.6.3 Masking fun
tions of high voting degreeThe theorem below shows that (µ, d)-orthogonality of a fun
tion f , that is keyto using the Orthogonality-Dis
repan
y Lemma, follows from the fa
t that the votingdegree of f is more than d.Theorem 6.11 (see [She07℄) For any boolean fun
tion f : {−1, 1}n → {−1, 1},pre
isely one of the following holds:

• deg(f) ≤ d.
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• there exists a distribution µ over {−1, 1}n, su
h that f is (µ, d)-orthogonal, i.e.for all |S| ≤ d, 〈f(x), χS(x)〉µ = 0.In parti
ular, this means that if deg(f) ≥ d, then for any fun
tion g that dependson at most d− 1 variables, 〈f(x), g(x)〉µ = 0.As an immediate 
onsequen
e of Theorem 6.11 and the Orthogonality-Dis
repan
yLemma, we obtain the following:Corollary 6.12 (Multiparty Degree-Dis
repan
y Lemma) Let f : {−1, 1}m →

{−1, 1} have voting polynomial degree d. Then for any k ≥ 2, there exists a proba-bility distribution λ su
h that for ℓ ≥ m,
(dis
k,λ

(
F f

k

))2k−1

≤
m∑

j=d

(
(k − 1)m

j

)(
22k−1−1

ℓ− 1

)j

.Hen
e, for ℓ− 1 ≥ 22k
(k−1)em

d
and d > 2,dis
k,λ

(
F f

k

)
≤ 1

2d/2k−1 .The above lemma, using a slightly di�erent masking fun
tion and with a quadrati
dependen
e of ℓ on m (instead of the linear dependen
e above), appeared in our work[Cha07b℄ as an extension of the two player Degree/Dis
repan
y Theorem of Sherstov[She07℄.Combining Corollary 6.12 with the Dis
repan
y Method (i.e. Lemma 4.18)dire
tly yields a method to obtain lower bounds on a masked fun
tion whose basefun
tion has high voting degree.
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Theorem 6.13 Let f , de�ned on inputs of length m, have voting degree d. For any
k ≥ 2, de�ne F f

k as before on inputs of length n = mℓk−1, where ℓ ≥ 22k
(k−1)em

d
and

d > 2. Then,
Rǫ

k

(
F f

k

)
= Ω

( d

2k−1
+ log ǫ

)
. (6.22)6.4 Communi
ation 
omplexity of fun
tions in AC0Given Theorem 6.13, the natural question is �how di�
ult is it to �nd a fun
-tion of high voting degree?�. We re
all from Se
tion 6.1.1 that the Minsky-Papertfun
tion, MP(x) = ∨t

i=1 ∧4t2

j=1 xi,j , is in depth-two AC0 and has a high voting degreeof t.Corollary 6.14 Consider the Minsky-Papert fun
tion MP on m variables. Let d =

Ω(m1/3) denote its voting degree. If n = mℓk−1 and ℓ = 22k
(k − 1)em/d, then

Rǫ
k

(
FMP

k

)
= Ω

(
n

1
2k+1

(
22k/(2k+1)2e(k − 1)

)k−1
+ log ǫ

)
.Proof: The result follows by a short and straightforward 
al
ulation, starting fromTheorem 6.13. We in
lude it for the sake of 
ompleteness. Noting that m = d3

n = mℓk−1 =
(
22k

(k − 1)e
)k−1

d2k+1.Hen
e,
d =

n
1

2k+1

(
22k/(2k+1)e(k − 1)

)k−1
.Appli
ation of (6.22) to the above 
ompletes the 
al
ulation.
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This shows that there exists simple base fun
tions 
omputable by small depth-two AC0 
ir
uits that give rise to masked fun
tions of large randomized 
ommuni
a-tion 
omplexity. The following observation shows that our masking s
heme does notsigni�
antly in
rease the 
ir
uit 
omplexity of the base fun
tion.Observation 6.15 Let f : {0, 1}m → {0, 1} be any boolean fun
tion and F f
k be the
orresponding masked fun
tion on n = mℓk−1 bits. If f 
an be 
omputed by a 
ir
uit

C of size s(m) and depth d(m), then F f
k 
an be 
omputed by a 
ir
uit C ◦AND ◦ORof size n+ s(m) and depth d(m) + 2.Proof: We view the domain of F f

k as {0, 1}mℓk−1×
((
{0, 1}log ℓ

)m
)k−1, en
oding ea
hindex/pointer by (log ℓ) bits.Consider the de
oding fun
tion U : {0, 1}ℓk−1 × {0, 1}(k−1) log ℓ that on input

(α, β) interprets β to be a set of k − 1 indi
es from [ℓ] and then outputs the bit ofthe blo
k α (of size ℓk−1) 
orresponding to this set of indi
es. It is not hard to verifythat U is 
omputed by a depth-two OR ◦AND 
ir
uit of size ℓk−1. It also gets easilyveri�ed that if we repla
e ea
h bit of the blo
k α by its 
omplement in the OR◦AND
ir
uit for U , we 
ompute the 
omplement of U, i.e. ¬U . Applying de Morgan'slaw to this 
ir
uit for ¬U (i.e. negating the 
ir
uit and propagating the negationsusing de Morgan's laws to the bottom) yields the required AND ◦OR 
ir
uit of size
ℓk−1 for U . Thus, F f

k (x, S1, . . . , Sk−1) = f (U(x[1], y1), . . . , U(x[m], ym)), where x[i]is the ith blo
k of x and ea
h yi is the binary string of length (k − 1) log ℓ obtainedby 
on
atenating the en
odings of the ith 
o-ordinate of ea
h ve
tor S1, . . . , Sk−1.
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Thus, 
omputing ea
h of the m instan
es of U by a 
orresponding AND ◦OR 
ir
uitof size ℓk−1 and f by the 
ir
uit C we derive the observation.Fa
t 6.16 (follows from [She07℄) The fun
tion FMP
k has a linear size depth-threeAC0 
ir
uit.Proof: One derives a depth-four 
ir
uit for FMP

k by applying Observation 6.15 andthe fa
t that MP on m variables 
an be 
omputed by a depth-two AND◦OR 
ir
uit.Note that the two middle layers of this 
ir
uit 
onsist only of AND gates and 
anthus be 
ollapsed into a single layer. This yields the required depth-three 
ir
uit for
FMP

k .The above fa
t and the lower bound on the randomized 
ommuni
ation 
om-plexity of FMP
k shows that there are fun
tions that 
an be 
omputed very e�
ientlyby depth-three AC0 
ir
uits that have no e�
ient multiparty randomized proto-
ols as long as the number of players is o(log logn), even when a mere inverse-quasipolynomial advantage over random guessing is required. This, in some sense,
omplements the result from the last 
hapter where we saw that just three play-ers 
an 
ompute deterministi
ally fun
tions of arbitrarily large 
ir
uit 
omplexity in
onstant 
ost.6.5 The Generalized Dis
repan
y MethodAt the heart of the te
hnique introdu
ed in the last se
tion is the Dis
repan
yMethod (Lemma 4.18). Unfortunately, its appli
ability is limited to those fun
tionsthat have small dis
repan
y. However, there are several important and simple fun
-tions that have large 
ylindri
al dis
repan
y. Disjointness is a 
lassi
al example ofsu
h a fun
tion. 170



Lemma 6.17 (Folklore) Under every distribution µ over the inputs,
disck,µ(DISJk) ≥

1

2n
− 1

2n2
.Proof: Let X+ and X− be the set of disjoint and non-disjoint inputs respe
tively.The �rst thing to observe is that if |µ(X+) − µ(X−)| ≥ (1/n), then we are doneimmediately by 
onsidering the dis
repan
y over the interse
tion 
orresponding tothe entire set of inputs. Hen
e, we may assume |µ(X+) − µ(X−)| < (1/n). Thus,

µ(X−) ≥ 1/2− (1/2n). However, X− 
an be 
overed by the following n mono
hro-mati
 
ylinder interse
tions: let Ci be the set of inputs in whi
h the ith 
olumn isan all-one 
olumn. Then X− = ∪n
i=1Ci. By averaging, there exists an i su
h that

µ(Ci) ≥ 1/2n− (1/2n2). Taking the dis
repan
y of this Ci, we are done.It is therefore impossible to obtain better than Ω(log n) bounds on the 
om-muni
ation 
omplexity of Disjointness by a dire
t appli
ation of the dis
repan
ymethod. In fa
t, the above argument shows that this method fails to give betterthan polylogarithmi
 lower bounds for any fun
tion that is in NPcc
k or 
o-NPcc

k . Inother words, the Dis
repan
y Method is too strong, i.e. not only does it yield boundsfor the randomized model, but it also yields bounds on non-deterministi
 
ommuni-
ation 
omplexity. This makes it unsuitable as a method for separating the power ofrandomness from non-determinism, i.e. 
lasses BPPcc
k and NPcc

k ( or 
o-NPCC
k ).Fortunately, there is a simple generalization of the Dis
repan
y Method thatis somewhat surprisingly e�e
tive for dealing with several fun
tions that have largedis
repan
y. Curiously, this method grew out of resear
h on quantum 
ommuni
ation
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omplexity. To the best of our knowledge, it remained unknown among severalresear
hers whose primary fo
us was on 
lassi
al 
ommuni
ation.The origins of the idea of generalizing the dis
repan
y method 
an be found inthe work of Klau
k [Kla01℄6 . Klau
k 
onsidered, in the setting of two players, fun
-tions of the form f(x, y) = g(x∧y) where the ∧ operation is naturally applied bitwiseto the bits of x and y. He observed that if g 
orrelates well with a parity fun
tionon some large subset S of {1, . . . , n} under the uniform distribution7 , then f 
orre-lates well with the inner-produ
t fun
tion of the 
olumns indexed by elements of S,denoted by IPS, under a simple produ
t distribution µ. The ingenuity in Klau
k'sargument is that he shows IPS having small dis
repan
y under µ implies that f haslarge distributional 
omplexity under µ. This, as he 
orre
tly adds, follows despitethe possibility that f itself has large dis
repan
y. Indeed, Klau
k proves that IPhas very small re
tangular dis
repan
y under µ. Klau
k goes on to show that this�generalized form of the dis
repan
y method� 
an be used to obtain a lower bound of
Ω(n/ log n) on the quantum (and hen
e 
lassi
al randomized) 
ommuni
ation 
om-plexity of MAJ(x ∧ y) despite the fa
t that it has large dis
repan
y.The main idea in Klau
k's work 
an be abstra
ted in following terms: A fun
tion
f may have high dis
repan
y and still 
orrelate well under some distribution µ witha fun
tion h that has small dis
repan
y under µ. Exhibiting su
h a h, yields lowerbounds on the bounded-error 
ommuni
ation 
omplexity of f .6 The full version of Klau
k's work appears in [Kla07℄.7 In other words, g has a large high-order Fourier 
oe�
ient, i.e. f̂(S) is large.172



This prin
iple was re-expressed, in a more general fashion, in matrix theoreti
terms for the two player quantum 
ommuni
ation model by Razborov [Raz03℄, wherehe 
alled it the �Dis
repan
y Method�. One may dare say, that this matrix theoreti
formulation may have hindered the re
ognition of the wider appli
ability of the un-derlying prin
iple. Sherstov [She08b, Se
. 2.4℄ provides a ni
e reinterpretation ofRazborov's formulation of the Dis
repan
y method and points out the fa
t that thegeneral prin
iple at play is independent of the pre
ise 
ommuni
ation model for twoplayers. Based on this observation by Sherstov, we spe
ialize the Klau
k-RazborovPrin
iple to the multi-party model in [CA08℄ as follows:Lemma 6.18 (Generalized Dis
repan
y Method) Denote X = Y1 × ... × Yk.Let f : X → {−1, 1} and g : X → {−1, 1} be su
h that under some distribution µwe have Corrµ(f, g) ≥ δ. Then
Rǫ

k(f) ≥ log

(
δ + 2ǫ− 1dis
k,µ(g)

)
. (6.23)Proof: Let P be a k-party randomized proto
ol that 
omputes f with advantage ǫand 
ost c. Then for every distribution µ over the inputs, we 
an derive a deter-ministi
 k-player proto
ol P ′ for f that errs only on at most a (1/2 − ǫ) fra
tionof the inputs (w.r.t. µ) and has 
ost c. Take µ to be a distribution satisfying the
orrelation inequality. We know that P ′ partitions the input spa
e into at most 2cmono
hromati
 (w.r.t. P ′) 
ylinder interse
tions. Let C denote this set of 
ylinder
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interse
tions. Then,
δ ≤

∣∣Ex∼µf(x)g(x)
∣∣

=
∣∣∑

x

f(x)g(x)µ(x)
∣∣

≤
∣∣∑

x

P ′(x)g(x)µ(x)
∣∣+
∣∣∑

x

(f(x)− P ′(x))g(x)µ(x)
∣∣.Sin
e P ′ is a 
onstant over every 
ylinder interse
tion S in C, we have

δ ≤
∑

S∈C

∣∣∑

x∈S

P ′(x)g(x)µ(x)
∣∣+
∑

x

∣∣g(x)
∣∣ ·
∣∣f(x)−P ′(x)

∣∣µ(x)

≤
∑

S∈C

∣∣∑

x∈S

g(x)µ(x)
∣∣+
∑

x

∣∣f(x)−P ′(x)
∣∣µ(x)

≤ 2cdis
k,µ(g) + 2(1/2− ǫ).This gives us immediately (6.23).Observe that when f = g, i.e. Corrµ(f, g) = 1, we re
over the 
lassi
al dis
rep-an
y method (Lemma 4.18).6.5.1 Appli
ations to DisjointnessAlthough the �generalized form of the dis
repan
y method� was known to re-sear
hers in quantum 
ommuni
ation 
omplexity sin
e the work of Klau
k [Kla01℄,it was not known if this method 
ould be applied to Disjointness. In fa
t, Razborov[Raz03℄ remarks that even this generalized prin
iple is not appli
able to the Disjoint-ness fun
tion. Sherstov [She08b℄ disproves this remark by designing a novel strategythat allows the appli
ation of this Generalized Dis
repan
y Method to yield stronglower bounds on the 2-party bounded-error quantum 
ommuni
ation 
omplexity of174



Disjointness. A key ingredient in this strategy is a beautiful duality between approx-imability and orthogonality. The intuition is that if a fun
tion is at a large distan
efrom the linear spa
e spanned by 
hara
ters of degree less than d, then its proje
-tion on the dual spa
e spanned by 
hara
ters of degree at least d is large. Morepre
isely, re
all from Se
tion 6.1.1 that the δ-approximation degree of a booleanfun
tion f , denoted by degδ(f), is the degree of the smallest degree real polynomialthat approximates f point-wise within δ.Lemma 6.19 (Sherstov [She08b℄, Shi and Zhu [SZ07℄) Let f : {−1, 1}m → Rbe given with degδ(f) = d ≥ 1. Then there exists g : {−1, 1}m → {−1, 1} and adistribution µ on {−1, 1}m su
h that g is (µ, d)-orthogonal and Corrµ(f, g) > δ.This Approximation/Orthogonality Prin
iple is a 
lassi
al result in fun
tionalanalysis. It has been of interest to resear
hers in 
omputational 
omplexity before8 inother 
ontexts. But to the best of our knowledge, its use in 
ommuni
ation 
om-plexity �rst appears in the independent works of Sherstov [She08b℄ and Shi and Zhu[SZ07℄. We do not prove this lemma but the interested reader 
an look up its shortproof in [She08b, SZ07, Spa08℄ whi
h is based on an appli
ation of linear program-ming duality. In this se
tion, we extend Sherstov's strategy to the multiparty settingusing the Orthogonality-Dis
repan
y Lemma.8 For instan
e, in his work [Spa08℄ Spalek 
redits Buhrman and Szegedy to havedis
overed this prin
iple independently.
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Theorem 6.20 Let f : {0, 1}m → {−1, 1} have δ-approximate degree d. Let n ≥
(22k

(k−1)e
d

)k−1
mk, and f ′ : {0, 1}n → {−1, 1} be su
h that f(z) = f ′(z0n−m). Then

Rǫ
k(G

f ′

k ) ≥ d

2k−1
+ log(δ + 2ǫ− 1). (6.24)Proof: Applying Lemma 6.19 we obtain a fun
tion g and a distribution µ su
hthat Corrµ(f, g) > δ and g is (µ, d)-orthogonal. Thus, applying the Orthogonality-Dis
repan
y Lemma 6.8, we getdis
k,λ

(
F g

k

)
≤ 1

2d/2k−1 (6.25)where λ is pre
isely obtained from µ as stated in Lemma 6.8 and ℓ ≥ 22k
(k−1)em/d.Sin
e n = ℓk−1m, (6.25) holds for n ≥ (22k

(k−1)e
d

)k−1
mk.It 
an be easily veri�ed that Corrλ(F f

k , F
g
k ) = Corrµ(f, g) > δ. Thus, by pluggingthe value of dis
k,λ

(
F g

k

) in (6.23) of the Generalized Dis
repan
y Method, we get
Rǫ

k(F
f
k ) ≥ d

2k−1
+ log(δ + 2ǫ− 1).We observe that the 
ommuni
ation matrix of F f

k embeds as a submatrix in the
ommuni
ation matrix of Gf ′

k . The proof is �nished by noting that a proto
ol forsolving Gf ′

k yields one for Gf
k .In parti
ular, strong lower bounds on the bounded-error randomized multiparty
ommuni
ation 
omplexity of Disjointness follows readily from Theorem 6.20. Thissigni�
antly improves the best earlier lower bound of Ω(log n) due to Tesson [Tes03℄and Beame et.al. [BPSW06℄ for three or more players.
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Corollary 6.21
Rǫ

k(DISJk) = Ω

(
n

1
k+1

22k(k − 1)2k−1

)for any 
onstant ǫ > 0.Proof: Let f = NORm and f ′ = NORn. We know deg1/3(NORm) = Θ(
√
m) byTheorem 6.5. Setting n =

( 22k
(k−1)edeg1/3(NORm)

)k−1
mk, and writing (6.24) in terms of ngives the result for any 
onstant ǫ > 1/6. The bound 
an be made to work for every
onstant ǫ by a standard boosting argument.Re
all that there is a simple non-deterministi
 proto
ol of 
ost O(logn) 
om-puting non-Disjointness, i.e. GOR

k . Thus, Corollary 6.21 provides an expli
it sepa-ration of the 
lass of fun
tions having e�
ient randomized proto
ols with boundederror from the 
lass of fun
tions having e�
ient non-deterministi
 proto
ols, i.e.NPcc
k * BPPcc

k for k < log logn − log log logn. Su
h a separation �rst appeared inthe joint work with A. Ada [CA08℄ and independently in the work of Lee and Shraib-man [LS08℄. David, Pitassi and Viola [DPV08℄ have re
ently pushed our argumentfurther, making elegant use of the probabilisti
 method, to show that su
h a separa-tion 
ontinues to exist for δ logn players for every 
onstant δ < 1. They also providean expli
it fun
tion witnessing their separation by derandomizing their argument.
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6.5.2 Other Symmetri
 Fun
tionsTheorem 6.20 does not immediately provide strong bounds on the 
ommuni
a-tion 
omplexity of Gf
k for every symmetri
 f . For instan
e, if f is the MAJORITYfun
tion then one has to work a little more to derive strong lower bounds9.In this se
tion, using Theorem 6.20 and Paturi's Theorem (Theorem 6.5), weobtain a lower bound on the 
ommuni
ation 
omplexity of Gf

k for ea
h non-trivialsymmetri
 f . Let f : {0, 1}n → {1,−1} be the symmetri
 fun
tion indu
ed froma predi
ate D : {0, 1, . . . , n} → {1,−1}. We denote by GD
k the fun
tion Gf

k . For
t ∈ {0, 1, . . . , n − 1}, de�ne Dt : {0, 1, . . . , n − t} → {1,−1} by Dt(i) = D(i + t).Observe that the 
ommuni
ation 
omplexity of GD

k is at least the 
ommuni
ation
omplexity of GDt
k .Corollary 6.22 Let D : {0, 1, . . . , n} → {1,−1} be any predi
ate with the (1/3)-approximate degree of D, denoted by deg1/3(D), equal to d. Let ℓ0 = ℓ0(D) and

ℓ1 = ℓ1(D). De�ne T : N→ N by
T (n) =

(
n

(22k(k − 1)e/d)k−1

) 1
k

.Then for any 
onstant ǫ > 0,
Rǫ

k(G
D
k ) = Ω

(
Ψ(ℓ0) +

T (ℓ1)

2k−1

)

9 Lower bounds for GMAJ
k 
an be obtained in another way. It is not too di�
ultto see that a k-party proto
ol for GMAJ

k 
an be used to derive a proto
ol for GPARITY
kwith a small blow-up in 
ost. Thus, GMAJ

k is as hard as GIP.178



where,
Ψ(ℓ0) = min

{√
T (n)ℓ0
2k−1

,
T (n− ℓ0)

2k−1

}
.Proof: The �rst thing to note is that the relationship between T (n) and n is exa
tlythe relationship between m and n in Theorem 6.20. This is not a

idental. Indeed,the general idea of our proof is to show that the predi
ate D `embeds' anotherpredi
ate D′1 with the following property: D′1 is de�ned over the set {0, . . . , n1}and there is a predi
ate D1 de�ned over {0, . . . , T (n1)}. Further, we show that

T (n1), n1 and deg1/3(D1) 
an be made to 
orrespond to m,n and d of Theroem 6.20respe
tively. Here, D1 plays the role of D in Theorem 6.20 and D′1 that of D′. Thisallows us to 
on
lude that the 
ommuni
ation 
omplexity of GD′
1

k is high. Thus, GD
khas high 
ommuni
ation 
omplexity as well.We implement the above idea by 
onsidering the following three 
ases. In ea
h
ase, let ℓ0 = ℓ0(D) and ℓ1 = ℓ1(D). Further, let c = log(1/3 + 2ǫ− 1). W.l.o.g., weassume10 that ǫ > 1/3, so that c is a well de�ned 
onstant.Case 1: Suppose ℓ0 ≤ T (n)/2. In this 
aseD′1 is the same asD. LetD1 : {0, 1, . . . , T (n)} →

{1,−1} be su
h that for any z ∈ {0, 1}T (n), we have D1(|z|) = D′1(|z|). By Theo-rem 6.20, the 
omplexity of GD
k is Ω(d/2k−1) where d = deg1/3(D1). By Paturi'sTheorem, deg1/3(D1) ≥

√
T (n)ℓ0(D1) =

√
T (n)ℓ0 and so

Rǫ
k(G

D
k ) ≥ Rǫ

k(G
D′

1
k ) =

√
T (n)ℓ0
2k−1

+ c.10 We 
an always apply boosting later to lift our bounds to any 
onstant ǫ, usingObservation 4.1 in Chapter 4. 179



Case 2: Suppose T (n)/2 < ℓ0 ≤ n/2. In this 
ase D′1 is Dt where t = ℓ0−T (n−ℓ0)/2.Let D1 : {0, 1, . . . , T (n − ℓ0)} → {1,−1} be su
h that D1(|z|) = D′1(|z|). So byTheorem 6.20, the 
omplexity of GD′
1

k is Ω(d/2k−1) where d is the approximationdegree of D1. We know
D1(T (n− ℓ0)/2) = D′1(T (n− ℓ0)/2)

= Dt(T (n− ℓ0)/2)

= D(T (n− ℓ0)/2 + ℓ0 − T (n− ℓ0)/2)

= D(ℓ0)

6= D(ℓ0 − 1) by defn. of ℓ0
= D1(T (n− ℓ0)/2− 1).Hen
e, ℓ0(D1) = T (n−ℓ0)/2. Thus by Paturi's Theorem, deg1/3(D1) ≥

√
T (n− ℓ0)2/2.This implies, as before,

Rǫ
k(G

D
k ) =

T (n− ℓ0)
2k−1

+ c.Case 3: Suppose ℓ0 = 0 and ℓ1 6= 0. Unlike in the �rst two 
ases, we bound theapproximate degree of D1 by estimating ℓ1(D1) in terms of ℓ1. The rest of theargument is similar to the one for Case 2. Consider D′1 = Dt where t = n − ℓ1 −

T (ℓ1)/2. Let D1 : {0, 1, . . . , T (ℓ1)} → {1,−1} be su
h that D1(|z|) = D′1(|z|) =

Dt(|z|). As in Case 2, one veri�es that D1(T (ℓ1)/2) 6= D1(T (ℓ1)/2 + 1). Thus
ℓ1(D1) = T (ℓ1)/2. So, deg1/3(D1) ≥

√
T (ℓ1)2/2. Therefore,

Rǫ
k(G

D
k ) =

T (ℓ1)

2k−1
+ c.
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Combining these three 
ases, we get the desired result.6.6 Lower Bounds by Blo
k-CompositionIn this se
tion, we develop a new lower bound te
hnique extending the re
entwork of Shi and Zhu [SZ07℄. We 
all this the multiparty blo
k-
omposition method.It also yields strong lower bounds of nΩ(1) on the k-party 
ommuni
ation 
omplexityof Disjointness, when k is a 
onstant. But the new bound de
ays mu
h faster with kand therefore provides 
onsiderably weaker bounds for non-
onstant k as 
omparedto the one derived earlier, in Se
tion 6.5.1. The reason we present this te
hnique istwo-fold. First, it is of independent interest as it yields a new proof of strong boundson the Disjointness result. In parti
ular, re
ently Sherstov [She08a℄ remarked that itis not 
lear how to extend the method of Shi and Zhu to the multiparty setting. Ourextension shows that indeed their method 
an be modi�ed and extended for multipleparties in a simple fashion. Se
ond, the te
hnique also appears slightly more generalthan the one presented earlier. It is not 
lear whether in some 
ontext, the se
ondte
hnique may be more 
onvenient to apply.Both te
hniques make use of the same duality between the notions of approxima-bility and orthogonality (Lemma 6.19) and the Generalized Dis
repan
y Method. Infa
t, they are 
losely related and we further dis
uss this relationship in Se
tion 6.6.2.We start with the formal des
ription of the blo
k-
omposition method. Considera real valued fun
tion h : {1,−1}m → R and a boolean fun
tion q : ({1,−1}s)k+1 →

{1,−1}. We naturally view the input spa
e of q as a two dimensional blo
k with
(k+1) rows and s 
olumns and we 
all q the blo
k fun
tion in the ensuing dis
ussion.Consider a boolean matrixA of dimension (k+1)×(ms) that we view as made up ofm181




ontiguous blo
ks, ea
h of dimension (k+1)×s. We de�ne a fun
tion (h�q) over su
hboolean matri
es that evaluates on its input in the following way: it �rst applies q toea
h of the m blo
ks of the matrix to obtain anm-bit boolean string and then applies
h to this string to output its value, i.e. (h�q)(z1, . . . , zm) = h

(
q(z1), . . . , q(zm)

),with ea
h zi ∈ {1,−1}(k+1)s. In this language, fun
tions like GIP and Disjointnessare rewritten as (PARITY�AND) and (NOR�AND) respe
tively, where the innerfun
tion AND a
ts on blo
ks of dimension (k + 1)× 1.Equivalently, in the 
ontext of the k-party 
ommuni
ation problem of evaluating
(h�q), we partition the input matrix A in the obvious way: the (k + 1) rows of thematrix are denoted by x, y1, . . . , yk respe
tively and Player 1 gets x on the forehead,and for 1 ≤ i ≤ k, Player (i+ 1) gets yi on the forehead.We are interested in the question �For a boolean h, what properties of h and q aresu�
ient to make (h�q) have large 
ommuni
ation 
omplexity?�. This question, inthe 
ontext of two-player quantum 
ommuni
ation, was introdu
ed and investigatedin the re
ent work of Shi and Zhu [SZ07℄. They derive tight lower bounds on thetwo-party quantum 
ommuni
ation 
omplexity by using the sophisti
ated ma
hineryof Hahn polynomials and spe
tral analysis. However, we do not use these tools inextending the method to the multiparty setting.6.6.1 Hardness Ampli�
ationLet νx, ν1, . . . , νk be probability distributions over sets Ix, I1, . . . , Ik ⊂ {1,−1}s.Let ν be the produ
t of these distributions and 
onsider a boolean fun
tion q de�nedover blo
ks of dimension (k + 1) × s. Then, de�ne the (k + 1)-dimensional 
ubemeasure of q w.r.t. ν, denoted by Eν,k+1(q), as follows:182



Eν,k+1(q) ≡def Eyi
0,yi

1∼νi

∣∣∣∣Ex∼νx

( ∏

u∈{0,1}k
q(x, y1

u1
, . . . , yk

uk
)

)∣∣∣∣.We say that q is balan
ed under ν if
Ex∼νx;yi∼νi

q(x, y1 . . . , yk) = 0.Before we pro
eed further, let us derive a probability distribution λ over theinputs of a blo
k-
omposed fun
tion (h�g), given any distribution for inputs of hand a distribution ν that leaves q balan
ed.Proposition 6.23 Let µ be any distribution over {0, 1}m. Let q : {1,−1}(k+1)s →

{1,−1} be a blo
k fun
tion that is balan
ed by a distribution ν over its inputs. Then,the fun
tion
λ(z1, . . . , zm) = 2m ×

(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi)is a probability distribution over the set of (k + 1) × (ms) boolean matri
es, whereea
h zi is a blo
k of dimension (k + 1)× s.Proof: This is true be
ause q is balan
ed under ν. More pre
isely,
∑

zi∈{1,−1}(k+1)s:i≤m

λ(z1, . . . , zm) =
∑

zi∈{1,−1}(k+1)s:i≤m

2m×
(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi).This 
an be re-written in the following manner. For any x ∈ {1,−1}m, let xi denoteits ith 
oordinate.
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∑

x∈{1,−1}m
2m

∑

zi∈{1,−1}(k+1)s:q(zi)=xi

µ(x1, . . . , xm)
m∏

i=1

ν(zi)

=
∑

x∈{1,−1}m

[
µ(x1, . . . , xm)2m

m∏

i=1

( ∑

zi∈{1,−1}(k+1)s:q(zi)=xi

ν(zi)

)]
. (6.26)Sin
e q is balan
ed under ν, for ea
h i and x, we have

∑

zi∈{1,−1}(k+1)s:q(zi)=xi

ν(zi) =
1

2
.Substituting this in (6.26), and re
alling that µ is a distribution on {1,−1}m, we get

∑

zi∈{1,−1}(k+1)s:i≤m

λ(z1, . . . , zm) =
∑

x∈{1,−1}m
µ(x1, . . . , xm) = 1.

Let h be (µ, d)-orthogonal for some distribution µ and integer d > 0. Further,let q be balan
ed under a distribution ν su
h that the 
ube measure of q w.r.t ν isnot too large. The following lemma shows that the dis
repan
y of (h�q) is exponen-tially small w.r.t. the distribution λ that is generated out of µ and ν a

ording toProposition 6.23.Lemma 6.24 (Dis
repan
y Ampli�
ation) Let h : {1,−1}m → {1,−1} be a
(µ, d)-orthogonal fun
tion and q : {1,−1}(k+1)s → {1,−1} be a blo
k fun
tion that isbalan
ed under a produ
t distribution ν. If (Eν,k+1(q)

)1/2k

≤ d
8em

, thendis
λ,k+1(h�q) ≤
1

2d
(6.27)
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where, λ is the probability distribution de�ned in the following manner:
λ(z1, . . . , zm) = 2m ×

(
(µ�q)(z1, . . . , zm)

)
×

m∏

i=1

ν(zi). (6.28)Here, ea
h zi is a blo
k of dimension (k + 1)× s.Proof: Re
all from Se
tion 6.1.1 that every real valued-fun
tion over {1,−1}m 
anbe de
omposed, via the Fourier transform, in terms of the monomials χS, with
S ⊆ [m]. The main idea in the proof is the following: De�ne hµ(z1, . . . , zm) =

h(z1, . . . , zm)µ(z1, . . . , zm). Use the Fourier expansion of the fun
tion hµ to de-
ompose the fun
tion (hµ�q) in terms of fun
tions of the form (χS�q). Use thisde
omposition to upper bound the dis
repan
y of (h�q), w.r.t. λ, as the sum ofdis
repan
ies of ea
h (χS�q), w.r.t. to the distribution that is an m-fold produ
t of
ν. Finally, using the 
ube measure, we show that the dis
repan
y of ea
h (χS�q)de
ays rapidly with the size of the set S.Forthwith are the details. Let τ be the 
hara
teristi
 fun
tion of any (k+1)-wise
ylinder interse
tion. Then, using the de�nition of λ and dis
repan
y one getsdis
λ,τ

(
h�q

)
= 2m

∣∣∣∣
∑

z=(z1,...,zm)

(
(hµ)�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣.Applying the (µ, d)-orthogonality of h and the triangle inequality, the RHS abovesimpli�es to
2m

∣∣∣∣
∑

|S|≥d:S⊆[m]

ĥµ(S)
∑

z=(z1,...,zm)

(
χS�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣ ≤

2m
∑

|S|≥d

∣∣ĥµ(S)
∣∣
∣∣∣∣

∑

z=(z1,...,zm)

(
χS�q

)
(z)τ(z)

m∏

i=1

ν(zi)

∣∣∣∣.185



It is not hard to verify that, as h is boolean valued and µ is a probabilitydistribution, ĥµ(S) ≤ 1/2m for any S. Using this, the above further simpli�es todis
λ,τ

(
h�q

)
≤
∑

|S|≥d

∣∣∣∣Ezi∼ν

(
χS�q

)
(z)τ(z)

∣∣∣∣.As τ is an arbitrary 
ylinder interse
tion,dis
λ

(
h�q

)
≤
∑

|S|≥d

dis
ν

(
χS�q

)
, (6.29)where ν is simply the m-fold produ
t of ν. This 
ompletes the �rst part of theproof. For the se
ond part, we readily estimate the dis
repan
y of (χS�q) below interms of Eν,k+1(q). Hen
eforth, we abuse notation and overload S to also mean the
hara
teristi
 ve
tor of the set S.Proposition 6.25 For any S ∈ {0, 1}m,dis
ν,k+1

(
χS�q

)
≤
(
Eν,k+1(q)

)|S|/2k

. (6.30)Proof: Before we plunge into the 
al
ulations, we set some notation. Re
all that
x, y1, . . . , yk represent the (k + 1) rows of the input matrix of (h�q). Let x[i] and
y1[i], . . . , yk[i] represent respe
tively the portion of these rows that belongs to the ithblo
k zi of the input matrix, for 1 ≤ i ≤ m. In other words, denoting the jth row ofthe ith blo
k naturally by zi[j], x[i] = zi[1] and yj[i] = zi[j + 1], for 1 ≤ i ≤ m and
1 ≤ j ≤ k.Re
all the upper bound on dis
repan
y provided by the 
ube measure throughLemma 6.6 in Se
tion 6.1.2. Using the de�nition of ν and ν, and applying equation
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(6.2), we pro
eed as follows:
(dis
ν,k+1

(
χS�q

))2k

≤ Eyi
0,yi

1∼(νi)m:1≤i≤k

∣∣∣∣Ex∼(νx)m

∏

u∈{0,1}k

(
χS�q

)(
x, y1

u1
, . . . , yk

uk

)∣∣∣∣

= Eyi
0,yi

1∼νi:1≤i≤k

∣∣∣∣
∏

j:Sj=1

Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣

= Eyi
0,yi

1∼νi

∏

j:Sj=1

∣∣∣∣Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣

=
∏

j:Sj=1

Eyi
0[j],yi

1[j]∼νi:1≤i≤k

∣∣∣∣Ex[j]∼νx

[ ∏

u∈{0,1}k
q
(
x[j], y1

u1
[j], . . . , yk

uk
[j]
)]∣∣∣∣. (6.31)Applying the de�nition of Eν,k+1 to equation (6.31) immediately yields equation(6.30).Below, we 
ombine Proposition 6.25 and Equation (6.29). Further we drop thesubs
ript of k + 1 from Eν,k+1 to avoid 
lutter.dis
λ

(
h�q

)
≤

m∑

j=d

(
m

j

)(
Eν(q)

)j/2k

.Substituting the identity (m
j

)
≤
(

em
j

)j, we getdis
λ

(
h�q

)
≤

m∑

j=d

(
em

j

(
Eν(q)

)1/2k
)j

,when
e equation (6.27) readily follows under the 
ondition (Eν(q)
)1/2k

≤ d
8em

imposedby Lemma 6.24. 187



6.6.2 Appli
ation to DisjointnessWe show that the masking s
heme that we 
reated in Se
tion 6.2.1 
an be viewedas a spe
ial 
ase of Blo
k Composition. Consider the following k-wise indexingfun
tion: INk : X × Y 1 × · · · × Y k → {1,−1} where X = {1,−1}ℓk is the spa
eof k-dimensional boolean arrays with ea
h dimension of size ℓ i.e. an instan
e of
X 
ontains ℓk boolean elements. Ea
h Y i = [ℓ] is the spa
e of pointers in the ithdimension of X. On a given input instan
e (x, y1, . . . , yk), INk outputs the value ofthe element of x jointly indexed by the k pointer variables. The starting point is toobserve that the 
ommuni
ation tensor of (NOR�INk) is embedded as a sub-tensorof the (k + 1)-wise Disjointness fun
tion. Thus, lower bounding the 
ommuni
ation
omplexity of (NOR�INk) is su�
ient for our appli
ation. Here, we show that theDis
repan
y Ampli�
ation Lemma yields interesting lower bounds for (NOR�INk)by 
hoosing the right blo
k size.As before, we use the Generalized Dis
repan
y Method. From Paturi's Theorem,we re
all that deg1/3(NOR) = θ(

√
m). We use the Approximation/OrthogonalityPrin
iple of Lemma 6.19 to derive a fun
tion g and a distribution µ su
h that g is

(µ, d)-orthogonal. Further, Corrµ(OR, g) is at least 1/3. The Generalized Dis
rep-an
y Method pres
ribes us to upper bound the dis
repan
y of (g�INk) to lowerbound the 
ommuni
ation 
omplexity of (NOR�INk). To that e�e
t, let U be theuniform distribution over the spa
e of inputs to INk. De�ne λ just as given byequation (6.28) in the Dis
repan
y Ampli�
ation Lemma with ν = U . Note that
U renders INk balan
ed. In order to apply our Ampli�
ation Lemma, we estimate
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EU ,k+1

(INk

).
EU ,k+1(IN) = Eyi

0,yi
1∼µi

∣∣∣∣Ex

( ∏

u∈{0,1}k
INk(x, y

1
u1
, . . . , yk

uk
)

)∣∣∣∣.It is not hard to verify that the inner expe
tation over x is one whenever yi
0 = yi

1 forsome i and is zero otherwise. Thus, applying the union bound,
EU ,k+1(INk) ≤

k

ℓ
.Observe that the parameter s, whi
h is the length of a blo
k in the Ampli�
ationLemma, is set to ℓk for INk. Substituting s = ℓk, one gets EU ,k+1(IN) = k

s1/k . In orderto apply the Dis
repan
y Ampli�
ation Lemma, we require
(

k

s1/k

)1/2k

≤ d

8em
,where d is the approximation degree of the outer fun
tion g. The above is satis�edby setting

s = kk

(
8em

d

)k2k

.Plugging in d = θ(
√
m) for g and noting that (g�INk) in this 
ase is over n = sm
olumns, gives us the bound below:dis
λ,k+1

(
g�INk

)
= O

(
2−n

1
k2k+2

)
.It 
an be easily veri�ed that Corrλ(NOR�IN, g�IN) = Corrµ(NOR, g) ≥ 1/3.Hen
e, equation (6.23) of the Generalized Dis
repan
y Method �nally yields:

R
1/3
k+1

(DISJ) ≥ R
1/3
k+1

(OR�IN) = Ω

(
n

1

k2k+2

)
. (6.32)189



Note that for 
onstant k, we obtain a bound of nΩ(1), that is exponentially betterthan the log n bound that was the best known bound for Disjointness until veryre
ently. However, it is mu
h weaker than the bound obtained earlier applying theOrthogonality-Dis
repan
y Lemma. This is despite the fa
t that in both 
ases weuse identi
al indexing fun
tion over blo
ks. The reason for it is that in establishingthe Dis
repan
y Ampli�
ation Lemma, we are heavily using the triangle inequalitywithout assuming anything about our inside fun
tion on blo
ks. The 
al
ulation inOrthogonality-Dis
repan
y Lemma, on the other hand, pro
eeds mu
h more 
arefullytaking into a

ount the very spe
ial stru
ture of the indexing fun
tion.6.7 Con
lusionWe have shown that depth-three AC0 
ir
uits 
ontain fun
tions that are hardfor k-player randomized proto
ols in a very strong sense. They need to 
ommuni
atesuperpolylogarithmi
 number of bits even when they are required to gain a mereinverse-quasipolynomial advantage over random guessing and k = o(log log n). Thisresult, building on the work of Sherstov [She07℄, exploits a 
onne
tion between votingdegree of a boolean fun
tion f and the dis
repan
y of another fun
tion F f
k that masks

f . In the next 
hapter, we derive important appli
ations of this result to 
ir
uit
omplexity.Further, we have shown that multiparty randomized proto
ols 
annot 
omputee�
iently fun
tions in depth-two AC0, when they are required to a
hieve boundedadvantage over random guessing. This has settled a major open question by showingthat Disjointness has nΩ(1) k-party 
omplexity in the bounded error model, if k is a
190




onstant. We prove this result in two ways. The �rst is by extending the pattern-matrix method of Sherstov [She08b℄ for two-player quantum proto
ols. The se
ond isby extending the blo
k-
omposition method of Shi and Zhu [SZ07℄, also designed fortwo-player quantum proto
ols. Both our extensions use the beautiful duality betweenthe notion of approximability of boolean fun
tions by polynomials over reals and thenotion of a polynomial being orthogonal to low-order parities. This duality wasintrodu
ed in the setting of 
ommuni
ation 
omplexity by [She08b, SZ07℄. Finally,we remark that our extension of the blo
k-
omposition method to the multipartysetting, answers a re
ent question raised by Sherstov [She08a℄.Beame, Pitassi and Segerlind [BPS05℄ have shown that strong lower bounds onthe randomized multiparty 
ommuni
ation 
omplexity of Disjointness results in newseparation of proof systems. In this regard, our bounds yield su
h separations thatare not yet known to follow from other te
hniques. Our bounds on Disjointness alsoresults in the �rst expli
it separation of 
ommuni
ation 
omplexity 
lasses BPPcc
kand NPcc

k for k = o(log log n). This separation has been re
ently improved by David,Pitassi and Viola [DPV08℄, building upon our work.An interesting dire
tion for future resear
h is to answer the following two ques-tions: (a)Can we �nd a fun
tion in AC0 that has no e�
ient proto
ol of boundedadvantage for δ logn players for some 
onstant δ? (b)Can we �nd su
h a fun
tion ifwe require only inverse-quasipolynomial advantage from proto
ols? The last questionif answered in the positive will have important 
onsequen
es for depth-three 
ir
uitsas the dis
ussion in the next 
hapter shows. Very re
ently, Beame and Huynh-Ngo
[BHN08℄ have made progress towards answering the �rst question. They show a191



fun
tion in AC0 that has no e�
ient randomized bounded-error proto
ols for δ√log nplayers, where δ is a 
onstant less than 1.
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CHAPTER 7Some Consequen
es for Depth-Three Cir
uitsIn this 
hapter, we derive some results on depth-three 
ir
uits that follow eitherdire
tly from results in the last 
hapter on multiparty 
ommuni
ation or use verysimilar ideas.We re
all that understanding the 
omputational power of depth-three 
ir
uitsmade of MAJORITY and MOD 
ounting gates remains open. In parti
ular, we donot know if linear size depth-three 
ir
uits 
omprising only MODm gates or 
ompris-ing only MAJ gates 
an 
ompute every fun
tion in NP. Indeed, proving superlinearlower bounds on the size of su
h 
ir
uits for 
omputing any expli
it fun
tion is oneof the frontiers in the theory of lower bounds. Given this situation, it is pertinent toask what fun
tions are 
omputable by depth-three 
ir
uits in a non-trivial way.A 
lassi
al result of Allender [All89℄ shows that all fun
tions 
omputable byquasipolynomial size AC0 
ir
uits 
an be 
omputed by 
ir
uits of depth-three andquasipolynomial size and of the following kind: MAJ ◦ MAJ ◦ MAJ(log n)O(1), i.e.
ir
uits of depth three having only MAJORITY gates in whi
h the gates at thebase layer are restri
ted to have polylogarithmi
 fan-in. This result follows almostdire
tly1 from the result, by Razborov and Smolensky, on the approximability of1 Allender showed a uniform version of this theorem, i.e. every uniform AC0 
ir
uitof quasipolynomial size 
an be simulated by a uniform depth-three 
ir
uit with MAJ193



AC0 
ir
uits by low degree polynomials over �nite �elds. More surprisingly, thework of Yao [Yao90℄ and Beigel-Tarui [BT94℄, making use of ideas in the proof ofToda's Theorem [Tod91℄, show that su
h 
ir
uits are powerful enough to simulate thestri
tly bigger 
lass qACC0, i.e. the 
lass of fun
tions that are 
omputable by 
ir
uitsof 
onstant depth and quasipolynomial size that use MODm gates in addition to ANDand OR gates, for some �xed integer m > 1. The following is intriguing: althoughthe simulation requires these bottom fan-in restri
ted 
ir
uits to be quasipolynomialsize, we 
annot rule out the mu
h stronger (and stranger) possibility that linear sizesu�
es to simulate the whole of NP.Håstad and Goldmann [HG91℄ showed that if su
h depth three 
ir
uits were fur-ther restri
ted to have sub-logarithmi
 fan-in at the bottom layer, then they 
annotsimulate ACC0 in sub-exponential size. This left open the question whether su
hrestri
ted 
ir
uits, even when they have 
onstant fan-in at the bottom, 
ould simu-late AC0 in quasi-polynomial size. In fa
t until very re
ently, no super-polynomiallower bounds were known on the size of depth-two 
ir
uits of type MAJ ◦MAJ forsimulating AC0. Sherstov [She07℄ re
ently resolved the depth two question in thenegative by analyzing the two-party randomized 
ommuni
ation 
omplexity of anappropriately 
hosen fun
tion in AC0. Håstad and Goldman, on the other hand,invoked the result of Babai, Nisan and Szegedy [BNS92℄ for the stronger multipartygates of quasipolynomial size. This uniform version is not known to follow from theRazborov-Smolensky argument. Allender used ideas from Toda's theorem to obtainhis result. 194



model to show their lower bound on the size of depth three 
ir
uits 
omputing thegeneralized inner produ
t fun
tion.We extended Sherstov's [She07℄ work in the last 
hapter to the multiparty model.As a simple 
onsequen
e of that extension, we prove the following result in this
hapter:Theorem 7.1 Cir
uits having a MAJ gate at the output, a middle layer of gates
omputing arbitrary symmetri
 fun
tions and a base layer of gates 
omputing anyfun
tions of k input variables, i.e. of type MAJ ◦ SYMM ◦ ANYk, need size at leastexp(Ω

(
n1/(2k+3)

(22k ek)k

)) to simulate depth-three AC0 of linear size. Spe
i�
ally, if k is a
onstant (resp. o(log logn)) then su
h 
ir
uits 
annot simulate AC0 if the top fan-inis subexponential (resp. quasipolynomial).In parti
ular, the above shows that Allender's 
lassi
 
onstru
tion to simulateAC0 is reasonably 
lose to being optimal. In fa
t, Allender's original 
onstru
tionshows that qpoly size 
ir
uits of type MAJ ◦ MODm ◦ AND(log n)O(1) 
an simulateACC0[pr] (i.e. 
ir
uits with MODpr gates in addition to AND/OR gates), for everyprime p that divides m and any �xed r. A long line of resear
h (see for example[CGT96, Gre99, Gre04, AB01℄) seeks to show that su
h depth-three 
ir
uits 
annotsimulate ACC0 in quasipoly size. On the other hand, it is 
ommonly believed thatsu
h 
ir
uits 
annot even 
ompute MODq, if m, q are 
o-prime.Re
all, from Se
tion 2.1.4, that the Dis
riminator Lemma implies that obtainingan exponentially small upper bound on the 
orrelation between a fun
tion f and anyboolean fun
tion that is represented by a polynomial of poly-logarithmi
 degree over
Zm, is enough to prove that f 
annot be 
omputed in subexponential size by su
h195



depth-three 
ir
uits. It is widely 
onje
tured that MODq has small 
orrelation withfun
tions represented by low degree polynomials over Zm, if m and q are 
o-prime.However for a long time, no good estimates were available even for the 
orrelationbetween general quadrati
 polynomials over Zm and MODq. This state of a�airs hasbeen signi�
antly improved by the breakthrough work of Bourgain [Bou05℄ and Greenet.al. [GRS05℄, although the original problem of separating the 
lass of fun
tions
omputed by 
ir
uits MAJ ◦MODm ◦ AND(log n)O(1) of polynomial size from ACC0remains wide open. Note that this is unresolved even when m is a prime and thedepth-three 
ir
uits are of linear size.In the se
ond part of this 
hapter, we simplify Bourgain's method [Bou05,GRS05℄ of estimating the 
orrelation between polynomials of degree d over Zm andMODq when (m, q) = 1. We argue that the notion of dis
repan
y, suitably modi�ed,
an be used 
onveniently to obtain this estimate. This approa
h also points out thesimilarities between the te
hniques used for estimating 
ylindri
al dis
repan
y in the
ommuni
ation setting and the te
hniques used for obtaining bounds on 
orrelation.Additionally, our estimates for 
orrelation are slightly better than previous estimatesof [Bou05, GRS05℄.Applying the Dis
riminator Lemma from Se
tion 2.1.4, we obtain the following:Theorem 7.2 Any depth-three 
ir
uit of type MAJ ◦ MODm ◦ ANYk requires sizeexp(Ω(n/(m2m−1)d)
) to 
ompute MODq fun
tion, if m, q are 
o-prime.For the spe
ial 
ase of m = 2, this mat
hes the re
ent bounds obtained by Violaand Wigderson [VW07a℄. It is not known if te
hniques of [VW07a℄, based on Gowersnorm, 
an be extended to all m. 196



7.1 Simulating AC0 by Depth-Three Cir
uitsRazborov and Smolensky showed that ACC0[pk] 
ir
uits 
an be well-approximatedby low degree polynomials over Zpk . Let us re
all, from Se
tion 2.1.3, their 
hara
-terization of these 
ir
uits:Lemma 7.3 (Restatement of Theorem 2.17) Let p be any �xed prime. Forea
h 0 < ǫ < 1 and for every 
ir
uit C in ACC0[pk] of depth d and size s, there existsa distribution UC over polynomials over Zp of degree at most ((pk − 1)(log(s/ǫ))
)d ,su
h that for ea
h input x to C, PrP∼UC

[P (x) 6= C(x)] ≤ ǫ.Fix ǫ in the above 
hara
terization to be su�
iently smaller than 1/2. If wepi
k t polynomials independently and a

ording to distribution UC , then we expe
t
ǫt of them to evaluate di�erently than the 
ir
uit C on any �xed input x ∈ {0, 1}n.The probability that the number of su
h erring polynomials ex
eeds 1

2
t (in this 
asethey deviate by a lot from the expe
ted number) is very small if the number ofpolynomials t is suitably large. Indeed, it is not hard to verify, using the Cherno�bound, that there exists a 
onstant cǫ depending on ǫ alone su
h that if we pi
k

t = cǫn polynomials at random, then for any given x the probability that morethan half of them err on a �xed input is less that 2−n. Taking a union bound, theprobability that they err on at least one input is less than one. Noting that everypolynomial of degree d over Zp 
an be evaluated by a depth-two 
ir
uit of typeMODp ◦ANDd of size O(nd), the probabilisti
 method implies the following:Theorem 7.4 A fun
tion 
omputed by any ACC0[pk] 
ir
uit of size s and depth d
an be also 
omputed by a depth-three 
ir
uit MAJ ◦MODp ◦ ANDt of size O(nt+1),where t = O((log s)d). The top fan-in of su
h a depth-three 
ir
uit is merely linear.197



Note that, by 
ontrast, Theorem 7.1 says that if the bottom fan-in is restri
tedto o(log log n), then the top fan-in of depth-three 
ir
uits itself needs to be super-quasipolynomial to simulate AC0.7.2 From Communi
ation to Cir
uitsIn this se
tion, we derive Theorem 7.1 from our results on multiparty 
ommu-ni
ation in the last 
hapter. In order to do so, we re
all an established 
onne
tionbetween randomized 
ommuni
ation 
omplexity of a fun
tion f and the size of depth-three 
ir
uits needed to 
ompute f .Fa
t 7.5 (see [HG91℄) If f is 
omputed by a 
ir
uit of type MAJ◦SYMM◦ANYk,of size s, then R1/2s
k+1 (f) ≤ k log s.Proof: Let C1, . . . , Ct, t ≤ s, be the sub
ir
uits feeding into the output MAJ gatein the 
ir
uit C for 
omputing f . The (k + 1)-player proto
ol �rst �ips a set of
oins to randomly sele
t i ∈ {1, . . . , s}. Then it outputs the value of Ci on theinput instan
e. By the de�nition of a MAJ gate, it is easy to verify that the errorprobability is bounded by (1/2− 1/2s).The proof is 
ompleted by showing that ea
h Ci 
an be evaluated by 
ommu-ni
ating at most k. log s bits. The key thing to note is that every ANYk gate atthe base of Ci 
an be evaluated by at least one of the k + 1 players with no 
om-muni
ation. The players agree beforehand on the set of base gates that ea
h playerevaluates. Sin
e the output gate of Ci 
omputes a symmetri
 fun
tion, the (k+1)-thplayer 
an determine the value of Ci, on
e the remaining players send the number
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of base gates that they respe
tively see evaluating to 1. This 
learly takes at most
k log s bits of 
ommuni
ation2.Armed with this observation, we are ready to prove our main theorem showingthat AC0 does not have e�
ient simulation by depth-three 
ir
uits with restri
tedbottom fan-in. For this, re
all the Minsky-Papert fun
tion, denoted by MP, de�nedas MP(x) = ∨t

i=1 ∧4t2

j=1 xi,j. This is easily seen to be 
omputable by linear depth-twoAC0. Using the masking s
heme de�ned in Se
tion 6.2.1, we 
onsider the (k + 1)-wise masked Minsky-Papert fun
tion FMP
k+1. This masked fun
tion, using Fa
t 6.16,
an be 
omputed in depth-three and linear size by AC0 
ir
uits. On the otherhand, Corollary 6.14 (whi
h is a 
orollary to the Multiparty Degree-Dis
repan
yLemma), says that it has large randomized 
ommuni
ation 
omplexity even whenthe advantage over random guessing is small. We have re
alled all the ne
essary fa
tsto �nish o� the short formal argument proving our main theorem below.Proof:[Of Theorem 7.1℄ Let s be the size of any depth-three 
ir
uit of bottom fan-in

k 
omputing FMP
k+1. Then applying Fa
t 7.5 and Corollary 6.14, we get
k log s ≥ R

1/2s
k+1

(
FMP

k+1

)
≥ Ω

(
n

1
2k+3

(
22k+1/(2k+3)2ek

)k + log
1

2s

)
.This immediately yields our theorem.2 It is worthwhile to note that this proto
ol is simultaneous.
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7.3 Polynomial Dis
repan
yIn this se
tion, we show that boolean fun
tions represented by low degree poly-nomials over Zm do not 
orrelate well with MODq, if m, q are 
o-prime. For this, wede�ne the notion of polynomial dis
repan
y of a fun
tion.Let P be any multilinear polynomial of degree d over Zm in n variables. Let
Lq be the linear polynomial x1 + · · · + xn evaluated over Zq. Re
all that eq(k)denotes exp(2πik/q), where i is the square-root of −1. Further, let f : {0, 1}n → Zq.Consider a distribution µ su
h that f is almost balan
ed under µ, i.e. Prx[f(x) =

b] = 1/q+2−Ω(n). For example, Lq is almost balan
ed under the uniform distributionfor every q. Let 1P (x)≡a denote the 
hara
teristi
 ve
tor of the set of those points ofthe 
ube where polynomial P evaluates to a in Zm. We de�ne the mod-m polynomialdis
repan
y of f w.r.t. P and a ∈ Zm, b ∈ Zq−{0} under µ, denoted by Pdis
P,a,b
µ,m (f),to be the following: Pdis
P,a,b

µ,m (f) =

∣∣∣∣Ex∼µeq

(
bf(x)

)
· 1P (x)≡a

∣∣∣∣. (7.1)Note that if f has zero dis
repan
y, then f evaluates to ea
h element of Zq with equalprobability over the set of points where P evaluates to a. Intuitively, the higher thedis
repan
y of f , the more skewed is the behavior of f over the set 1P (x)≡a.It is interesting to 
ompare the above notion of polynomial dis
repan
y anddis
repan
y of 
ylinder interse
tions as de�ned by (4.4) in Chapter 4. Note that in(4.4) f is assumed to be 1/− 1 valued. Noting this, we remark that the two notionsare extremely similar and this similarity be
omes even 
learer if we assume q = 2 in200



(7.1). In this regard, the degree d of the polynomial has the same role as that of theparameter k in a k-wise 
ylinder interse
tion. Further, the role played by polynomialdis
repan
y in bounding the 
orrelation of a polynomial with a boolean fun
tion isvery similar to the role played by dis
repan
y of 
ylinder interse
tions in boundingthe distributional 
ommuni
ation 
omplexity of a boolean fun
tion.The Mod-m, degree-d Polynomial Dis
repan
y of f under µ, denoted by Pdis
d,µ,m(f),is simply max{Pdis
P,a,b
µ,m (f)|deg(P ) = d, a ∈ Zm b ∈ Zq}. In this 
hapter, the defaultdistribution is uniform. Hen
eforth, we drop the subs
ript denoting the distributionexpli
itly.Our main te
hni
al lemma, in this se
tion, is the following :Lemma 7.6 (Polynomial Dis
repan
y Lemma) Let m, q > 1 be integers thatare 
o-prime and d ≥ 1. Then, there exists a 
onstant α = α(m, q) , su
h that thefollowing holds: Pdis
d,m(Lq) ≤ exp(− αn

(m2m−1)d

)
. (7.2)In words, (7.2) shows that P−1(a), for ea
h a, looks uniform to a MODq 
ounteri.e. every L−1

q (b) is almost equally represented in the set, provided the size of theset is large 
ompared to the size of the 
ube. We identify the similarities betweenthe 
al
ulation of polynomial dis
repan
y of the Lq fun
tion and the method usedby [BNS92℄ to estimate the 
ylindri
al dis
repan
y for the generalized inner produ
tfun
tion. In both estimates, the key te
hni
al ingredient is to raise the sum inquestion to its appropriate power.
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This easily leads to an upper bound of exp(−Ω(n/(m2m−1)d)) on 
orrelationbetween the MODq fun
tion and fun
tions represented by polynomials of degree dover Zm. In parti
ular, this implies the bound of exp(−Ω(n/4d)) for the spe
ial
ase of m = 2 that was �rst reported in the re
ent work of [VW07a℄. Re
all theelementary identity for roots of unity: ∑m−1
a=0 em(ay) = 1 if y is a multiple of m andis zero otherwise. We start by re-writing, using 
omplex roots of unity, the quantityPdis
P,a,b

m (Lq) for any polynomial P over Zm and for any a ∈ Zm, b ∈ Zq as follows:Pdis
P,a,b
m (Lq) =

∣∣∣∣Ex

[(
1

m

m−1∑

α=0

em

(
α(P (x)− a)

))
eq

(
b(x1 + · · ·+ xn)

)]∣∣∣∣. (7.3)Let,
Sm,q

n (α, b, P ) = Ex

[
em(αP (x)) · eq

(
b(x1 + · · ·+ xn)

)]
. (7.4)Then, Pdis
P,a,b

m (Lq) ≤
1

m

∑

α∈[m]

∣∣Sm,q
n (α, b, P )

∣∣. (7.5)It is simple to verify that the Polynomial Dis
repan
y Lemma gets establishedby the bound on |Sm,q
n (α, b, P )| provided below.Lemma 7.7 For ea
h pair of 
o-prime integers m, q > 1 there exists a 
onstant

β = β(q) su
h that for every polynomial P of degree d > 0 over Zm and numbers
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α ∈ [m], b ∈ [q]− {0}, the following holds :
|Sm,q

n (α, b, P )| ≤ exp(− βn

(m2m−1)d

)
. (7.6)Before we begin our formal 
al
ulations, we remind the reader that a slightly weakerestimate of |Sm,q

n (α, b, P )| was �rst obtained in [Bou05, GRS05℄. The 
ase when Pis a linear polynomial was essentially dealt with in [CGT96℄.Observe that the quantity Sm,q
n , de�ned in (7.4), looks very similar to the sumthat was obtained in Babai, Nisan and Szegedy [BNS92℄ to 
al
ulate the dis
repan
yof GIP. There, they were interested in bounding dis
repan
y of GIP w.r.t. k-
ylinderinterse
tions. Here, we are interested in bounding the dis
repan
y of Lq w.r.t. toa set that is the image of a polynomial. The key idea, introdu
ed in [BNS92℄, isthat squaring the sum is e�e
tive in dealing with 
ylinder interse
tions. This issomething that we adapted to our proof of the Degree-Dis
repan
y Lemma in theprevious 
hapter. Here, the analogue of the BNS tri
k will be to raise the sum in(7.4) to its mth power.In order to further explain the intuition behind our proof of Lemma 7.7, weintrodu
e some de�nitions and notations. Let f : {0, 1}n → Zm be any fun
tion.Consider any set I ⊆ [n]. Note that ea
h binary ve
tor v of length |I| 
an bethought of as a partial assignment to the input variables of f by assigning v to thevariables in I in a natural way. Let f I(v) be the subfun
tion of f on variables notindexed in I indu
ed by the partial assignment v to variables indexed in I. Forany sequen
e Y = {y1, . . . , yt} having t boolean ve
tors from {0, 1}n, let fY be thefun
tion de�ned by fY (x) = f(x) +
∑t

i=1 f(x ⊕ yi), where the sum is taken in Zm.203



Let I[Y ] ⊆ [n] be the set of those indi
es on whi
h every ve
tor in Y is zero and J [Y ]be just the 
omplement of I[Y ]. Then, the following observation will be very usefulin our 
al
ulation :Observation 7.8 Let P be a polynomial of degree d in n variables over Zm forany m > 1. Then, for ea
h sequen
e Y of (m − 1) boolean ve
tors in {0, 1}n, thepolynomial P J [Y ](v)
Y is a polynomial of degree (d− 1) in variables from I[Y ], for ea
hve
tor v ∈ {0, 1}|J [Y ]| .A point worth mentioning is that, PY behaves almost like a dis
rete derivative of thepolynomial3 P .Proof Sket
h:[of Lemma 7.7℄ We drop the supers
ript from Sm,q

n to avoid 
lutter inthe following dis
ussion. We indu
e on the degree d of the polynomial. Our Indu
tiveHypothesis is that there exists a positive real 
onstant µd−1 < 1 su
h that for allpolynomialsR of degree at most d−1 and for all n ≥ 0 we have |Sn(α, b, R)| ≤ 2nµn
d−1.The base 
ase of d = 0 is essentially dealt with in Chapter 3, Se
tion 3.2.4. Notethat µ0 depends only on q. Our indu
tive step yields a relationship between µd−1and µd that also gives us our desired expli
it bound of (7.6). As in [Bou05, GRS05℄,we raise Sn to its mth power. Our point of departure from the earlier te
hniques, isto write (Sn)m in a di�erent way.3 In the 
ase of m = 2, the notion of a dis
rete derivative appears in several works(see for example [GT05, Sam07℄).
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(Sn)m =Ey1,...,ym−1Ex

[
em

(
P (x) +

m−1∑

j=1

P (x⊕ yj)

)

× eq

( n∑

i=1

xi +
m−1∑

k=1

n∑

i=1

(xi ⊕ yk
i )

)] (7.7)Let Y be the sequen
e of lengthm−1 formed by a given set of ve
tors y1, . . . , ym−1.We denote by u and v respe
tively the proje
tion of x to I[Y ] and J [Y ]. Let nI and
nJ be the 
ardinality of I[Y ] and J [Y ] (note that nI +nJ = n) . Then, one 
an verify

(7.7) = Ey1,...,ym−1Ev

[
em

(
Qy1,...,ym−1

(v)
)
eq(nJ)Euem

(
P

I[Y ](v)
Y (u)

)
eq

(
m

nI∑

i=1

ui

)] (7.8)where Qy1,...,ym−1 is some polynomial that is determined by y1, . . . , ym−1 and polyno-mial P .The key thing to note is that Observation 7.8 implies that P I[Y ](v)
Y is a polynomialof degree at most d−1 over u for every sequen
e Y = y1, . . . , ym−1 and every ve
tor v.Hen
e, the inside sum of (7.8) over the variable u 
an be estimated using our indu
tivehypothesis. Note that raising to the mth power in (7.7) has a
hieved a degreeredu
tion of the polynomial in a manner that is very reminis
ent of how [BNS92℄does dimension redu
tion of 
ylinder interse
tions in the proof of their Lemma 2.5.The rest of the 
al
ulation pro
eeds exa
tly as in Green et. al. [GRS05℄, whi
hagain is very similar to the series of �nal steps in the proof of Lemma 2.5 in [BNS92℄.We repeat them for the sake of self-
ontainment.205



Using the triangle inequality, the binomial theorem and noting that the numberof sequen
es Y for whi
h |IY | = k is exa
tly (n
k

)
(2m−1 − 1)n−k, we get

|Sn|m ≤
n∑

k=0

(
n

k

)
(2m−1 − 1)n−k2n−k2kµk

d−1 = 2nm

(
1− 1− µd−1

2m−1

)n

. (7.9)Taking the mth root of both sides of (7.9), using the inequality (1 − x)1/m ≤

1− x/m if 0 ≤ x < 1 and m > 1 after rearranging, we obtain
1− µd ≥

1− µd−1

m2m−1
≥ 1− µ0(

m2m−1
)d . (7.10)Substituting β = 1 − µ0, one gets µd ≤ exp( − β
(m2m−1)d

). This immediatelyyields (7.6) in Lemma 7.7.Consider A = L−1
q (1) and B = L−1

q (0). For any a ∈ Zm and any polynomial Pover Zm, let P−1(a) be the subset of the 
ube where P evaluates to a. Then usingthe estimate on the mod-m polynomial dis
repan
y of Lq, the following uniformityLemma gets easily established.Lemma 7.9 (Polynomial Uniformity Lemma) For any polynomial P of degree
d over Zm, a ∈ Zm and b ∈ {0, . . . , q − 1}, the following holds:
∣∣∣∣Pr

x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
− 1

q
Pr
x

[
P (x) ≡ a

]∣∣∣∣ ≤
q − 1

q
exp(− βn

(m2m−1)d

)
.Proof:

Pr
x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
= Ex

[(
1

q

q−1∑

β=0

eq

(
β(x1 + · · ·+ xn − b)

))
· 1P (x)≡a

]
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Expanding the sum inside the �rst multipli
and and treating the 
ase of β = 0separately, the RHS above simpli�es to the following:
1

q
Ex

[
1P (x)≡a

]
+

1

q

∑

β 6=0

eq(−βb)Ex

[
eq

(
βLq

)
· 1P (x)≡a

]
.Identifying the �rst term above as just 1

q
Prx[P (x) ≡ a], we get the following

∣∣∣∣Pr
x

[
P (x) ≡ a ∧ x ∈Mn,q(b)

]
− 1

q
Pr
x

[
P (x) ≡ a

]∣∣∣∣ ≤
1

q

∑

β 6=0

Pdis
P,a,β
m

(
Lq

)
.Plugging in the estimate from the Polynomial Dis
repan
y Lemma �nishes the proof.Choose A = L−1

q (1) and B = L−1
q (0). The proof of Theorem 7.2 follows quiteeasily now using the Dis
riminator Lemma and the Polynomial Uniformity Lemmain exa
tly the same fashion as we derived Theorem 3.5 from the Linear UniformityLemma in Se
tion 3.2.5 of Chapter 3.
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CHAPTER 8Con
lusionWe have explored the models of 
onstant-depth boolean 
ir
uits, `Number onthe Forehead' multiparty 
ommuni
ation proto
ols and representation of booleanfun
tions by multivariate polynomials over 
ommutative rings. While ea
h of themis fas
inating in its own right, the three models are not unrelated. Indeed, it has beenknown for more than �fteen years that there are deep 
onne
tions between them. Inthis thesis, we unravel fresh 
onne
tions that we exploit 
ru
ially to make progress onquestions that naturally arise in ea
h model. For instan
e, in Chapter 3, our boundson the size of ACC0 
ir
uits dire
tly results from bounds on degree in a new model ofpolynomial representation of boolean fun
tions. In Chapter 6, we utilize the notion ofthreshold and approximation degree of boolean fun
tions to make signi�
ant progressin multiparty 
ommuni
ation 
omplexity. Finally in Chapter 7, we �nd a new kindof interplay between polynomials and 
ommuni
ation: ideas (as opposed to 
on
reteresults) used in analyzing the 
ommuni
ation 
omplexity of a fun
tion are re-usablefor obtaining lower bounds on the degree needed by polynomials to approximateboolean fun
tions.The depth and ri
hness of these models are further suggested by the diversity ofthe mathemati
al tools employed to analyze them. For example, Chapter 3 makesheavy use of ideas from algebrai
 
ombinatori
s, probabilisti
 method, Fourier anal-ysis and exponential sums. Chapter 5 uses tools from error-
orre
ting 
odes and208



Ramsey theory. Chapter 6 draws on approximation theory and linear programmingduality. Dually, the 
omputational view on 
lassi
al obje
ts like polynomials raisesnew questions that are of independent mathemati
al interest: �how mu
h degree isneeded to represent a simple fun
tion like AND/MAJORITY/MODℓ in a naturalmodel of representation by polynomials?�. Su
h questions are fundamental and thefa
t that polynomials have been under investigation for a long time, makes one feelthat they ought to have been answered. Yet, not only have they not been answered,making progress on them have required sophisti
ated arguments. In the �rst part ofChapter 3, we explored this theme. We de�ned a notion of representation by poly-nomials that generalizes earlier notions des
ribed in the literature. Proving lowerbounds on the degree of su
h representations entailed a 
ombination of argumentsfrom the 
ombinatorial work of Tardos and Barrington [TB98℄ and the more alge-brai
 work of Green [Gre00℄. Further strong progress about these questions is verylikely to result in progress in mainstream mathemati
s.In this 
ontext, it is worthwhile to note that a new theory of low degree polyno-mials over �nite �elds is being developed, among others, by mathemati
ians Gowers[Gow01℄, Green1 and Tao [GT05, GT07℄. It is quite interesting to study the rela-tionship between the point of view on polynomials used in this thesis and the aboveworks whi
h draw motivation from additive 
ombinatori
s. There already has beenex
hange of ideas among the two points of view. For instan
e, Lovett, Meshulam1 Earlier, we referred to works by the 
omputer s
ientist Fred Green [Gre00,Gre99℄. The Green referred to here, is the 
ombinatorial number theorist Ben Green.209



and Samorodnitsky [LMS08℄ and independently Green and Tao [GT07℄, disprovedre
ently an important 
onje
ture in additive 
ombinatori
s, 
alled the Gowers In-verse Conje
ture, using ideas from the work of Alon and Beigel [AB01℄. The work ofAlon and Beigel, on the other hand, was motivated by the question of determiningthe 
orrelation between low degree polynomials over Zm and MODℓ. Re
all that thisquestion is explored in our work (in 
ontinuation of a long line of resear
h) in these
ond part of Chapter 7. Indeed, the intera
tion between the theory of 
omputationand pure mathemati
s is truly a two-way pro
ess. The theory of low degree polyno-mials is a key area where further meaningful ex
hange between the two dis
iplines isvery likely to 
ontinue.While rea
hing the goal of proving strong lower bounds in the model of 
onstant-depth 
ir
uits with modular gates is still distant, our work suggests some intermediatesteps that should be attainable more easily. Let us outline a few su
h steps. Ana-lyzing a single layer of MODm gates is an obvious dire
tion to pursue. In Chapter 3,we proved that a sublinear number of them at the base is too weak to 
ompute theMODℓ or AND fun
tion. This weakness is essentially information theoreti
. In otherwords, C ◦MODm 
annot 
ompute su
h fun
tions, no matter how powerful the 
ir-
uit C is, if the MODm layer is sublinear in size. What bounds on the size of MODmlayer 
an be proved if we limit the power of C? If C is a single AND,OR or MAJgate, then our results (this is also known from the work of [KP94, Gre99℄) imply thatthe MODm layer must have exponential size for the 
ir
uit to 
ompute MODℓ. Onthe other hand, if C is a generalized MODm gate or an AC0 
ir
uit of polynomialsize, no non-linear lower bounds are known on the size of the MODm layer. Making210



progress on this frontier should be within rea
h and is likely to shed new light onhow to approa
h more general 
ir
uits. We believe that the use of exponential sumsin analyzing 
ir
uits should be of further use here. While we have used exponentialsums on their own, an interesting dire
tion to pursue is to see if they 
an be 
ombinedwith existing tools to approximate AC0 
ir
uits, for proving new lower bounds.Several areas in theoreti
al 
omputer s
ien
e, the theory of 
onstant-depth 
ir-
uits in parti
ular, have immensely bene�tted from the study of the `Number on theForehead' model of multiparty 
ommuni
ation. Starting with the work of Håstadand Goldmann [HG91℄, other works like [Gro92, RW93℄ have used the strong lowerbounds of Babai, Nisan and Szegedy [BNS92℄ on the multiparty 
ommuni
ation 
om-plexity of a fun
tion to make progress in 
ir
uit 
omplexity. The te
hnique of Babaiet.al. was the only known method for proving su
h strong lower bounds. Before ourwork, it only yielded lower bounds for those fun
tions whose 
omputation involvedmodular 
ounting in one form or the other. Consequently, it 
ould not be dire
tlyapplied to yield bounds for a fun
tion in AC0. Building on the work of Sherstov[She07℄, we have re
ti�ed this problem in Chapter 6 to yield strong lower boundson the 
ommuni
ation 
omplexity of fun
tions in AC0. This has resulted in a newappli
ation to 
ir
uit 
omplexity: depth-three 
ir
uits 
omprising MAJ gates withsmall bottom fan-in 
annot e�
iently 
ompute even fun
tions in AC0. This makesimportant progress in understanding the limitations of a natural sub
lass of TC0.The most powerful known appli
ation of the multiparty model to 
ir
uit 
om-plexity 
omes from proving lower bounds in the presen
e of a polylogarithmi
 number
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of players. Although this seems a distant goal, it is worth noting that analyzing si-multaneous proto
ols is enough for this appli
ation. Our work suggests that newstru
ture 
an be dis
overed even analyzing su
h proto
ols for 
onstant number ofplayers. We initiated su
h a study in Chapter 5 and dis
overed a surprising phe-nomenon. The presen
e of a neutral letter in a language takes away a lot of thepower of the multiparty model if the players are allowed to 
ommuni
ate 
onstantnumber of bits. This has been 
ru
ially used further in the work of Lautemann,Tesson and Thérien [LTT06℄. Does a similar phenomenon still o

ur when more
ommuni
ation is allowed? What 
an be said about the stru
ture of languages that
an be re
ognized by randomized proto
ols in 
onstant 
ommuni
ation? Investiga-tions of su
h questions are likely to yield further insight into the model.In the se
ond part of Chapter 6, we made substantial progress in understandingthe 
ommuni
ation 
omplexity of the Disjointness fun
tion for a 
onstant number ofplayers. Apart from its appli
ation to other areas, this generated an important newte
hnique for the multiparty model: the Generalized Dis
repan
y Method. Our te
h-nique has been improved very re
ently by the interesting work of Beame and Huynh-Ngo
 [BHN08℄. However, even their improvement, does not yield better bounds forDisjointness for 
onstant number of players. Our bound for Disjointness is not knownto be tight even for three players. It remains interesting to determine if linear lowerbounds 
ontinue to hold for Disjointness with a 
onstant number of players. On adi�erent note, Disjointness is an example of a fun
tion with low non-deterministi

ommuni
ation 
omplexity but high randomized 
ommuni
ation 
omplexity. Can we
212



exhibit an expli
it fun
tion that has the reverse property? This is a natural ques-tion regarding the relationship between randomness and non-determinism. Further,making progress on the question, almost surely, will generate new te
hniques as allknown ones for the multiparty model end up proving lower bounds for randomizedproto
ols.
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