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Abstract Lemma 12.6.1])

We prove a theorem about the relative entropy of quan-  ||P — Q|, £ > IPGE) - Q)] < V/(2I2)e. (2
tum states, which roughly states that if the relative entropy, i€ln]

S(pllo) 2Tr p(log p —log o), of two quantum stategsand
o is at most,
then p/2°(¢) ‘sits inside’ 0. Using this ‘substate’ the-

orem, we give tight lower bounds for the privacy loss of

pounded error quantum communication protocols for the 1, oveng with probability3/4 in P has positive probability

index function problem. We also give tight lower bounds for ;| Q. Butis it true that whers(P||Q) < +oc P(€) > 0

the l?-round boun_ded error_quantum communication com- ., Q(€) > 0? Yes! To see this, let us reinterpret the

plexity of the pointer chasing cha5|_ng problem, V\_/hen the expression in (1) as the expectationlog P(i)/Q(i) asi

wrong player starts, and all thiag » bits of thekth pointer is chosen according t&. Thus, one is lead to believe that

are desired. if S(P||Q) < ¢ < +oo, thenlog P(i)/Q(i) is typically
bounded by, that is, P(i)/Q(7) is typically bounded by
2¢. One can formalise this intuition and show, forat> 1,

That is, the probability of an evest C [n] in P is close to
its probability inQ: |P(£)—Q(€)| < /(cIn2)/2. We are,
however, concerned with the situation whe> 1. In that
case, (2) becomes weak: we cannot even infer from it that

1 Introduction

zfe)}g {Q(z) 2 2mer ] = r
A

Let Good 2 {i : P(i)/2"¢ < Q(i)}, P'(i) 2 P(i | i €
hat if the relati 2 71 p(log p—1 f i i st di

that if the relative entropy (p[|o) = Tr p(log P oo 7),0 Good). Thatis inP’ we just discard the bad valuesioaind
two quantum statgsando is at most, thenp/271 sitsin- - normalise. Now; =1+, P’ is dominated by everywhere.
sideo. This implies, for example, that if some event occurs \ye have thus proved the following.

in p with probability p, then it occurs inr with probabil- -

ity at leastp/2°(</?). We shall present below two natural Proposition 1 If S(P||Q) < ¢, then for allr > 1, there
problems in whose solution this result plays a crucial part. exists a distribution?” such that| P — P'|; < %'anQQ =
First, let us motivate the substate theorem by considering itsa P’ + (1 — «) P, whereP" is some other distribution and
classical analog. LeP andQ be probability distributions ~ a = 2790,

on the sefn| with relative entropy bounded hy that is

The main contribution of this paper is a theorem, called
Substate Theoregmbout relative entropy; it states, roughly,

Let us return to our everdt that occurred with some small
A ' P(i) probability p in P. Now, if we taker to be2/p, then&
S(P|Q) = > P(i)log, a0 <ec (1) occurs with probability at leagt/2 in P, and hence appears
i€[n] ’ with probabilityp/2°(") in Q . Thus, we have shown that
even thoughP and @ are far apart as distributions, events
that have positive probability (no matter how small)fm
rcontinue to have positive probability @.
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When ¢ <« 1, this implies thatP and @ are close
to each other; indeed, one can show that (see [CT91




are statesy’ and p” such that|p—p'||, < 4//r and
o=ap +(1—a)p”, wherea = 20079,

Nayak, Ta-Shma and Zuckerman [KNTZ01], who, using in-
teresting information-theoretic techniques, showed a lower

(This has been stated here in a form that brings out the analpound ofQ(rn/22°") for the bit versionof this problem.
ogy with the classical statement above. In Section 3, we Theydid not considethe full version of the problem. (Note
have a more nuanced statement which is better suited forthat the classical application of the lower bound fr to

our applications.)

1.1 The pointer chasing problem

monotone circuit depth in the paper of Nisan and Wigder-
son [NW93, Theorem 2.7] is valid for the full version of the
problem, not just for the bit version.) We fill this gap.

Our first application of the Substate Theorem concemns Resylt 2:  For any constant, the bounded error quantum

the pointer chasing problem in two-party communication
complexity.

Let V4 and Vp be disjoint subsets of size.
PlayerA is given a functionf'y : V4 — Vg and
player B is given a functionFsz : Vg — Va.
Let F = F4, U Fg. There is a fixed vertex in
Vg. A and B need to communicate to determine
t = F(#+1)(5), wherek ands are known to both
parties in advance.

If B starts the communication, then there is a straightfor-
ward classical deterministic protocol where one of the play-
ers can determineafter k messages dbg n bits have been

communication complexity of the pointer jumping problem
P, (full pointer version) is2(nlog®) n).

1.2 Privacy and communication complexity

Our second application of the substate theorem concerns
the index function problem [MNSW98, ANTV99, Nay99]:

INDEX,,: There are two playersl and B. A

is given an inputc € {0,1}" and B is given an
index: € [n]. They must exchange messages so
that in the endB knowsz;.

exchanged. It appears much harder, however, to solve thegackground: Miltersen, Nisan, Safra and Wigder-

problem efficiently withk messages, whe is required to

son [MNSW98] considered this problem (under the name

send the first message. We refer to this as the pointer chasset membership problémin the classical setting, and

ing problemP.

Background: The pointer chasing problem has been

studied a lot in the past to show rounds versus commu-

nication tradeoffs in classical communication complexity.
Nisan and Wigderson [NW93] showed (following some ear-
lier results of Papadimitriou and Sipser [PS84], and Duris,
Galil and Schnitger [DGS87]) that and B must exchange
Q(n/k* — klogn) bits to solvePy; their bound was im-
proved by Klauck [Kla00] td2( +k). These lower bounds
hold even whemd and B are allowed to toss coins and err
with some small probability. Furthermore, they hold for
the bit version of the problem, where one only wants to de-
termine (say) the least significant bit ofand not all oft.

For this bit version of the problem, a deterministic proto-
col with O(n + klogn) bits of communication was shown

by Ponzio, Radhakrishnan and Venkatesh [PRVO01]. Thus,

showed that ifB sends a total of at most bits, thenA
must sendq/2°®) bits. Note that this is optimal as there is
a trivial protocol whereB sends the firsk bits of his index

to A, andA replies by sending the corresponding part of her
bit string.

In the quantum setting, Nayak [Nay99] (see also Cleve
et al. [CvDNT98]), showed that iB sends no messages at
all, then A must send at leas$t(n) bits. This bound holds
even if the players share EPR pairs in advance, drand
B interact butB’s messages do not depend on his input
However, the case whei® is allowed to send a few qubits
based on his input in order to reduce the communication
from A, does not seem to have been considered before.

In this paper, we generalise the Nayak’s result to a state-
ment of the following form: ifB ‘leaks’ only a small num-
ber of bits of information about his input, thehmust send
a large number of bits. Before we present our result, let us

the lower and upper bounds are quite close in the the clas-explain what we mean when we say thatleaks’ only a

sical setting for this version of the problem. For the full

small number of bits of information about his input. Fix a

version of the problem, where one needs to determine allprotocol for the index function problem. Assume tltizis

of ¢, the best upper bound)(n log(k) n), comes from a

input J is a random index € [n]. SupposeB operates

classical deterministic protocol due to Damm, Jukna and faithfully according to the protocol, bud deviates from it

Sgall [DJS98]. Note that for constaht this is superlinear.

and manages to get her registét®ntangled withJ: we

Ponzio, Radhakrishnan and Venkatesh [PRV01] showed asay thatB leaks onlyb bits of information about his input

matching lower bound in the classical setting.
The pointer chasing problem was studied recently in
the quantum communication complexity model by Klauck,

if the mutual information betweed and R, I(J : R), is
at mostb. This must hold for all strategies adopted Hy
which have the property that the reduced density matrix of



Bob’s qubits is at all times the same as in the original pro- 1.3 Organisation of the rest of the paper

tocol. In other wordsA wants to cheat and gather a lot of

information abouiB’s input, butB should not be able to fig- In the next section, we give some information theoretic
ure out thatA is cheating. Note that we do not assume that preliminaries and formally define our model of privacy loss
B’s messages contain onbyqubits, they can be arbitrarily  in quantum communication protocols. In Secti®? we
long. In the quantum setting} has a big bag of tricks she  give a complete proof of Result 2, assuming the Substate
can use in order to extract information froRy for exam-  Theorem. In Section 3, we give proof of the substate tho-
ple, she can place a superposition of states in the registergrem. In Section 4, we give the proof of the lower bound
corresponding to he input and extract information aki®'at for the Pointer Chasing problem.

input (see [CvDNT98, Kla02] for details).

Klauck [Kla02] recently studied privacy in quantum 2 Preliminaries

communication protocols. In Klauck’s setting, two play-

ers collaborate tq comque a functlon, but at any point, one, 1 Notation and definitions
of the players might decide to terminate the protocol and
try to infer something about the input of the other player
using the bits in his possession. The players lavaest . . . :
but curious in a sense, they don't deviate from the pro- sical .random. variablev.If ‘A4 s a qzantum systgm with
tocol in any way other than, perhaps, by stopping early. density matrixp, thenS(A) = S(p) = —Tr plog p is the
In this model, Klauck shows that there is a protocol for von Neumann entropyf A. If A, B are two disjoint quan-
the set disjointnessunction where neither player reveals tUm systemi, thenutual informatiorof A and 3 is defined
more thanO((log n)?) bits of information about his input, asI(A: B) = S(A) + S(B) — S(AB). If p, o are density
whereas in every classical protocol, at least, one of the play-matrices in the same Hilbert space, thelative entropyis
ers leaks2(y/n/logn) bits of information about his input.  gefined ass(p||o) S1r (p(log p —log &)). The trace norm

Klauck, however, proves nlower boundsor privacy loss of a linear operator is defined ag|A|, A 1r VATA. The

n tnhte 3\;1 anltluvmv rsnet}ilnig. OUT mo;je\IN?]f prlvsc;ly '\i Tor(erkfittrrln; trace distance between two linear operatér®3 is defined
gent. VWe allow maiicious players who can deviate arbitra as||A — B||,. For distributionsD and D’ on a finite setX,

ily from the protocol, but with the restriction that the honest i o i o oA
player does not realise the difference. Note that this pre-their total variational distance is given ) — D'[|; =

cludes the malicious player from prematurely aborting the >_zex [P(z) — D’(z)|. We will use the notatiod > B
protocol. for Hermitian operatorsl, B in the same finite dimensional

Hilbert spaceH as a shorthand for the statemeAt- B is
positive semidefinite’. Thusd > 0 denotes thatl is pos-

itive semidefinite. We us&(p, o) 2 vV, to denote
theBhattacharya distuinguishability?] of density matrices
p, o. Note that this is the square root of theelity of Jozsa
[Joz94].

The above notations and definitions are standard. For ex-
cellent introductions to classical and quantum information
theory, see the books by Cover and Thomas [CT91] and
Corollary (informal statement) For the index function  Nielsen and Chuang [NCO0O] respectively.
problem, one of the players must le@Klogn) bits of in- In this paper, we consider two party quantum communi-
formation about his input. cation protocols as defined by Yao [Ya093].

We useH (X) to denote the Shannon entropy of a clas-

Result 3 (informal statement) If there is a protocol for
the index function problem wher8 leaks onlyb bits of
information about his input, thenA mustleakQ(n/2°®))
bits of information about her input.

Definition 1 (Safe transformation, protocols) Let H and

) _ K be finite-dimensional Hilbert spaces, with computational
General result and other problems: The index function 5 thonormal bases$|h) : h € H)and(|k) : k € K). We

problem is just one of several problems whgre a statemgntsay that a unitary transformatioff onH ® K acts safely
like Result 2 can be proved using our technique. In fact, it 52/ if there exist unitary transformationd’, : h € H)
follows easily that if the communication matrix of the func- acting onK such that for allh € H andk € K

tion has VC-dimension at least then one of the players

must leak at leas®(log k) bits of information about his in- U:|h)®|k) — |h) @ Uplk).

put. In particular, this implies af(log n) loss in privacy

for the set disjointness and inner product mod2lprob- We say that a quantum communication protocol acts safely
lems. on aregisterR, if all unitary transformations in the protocol



act safely onR, and R is never sent as part of a message. Fact 3 Let A, A; be non-empty, convex and compact sub-
We say that a protocol isafeif Alice and Bob act safely on  sets ofR™ for somen. Letu : A; x A3 — R be a continuous
their input registers. function, such that

When the inputs to a quantum communication protocol are e Va, € A,, the set{a; € A; : wu(aj,az) >
classical, we can always assume that the protocol is safe,  wu(a},as)Va} € A;} is convex; and

since the players can make a secure copy of their inputs

before beginning the protocol. From now on we assume ® Va; € A;, the set{ax € Az : wu(aj,a2) <
that all our protocols are safe. u(ay,ay) Vay € Az} is convex.

22 Some basic facts Then, there is an* € A; x A, such that

. ) . max min u(ar,az) =u(a*) = min max u(ay,as).
We will use the following elementary facts, which we a1€4: a2€4s az€Az a1€A;

state without proof. . . . . .
We will also be using several information theoretic facts

Fact 1 SupposeX, Q are two disjoint finite dimensional ~thatcan be found in the books by Cover and Thomas [CT91]
quantum systems, wheléis a classical random variable, and Nielsen and Chuang [NCO0O0] without explicitly stating

which takes value with probability p,, andQ is a quan-  them here.
tum encoding: — o, of X. Let the density matrix of the
average encoding be = 3, pz0s. Then 3 Proof of the substate theorem
= prs(%HU)- To prove the Substate Theorem, it will be useful to define

a new notion of distinguishability between density matrices.

Fact 2 SupposeD, D’ are two probability distributions We shall call this notiombservational divergence

on the same finite sek, whose total variation dis-  pefinition 2 (Observational divergence)Let p, o be den-
tance [|D — ZZ I+ is 4. Then, there exists a stochas- iy matrices in the same finite dimensional Hilbert space
tic matrix P = (pza’)eerex, SUCh thatD = PD’ and 7. Their observational divergence is defined as
Swex P(@',2")D(2') = 1 — £. LetH be a Hilbert space )

Tr (F )

with computational orthonormal basi$z) : « € X). Let
C be a unitary transformation of ® H that maps compu- Tr (Fo)

tational basis vectors of the form’) ® |0) (whereO is a
special element ak) according to the rule whereF' above ranges over POVM elementsigisuch that

Tr (Fo) #0.

D(p|lo) 2 sup <Tr (Fp)log

[#) @10) = [2') @ D V/paarle),

= We note that the relative entropy is an upper bound on

the divergence to within an additive constant.
and maps other computational basis vectors suitably, pre-
serving orthonormality. Supposg’ and R are registers ~ Lemmal Let p,o be density matrices in the same finite
that can hold states ift{, where R’ contains a mixture of ~ dimensional Hilbert spack. Then,D(p|lo) < S(p[lo)+1.
23?; gfatf? }\%I\,/!tg)?lzzlt?liﬁgf ngiﬁéstgltgzissitg%' the Proof: (_S_ketch) Fo_llows from the Lindblad-Uhlmann
computational basis. Let the resulting random variables monotonicity of relative entropy. u

(taking values inX) be Z’ and Z. Then,Z’ has distribution We now prove the following lemma, W_hiCh can be
D', Z has distributionD and Pr[Z # Z'] < g Note that thought of as a Substate Theorem when the first density ma-

C acts safely orR’. trix is in fact a pure state.

We will require the following minimax theorem from Lemma 2 Let|y) be a pure state and be a density matrlx

game theory. It follows by combining Proposition 20.3 in the same finite dimensional Hilbert spate Letk =
(which shows the existence of Nash equilibriatrin strate- D (([¥)(¢])[|o). If k > 0, then for allr > 1, there exists a
gic games) and Proposition 22.2 (which connects NashPure state¢) (depending ow) such that

equilibrium and the min-max theorem for games defined

using a pay-off function such ag of Osborne and Rubin- 1) (@] — o) (¢lll, < — and ( o > o) (] <
stein’s [OR94] book on game theory. \/



Proof: (Sketch)We assume W|thout loss of generality that

0 < k < +oo. ConsiderM 2 o — ([)(¥|/27%). Since
—(J2){(¥|/27%) has exactly one non-zero eigenvalue and
this eigenvalue is negative viz-1/2"%, ando is positive
semidefinite M is a hermitian matrix with at most one neg-
ative eigenvalue.

If M > 0 we take|¢) to be|y). The lemma trivially
holds in this case.

Otherwise, lejw) be the eigenvector corresponding to
the unique negative eigenvaluex of M. One can check
that [(y|w)|*> < 1 < 1. In particular, this shows that
|1), |w) are linearly independent.

Letn 2 dim(H). Let {|v),|w)} be an orthonormal
basis for the two dimensional subspacetofspanned by
{|¥), |w)}. Extend it tof|v1),. .., |vn—2), |v),|w)}, an or-
thonormal basis for the entire spakte In this basis we have
the following matrix equation,

F e d O 0 0
ef a b | of z oy |
dat b ¢ of Yy oz
P
; 3)
It —«

where the first, second and third matricesargp) (1| /2"
andM respectively.F'is an(n — 2) x (n — 2) matrix, P is
an(n—1) x (n—1) matrix,d, e are(n—2) x 1 matrices and
lisan(n —1) x 1 matrix. a, ¢, z, z, « are non-negative real
numbers anad, y are complex numbers. The zeroes above
denote all zero matrices of appropriate dimensions. {The
denotes conjugate transpose of matrices adénote the
complex conjugate of scalar

By inspection, one can show that= y # 0, ¢ > 0 and
ac > |b|?.

We can now writes = o1 + o2, Where

F e 0
AN
7= ef a—1 g
ot 0 0
and
O 0 O
A
72 = of LIS
of b c

Note thato, > 0, (in fact, o2 has one dimensional sup-
port). It can be checked that > 0. Hence,oc > o05. Let

\¢)<¢| . By a direct computation, one can check

0'2

that Troo > 22t and|||[v) (¥| — |$)(¢][|, < J=. This es-
tablishes the first assertion of the lemma and completes the
proof. ]

We next prove the following lemma, which can be
thought of as an ‘observational substate’ lemma.

Lemma 3 Consider two finite dimensional Hilbert spaces
H andC, dim(K) > dim(H). Letp, o be density matrices
in H. Let|y) be a purification ofp in H ® K. Let F be

a POVM element ot ® K. Then there exists a purifica-

tion |¢) of o in H ® K such thatg > 7., wherep 2

A A
Tr (F[¢)(4]), ¢ = Tr (Fl¢){o]) andk’ = 4D(pllo) + 2.
Proof: (Sketch) We assume without loss of generality that
0 < D(pHa) < 400 and thatp > 0. Letn 2 dim(H)
and {]a;)}?_, be the orthonormal eigenvectors Bfwith
correspondmg eigenvalugs;}” . We have,

p=Y Alllv) and g=" Xl(ailo)]?
=1

i=1

Define,
n . ) 4 ,
16) A D1 i) i) and |6) A |0/> .
VP 1671
Note thatp = [(4[0)[*[|[6")]|* and0 < [[|0")]* < 1.

Using the Cauchy-Schwarz inequality, one can check that
[(610)[2[[16")]* < ¢ and

_ _@loyPien® |
= AT =

p

(Wlo) 1116713
ok’ /p ’

oK' /1(10)?

Hence, it will suffice to show that there exists a purification
|¢) of o in H ® K such that

[(16)*
(@lO))° = 2K /|{16)]

Define the density matrix in H asr 2 Tri |6)(6].
There is a purificatiorj¢) of o in H ® K and a POVM
{Fi,...,F;} in"H such that,

{616)] = B(r,0) = (4)

wherec; T (F;7) andb; T (F;0). Leta; Sy (Fip).
Then,

~

0< VB <|(l6) < B(r.p) <

E Cv Q.

Note that thes;’s are non-negative real numbers summing
up to1, and so are thg;’s and thec;’s. These follow from
Fuchs and Caves'’s characterisation of fidelity [FC95].



Define the sef asS 2 {z ell]:a; > bi24’“/5(”’)2},

wherek £ D(pllo). Note thatvi € S, b; # 0 assupp(p) C
supp(o), k being finite. Define the POVM elemeGtonH

asG 2 Sies Fi Leta 27y (Gp) andb 2Ty (Go). Then
a =3 cgib=73c5bi,b>0anda > b 24K/ B(Tp)”,
We have that

dka B(r,p)*

a
=k>alog—- > =a<

D(pllo) b W T’

Now, using the Cauchy-Schwarz inequality one can now

check thatB(r, p) < 220 4 22k/B(0)° B(7,5). Since
k' = 4k + 2, we can now conclude that

16y
(OO > st

completing the proof of the lemma. ]
We now prove a lemma which, roughly speaking, re-
moves the dependence 6hin the above lemma.

Lemma 4 Consider two finite dimensional Hilbert spaces
H andC, dim(K) > dim(H). Letp, o be density matrices
in H and |¢) be a purification ofp in H ® K. Let0 <

p < 1. There exists a density matrix in H ® K such
that Trx w = o, and for all POVM element§ onH @ K
such thatTr (F|)(y]) > p, Tr (Fw) > p/2¥ /7, where

k' 2 4D(p|o) + 2.

Proof: (Sketch) We assume without loss of generality that
0 < D(p|lo) < 400 and thatp > 0. Consider the sefl;

of all extensionsv of c IN H @ K i.e. Trrxw = 0. A;is

a non-empty, compact, convex set. Consider thedsebf

all POVM operatorg” in H @ K such that T(F'|+)) (v|) >

p. A, is a compact convex set. Without loss of generality,
As is non-empty. Letu(w, F) 21 (wF). The lemma
now follows from Fact 3 (note that we think of our matrices,

Theorem 2 (Substate Theorem)Consider two finite di-
mensional Hilbert space#{ and K, dim(K) > dim(H).

Let C? denote the two dimensional complex Hilbert space.
Let p, o be density matrices if{. Letr > 1 be any real
number. Lety) be a purification op in H ® K. Then there
exist pure state$p), |§) € H ® K (depending on-) and

|¢) € H ® K ® C? such that|¢) is a purification ofo and
1) (W] — [8)(@lll, < 4/+/r, where

910+ /1~ o)

andk £ 85(p|jo) + 14.

A r—1

rork

€)

Proof: (Sketch)Follows from Lemma 2 and Theorem M.

Remarks:

1. Note that Result 4 in the introduction follows from above
by tracing outC ® C? and monotonicity of trace distance.
2. From Result 4, one can easily see that- o|, < 2 —
2-O%) This implies a2~ °*) lower bound on the fidelity
of p ando.

4 Pointer chasing

In this section, we formally define the problem and our
main result assuming a Round Elimination Lemma, which
will be proved in later section.

4.1 The pointer chasing problemp,

The input: Alice’s input is a functionF'y : V4 — Vp.
Bob’s input is a functionfg : Vg — V4. V4 andVp are
disjoint sets of sizex each. We assume that = 2" for
somer > 1.

The golden path: There is a fixed vertex € V. Let

F 2 F,UFg: letans 2 FU+1)(s). We assume that ver-

which in general have complex entries, as vectors in a largefttices inV, andVz have binary encodings of lengtbg 7.

real vector space). ]

The previous lemma depends on the paramgteWWe
now remove this restriction, to get an ‘observational diver-
gence lifting’ theorem.

Theorem 1 (Lifting of observational divergence )
Consider two finite dimensional Hilbert spacés, iC,
dim(K) > dim(H). Letp,o be density matrices if.
Let |¢)) be a purification ofp in H ® K. Then there exists
a density matrixv in H ® K such thatTrx w = ¢ and

D(([$)(¢]) llw) < 8D(pllo) + 6.

Proof: (Sketch)Follows from Lemma by a “discrete inte-
gration” argument with respect to parameter ]

We are now finally in a position to prove the Substate
Theorem.

The communication: Alice and Bob exchange messages
M, ..., My, having lengthg:n, ..., cyn, via a safe quan-
tum protocol in order to determinans. Alice starts the
communication, that is, she sentl§ . The player receiving
M, places a guess fans in the registerAns. We require
that on measuringins in the computational basighe an-
swer obtained should be equal 4as with probability at
least2, for all Fs, Fp.

4.2 The predicateQ;

We will show our lower bound foP;, using an inductive
argument. It will be convenient to state our induction hy-

1From now on, all measurements are to be performed using the com-
putational basis.



pothesis by means of a predicatg$ andQ?Z, defined be-

Communication: After U, Upg have been applied, Al-

low. Roughly, the induction proceeds as follows. We show ice and Bob follow a quantum protocol exchanging further

that if there is an efficient protocol fd?;, then@:! is true.
We then show independently th@f! impliesQ? | andQ?
impliesQ;' ,, and tha){' andQ¥ are false. Thus, there is
no efficient protocol forP;.

We now defineQi (ci,. .., ck, na, np, €) for & > 1.
Then, separately, we defidg;'. Fork > 0, QP is the same
asQ;!, with the roles of Alice and Bob reversed. Conse-
quently, all our statements involving;' andQZ have two

messaged/s, ..., My, of lengthscan, . .., cyn. Bob sends
the message@/,. The rest of the protocol is required to act
safely on register$’s, F'z. At the end of the protocol, the
player who received/;, places a qubit in a special register
Ans. The protocol then terminates.

The probability of error:  Let ans denote the value ob-
served inAns at the end of the protocol, and I and /5

forms, where one is obtained from the other by reversing be the values observed ity andFz; we treatf, andfz as

the roles of Alice and Bob. We will typically state just one
of them, and let the reader infer the other.

The predicate)s! (c1, ..., ¢k, na, 1y, €) holds if there is
a quantum protocol of the following form.

Input generation: Alice and Bob ‘generate’ most of their
inputs themselves. Alice hasinput registerg Fa[u] : u €
V4) and Bob has: input register§ Fg[v] : v € V). There
is a fixed vertex € Vg, thatis known to both players. Each
of Alice’s registers hakg n qubits so that it can hold a de-
scription of a vertex i/p; similarly, each of Bob's registers
can hold a description of a vertex . In addition, Alice
and Bob have registers for their ‘work’ qubitg 4 andWp.

When the protocol starts, Alice’s registers are all initial-
ized to0. On Bob's side, the registdrp|[s| starts off with
the uniform superpositiofy) 2L ZaEVA |a); the other
registers are ab.

Alice starts by generating a pure stateZ\AEﬁMl, where
Ml,Ml are eachc;n qubit registers. Then she applies a
unitary transformatio/ 4 on her registers other thaw to
generate a state in registerg andW 4. Alice then sends
M, to Bob.

Now, Bob generates his input by applying a unitary
transformatiorUz on the registerd/;, Fiz[s], (Fg[b] : b €
Vs — {s}) andWp holding the work qubits of3, which
contain0. Up must operate “safely” of'z[s]. Fp holds
the ‘generated input’ to Bob for the pointer chasing prob-
lem, andiW Bob’s ‘work qubits’.

We will use F4, Fig also to refer to the actual states of
the respective registergs, fg will denote the states that
would result, were we to measufg,, Fg.

For our predicate):!(cy, . . ., ¢k, 14, 1y, €) to hold, this

input generation process must satisfy some conditions.
Requirement 1(a): There is a subseX 4 C V4 of size
at mostn, such that the variablegf4(u) : u € V4) are
independent, and for € Vi — X4, fa(u) is uniformly
distributed.
Requirement 1(b): There is a subseXp C Vi — {s}
of size at mosk,;, such that the random variablégs (v) :
v € Vi) are independent, anfk (v) forv € Vg — Xp is
uniformly distributed.

n

functions (fromV4 to Vg andVpg to V4 respectively). Let

A
J=falUfp.

Requirement 2: Prlans = f(F+1)(s5)] > .

Lemma 5 If there is a safe quantum protocol fét with
vg = s € Vg, messages of lengthsn, . .., cyn, and worst
case error at most, thenQi(c1,...,ck,na = 0,np =
0,2)is true.

Proof: Ommited, easy to check. [ |
Lemma6 If there is a safe quantum protocol for
Q% (c1,ma,np,€) (Withny < n), thene—12¢1/7 > .

Proof: Omitted, easy to check. ]
The following lemma is the key to our inductive argu-
ment.

Lemma 7 (Round elimination) For k& > 2, |if
Qi(e1,. .., cr,ma,np,€) holds (withns < n) then

QP (c1 + c2,¢3,...,ck,ma,np + 1,¢) holds with
e = 5ne/(n—a)
T 8x2(256/(ne/n—a)?)(8ncy/(n—a)+14)

The next section is devoted to the proof of this lemma.
Now, let us assume this lemma and prove our main lower
bound.

Theorem 3 Supposé: < ni and Q(c1, ..., cx, 0,0, 1)
holds. Thery + ¢3 + - - - + ¢, = Qlog™ n).

Proof: Follows from Lemma 7 and Lemma 6. [ |
Now, by using Lemma 5, we can derive from this our
lower bound forP,.

Corollary 1 (Main result) In any protocol for P, Alice
and Bob must exchange a total®fr log*) n) qubits.

5 Round elimination: proof of Lemma 7

We consider Part (a) first. Part (b) follows using similar
argument, and we do not describe them explicitly. Suppose
Qif(c1,ca, ..., ckyma,np, €) is true and let protocdP sat-
isfy the requirements.



In what follows, subscripts of pure and mixed states will 5.1 The protocolP,_.,
denote the registers which are in those states. For example,

we say that the registdf[s] is initially in the stateu), = Now, we fixa € V4 andb € Vi and consider the case
T Duev, [W)s. whenfg(s) = a andfa(a) = b. We now describe a proto-
Let [44) be the (pure) state of Alice’s registers just be- col that functions for this situation .
fore she send3/; to Bob. At this point the state of all the Step 1: Alice generates the canonical purification
registers taken together is the pure state (M, M,). Alice appliesU,_., and a Measuremei,, .,
to M, (plus some ancilla) to produce the stmz%tb in
i) = [*) ® Z la) (5) the register§ M, F4, W,). She succeeds with probability
aGVA 6a—>b-

whereR is the set of registers corresponding to the rest of ~ Step 2: Alice and Bob proceed according to the pro-
B's input (Fg[v] : v € Vg — {s}), and work qubitd¥ 5. tocol P’ starting from the statgj, ;) = {7, )[a)s[0) r,
Fora € V4, we may expanquA> as where, as beforey is the set of registers of Bob correspond-

ing to (Fgv] : v € Vg — {s}) and work qubitd¥V .
) = f > baltiy), (6)

beEVE Remark on the inputs generated: Let fj47a_,b be the ran-
, !
wheret, = 1if a € X, andf, = n otherwise. (If dom variable with distributiorD’,_,,, resulting on measur-
A ing F4 afterU,_,;, has been applied. Lgy ,—.;, be the ran-
Pr(fala] = b] = 0, then|y7L,) = 0.) From (5) and (6), dom variable with distributionD, resulting on measuring
we have Fain |2 ). Then, it follows from £?) and Theoren??
that

Yin) = f > \/» D Blalviyla)slo)r  (7) |Darsy — D!yl < 4/+/r. (10)

a€Va beVp

At this point the first messag®/; is sent to Bob. Let the
rest of the protocol starting from this point B¥.
Let ¢,_.;, be the probability of success whéH is run

starting from the statg) .|z ,,)|a)s|0) r. Thus, we have Bl. fp.._s is constant onX 4 U {s} (in fact, fz[s] = a),
€0y = Prlans = Isb(f+0(s)) | fols) =aandfala] =8, o

in the original protocolP (or in P/, when it is run starting
from |¢:,)). In particular, we have

In P,—p, Bob’s input registers continue to satisfy the fol-
lowing requirements:

B2. the set of random variablégs ,_.,[v] : v € Vg —
Xp — {s}) are independent and uniformly distributed
overVy.

e=E [ea—>b] > 0= M E [E(L—>b]~ (8) - .
ab N a€,Va—Xa,be, Ve Probability of success inP,_;: By (??) and Theo-

rem ?7?, the probability of success @?,_.,, which we de-

In the first expectationa, b) are chosen with the same dis-

tribution as(fz]s], fa[fs[s]]) of the given protocoP; in ~ NOte byéa—y, is atleasto—y(ca—p — €a—s/4).
the second, they are chosen uniformly from the sets speci-
fied. 5.2 Revised ProtocolP,_,;

Let (M, ]\71) be the canonical purification of the first
message of the protoc®. SupposeS(Mi q—b|M1) 2
da—p. Then, by the Substate Theorem, Theorem 2, there
exists a unitary transformatiofi, ., and a measurement
G, thatwhen applied tol; (together with ancilla qubits
initialized to zero) takes the pure stdte/;, 1\71) to a state

Step 1: Alice does theSteplas inP,_,, followed by
correction of the input registers as follows:
Correcting Alice’s input registers: Let C,_,; be the uni-
tary transformation corresponding 1/, and.D,_.; ac-
cording to Fact 2. To produce input registers satisfying Re-
quirement 1(a), Alice uses a fresh set of registesand

A _ A ~
A, (with probability 5,_, 2 Ty Wherer = setsFa[a] = |b). Next, Alice applies a unitary transforma-
256/¢2_,) such that tion to registerg F4[a], Fa, F.4) defined by
‘|1/}a~>b a~>b Wjaﬁb a~>b|H < 4/\[ (9) |b> a]|w>FA FA |b> a]C(l—’b|w>FA,FA

In particular, if the protocolP’ is run starting from Before the application of this the registefs are initial-
the statée? ,,)|1)|0) r (instead offyy2 ,)|1)s|0) g), the ized to|0) (as in the statement of Fact 2). Alice then copies
probability of success is at least ., — €45 /4. (Falu) : uweVy—{a})into (Fafu] : w € V4 —{a}). The



input generation for Alice is now complete.

Note that at this point if we measuf&’4, £4), the resulting
random variable$fj47a_)b,fA,aHb) have distribution pre-
ciselyD! ., andD,_,,. Furthermore, (see Fact 2),

Pr[fxg’aﬂb 7é fA,a—»b] S . 4/\/; = €a—>b/8~ (11)

DN |

Step 2: From this point on, Alice and Bob just follo®’

Note While executingP’, the old input registers’, are
used. The new registers, are not touched by any uni-
tary transformation from now on. At the end, however,
we will check if the answenns’ agrees with the answer
ans(fa, fB), wheref, is the random variable obtained by
measuring the new input registefs .

The probability of success ofP,: Fora € V4 — X4, let

Let |¢o_s) denote the state of the entire system just after €= b€ the probability of success . Then, by (12), we

M, is sent to Alice. The registet& are not used until the

end, when they are measured in order to decide if the answer

returned by the protocol is correct.

Success probability in revisedP,_.,: Leté,_.;, be the

success probability of the revised protocol. It is easy to
check that :
€amb = 5a—>b(€a—>b - 5a—>b/4 - 6(1—»1)/8) (12)

5.3 The final protocol: P,

The new input registers for Alice will be denoted By,.
The old input registers will continue to exist, but they will
count as work qubits of Alice. Initially, in the regist&t, [a]
we place a uniform superpositim). All other registers are
initialized to0.

Step 1. Bob generates the canonical purification
(Ml,J\A/fl) of the first message dP. He sets his register
Fp[s] tothe statea), and using the transformatidfs, gen-
erates his input$’s and work qubitd¥z. Then he gener-
ates the first message of proto@l(this corresponds mes-
sagelM, of theP), and sends this message along w%
to Alice. s

Step 2: (a) One receiving\f;, Alice applies a unitary
transform on registergF'4[a), M, A) to generate a state
in registersF’4 (the old input registers) and’, (the work
qubits of the original protocol). Hered is a set of ancilla
qubits initialized to0. This unitary transformation acts ac-
cording to the rule

|b>F[a]‘9>]V[17A = |b>F[a]UaHb|9>1\71,A~

Note that this transformation is safe #Ha]. Then he mea-

sures the registef, [a] and then performs the measurement

Gasb.

(b) Alice applies the correction used in the revised Step

1 of P,_,. After this F4 are to be treated ad’s input
registers.

Step 3: Alice resumes the protoc@”. Note that Bob
has already executed the first stepRifand sent the first
message (which corresponds to mesdageof the original
protocol). Alice responds to this message as before.

have

E [éa—s] (13)

be. VB
r—

be?VB r2r(88a—p+14) (5€a—s/8)]

(14)
Since the function inside the expectation is jointly con-
vex ine,_,; andd,_., and using Fact 1, we conclude

) O€q
€a 2 5556/ B (Talal M) T 19)

(15)

wheree, = Epe, vy [€a—b)-

Claim 1 Foe,vu—x,[[(Fala] : M) < (52 ) .

Proof: Using Fact?? and (10), we have;n > I(f4 :

M) > > I(fala]: M) > > I(fala]: My). m

a€Va a€Va—Xa
Now again since the above function is jointly convex in

€, and I(fala]) we conclude from (15) and above claim
that :

. 5ne/(n — a)
aEuVE‘J—XA [Ga] Z 8 % 2(256/(ne/n—a)?)(8nci/(n—a)+14)’
(16)
where on the right is chosen uniformly fronvV4 — X 4 and
b is chosen independently and uniformly frdria.
Thus, there exists ane V4 — X 4 such that

. 5ne/(n — a)
€a = 7 9(256/(ne/n—a)?)(8nct /(n—a)+14) °

Now, it can be verified, that the protoc®l, satisfies the
requirements foQP | (c; +c2,c3,..., chyna,np+1,64).
This shows Lemma 7.
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