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Abstract

We show that every monotone formula that computes the threshold function THk,n,
2 ≤ k ≤ n

2 , has size at least
⌊

k
2

⌋
n log( n

k−1 ). The same lower bound is shown to hold in the
stronger monotone directed contact networks model.

1 Introduction

A formula is a Boolean circuit whose underlying graph is a tree. A formula with n variables

computes a Boolean function from {0, 1}n to {0, 1} in a natural way. The size of a formula is

the number of occurrences of variables in it, that is, the number of leaves in its underlying tree.

A monotone formula is a formula over the basis {AND,OR}, that is, a formula each of whose

gates is an AND or an OR.

The threshold function THk,n is a Boolean function that takes the value 1 precisely when

at least k of its n variables are assigned 1. Threshold functions play a central role in the

investigation of the computational complexity of Boolean functions (see Boppana and Sipser [3],

Wegener [28]). Their complexity has been studied in various circuit models. In this paper, we

show lower bounds on the size of monotone formulas computing threshold functions.

We show that every monotone formula computing THk,n, 2 ≤ k ≤ n
2 , has size at least⌊

k
2

⌋
n log( n

k−1). In the monotone formulas model, the complexities of computing THk,n and

THn−k+1,n are the same. Hence, the lower bound of
⌊

k
2

⌋
n log( n

k−1) holds for the function

THn−k+1,n, 2 ≤ k ≤ n
2 , as well.

We obtain our lower bound for monotone formulas by showing that every monotone directed

contact network (see Definition 2.1) computing THk,n, 2 ≤ k ≤ n
2 , has size at least

⌊
k
2

⌋
n log( n

k−1).

Since every monotone formula can be converted to a monotone directed contact network of the

same size, the lower bounds for monotone formulas follow from the lower bounds for monotone

directed contact networks.

1.1 Related work

The computation of threshold functions by formulas has been widely studied. Over the complete

binary basis, Paterson, Pippenger, and Zwick [18] showed that all threshold functions can be
∗Present address: Computer Science Group, Tata Institute of Fundamental Research, Bombay, INDIA 400 005.
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computed by formulas of size O(n3.13). For this basis, Pudlák [20] showed a lower bound of

Ω(n log log n) for computing THk,n, 2 ≤ k ≤ n
2 ; Fischer, Meyer, and Paterson [6] showed a lower

bound of Ω(n log n) for the majority function THbn/2c,n.

Over the basis {AND,OR,NOT}, Paterson, Pippenger, and Zwick [18] showed that THk,n

can be computed by formulas of size O(n4.57). Lower bounds on the size of such formulas were

shown by Hansel [8], Krichevskii [13], and Khrapchenko [12]. Hansel and Krichevskii showed

a lower bound of Ω(n log n) for computing TH2,n. This implies an Ω(n log n) lower bound for

all threshold functions THk,n, 2 ≤ k ≤ n − 1. Khrapchenko showed that any such formula

computing THk,n has size at least k(n− k + 1).

The existence of polynomial size monotone formulas for computing THk,n is implied by the

O(log n) depth sorting network due to Ajtai, Komlós, and Szemerédi [1]. The existence of

more efficient monotone threshold formulas was shown by Valiant [27] and Boppana [2]. Valiant

showed that the majority function (TH bn/2c,n) can be computed using monotone formulas of

size O(n5.3). Boppana generalized Valiant’s result and showed that THk,n can be computed by

monotone formulas of size O(k4.3n log n). The lower bounds due to Hansel, Krichevskii, and

Khrapchenko, stated above, hold for monotone formulas as well. Before this work, these were

the best lower bounds known for monotone formulas. The result of Hansel and Krichevskii was

generalized by Snir [26] to obtain an Ω(kn log( n
k−1)) lower bound in the context of hypergraph

covering. Snir’s result implies an Ω(kn log( n
k−1)) lower bound on the size of certain restricted

depth three formulas computing THk,n (see [17, 23]). However, it is not clear how Snir’s result

may be used to derive our results for monotone threshold formulas.

Related to the monotone formulas model is the model of the monotone contact networks.

Several variants of this model have been studied in the past (see Razborov [22]). The most

powerful among these are the monotone contact-rectifier networks. Markov [16] showed that the

size of the smallest such network for computing THk,n is precisely k(n − k + 1). For general

contact-rectifier networks (where negations are permitted), Lupanov [15] showed an upper bound

of O(n3/2) on the complexity of computing any threshold function; Razborov [21] showed a lower

bound of Ω(n log log log∗ n) for the majority function.

Another variant is the model of the monotone directed contact networks. In this model, the

underlying graph is directed (see Definition 2.1), and all the labels are variables [2]. If constant

1’s are allowed to appear as labels, then these networks reduce to the contact-rectifier networks

discussed above. In this paper, we show a lower bound of
⌊

k
2

⌋
n log( n

k−1) on the size of any

monotone directed contact network (without 1’s) that computes THk,n, 2 ≤ k ≤ n
2 . An upper

bound of (k − 1)(n − k + 2)dlog(n− k + 2)e for computing THk,n, 2 ≤ k ≤ n − 1, has been

shown by Radhakrishnan and Subrahmanyam [24]. Thus, our results are close to optimal for

small values of k.

The most widely studied monotone contact networks are the monotone undirected contact

networks [25]. For such networks, the underlying graph is undirected. Note that the presence

of constant 1’s as labels is inconsequential in this case because edges with such labels can be
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eliminated by collapsing them and identifying their end points. For this model, the results

of Dubiner and Zwick [4] imply an upper bound of O(k3.99n log n) for computing THk,n and

THn−k+1,n. The results of Markov [16] for contact-rectifier networks imply a lower bound of

k(n−k+1). Krichevskii [13] showed a lower bound of Ω(n log n) for TH2,n. It is easy to see that

an undirected contact network can be converted to a directed contact network by replacing each

undirected edge by two directed edges. Hence, our lower bound for monotone directed contact

networks can be translated to this model, losing at most a factor of two in the translation.

The relation between communication complexity and formula complexity was exploited by

Karchmer and Wigderson [11] to show very strong lower bounds for computing the st-connectivity

function using monotone formulas. However, as noted in [10, page 60], the communication

complexity approach does not seem to shed much light on the computation of threshold functions.

To show lower bounds for computing THk,n using monotone formulas and monotone contact

networks, we make use of a result due to Fredman and Komlós [5] on graph covering.

1.2 Overview

The rest of this paper is organized as follows. In Section 2, we introduce the notation. In

Section 3, we recall the result of Fredman and Komlós on graph covering. The lower bounds for

monotone formulas and monotone directed contact networks are shown in Section 4.

2 Notation

Suppose f is a Boolean function with n variables x1, x2, . . . , xn. We say that f accepts T ⊆
{x1, x2, . . . , xn} if f evaluates to 1 when all the variables in T are given the value 1 and the

remaining variables are given the value 0. We say that f is l-immune if it accepts no T with

|T | ≤ l. Thus, the threshold function THk,n is (k − 1)-immune.

While referring to graphs, we shall use the following terminology. The size of the largest

independent set in a graph G will be denoted by α(G); size(G) will denote the number of

non-isolated vertices in G. A function f with domain V (G) will be called a coloring of G if

f(i) 6= f(j) whenever (i, j) ∈ E(G). For a graph G, GN will denote the subgraph of G induced

by the non-isolated vertices of G. For two graphs F and G on the same set of vertices V , we

denote their union (V,E(F ) ∪ E(G)) by F ∪G.

Definition 2.1 A monotone directed contact network is a directed graph with two distinguished

vertices s and t. Each edge of the graph has a variable as its label. We use vars(N) to denote the

variables of the contact network N . For a pair (v, w) of vertices, the contact network computes

the Boolean function fv,w as follows. On an assignment y : vars(N) → {0, 1}, the label on each

edge is set to 0 or 1 in accordance with y. Then fv,w(y) = 1 if there is a path from v to w

using only the edges with label 1, and fv,w(y) = 0 otherwise. We refer to the function fs,t as the

function computed by N and denote it by fN . The size of a network is the number of edges in

it.
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In a monotone contact-rectifier network, the constant 1 is also allowed to appear as a label.

The size of a monotone contact-rectifier network is the number of edges that have variables as

labels. In a monotone undirected contact network, the underlying graph is undirected. From now

on, when we say monotone contact network, or just contact network, we shall mean monotone

directed contact network.

We say that a contact network N accepts a set A if the function fN accepts A. We say that

N is r-immune if fN is r-immune. We shall extend this terminology and apply it to the vertices

of the contact network. For example, we shall say that a vertex p of the contact network N

accepts a set A if the function fp,t accepts A. Thus, the contact network accepts precisely those

inputs that are accepted by the distinguished vertex s. Similarly, we say that the vertex p is

r-immune if fp,t is r-immune.

Definition 2.2 A depth two contact network is a contact network where each edge is incident

on s or t. Further, s has indegree zero, and t has outdegree zero.

3 Graph covering

We shall need the following standard definition from information theory.

For a random variable X with finite support, its entropy is given by

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

The entropy of a function f will be the entropy of the random variable f(X), where X assumes

values in the domain of f with uniform distribution.

The following information theoretic measure on graphs was introduced by Fredman and

Komlós [5].

Definition 3.1 (Coloring Entropy) Let G be a graph. Let f be the coloring of the graph

GN with minimum entropy. The coloring entropy of G is given by

H(G) =
size(G)
|V (G)|

H(f).

(If E(G) is empty, then H(G) = 0.)

The following lemma is due to Fredman and Komlós [5].

Lemma 3.2 Let G, G1, G2, . . . , Gl be graphs on the same set of vertices. Let G = G1 ∪ G2 ∪
. . . ∪Gl. Then

l∑
i=1

H(Gi) ≥ log(
|V (G)|
α(G)

).

Since every bipartite graph has a coloring with entropy at most 1, we have the following corollary

to Lemma 3.2.
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Corollary 3.3 Let G1, G2, . . . , Gl be bipartite graphs on the same set of vertices. Let G =

G1 ∪G2 ∪ . . . ∪Gl. Then
l∑

i=1

size(Gi) ≥ |V (G)| log(
|V (G)|
α(G)

).

4 Monotone formulas

In this section, we shall extend the results of Hansel, Krichevskii, and Khrapchenko and show

better lower bounds on the size of monotone formulas computing THk,n.

Note that a monotone formula can be converted to a monotone contact network of the same

size by representing the OR’s in parallel and the AND’s in series. Hence, to show lower bounds

on the size of monotone formulas computing THk,n, it suffices to show lower bounds on the size

of contact networks computing THk,n.

The following lemma is implicit in the work of Krichevskii [13].

Lemma 4.1 Every 1-immune monotone contact network N can be converted to a depth two

contact network N̂ such that:

1. N̂ is 1-immune;

2. Size of N̂ is at most the size of N ;

3. Every input accepted by N is accepted by N̂ .

Proof. We shall first convert N to a network N ′ of the same size and accepting the same inputs

as N . We shall ensure that in the network N ′, if the vertex v has an edge from s with label

xi, then no edge leaving vertex v has label xi. This property will help us to obtain the desired

depth two network N̂ .

Suppose vars(N) = {x1, x2, . . . , xn}. Let V1 be the set of vertices in N that are reachable

from s using only those edges that have label x1. Delete all edges incident on vertices in V1 with

label x1. Add new edges connecting s to each vertex in V1 − {s}. Label the new edges with x1.

Repeat this procedure for the other labels x2, x3, . . . , xn. The final network thus obtained is N ′.

In each phase, the number of new edges added is at most the number of edges deleted. Hence,

size(N ′) ≤ size(N). Also, after each phase, the new network accepts exactly the same inputs

as the old network. Hence, fN = fN ′ . In particular, since N is 1-immune, N ′ is 1-immune.

Further, N ′ has the property stated above.

Let v be an internal vertex of N ′. Let Av be the set of labels on the edges (s, v) and Bv be

the labels on the edges (v, w) leaving v. Then Av and Bv are disjoint sets, and the size of N ′ is

at least
∑

v |Av|+ |Bv|.
The network N̂ is constructed as follows. The set of vertices for N̂ is the same as the set of

vertices for N ′. For each internal vertex v, add |Av| edges of the form (s, v), one for each label

in Av. Similarly, add |Bv| edges of the form (v, t), one for each label in Bv.
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Clearly, the size of N̂ is at most the size of N ′. Since Av is disjoint from Bv, N̂ is 1-immune.

It only remains to verify that N̂ accepts all the inputs that N ′ accepts. Suppose y is accepted by

N ′. Then, on input y, there is a path from s to t all of whose labels are 1. Since N ′ is 1-immune,

this path must have length at least two. Let v1 be the second vertex on this path. Then the

edge (s, v1) and an edge leaving v1 are set to 1 on input y. Thus, there is a path generated from

s to t via v1 in N̂ . Hence, N̂ accepts y.

Lemma 4.2 Let N be a 1-immune monotone contact network that accepts all the sets of size

k. Then the size of N is at least n log( n
k−1).

Proof. By Lemma 4.1, we may assume that N is a depth two contact network. For each internal

vertex v of N , let Av be the set of labels that appear on the edges of the form (s, v) and Bv be

the set of labels that appear on the edges of the form (v, t). Let Gv be the undirected bipartite

graph with vertex set V (Gv) = {x1, . . . , xn} and edge set

E(Gv) = {{xi, xj} : xi ∈ Av and xj ∈ Bv} .

Note that the size of N is at least
∑

v size(Gv). Let G =
⋃

v Gv.

Suppose N accepts the set I ⊆ vars(N). We shall show that I is not an independent set

of G. Since N accepts I, on the input corresponding to I, there is a path from s to t all of

whose labels are 1. That is, for some internal vertex v in N , Av ∩ I 6= ∅ and Bv ∩ I 6= ∅. It

follows that I is not an independent set in Gv. Hence, I is not an independent set in G. Since

N accepts all sets of size k, G has no independent set of size k. It follows that α(G) ≤ k − 1.

From Corollary 3.3, we conclude that that
∑

v size(Gv) ≥ n log( n
k−1). The lemma follows from

this.

Theorem 4.3 Let k ≥ 2, and let N be a monotone contact network computing Tn
k . Then

size(N) ≥
⌊
k

2

⌋
n log(

n

k − 1
).

Proof. We shall use induction on d to show that the following assertion holds for all positive

integers d.

If N is a (2d − 1)-immune monotone contact network that accepts all sets of size k, then

size(N) ≥ dn log( n
k−1).

The basis case, when d = 1, is Lemma 4.2 above. Assume that the assertion is true with

d = r, for some positive integer r. We shall show that the assertion holds for d = r + 1.

Suppose that N is a (2(r + 1) − 1)-immune contact network that accepts all sets of size k.

Let V ′ be the set of vertices that accept some input of size at most two. Note that t is in V ′

and s is not in V ′. Let V2 be those vertices in V ′ that are 1-immune. Let V1 = V ′ − V2.

Let L be the network obtained from N by collapsing all the vertices in V ′ to form the new sink

t′. The source of L will be s. Let M be the network obtained from N by deleting all the vertices
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Figure 1: The induction step

outside V ′ and the edges incident on them. The source s′ of M is obtained by collapsing all the

vertices in V2. The sink of M will be t. (See Figure 1.) Note that size(N) ≥ size(L) + size(M).

Claim 1: L is (2r − 1)-immune, and L accepts all sets of size k.

Proof: Suppose L accepts a set A. We shall show that |A| ≥ 2r. It will follow that L is (2r− 1)-

immune. Since L accepts A, there is a vertex v in V ′ such that fs,v accepts A. By the definition

of V ′, we have that fv,t accepts a set B of size at most two. Then N accepts A ∪B. Since N is

(2(r + 1)− 1)-immune,

|A| ≥ 2(r + 1)− |B| ≥ 2r.

Since t ∈ V ′, L accepts all inputs that N accepts. Since N accepts all sets of size k, L accepts

all sets of size k. (End of Claim 1.)

Claim 2: M is 1-immune, and M accepts all sets of size k.

Proof: Since every vertex in V2 is 1-immune, it follows that M is 1-immune. Next, we show

that M accepts all inputs that N accepts. Since N accepts all sets of size k, it will follow that

M accepts all sets of size k. Let y be an input accepted by N . Then, on input y, there is a

path p from s to t in N , all of whose labels are 1. Let v be the last vertex on this path that is

1-immune. (Since s is 1-immune, there is at least one such vertex.) All the vertices after v are

not 1-immune; hence those vertices are in V1. We claim that v ∈ V2. Since the successor of v

on the path is in V1, v accepts a set of size at most two. Hence, v is a 1-immune vertex in V ′.

It follows that v is in V2. Consider the part of the path p from v to t. This is contained entirely

in M . Hence, M accepts y. (End of Claim 2.)
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From Claim 1 and the assertion with d = r, we obtain

size(L) ≥ rn log(
n

k − 1
). (1)

From Claim 2 and Lemma 4.2, we obtain

size(M) ≥ n log(
n

k − 1
). (2)

Combining (1) and (2), we have

size(N) ≥ size(L) + size(M) ≥ (r + 1)n log(
n

k − 1
).

This completes the induction step.

We may now complete the proof of the theorem by taking d =
⌊

k
2

⌋
in the above assertion.

Corollary 4.4 Every monotone formula computing THk,n, for 2 ≤ k ≤ n
2 , has size at least⌊

k
2

⌋
n log( n

k−1).

5 Concluding remarks

Khrapchenko showed that any formula over the basis {AND,OR,NOT} computing THk,n has

size at least k(n− k + 1). This is maximum for k = (n + 1)/2, where it gives a lower bound of

0.25(n + 1)2. For k = bn/ec, Corollary 4.4 gives a lower bound of 0.265n2 on the size of any

monotone formula computing THk,n. It will be of immense importance to show a lower bound

of ω(n2) on the size of formulas computing majority, even in the monotone case.

Our proof makes use of the monotonicity of the formula. Is there an Ω(kn log
(

n
k−1

)
) lower

bound for computing THk,n, 2 ≤ k ≤ n
2 , even when negations are allowed?

In the monotone formulas model, THk,n and THn−k+1,n have the same complexity. However,

this is not true for monotone directed contact networks. While there is an n log n lower bound

for TH2,n, there do exist linear size monotone directed contact networks computing THn−1,n.

The upper bound of (k − 1)(n − k + 2)dlog(n− k + 2)e for THk,n, 2 ≤ k ≤ n − 1, shown in

[24] relies on the networks being directed. For monotone undirected contact networks, the best

upper bound known for computing THn−1,n is O(n log n). It has been shown in [7] that ev-

ery monotone undirected contact network computing THn−1,n has size Ω(n log log log n). Thus,

unlike monotone directed contact networks, monotone undirected contact networks cannot com-

pute THn−1,n in linear size. Is there a lower bound of Ω(kn log
(

n
k−1

)
) on the size of monotone

undirected contact networks computing THn−k+1,n, 2 ≤ k ≤ n
2 ?

For certain planar undirected contact networks, a strong duality theorem holds (see [9, page

87]). This implies that for such planar undirected monotone contact networks, the complexities

of computing THk,n and THn−k+1,n are the same.
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