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Abstract

We show an Ω(n log log log n) lower bound on the size of undirected monotone contact
networks computing the threshold function Tn

n−1. This improves the lower bound of 2(n−1)
due to Markov. We show that there exists a Boolean function of n variables that can be
computed in linear size using directed monotone contact networks but that needs Ω(n log n)
size on undirected monotone contact networks.

1 Introduction

Proving non-trivial lower bounds on the size of circuits computing Boolean functions is of fun-
damental importance. Although no superlinear lower bound on circuit size is known for any
‘explicitly defined’ Boolean function, substantial progress has been made [BS] in restricted mod-
els of computation. Threshold functions have played a central role in the study of lower bounds
in circuit complexity. In this paper, we consider threshold function computation using the
monotone contact networks model. We show an Ω(n log log log n) lower bound on the size of
undirected monotone contact networks computing the (n − 1)-st threshold function. The best
lower bound for this function known previously, due to Markov [M], was 2(n− 1).

Definition 1 Let n and k be positive integers such that 1 ≤ k ≤ n. The k-th threshold function
Tn

k is a Boolean function on n variables that takes the value 1 precisely when there are at least
k 1’s in the input.

Definition 2 A monotone contact network is a graph where each edge has a variable as its
label. (In non-monotone networks, negated variables are also allowed to appear as labels.) We use
vars(N) to denote the set of variables of the network N . For a pair (v, w) of vertices, the contact
network computes the Boolean function fv,w as follows. On an assignment y : vars(N) → {0, 1},
each edge is set to 0 or 1 according to the value of its label. Then fv,w(y) = 1 if there is a path
from v to w using only the edges with value 1, and fv,w(y) = 0 otherwise. If N is a contact
network with two distinguished vertices s (start) and t (terminal), then we refer to the function
fs,t as the function computed by N and denote it by fN . The size of a network is the number
of edges in it. The contact network complexity of f is the size of the smallest contact network
computing f .
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In this paper, we will be concerned primarily with the monotone model; hence we will often
drop the word monotone, and refer to the networks as just contact networks. Contact networks
may be classified based on the nature of the underlying graph. When the underlying graph is
undirected, such networks are called undirected contact networks. On the other hand, if the
underlying graph is directed (the function value is 1 precisely when there is a directed path from
s to t, using only edges with label 1), such networks are called directed contact networks. Unlike
in many other circuit models, the presence of constant 1’s as labels adds to the power of directed
contact networks. Such networks, where constant 1’s are allowed as labels, are called contact-
rectifier networks. In the contact-rectifier networks model, the edges labelled 1 are ignored
while computing the size of the network. We use sizeU (f), sizeD(f) and sizeR(f) to denote the
respective complexities of f in the undirected, directed and contact-rectifier network models.

1.1 Previous work

Contact networks and contact-rectifier networks appear in the pioneering works of Shannon [H56].
They have been extensively studied by Russian scientists, who were the first to show lower bounds
on the contact network complexity of Boolean functions [L, M, Kr]. Interest in these models
was revived when complexity measures in these models were shown to be related to the space
complexity of Boolean functions in the Turing machine model (see [W, page 414]).

The computation of threshold functions in the contact networks model has been well studied.
The problem of computing threshold functions using monotone contact-rectifier networks was
completely solved by Markov [M]; he showed that sizeR(Tn

k ) = k(n− k +1) (see also Moore and
Shannon [MS]).

For directed monotone contact networks, Radhakrishnan and Subrahmanyam [RS] showed
that sizeD(Tn

k ) = O(k(n − k + 2) log(n − k + 2)) for 2 ≤ k ≤ n − 1. Since directed contact
networks are special contact-rectifier networks, Markov’s k(n − k + 1) lower bound applies to
this model also. A lower bound of bk/2cn log(n/(k − 1)) on the size of any directed monotone
network computing Tn

k , 2 ≤ k ≤ n/2, was obtained by Radhakrishnan [R], improving Markov’s
bound for small thresholds.

The study of threshold function computations in the undirected monotone contact networks
model was initiated by Lupanov [L], who showed that sizeU(Tn

2 ) = Ω(n log n/ log log n). This
lower bound was later improved by Hansel [H64] and Krichevskii [Kr] to Ω(n log n). Since
formulas are special undirected contact networks in which the underlying graph is a series-parallel
graph, upper bounds for monotone formulas apply to undirected monotone contact networks as
well. Using the amplification method, Boppana [B] showed the existence of monotone formulas
of size O(k4.33n log n) computing Tn

k . Applying the amplification method directly to monotone
contact networks, Dubiner and Zwick [DZ] showed the existence of undirected monotone contact
networks of size O(k3.99n log n) computing Tn

k and Tn
n−k. Since undirected networks can be

converted to directed networks by replacing each undirected edge by a pair of directed edges an
Ω(kn log(n/(k − 1)) lower bound for computing Tn

k , 2 ≤ k ≤ n/2 follows from the lower bound
for directed contact networks cited above. Similarly, for k > n/2, we get an Ω(k(n − k + 1))
lower bound from Markov’s result for contact-rectifier networks.

1.2 The results in this paper

In many circuit models related to monotone contact networks (e.g. monotone contact-rectifier
networks, monotone formulas) the complexities of computing Tn

k and Tn
n−k+1 are the same.

However, the results for directed contact networks stated above show that this is not true for
directed monotone contact networks. In particular, while there exists an Ω(n log n) lower bound
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for Tn
2 , the dual function Tn

n−1 can be computed in linear size. Thus directed networks are more
suited for computing large thresholds than small thresholds.

It is natural to ask if this anomaly exists even in the undirected monotone contact networks
model, and, in particular, if linear size undirected monotone contact networks exist for Tn

n−1

even though there is an Ω(n log n) lower bound for Tn
2 . Our main result shows that Tn

n−1 does
not have linear size undirected monotone contact networks.

Theorem 1 sizeU (Tn
n−1) = Ω(n log log log n).

Although this does not tell us if Tn
2 and Tn

n−1 have the same complexity in the undirected
model, it does show that Tn

n−1 is strictly harder to compute in the undirected model than in
the directed model. Inevitably, we need to use properties of undirected graphs that set them
apart from directed graphs. For example, our proof makes essential use of the following property
that holds only for undirected graphs: every (s, t)-path includes an odd number of edges from
every minimal (s, t)-cutset. To get our result we combine such graph theoretic properties with
a notion of approximate threshold computation.

A greater separation between the powers of the undirected and directed models can be
established for a somewhat less natural function. This result is an easy consequence of the
Ω(n log n) lower bound for Tn

2 .

Theorem 2 Let the function F be defined by F (x1, x2, . . . , xn, y) ≡ Tn
2 (x1, x2, . . . , xn) ∧ y.

Then, sizeD(F ) ≤ 3n whereas sizeU (F ) = Ω(n log n).

The rest of the paper is organized as follows. Section 2 describes the main contribution
of this paper, the lower bound proof leading to Theorem 1 above. The proof of Theorem 2 is
described in section 3. Finally, in section 4, we conclude with some open problems.

2 The Ω(n log log log n) lower bound for T n
n−1

2.1 Preliminaries

In this section, all networks considered will be undirected. We allow constant 1’s to appear as
labels in our networks. It is easy to see that edges labelled 1 can be contracted without altering
the function computed by the network. However, for ease in presentation, we shall often let
them remain, remembering not to consider them when estimating the size of the network.

We shall use the following graph theoretic notation. In a graph G, a path from vertex v to
vertex w will be called a (v, w)-path. For a contact network N , a set S ⊆ E(N) is called a (v, w)
edge cutset if there is no (v, w)-path in the graph obtained from N by deleting the edges in S.
Extending this notation, we shall refer to a set C ⊆ vars(N) as a (v, w) variable cutset if the
set consisting of all the edges whose labels appear in C forms a (v, w) edge cutset. When the
nature of the cutset is clear from the context, we shall omit the prefixes edge and variable, and
just refer to the set as a (v, w)-cutset. We say that a path P in N avoids a variable x ∈ vars(N)
if P contains no edge with label x.

2.2 Overview

For monotone contact networks, the function Tn
n−1 is characterized by two conditions: first, it

accepts all inputs with (n−1) 1’s; second, it rejects all inputs with (n−2) 1’s. It turns out that
we may relax the second condition considerably without making the task too easy. For example,
in the case of formulas, the following holds [Kr]:
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Every formula that accepts all inputs with (n− 1) 1’s and rejects all inputs with (n− k)
or fewer 1’s, for k ≥ 2, has size at least n log(n/(k − 1)).

This motivates the following definition. Assume that k ≥ 2.

• We call G an (n, k)-network if G has n variables, G accepts all inputs with at least (n− 1)
1’s, and G rejects all inputs with at least k 0’s.

For example, a network computing Tn
n−1 is an (n, 2)-network. The fact about formulas can now

be stated as follows:

Every (n, k)-formula (that is, every (n, k)-series-parallel network) such that n ≥ 2τ (k−1),
has size at least nτ .

We would like to prove a similar statement for contact networks in general. First, we need a
definition.

• A network G is τ -robust if G is an (n, k)-network for some (n, k) such that n ≥ k2τ
.

We shall show that every τ -robust network on n variables has size at least cn log τ for some
constant c (independent of n and τ). Since a network computing Tn

n−1 is log log n-robust, this
would imply that

sizeU (Tn
n−1) = Ω(n log log log n). (1)

For x ∈ vars(G), let µG(x) be the number of occurrences of x in G. Let µ(G) be the maximum
multiplicity of a variable in G. That is,

µ(G) = max
x∈vars(G)

µG(x).

Let
l(τ) = min

G:G is τ -robust
µ(G).

We shall show that
l(τ) ≥ log3(τ). (2)

Then (1) will follow from the following lemma, which is an application of an observation due to
Krichevskii [Kr].

Lemma 3 If G is a τ -robust network with n variables, then G has size at least (l(τ)− 1)n.

Proof. Among the τ -robust networks on n variables of the smallest size, let G be the one with the
fewest variables x satisfying the condition µG(x) ≥ l(τ). Then, we claim that µG(x) ≥ l(τ)− 1,
for all x ∈ vars(G). For, suppose the variable xi appears less than l(τ) − 1 times, that is,
µG(xi) ≤ l(τ) − 2. By the definition of l(τ) there is a variable xj that appears at least l(τ)
times. Construct a network G′ as follows. Replace all occurrences in G of xj by constant 1.
Subdivide every edge with label xi and label one part with xi and the other with xj . Create
a new start vertex s′ and add two new edges connecting s′ to s(G), one with label xi and the
other with label xj .

If fG is an (n, k)-function, then it can be verified that fG′ is also an (n, k)-function. It
follows that G′ is a τ -robust network on n variables and size(G′) ≤ size(G). Also µG′(xn) =
µG(x1)+1 ≤ l(τ)−1, and µG′(x1) ≤ l(τ)−1. But then G′ has fewer variables than G appearing
at least l(τ) times, contradicting the minimality of G. Hence all variables must appear at least
l(τ)− 1 times. It follows that size(G) ≥ n(l(τ)− 1).
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Our proof of inequality (2) uses induction on τ . We show that every τ -robust network
contains a (τ/3)-robust subnetwork M . Moreover, this (τ/3)-robust network is not optimal,
that is, µ(M) ≥ l(τ/3) + 1. It then follows that l(τ) ≥ log3(τ). To obtain the non-optimal
network M from N , we need to perform certain operations on N . We now describe these
operations informally without giving the details. We shall repeatedly make use of the following
simple facts about (n, k)-networks.

Observation 4

1. N is an (n, k)-network if and only if the following two conditions hold.

• For every variable xi ∈ vars(N), there is an (s, t)-path in N avoiding xi.

• Every subset of vars(N) with k variables is an (s, t)-cutset.

2. If N is an (n, k)-network and S ⊆ vars(N) then the network obtained from N by setting
all the variables in S to 1 is an (n− |S|, k)-network with variable set vars(N)− S.

In a network computing Tn
n−1 no (s, t)-path can avoid both x1 and x2. Since we are dealing

with (n, k)-networks, this useful property is not available to us automatically. However, with
some reduction in the number of variables this property can be acquired. We shall show how a
networks N1 (say) can be obtained from N , such that, for all xj ∈ vars(N1)−{x1}, no (s, t)-path
in N1 can avoid both x1 and xj . If x1 satisfies this condition then it is said to be critical.

Next, we obtain a network N2 in which the variable x1 appears only once. The reason this
network is useful is as follows. Suppose the edge on which x1 appears is (A,B). Since every
path avoiding any other variable contains x1, such paths must use the edge (A,B). Assume that
they all use the edge in the direction, A to B. We focus on the subnetwork between s and A and
the subnetwork between B and t. Now, if there are short paths (containing few variables) from
s to A and from B to t, then there would be a short path from s to t. But this would contradict
the robustness property of N2. Hence, one of the two subnetworks must be reasonably robust.
Also, as discussed above, for every variable they contain a path avoiding that variable. So one
of these two networks will give us the desired subnetwork M . Then, it only needs to be shown
that this subnetwork is non-optimal. For this we observe that in the network N2 there is a path
avoiding x1. Now since x1 is critical this path must include every other variable. It turns out
that these occurrences are not essential for the computation of our subnetwork M . This implies
that the network M is not optimal. The details for this part are discussed in section 2.4, when
the ‘special paths’ are used. This is the only place where we use the fact that our network is
undirected.

The details for the various steps are presented below. We shall use these steps when we prove
the main lemma (Lemma 11, section 2.4). However, we suggest that the reader go directly to
section 2.4 and obtain an overview of the argument presented there before verifying the details
for the intermediate steps.
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2.3 The intermediate steps

Making x1 critical:

Lemma 5 Let G be an (n, k)-network. Then, there is an (m, k)-network H, with m ≥ n/(k−1),
such that

(a) µ(G) ≥ µ(H); and

(b) x1 ∈ vars(H), and for every variable xj ∈ vars(H)−{x1}, no (s, t)-path avoids both x1 and
xj.

Proof. We use induction on k. For (k = 2), we have that G computes Tn
n−1. If x1 is not one of

the variables of G then rename some variable as x1. Note that this network now has property
(b). Hence we take H to be the network G itself with some variable renamed as x1 if necessary.

For the induction step, assume that the lemma holds for k = r ≥ 2; we shall show that it
holds for k = r + 1. As before, if x1 is not one of the variables of G, rename some variable of G
as x1. Let

S1 = {xj ∈ vars(G) : every (s, t)-path avoiding xj contains x1}.

Let m1 = |S1 ∪ {x1}|. Let H1 be the network obtained from G by fixing all variables outside
S1 ∪ {x1} at 1. Clearly, H1 has properties (a) and (b), and H1 is an (m1, r + 1)-network.

Let G′ be the network obtained from G by fixing x1 at 0 (deleting all edges with label
x1) and all variables in S1 at 1. Clearly, µ(G′) ≤ µ(G). We claim that G′, with vars(G′) =
vars(G) − (S1 ∪ {x1}), is an (n − m1, r)-network. To justify this, we use Observation 4. First,
we show that for every variable xj ∈ vars(G′), there is an (s, t)-path in G′ avoiding xj . Since G
is an (n, r + 1)-network, there is an (s, t)-path in G avoiding xj . Since xj ∈ vars(G′), xj 6∈ S1.
By the definition of S1, G has an (s, t)-path avoiding both x1 and xj . In G′, this path may have
some labels set on it to 1, but none to 0 (because it avoids x1). Thus, this is an (s, t)-path in G′

avoiding xj . Next, we verify that every subset of vars(G′) with r variables is an (s, t)-cutset of
G′. Let C be a subset of vars(G′) with r variables. Since G is an (n, r + 1)-network, C ∪ {x1} is
an (s, t)-cutset in G. Hence, C is an (s, t)-cutset in G′. This completes the justification of our
claim that G′ is an (n−m1, r)-network.

Since the statement holds when k = r, we get, by applying the induction hypothesis to the
network G′, an (m2, r)-network H2, such that

(a) µ(G′) ≥ µ(H2); and

(b) x1 ∈ vars(H2), and for every variable x ∈ vars(H2) − {x1}, no (s, t)-path avoids both x1

and x.

Further m2 ≥ (n−m1)/(r−1). It follows that m2(r−1)+m1 ≥ n. That is, r max{m2,m1} ≥ n
or max{m2,m1} ≥ n/r. Hence, one of H1 and H2 meets the requirements for H in the statement
of the lemma.

To just one x1: Next we obtain a network in which x1 appears only once.

Lemma 6 If G is an (n, k)-network where {x1, xi} is an (s, t)-cutset for every xi ∈ vars(G)−
{x1}, then there is an (m, k)-network H with m ≥ n−1

2µ(G) + 1, such that

(a) there is only one edge (A,B) with label x1; and

(b) for each xj ∈ vars(H)− {x1}, every (s,t)-path avoiding xj has the form p · (A,B) · q.
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Proof. First we obtain a network H ′ that has property (a). H ′ will be an (n′, k)-network with
n′ ≥ n−1

µ(G) + 1.
Let the edges with label x1 in G be e1, e2, . . . , er, where r = µG(x1) ≤ µ(G). For xi ∈

vars(G)−{x1}, let g(xi) be the smallest index j such that there is an (s, t)-path avoiding xi that
contains none of ej+1, . . . , er. (Every such path must use ej .) That is, for xi ∈ vars(G)− {x1},

g(xi) = min{j : there exists an (s, t)-path avoiding xi and ej+1, . . . , er}.

For every variable xi ∈ vars(G)− {x1}, there exists an (s, t)-path in G that avoids xi. Because
{x1, xi} is a cutset, each such path must contain at least one of e1, . . . , er. Hence g(xi) is well
defined for xi ∈ vars(G)− {x1}. For j = 1, 2, . . . , r, let

Vj = {xi ∈ vars(G)− {x1} : g(xi) = j}.

Since
⋃r

j=1 |Vj | = n − 1, there is a j such that |Vj | ≥ (n − 1)/r. For this j, let H ′ be the
network obtained from G by setting all variables NOT in {x1} ∪ Vj to 1, the edges e1, . . . , ej−1

to 1 and deleting the edges ej+1, . . . , er. Clearly, the edge ej (= (A,B), say) is the only edge
with label x1. We now verify, using Observation 4, that H ′ is an (|Vj | + 1, k)-network. First,
we show that for every xi ∈ vars(H ′) there is an (s, t)-path in H ′ avoiding xi. There is such a
path in G that does not use ej+1, . . . , er. Hence, there is an (s, t)-path in H ′ avoiding xi. (Note
that the (s, t)-path in G avoiding x1 does not use any of e1, e2, . . . , er, and therefore continues
to serve in H ′.) By our definition of Vj , for every xi ∈ Vj , the path in H ′ avoiding xj must
use the edge ej . Hence, {x1, xi} is an (s, t)-cutset for all xi ∈ Vj . Every subset S of Vj with k
variables is an (s, t)-cutset of G. Since no occurrence of any variable in S has been replaced by
1, S is an (s, t)-cutset for H ′ also. It follows that every subset of vars(H ′) with k variables is an
(s, t)-cutset in H ′. Thus, we have verified that H ′ is an (|Vj |+ 1, k)-network.

To obtain the network H satisfying condition (b) we observe that for an xj ∈ vars(H ′)−{x1},
all (s, t)-paths in H ′ avoiding xj have either the form p ·(A,B) ·q or the form p ·(B,A) ·q, but not
both (for otherwise we would get a path avoiding both x1 and xj). For at least half the variables
in vars(H ′) − {x1}, the path must have the same form. By fixing the remaining variables in
vars(H ′)−{x1} at the value 1 (invoking Part 2 of Observation 4), and suitably renaming A and
B, we obtain an (m, k)-network with properties (a) and (b) such that m ≥ n−1

2µ(G) + 1.

Getting special paths: We need the following definitions. We call a network N optimal if

µ(N) = min
H:H computes fN

µ(H).

For a network N and a variable x ∈ vars(N), we say that N is x-optimal if through every edge
e with label x there is an (s, t)-path on which the label x appears only at e. First, we make the
following easy observations.

Observation 7

1. If N is not x-optimal then there is an edge in N whose label x can be replaced by 1 without
changing fN .

2. If N is not x-optimal for some variable x ∈ vars(N) and we replace some occurrence of
some other variable by 1, then the new network is also not x-optimal.

Lemma 8 If N is optimal then N is x-optimal for some x ∈ vars(N).
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Proof. Suppose N is not x-optimal for any x ∈ vars(N). By repeatedly using Observation 7,
we can replace one occurrence of each label x ∈ vars(N) by 1, without changing fN . But then,
the final network obtained would contradict the optimality of N .
We use the following fact that relates (s, t)-paths and (s, t)-cutsets in undirected graphs.

Observation 9 In an undirected graph, every (s, t)-path must include an odd number of edges
from every minimal (s, t)-cutset.

Lemma 10 Suppose G is an (n, k)-network such that

(a) x1 ∈ vars(G) appears only once;

(b) for the variable xj ∈ vars(G)− {x1}, G is xj-optimal, and every path avoiding xj contains
the x1.

Then there is an (s, t)-path in G avoiding x1 and containing only one edge labelled xj.

Proof. Property (b) implies that, the edges with labels x1 and xj form an (s, t)-cutset. Let Cj

be a minimal such cutset. Note that Cj must include an edge e with label xj and the lone edge
with label x1. Since G is xj-optimal, there is an (s, t)-path on which xj appears only at e. This
path cannot contain x1, for then it would contain exactly two edges from the minimal cutset
Cj , contradicting Observation 9.

2.4 The main lemma and the theorem

Lemma 11 l(τ) ≥ blog3(τ)c.

Proof. Since l(τ) is a non-decreasing function of τ , it is enough to verify the claim for all τ ’s
that are powers of 3. For τ = 1, the claim is trivial. Hence, assume that τ (≥ 3) is a power of 3
and the claim holds for all smaller powers of 3. Let G be τ -robust, that is, G is an (n, k)-network
with n ≥ k2τ

. We shall show that µ(G) ≥ log3(τ). It will follow that l(τ) ≥ blog3(τ)c.

Making x1 critical: Using Lemma 5 we get an (n′, k)-network G′, with

n′ ≥ n/(k − 1), (3)

such that

(1a) µ(G) ≥ µ(G′); and

(1b) x1 ∈ vars(G′), and for every variable xj ∈ vars(G′) − {x1}, no (s, t)-path avoids both x1

and xj .

To just one x1: From G′, using Lemma 6, we get an (m, k)-network H, with

m ≥ n′ − 1
2µ(G′)

+ 1 ≥ n− k + 1
2µ(G)(k − 1)

+ 1, (4)

such that

(2a) there is only one edge (A,B) with label x1; and

(2b) for every xj ∈ vars(H)− {x1}, every (s, t)-path avoiding xj has the form p · (A,B) · q.
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We assume that H is a minimal such network, that is, we cannot replace any variable label by
1 and retain these properties. Then Part 1 of Observation 7 implies that H has the following
property.

(2c) H is xj-optimal for every xj ∈ vars(H).

Since H is an (m, k)-network, properties (2a) and (2b) imply that the following holds for H.

(2d) For xj ∈ vars(H) − {x1}, there is an (s,A)-path pj (and a (B, t)-path qj) avoiding both
x1 and xj .

Using special paths: Let H1 be the network obtained from H by deleting the lone edge
(A,B) with label x1, setting s(H1) = s(H) and setting t(H1) = A. Let H2 be the network
obtained from H by deleting (A,B), setting s(H2) = B and setting t(H2) = t(H).

Claim: H1 and H2 are not optimal.

Proof of claim. We shall only prove that H1 is not optimal. That H2 also is not optimal can
be obtained by symmetry. Suppose H1 is optimal. Using Lemma 8, we conclude that for some
variable xi ∈ vars(H1), H1 is xi-optimal. Since H has properties (2a), (2b) and (2c), we get
from Lemma 10 that there is an edge e and an (s, t)-path in H avoiding x1 on which xi appears
only at e. Let the path be P · (a, b) · Q, where e = (a, b). Since H1 is xi-optimal, there is an
(s,A)-path in H1 on which xi appears only at e. Suppose this path is of the form p · (a, b) · q.
Using property (2d) we get that pi ∪ q ∪ Q contains an (s, t)-path in H avoiding both x1 and
xi. This contradicts (2b). On the other hand if the path has the form p · (b, a) · q, then p ∪ Q
contains such a path, again contradicting (2b). (End of Claim.)

The induction: Assume that
µ(G) < log3(τ). (5)

We shall show that either H1 or H2 contains a (τ/3)-robust network. By the claim above, these
networks are not optimal; therefore, we have µ(G) ≥ log3(τ/3) + 1 = log3(τ), contradicting (5).

Suppose no (s,A)-path in H1 avoids k2τ/3
variables from vars(H1). Then every subset of

vars(H1) of size k2τ/3
is an (s,A)-cutset in H1. Also, (2d) implies that for every xj ∈ vars(H1)

there is an (s,A)-path in H1 avoiding xj . It follows from Observation 4 that H1 is an (m −
1, k2τ/3

)-network on the variables vars(H1) = vars(H)− {x1}, where (4) gives

m− 1 ≥ n− k + 1
2µ(G)(k − 1)

.

Now, (
k2τ/3

)2τ/3

≤ n− k + 1
2 log3(τ)(k − 1)

,

since k ≥ 2, τ ≥ 3 and n ≥ k2τ
. Hence H1 is (τ/3)-robust. By the claim above, H1 is not

optimal. Hence, using the induction hypothesis, we have

µ(G) ≥ µ(H) ≥ µ(H1) ≥ l(τ/3) + 1 ≥ log3(τ),

contradicting (5).
On the other hand, suppose some (s,A)-path P in H1 avoids m′ ≥ k2τ/3

variables from
vars(H1). Let V be the set of these variables. In this case, we consider the network H2. Let Ĥ
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be the optimal network computing fH2 . By the claim above, H2 is not optimal. Therefore, we
have

µ(H2) ≥ µ(Ĥ) + 1. (6)

Consider the network H ′ with vars(H ′) = V obtained from Ĥ by setting all variables not in V
to 1. We now show that H ′ is an (m′, k)-network. Let S be a subset of V of with k variables.
Since H is an (m, k)-network, S is an (s, t)-cutset in H. Since S does not contain any variables
in P and x1 6∈ S, S must be a (B, t)-cutset in H. It follows that S is also a (B, t)-cutset in H2

and hence an (s(Ĥ), t(Ĥ))-cutset in Ĥ. Since H ′ is obtained from Ĥ by setting some variables
outside S to 1, S is a (s(H ′), t(H ′))-cutset. Also, (2d) implies that for every variable xj ∈ V ,
there is a (B, t)-path in H2 avoiding xj , and therefore an (s(Ĥ), t(Ĥ))-path in Ĥ avoiding xj .
Since H ′ is obtained from Ĥ by setting some variables to 1, there must exist an (s(H ′), t(H ′))-
path in H ′ avoiding xj . Thus, using Observation 4, it follows that H ′ is an (m′, k)-network.
Since m′ ≥ k2τ/3

, H ′ is (τ/3)-robust. Then, using (6), we have

µ(G) ≥ µ(H) ≥ µ(H2) ≥ µ(Ĥ) + 1
≥ µ(H ′) + 1 ≥ l(τ/3) + 1 ≥ log3(τ),

again contradicting (5).
Thus (5) cannot hold and the induction is complete.

Theorem 1 sizeU (Tn
n−1) = Ω(n log log log n).

Proof. The theorem is a direct consequence of Lemmas 3 and 11, and the fact that any network
computing Tn

n−1 is (log log n)-robust.

3 Undirected vs. directed monotone contact networks

Theorem 2 Let the function F be defined by F (x1, x2, . . . , xn, y) ≡ Tn
2 (x1, x2, . . . , xn)∧y. Then,

sizeD(F ) ≤ 3n whereas sizeU (F ) = Ω(n log n).

Proof. The network shown in Figure 1 shows that sizeD(F ) ≤ 3(n− 1).

Figure 1: A network computing F (x1, x2, . . . , xn, y)

To show that sizeU (F ) = Ω(n log n), let G be an undirected network that computes F . Let
G′ be the network obtained from G by fixing the variable y at 1. Since G is an undirected
network, this amounts to contracting all edges labelled y. Now G′ computes Tn

2 (x1, x2, . . . , xn),
and using Krichevskii’s lower bound [Kr], we have size(G) ≥ size(G′) = Ω(n log n).
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4 Concluding remarks

We have obtained a lower bound of Ω(n log log log n) on sizeU (Tn
n−1), whereas the best upper

bound known is O(n log n). Can this gap be reduced? For undirected networks, our lower bound
improves Markov’s k(n − k + 1) lower bound for computing Tn

k , if k is very large. It would be
interesting to generalize this result, and obtain a lower bound of Ω(kn log log log n) for Tn

n−k+1,
or at least a bound of the form Ω(f(k)n log log log n), where f(k) goes to infinity with k.

We have shown that there exists a function on n variables that can be computed in linear size
using directed monotone contact networks, but needs size Ω(n log n) on undirected monotone
contact networks. It appears, however, that a far greater separation exists. We restate a question
of Stockmeyer (see Grigini and Sipser [GS, page 73]) in the language of contact networks.

Question: Is there a polynomial size monotone contact networks for computing the directed
(s, t)-connectivity function?
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