
Deterministic Restrictions in Circuit Complexity

Shiva Chaudhuri ∗† Jaikumar Radhakrishnan ‡

Abstract

We study the complexity of computing Boolean functions
using AND, OR and NOT gates. We show that a circuit of
depth d with S gates can be made to output a constant by
setting O(S1−ε(d)) (where ε(d) = 4−d) of its input values.
This implies a superlinear size lower bound for a large class
of functions. Using this, we obtain a function computable by
a uniform family of constant depth polynomial size circuits
that cannot be computed by constant depth circuits of linear
size. We give circuit constructions that show that the bound
O(S1−ε(d)) is near optimal.

We also study the complexity of computing threshold
functions. The function T n

r has the value 1 iff at least r of its
inputs have the value 1. We show that a circuit computing
T n

r has at least Ω(r2(log n)/ log r) gates, for r ≤ n1/3, im-
proving previous bounds. We also show a trade-off between
the number of gates and the number of wires in a threshold
circuit, namely, a circuit with G (< n/2) gates and W wires
computing T n

r satisfies W ≥ Ω(nr(log n)/(log(G/ log n))),
showing that it is not possible to simultaneously optimize
the number of gates and wires in a threshold circuit. Our
bounds for threshold functions are based on a combinatorial
lemma of independent interest.

1 Introduction

A fundamental goal of Boolean circuit complexity theory is
to obtain bounds on the size of circuits computing various
functions. A counting argument shows that most Boolean
functions are hard to compute, specifically, they require cir-
cuits of exponential size [21, 18](see [5], pp. 763, Theorem
2.4). However, this yields no information about the com-
plexity of explicit Boolean functions. Few techniques are
known that yield lower bounds for explicit functions in NP ,
and this is an important problem in circuit complexity. One
of the most succesful techniques for proving lower bounds
on the size of circuits is the method of random restrictions
[14, 23, 16]. The method consists of randomly setting the
value of a number of the inputs to a circuit and showing

∗The work of Shiva Chaudhuri was partially supported by the EC
ESPRIT Basic Research Action No. 7141 (ALCOM II).

†Max-Planck Institut für Informatik, Im Stadtwald, 66123
Saarbrücken, Germany. E-mail: shiva@mpi-sb.mpg.de

‡Tata Institute of Fundamental Research, Bombay, India. E-mail:
jaikumar@tcs.tifr.res.in

that the resulting circuit has a simple structure. In this pa-
per, we study a similar technique, deterministic restrictions,
that yields lower bounds in some situations when random re-
strictions fail. Here also, the basic technique is to set input
values and simplify the circuit, but the inputs to set are cho-
sen deterministically, based on the structure of the circuit.
As an application of the method, we obtain a separation be-
tween linear and superlinear size circuits of constant depth.
We also study the computation of threshold functions and
prove better size lower bounds for circuits computing small
threshold functions and lower bounds on the number of wires
in threshold circuits. We discuss the results in more detail.

Using the random restriction technique, it can be shown
(see [5], pp. 772, Corollary 3.7) that a circuit with S gates
of depth d can be made to output a constant by setting
the values of n − n/(O(log S))d inputs. Thus, any poly-
nomial size circuit can be made to output a constant by
setting n − n/polylog(n) inputs. This yields a superpoly-
nomial size lower bound for a constant depth circuit com-
puting any function that cannot be made constant by set-
ting n − n/polylog(n) input bits. However it does not say
anything about functions which can be made constant by
setting this many bits. We prove the following Restriction
Lemma: a circuit with S gates and depth d can be made to
output a constant by setting 5S1−ε(d) input values, where
ε(d) = 1/4d. Thus, for appropriate constants α, β, a cir-
cuit of constant depth with O(n1+α) gates can be made to
output a constant by setting O(n1−β) input values. This
yields a superlinear lower bound for any constant depth cir-
cuit computing a function that cannot be made constant by
setting O(n1−β) inputs. In other words, this allows us to
prove a superlinear lower bound for a much larger class of
functions.

H̊astad showed that PARITY cannot be computed by a
circuit of polynomial size and depth d for any fixed d [16].
Since any Boolean function can be computed by an explicit
depth two circuit of exponential size, the result can be in-
terpreted as saying that exponential size circuits are strictly
more powerful than polynomial, for constant depth. We
would also like to see such a separation between polynomial
sizes of diferent degrees, i.e. between nk and nk+1. Eric
Allender (personal communication) observed that using a
counting argument one can show that there exist functions
computable by depth two circuits of size nk+1 than cannot
be computed by circuits of size nk (of any depth). How-
ever, no explicit function with this property is known. We
consider this question for the case k = 1.

The class AC0 is the set of functions computable by uni-
form polynomial size circuits of constant depth. The class
LC0 is the set of functions computable by uniform linear size
circuits of constant depth [19, 20]. While LC0 appears to
be a severely restricted class, it turns out to contain surpris-
ingly complex functions. An open question posed in [19, 20]
is whether LC0 is properly contained in AC0.

We answer this question in the affirmative. A 1/4-approx-



imate selector is any function whose value is 0 if the number
of 1’s in the input is at most n/4, 1 if the number of 1’s
is at least 3n/4, and can be either 0 or 1 otherwise. Such
a function provides a rough estimate of the number of 1’s
and is extremely useful in parallel computation [19, 15, 10].
The existence of polynomial size constant depth circuits that
compute a 1/4-approximate selector function was shown in
[1, 3]. The construction used probabilistic arguments and
was nonuniform. Recently, Ajtai gave a uniform construc-
tion of an AC0 circuit to compute such a function [2]. It is
easy to see that a 1/4-approximate selector function cannot
be made constant by setting n/4 or fewer input bits. The
Restriction Lemma then implies a superlinear lower bound
on the number of gates in any constant depth circuit that
computes such a function. Thus, no approximate selector
function is in LC0. Thus, polynomial size uniform circuits
are strictly more powerful than linear, for constant depth
circuits.

We actually prove a size-depth tradeoff for a general class
of functions. The robustness of a function is the maximum
number of input bits that can be revealed to an adversary
without revealing the value of the function. In [22, 9], ro-
bustness was called everywhere-sensitivity. For example, the
robustness of PARITY is n− 1, of MAJORITY bn/2c, and
of a 1/4-approximate selector, n/4. The Restriction Lemma
implies that a circuit of depth d with S gates computing
a function of robustness R, has S = Ω(R1+ε(d)), where
ε(d) = 1/4d. Thus, a depth d circuit for a 1/4-aproximate

selector has size Ω(n1+ε(d)). The lower bound is optimal
upto the value of ε(d). We give uniform, constructions of
circuits of depth O(d), computing a 1/4-approximate selec-

tor, with O(n1+δ(d)) where δ(d) = 1/2d. Thus, a linear size
1/4-approximate selector circuit has depth Θ(log log n).

The threshold function T n
r assumes the value 1 iff at least

r of its input bits have value 1. It follows from the lower
bounds in [16], that if r = (log n)ω(1), then T n

r is not in AC0.
It was shown by Denenberg et al. that for r = (log n)k for
constant k, T n

r is in AC0 [11]. Subsequently, constructions
using fewer gates were given and finally it was shown that
for these values of r, T n

r is in LC0 [20, 17]. In [17], circuits

of depth d for T n
r are constructed using 2O(r1/d) log n gates.

The lower bound in [16] implies that a depth d circuit for

T n
r requires 2Ω(r1/d) gates. For unbounded depth circuits,

[17] showed that a circuit for T n
r requires r gates. For small

values of r, there is a large gap between the upper and lower
bounds, in particular, the lower bounds do not even depend
on n. We show that any circuit computing T n

r , for 2 ≤
r < n1/3, must have Ω(r2(log n)/ log r) gates. The lower
bound holds for circuits without any restriction on depth,
and for small values of r, considerably improves the previous
bounds, both for bounded and unbounded depth circuits.

While the number of gates has been extensively studied
as a resource in circuit complexity, much less attention has
been given to wires [7]. There is often a trade-off between
gates and wires. T n

r can be computed by a circuit with
O(n) gates and wires. On the other hand, for small values
of r, the optimal number of gates is much less. The con-
structions in [17] and [20] use fewer gates (o(n)) but more
wires (O(n(r log n)2) and O(nr4 log n) wires respectively).
For constant r, the results of Friedman imply T n

r circuits
with O(log n) gates and O(n log n) wires [13]. In particu-
lar, is it possible to simultaneously optimize the number of
gates and the number of wires? We give a partial answer

to this question, by showing that a circuit with G (< n/2)

gates and W wires computing T n
r , for 2 ≤ r ≤ n1/3 sat-

isfies W ≥ Ω(nr ln n/ ln(G/ ln n)) Thus, it is not possible
to simultaneously achieve a sublinear number of gates and
a linear number of wires, when r is not constant. In par-
ticular, this gives tight bounds on complexity of constant
threshold functions.

Our lower bounds for threshold functions are based on
a combinatorial lemma of independent interest. A family
of sets is k-cover-free if no set is contained in the union
of k others. Suppose we are given a k-cover-free system
of n subsets of a set X. What is the minimum possible
cardinality of X? Erdős, Frankl and Füredi [12] showed
that |X| ≥ Ω(k log n). We improve this bound and show
that |X| ≥ Ω(k2 log n/ log k).

2 Definitions

The model of computation we consider is unbounded fan-in
and fan-out circuits with AND, OR and NOT gates. A cir-
cuit is modelled by a DAG in which each vertex of indegree
greater than 0 is labelled by one of AND, OR, NOT. We
refer to the vertices as gates and the edges as wires. There
are n vertices, x1, . . . , xn, of indegree 0, called input gates,
which correspond to the input variables, and one vertex of
outdegree 0, called the output gate.

The level of a gate, g, is the length of the longest path
from an input gate to g.

By fixing or setting an input variable, we mean assigning
it a value in {0, 1}. A partial input is an input in which
some of the input variables are fixed. Given a partial input,
by admissible inputs, we mean the set of inputs consistent
with the partial input (i.e. those inputs which agree with
the partial input on its fixed variables).

We say a gate or a wire in the circuit is fixed by a partial
input if, over all admissible inputs, the gate output or the
value carried by the wire has the same value. A gate or wire
that is not fixed is called free, as is an input variable whose
value is not set.

We define the notions of indegree and outdegree of gates
in the context of a partial input. Given a partial input, the
indegree of a gate g is 0 if it is fixed by th partial input;
otherwise it is the number of free gates feeding into g. The
outdegree of a gate g is 0 if it is fixed by the partial input;
otherwise, it is the number of free gates that g feeds into.

Say an input variable influences a gate, g, if there is a
path from the input gate to g passing through only free gates
and wires. It is not hard to see that whenever all the inputs
that influence a gate are fixed, the gate is also fixed. Define
δ(g) to be the set of variables that influence gate g. (Note
that influence and δ(g) are defined with respect to a partial
input.)

We say a function has robustness r if it is not possible
to fix less than or equal to r of its input bits and fix the
value of the function. An equivalent definition considers the
function, f , as giving a 2-colouring of the vertices of the
boolean cube {0, 1}n, i.e. for x ∈ {0, 1}n, the colour of the
vertex x is f(x). If the largest monochromatic subcube has
dimension d, then the robustness of the function is n− d.



3 Small size, small depth circuits

In this section, we obtain a bound on the number of inputs
that need to be fixed in order to make a circuit output a
constant value. In the course of our proof, we will fix input
variables so that for the resulting partial input the indegree
and outdegree of gates are small.

Definition 3.1 (Regular Circuits) Let d and M be pos-
itive integers. Let d0 = 1, d1 = d and di+1 = d4

i . A circuit
C is (d, M)-regular if

(a) the indegree of every gate at level i is at most di; and

(b) the outdegree of every gate g at level i is at most M ·
δ(g).

If with respect to a partial input σ, the circuit C satisfies
conditions (a) and (b) above, then we say that C|σ is (d, M)-
regular. (C|σ is the circuit obtained by applying the partial
input to C.)

Suppose C is a circuit of depth k. Let the size of C be
S (including the input gates). We wish to obtain a partial
input σ so that C|σ is (d, M)-regular. To do this, we set some
input variables carefully so that gates with high indegree or
outdegree are eliminated. The method for setting the input
variables is described in the procedures below. Let d ≥ 2,
M and d0, d1, . . . be as in Definition 3.1.

FixIndegree(i) Repeat as long as there is a free gate g in
level i with indegree more than di. Since g is free,
there must be a free gate g′ at some lower level that
feeds into g. Fix g′ so that g is fixed. That is if g is
an OR then fix g′ at 1 and if g is an AND then fix g′

is at 0. For this, we need to set at most δ(g′) input
variables.

FixOutdegree(i) Repeat as long as there is a free gate g in
level i with outdegree(g) > M ·δ(g). If at least half the
gates that g feeds into are ORs then fix g at value 1 by
suitably setting the δ(g) input variables that influence
g; otherwise, fix g at value 0 by setting the δ(g) input
variables suitably. Note that the number of gates fixed
in this step is at least M/2 times the number of input
variables set.

To obtain the required partial input, we start with the
partial input with no input variables set, and refine it suc-
cessively by applying the operations FixIndegree and Fix-
Outdegree in the order FixOutdegree(0), FixIndegree(1), Fix-
Outdegree(1), FixIndegree(2), . . . , FixIndegree(k). Let the
partial input obtained using this process be σ(d, M).

Claim 3.1 C|σ(d,M) is (d, M)-regular.

Proof. Immediate from the definitions of FixIndegree and
FixOutdegree. Details omitted.

Claim 3.2 The number of inputs set during calls to Fix-
Outdegree is at most 2S/M .

Proof. The number of gates fixed is at least M/2 times the
number of input variables set. Since there are only S gates
in all, we set at most 2S/M inputs.

Claim 3.3 The number of inputs set during calls to Fix-
Indegree is at most 2SM/d.

Proof. FixIndegree(i) is invoked after FixIndegree(1), Fix-
Indegree(2), . . ., FixIndegree(i − 1). This ensures that the
indegrees of all gates at levels j less than i are at most dj .
Thus δ(h) ≤ d1d2 . . . di−1, for gates at h at levels less than
i. It follows that the number of input variables set while
fixing any gate at level i is at most d1d2 . . . di−1.

Since, FixIndegree(i) is invoked after FixOutdegree(0), . . .,
FixOutdegree(i−1), the outdegree of any gate in levels j less
than i is at most M · (d1d2 . . . di−1). Since there are at most
S gates in these levels, the number of gates in level i with
degree more than di is at most SM(d1d2 . . . di−1)/di.

Thus, the number of variables set during FixIndegree(i)
is at most

SM(d1d2 . . . di−1)
2/di.

Summing over all levels i, we get that the total number of
input variables set is at most

SM

k∑
i=1

(d1d2 . . . di−1)
2

di
.

Using the conditions d1 ≥ 2 and di+1 = d4
i , it can be verified

that (d1d2 . . . di−1)
2/di ≤ 1/(2i−1d); thus the sum above is

bounded by

SM

d

k∑
i=1

2−i+1 ≤ 2SM

d
.

We can now prove the main result of this section.

Lemma 3.1 (Restriction Lemma) Let C be a circuit of size
S and depth k. Then there exists a partial input ρ which sets
at most 5S1−ε(k) inputs, where ε(k) = 4−k, such that C|ρ is
a constant.

Proof. Let d = S2ε(k) and M = Sε(k). By the Claim 3.1
above, C|σ(d,M) is (d, M)-regular. Now, we may fix the out-
put of C|σ(d,M) by fixing at most d1d2 . . . dk−1 additional
inputs. It can be verified that

d1d2 . . . dk−1 ≤ dk = d4k−1
≤ S1/2 ≤ S1−ε(k).

[if k = 0 then S = 1.] Hence, by setting at most (using
Claims 3.2 and 3.3 to bound the number of variables set in
σ(d, M))

2S

M
+

2SM

d
+ S1−ε(k) = 5S1−ε(k)

input variables, we have obtained the partial input ρ that
fixes C to a constant.

Clearly, if a circuit of depth k with S gates computes
a function of robustness R, then 5S1−ε(k) ≤ R, because
otherwise, the function can be made constant by setting
less than R inputs, a contradiction. This proves

Theorem 3.1 If a circuit of depth k with S gates computes
a function of robustness at least R, then

S ≥ 1

10
R

1+ 1
4k .

The following is now easy.

Corollary 3.1 LC0 ⊂ AC0.



Proof. Consider a 1/4-approximate selector function. Sup-
pose we could fix less than n/4 inputs and fix the value of
the function to 0. By setting the remaining bits to 1, we
have an input with more than 3n/4 1’s but the value of the
function is 0, a contradiction. A dual argument applies when
the function is fixed to 1. Hence, the robustness of the func-
tion is at least n/4. By Theorem 3.1, any constant depth
circuit computing a 1/4-approximate selector function has
superlinear size. Thus all such functions do not belong to
LC0. Since, by [2], there is such a function in AC0, the
claim is proved.

4 Upper bounds for approximate selectors

We describe a circuit that computes a 1/4-approximate se-
lector function. Note that it is enough to construct an ap-
proximate addition circuit, i.e. one that takes n bits as in-
put, and computes log n bits representing an integer, satis-
fying the following condition: If S is the integer represented
by the output bits and E is the sum of the input bits, then
E−n/4 ≤ S ≤ E +n/4. It is not hard to verify that a func-
tion which outputs 0 when S < n/2 and 1 when S ≥ n/2
computes a 1/4-approximate selector. Thus we can simply
output the high order bit of S.The rest of this section de-
scribes the construction of an approximate addition circuit.

Ajtai [2] describes a circuit of constant depth with a
polynomial number of gates that behaves as follows: The
inputs are x1, . . . , xn, r1, . . . , rlog n. The circuit outputs 0 if∑

xi < r(1− 1/(log n)2) and 1 if
∑

xi > r(1 + 1/(log n)2),
where r is the number between 1 and n represented by the
bits r1, . . . , rlog n. Construct a circuit by placing n copies
of the above circuit in parallel, each recieving the same
inputs x1, . . . , xn, but with the ith copy using the value
r = i. Let yi be the output of the ith circuit. Let zi =
yi ∧ ¬(yi−1 ∨ . . . ∨ y1). Then, zi is 1 iff i is the small-
est value of r for which the circuits computed 1. It fol-
lows that the zi’s are a unary representation of a number, s
such that

∑
xi(1− 1/(log n)2) < s ≤

∑
xi(1 + 1/(log n)2).

Convert this into the binary representation of the number.
A polynomial size, constant depth circuit for unary to bi-
nary conversion is given in [8]. For numbers a1, . . . , an, de-
fine an ε-approximate sum to be any number, r, satisfying
(1 + ε)

∑n

i=1
ai ≥ r ≥ (1 − ε)

∑n

i=1
ai. Then, the above

discussion proves

Lemma 4.1 We can construct circuits of polynomial size
and constant depth with n inputs x1, . . . , xn and n outputs
y1, . . . , ylog n such that

n∑
i=1

xi(1− 1/(log n)2) < s ≤
n∑

i=1

xi(1 + 1/(log n)2),

where s is the integer between 1 and n represented by the
bits y1, . . . , ylog n.

We call the circuits constructed above approximate bit
addition circuits.

In [8], it is shown how to construct a circuit that adds
m q-bit numbers using a polynomial number of subcircuits
that compute exact bit addition. This construction has the
property that if each of the subcircuits used has polynomial
size and constant depth, then so does the whole circuit. The
construction has two stages. Let A1, . . . , Am be the numbers

to be added. Let S denote the sum of these numbers. The
first stage produces log m numbers B1, . . . , Blog m, each of

q + log m bits, such that
∑log m

i=1
Bi = S. This stage uses

exact bit addition subcircuits that add m bits and produced
their log m-bit sum. The second stage computes S from
B1, . . . , Blog m. This stage uses subcircuits that add at most
log m bits and produce their sum. Since there exist circuits
of size polynomial in m and constant depth that add log m
bits, we can implement this stage exactly as in [8].

Our construction replaces each of the exact bit addition
subcircuits in the first stage by an approximate bit addition
circuit from Lemma 4.1. This will produce log m numbers
C1, . . . , Clog m such that

S(1 +
1

(log m)2
) ≥

log m∑
i=1

Ci ≥ S(1− 1

(log m)2
).

The second stage then computes the sum of the Bi’s. We
give the details of the first stage.

Let ai,q, . . . , ai,1 be the binary representation of Ai. Let
Sj =

∑m

i=1
ai,j . Note that Sj can be represented in log m

bits. Define

Bi =

bq/ log mc∑
j=0

Si+j log m2i+j log m

for 1 ≤ i ≤ log m. Notice that computing Bi corresponds
to “packing” every (log m)th Sj (starting with the ith) into
a single word, and can be done in constant depth. Clearly,∑log m

i=1
Bi =

∑m

j=1
Aj .

In our construction, we use the approximate bit addi-
tion circuits from Lemma 4.1 with inputs a1,j , . . . , am,j to
produce a log m bit number Rj , for each j, such that

Sj(1 +
1

(log m)2
) ≥ Rj ≥ Sj(1 +

1

(log m)2
).

We then compute

Ci =

bq/ log mc∑
j=0

Ri+j log m2i+j log m

by packing the appropriate values into single words. Because
of the bounds on Rj in terms of Sj , it follows that Bi(1 +
1/(log m)2) ≥ Ci ≥ Bi(1 − 1/(log m)2). Summing up these
inequalities for each j yields

Lemma 4.2 We can construct polynomial size (in m), con-
stant depth circuits to compute the 1/(log m)2-approximate
sum of m numbers of q bits each, q ≤ m.

Let the circuits in the previous lemma have depth d and
size m1+c for some constant c. Write f(m, i, ε(m, i)) for
the minimum size circuit of depth id that computes the
ε(m, i)-approximate sum of m numbers. Given such circuits
of depth id, we can construct circuits of depth (i + 1)d as
follows: Divide the input numbers into a groups, each of
m/a numbers. Compute the approximate sums of each of
the groups using circuits of depth id. Compute the approx-
imate sum of the sums computed using the circuit of the
previous lemma. Then, we have

f(m, i + 1, ε(m, i + 1)) ≤ af(m/a, i, ε(m/a, i)) + a1+c



By choosing a such that a(m/a)1+c/i = a1+c, we can show,

by induction, that f(m, i) ≤ m1+c/i. Since the first phase
computes ε(m/a, i)-approximate sums and the second phase
1/(log m)2-approximate sums, we have

1 + ε(m, i + 1) ≤ [1 + ε(m, i)][1 +
1

(log m)2
]

from which ε(m, i) ≤ 3i/(log m)2 can be proved by induc-
tion. Thus, f(m, c, 3c/(log m)2) ≤ m2. Note that the circuit
has depth cd, a constant.

Write g(m, i, δ(m, i)) for the smallest circuit of depth
icd computing a δ(m, i)-approximate sum. Then we have
g(m, 1, 3c/(log m)2) ≤ m2. Call this the basic circuit. We
construct circuits of depth (i + 1)cd, given circuits of depth
icd as before, except that we now choose the size of each
group to be

√
m and use the basic circuit to compute the

sums of the groups. The recurrence relation for the sizes is

g(m, i + 1, δ(m, i + 1)) ≤
√

mg(
√

m, i, δ(
√

m, i)) + (
√

m)2

It can be shown, by induction, that g(m, i) ≤ m1+1/2i−1
+

(i− 1)m. As before, it can be shown that

δ(m, i) ≤ 3i+c/(log m)2,

which is at most 1/4 whenever i ≤ log log m with m suffi-
ciently large.

Given n bits and a depth k, we can compute, in k stages,
the sums of disjoint groups of bits of size 2k, by using pair-
wise addition. A circuit for pairwise addition with constant
depth and a linear number of gates is given in [6]. Then
we can use the circuit of depth kcd described above with
m = n/2k, to compute the approximate sum of the bits.
The discussion above gives us the following

Theorem 4.1 For any k ≤ log log n, we can construct a

1/4-approximate selector of depth O(k) with O(n1+1/2k−1
)

gates. Thus selecting k = log log n yields a circuit with O(n)
gates and O(log log n) depth.

5 k-cover-free systems

In this section, we prove bounds on the size of certain set
systems. The bounds we prove will be used in proving lower
bounds for threshold circuits.

A family of sets F is k-cover-free if F0 6⊆ F1 ∪ . . . ∪ Fk

for all F0, . . . ,Fk ∈ F (Fi 6= F0 if i 6= 0). Let fk(m) denote

the maximum cardinality of a k-cover-free family F ⊆ 2[m].
Erdős, Frankl and Füredi [12, Theorem 3.1] showed that(

1 +
1

4k2

)m

< fk(m) < exp(
(1 + o(1))m

k
). (1)

In our application, we will be given a k-cover-free family
F of cardinality n and will need a lower bound on m =
|
⋃

F∈F F |. The second inequality in (1) gives m = Ω(k ln n).

We improve this bound and show that m = Ω(k2 ln n/ ln k).
In other words, we strengthen the second inequality in (1)
to fk(m) = exp(O(m ln k/k2)).

Assume that k is a large number and n ≥ k3. We say
that F is an (n, k)-family if |F| ≥ n and F is k-cover-free.
Let m(F) = |

⋃
F∈F F |.

Lemma 5.1 Let F be a (n, r)-family such that m(F) ≤
2n/3. Then there is a set in F of size at least

r ln n

20 ln(m(F)/ ln n)
.

Proof. Since m(F) ≤ 2n/3, at most 2n/3 sets have a private
element (an element not in any other set in the family).
Then, every other sets in F has at least r + 1 elements.
Let F ′ be the family of these at least n/3 sets that do not
have any private element (with respect ot F). Then F ′ is a
(n/3, r)-family, where each set has at least r + 1 elements.

For each set F ∈ F ′ there is a subset SF of size d|F |/re
that is not included in any other set in the family F (for
otherwise we could cover F by writing it as a union of r
such sets). Then, the family of sets S = {SF : F ∈ F ′}
is an (n/3, 1)-family. Let t be the size of the largest set in
F ′. Then the size of largest set in S is at most dt/re. Since
t ≥ r +1, we have dt/re ≤ 2t/r. Since there are n sets in F ,
we have m(F) ≥ log n.

If 2t/r ≥ m(F)/2, then the lemma follows easily.
Otherwise, using the LYM inequality [4, page 11], we

have(
em(F)

2t/r

)2t/r

≥
(

em(F)

dt/re

)dt/re

≥
(

m(F)

dt/re

)
≥ n/3.

To justify the first inequality, note that (a/x)x is an increas-
ing function of x, whenever a ≥ ex.

To complete the proof, we need to show that(
em

u

)u

≥ n/3 =⇒ u ≥ ln n

10 ln(m/ ln n)
.

That is,

u ln
(

em

u

)
≥ ln(n/3) =⇒ u ≥ ln n

10 ln(m/ ln n)
. (2)

Suppose

u <
ln n

10 ln(m/ ln n)
.

Then the leftmost quantity in (2) is at most

ln n

10 ln(m/ ln n)
· ln

[
10em ln(m/ ln n)

ln n

]
.

That is,

ln n

10 ln(m/ ln n)
· [ln (m/ ln n) + ln 10e + ln ln(m/ ln n)] .

We shall show that this quantity is less than 0.9 ln n (we
assume n is large). That would contradict the left hand
side of (2). Note that m ≥ log n ≥ 1.442 ln n, because the
universe must be big enough to accommodate n sets.

Case 1: Suppose ln(m/ ln n) ≥ (ln 10e)/7. Then this quan-
tity is at most

ln n

10

[
1 + 7 +

ln ln(m/ ln n)

ln(m/ ln n)

]
.

And the claim is correct since the last term inside the brack-
ets is less than 1.



Case 2: Suppose ln(m/ ln n) < (ln 10e)/7 < 3.303. Thus,

ln ln(m/ ln n) < ln((ln 10e)/7) < −0.75.

Then the quantity is at most

ln n

10

[
1 +

3.303− 0.75

ln(m/ ln n)

]
.

Since m ≥ 1.442 ln n, and (3.303 − 0.75)/ ln 1.442 < 7, this
quantity is less than 0.8 ln n.

Lemma 5.2 Let r > 1 and F be a (n, r)-family such that
m(F) ≤ n/2. Then the sum of the sizes of the sets in F is
at least

nr ln n

50 ln m(F)/ ln n
.

Proof. Consider the n/4 largest sets in F . It follows from
Lemma 5.1 that they each have size at least

r ln n′

10 ln(m(F)/ ln n′)
,

where n′ = 3n/4. The lemma follows from this.

Theorem 5.1 If F is an (n, k)-family then m(F) ≥ k2 ln n

100 ln k
.

Proof. We construct a sequence of family of sets F1 =
F , . . . ,Fk/2 and a sequence of sets F1, . . . , Fk/2 as follows.
Fi will be the set in Fi of the largest size and

Fi+1 = {F − Fi : F ∈ Fi and F 6= Fi}.

It can be verified that each Fi is an (n − k/2, k/2)-family.
Hence, by Lemma 5.1 (we may assume that m(Fi) ≤ k2 ln n),

|Fi| ≥
(k/2) ln(n− k/2)

20 ln k
.

Thus,

m(F) ≥
k/2⋃
i=1

|Fi| ≥
k

2
· (k/2) ln(n− k/2)

20 ln k
.

The theorem follows from this.

Corollary 5.1 fk(m) = exp(O(m ln k/k2)).

6 Threshold Circuits

In this section we prove lower bounds on the number of gates
in a circuit computing T n

k , and show a tradeoff between the
number of gates and the number of wires in such a circuit.
For both the above bounds, we use the following property of
threshold functions. The value of the function is critically
dependent on every input variable, in the sense that, for
each variable, there is an input in which the value of the
function changes when the value of that input is changed.
Therefore, in the circuit, one cannot block the effect of any
input variable on the output by fixing a small number of
input variables. This implies that the family of sets formed
by the gates connected to each input is a k-cover-free system.

The following lemma is folklore, and easy to prove. The
proof is omitted from this abstract.

Lemma 6.1 Any circuit C, may be converted into a circuit
C′, in which the negations are connected to only input gates.
The number of gates in C′ is at most twice the number of
gates in C.

Theorem 6.1 A circuit computing T n
k , with k ≤ n1/3 has

Ω(k2(ln n)/ ln k) gates.

Proof. By Lemma 6.1, we may assume that all the nega-
tions in the circuit are connected to the input gates. Let g
be the number of gates in the circuit. If any AND (respec-
tively, OR) gate is connected to a non-negated (respectively,
negated) input gate, then set this input to 0. This ensures
that this gate outputs a constant value, and we may delete
it from the circuit. Repeat this until no remaining AND
gates is connected to a non-negated input and no remaining
OR gate is connected to a non-negated input.

The number of inputs whose values have been set is at
most g, since each time an input is set to a fixed value, a
gate is deleted from the circuit. If g ≥ n/2 then the theorem
holds. Otherwise, set an additional n/2 − g inputs to 0.

The circuit now computes T
n/2
k and satisfies the conditions

above.
Let x1, . . . , xm, m = n/2, be the inputs to the circuit

and let Si be the set of gates that input xi is connected to,
either directly, or through one negation. Suppose there is
a set S1 that is contained in the union of S2, . . . , Sk. Then
set inputs x2, . . . , xk to 1. Now, all the gates in the union of
S2, . . . , Sk output a constant, because all the AND gates are
connected to only negated inputs and all the OR gates to
only non-negated inputs. Thus, the gates in S1 all output
a constant, therefore the output of the circuit is indepen-
dent of the value of x1. However, the circuit must compute
T m−k+1

1 , and hence should depend on the values of all inputs
except x2, . . . , xk, which is a contradiction.

Hence, the collection of sets S1, . . . , Sm satisfies the con-
dition that no set is contained in the union of k − 1 other
sets. Applying Theorem 5.1 now yields the desired result.

Theorem 6.2 If a circuit with W wires and G (< n/2)
gates computes T n

k , then

W ≥ nk ln n

100 ln(G/ ln n)

Proof. As in the previous theorem, we may assume that
there are m = n/2 input variables x1, . . . , xm, such that xi

is connected to the set of gates Si and that the sets Si form
a k − 1-cover-free system. Since the number of wires in the
circuit is at least the sum of the cardinalities of the Si’s,
applying Lemma 5.2 yields the claimed bounds.

7 Remarks

We have shown that uniform constant depth circuits with n2

gates are more powerful than constant depth circuits with
O(n) gates. It would be interesting to show that for each
k ≥ 1, uniform constant depth circuits with nk+1 gates are
more powerful than those with O(nk) gates. However, in
order to do this, it seems new techniques are necessary.

It was conjectured that polylog threshold functions are
candidate functions to separate AC0 and LC0, but this was



shown to be false [20]. WLC0 is the class of functions that
have circuits of constant depth with a linear number of wires.
Addition of two n bit numbers is known to be in LC0 but
not in WLC0. There is no single output function known
that separates LC0 and WLC0. We conjecture that polylog
threshold functions are not in WLC0.

The bounds of [16] yield a lower bound of 2k1/d

for T n
k

and we prove a lower bound of (k2/ log k) log n. It would be
nice to combine the two bounds and prove a lower bound of

2k1/d

log n.

Acknowledgment

We are grateful to Mike Paterson and Uri Zwick for helpful
discussions and for pointing us to the work in [2]. We thank
Eric Allender for describing to us the counting argument
that shows that there are functions computable by depth
two circuits of size nk+1 but not by circuits of size nk.

References

[1] M. Ajtai.
∑1

1
- formulae on finite structures. Ann. Pure

Appl. Logic 24 (1983), pp. 1-48.

[2] M. Ajtai. Approximate counting with uniform constant
depth circuits. In J.-Y Cai, ed. Advances in Compu-
tational Complexity Theory, DIMACS Series in Disc.
Math. and Theoret. Comp. Sci., American Math. Soci-
ety, (1993) pp. 1-20.

[3] M. Ajtai and M. Ben-Or. A theorem on probabilistic
constant depth computations. In Proc. 16th STOC,
(1984), pp. 471-474.

[4] B. Bollobás. Combinatorics. Cambridge University
Press, 1986.

[5] R.B. Boppana and M. Sipser. The complexity of finite
functions. Handbook of Theoret. Comp. Sci., Vol A, Al-
gorithms and Complexity, Elsevier Science Publishers,
1990.

[6] A. K. Chandra, S. Fortune and R. J. Lipton, “Un-
bounded Fan-in Circuits and Associative Functions”,
Proc. of the 15th ACM STOC, 1983.

[7] A. K. Chandra, S. Fortune and R. J. Lipton, “Lower
bounds for Constant Depth Circuits for Prefix Prob-
lems”, Proc. of the 10th Intl. Colloquium on Automata,
Languages and Programming, Lecture Notes in Com-
puter Science, Springer-Verlag, 1983.

[8] A.K. Chandra, L. Stockmeyer and U. Vishkin. Con-
stant Depth Reducibility. SIAM J. Comput. 13, 2,
(1984), pp. 423-439.

[9] S. Chaudhuri, “Sensitive Functions and Approximate
Problems”, Proc. of 34th IEEE FOCS, (1993), pp. 186-
193.

[10] S. Chaudhuri, T. Hagerup and R. Raman. Approximate
and Exact Deterministic Parallel Selection. In Proc.
18th Math. Fdtns. of Comp. Sci., (1993), LNCS 711,
Springer-Verlag, pp. 352-361.

[11] L. Denenberg, Y. Gurevich and S. Shelah. Definability
by constant depth polynomial size circuits. Information
and Control, 70 (1986), pp. 216-240.

[12] P. Erdős, P. Frankl and Z. Füredi. Families of finite
sets in which no set is covered by the union of r others.
Israel Journal of Mathematics, 51 (1985), pp. 79–89.

[13] J. Friedman. Constructing O(n log n) size monotone
formulae for the kth elementary symmetric polynomial
of n Boolean variables. In Proc. 25th Symp. on Found.
of Comp. Sci., (1984), pp. 506-515.

[14] M. Furst, J. Saxe and M. Sipser. Parity, circuits and
the polynomial time hierarchy. Mathematical Systems
Theory, 17, (1984), pp. 13-27.

[15] T. Goldberg and U. Zwick. Optimal Deterministic Ap-
proximate Parallel Prefix Sums and Their Applications.
In Proc. Israel Symp. on Theory and Computing Sys-
tems (ISTCS’95), (1995), pp. 220-228.

[16] J. H̊astad. Almost optimal lower bounds for small depth
circuits. In Proc. of18th STOC, (1986), pp. 6-20.

[17] J. H̊astad, I. Wegener, N. Wurm and S-Z. Yi. Op-
timal Depth, VerySmall Size Circuits for Symmetric
Functions in AC0. Information and Computation 108,
(1994) pp. 200-211.

[18] D.E. Muller. Complexity in electronic switching cir-
cuits. IRE Trans. Electronic Computers, 5, (1956),pp.
15-19.

[19] I. Newman, P. Ragde and A. Wigderson, “Perfect Hash-
ing, Graph Entropy and Circuit Complexity”, Proc.
of 5th Ann. Conf. on Structure in Complexity Theory,
1990, 91–99.

[20] P. Ragde and A. Wigderson. Linear-size constant-depth
polylog-threshold circuits. Information Processing Let-
ters, 39 (1991), pp. 143-146.

[21] C.E. Shannon. The synthesis of two-terminal switching
circuits. Bell Systems Tech. Journal, 28 (1949), pp.
59-98.

[22] U. Vishkin and A. Wigderson. Trade-offs between depth
and width in parallel computation. SIAM Journal on
Computing., 14 (1985) pp. 303-314.

[23] A.C. Yao. Separating the polynomial -time hierarchy
by oracles. Proc. of 26th FOCS, (1985), pp. 1-10.


