From linear to semidefinite
source: Matoušek and Gärtner, Approximation Algorithms and Semidefineite Programming, Chapter 2.

$$
\begin{aligned}
& \begin{array}{cc|c}
\text { maximize } & c^{\top} x & \text { Maximize } \\
\text { subject to } & A x=b & \text { subject to } \\
& x \geqslant 0 &
\end{array} \\
& C=\left(\begin{array}{ll}
c_{n} & c_{n} \\
c_{n} & c_{n n}
\end{array}\right) \\
& A_{k}=\left(\begin{array}{ll}
a_{11} & a_{m} \\
a_{m 1} & a_{m n}
\end{array}\right) \\
& C \cdot x \\
& \begin{array}{l}
A_{1} \cdot X=b_{1} \\
A_{2} \cdot X=b_{2}
\end{array} \\
& A_{m} \cdot X=b_{m} \\
& x \geq 0 \\
& \text { (Symmetric) positive semite friute }
\end{aligned}
$$

$\begin{aligned} B \circ X & =\sum_{i, j} b_{i j} x_{i j} \\ & \end{aligned}$
Hadamard product

$$
\begin{aligned}
& =T_{r} B^{\top} X \\
& \left(\begin{array}{ll}
b_{11} & b_{m} \\
l_{n 1} & b_{n n} \\
b_{n n}
\end{array}\right)\left(\begin{array}{cc}
x_{11} & x_{m n} \\
l_{x_{n 1}} & \int_{n n}
\end{array}\right)=T_{r}\binom{b_{11}-b_{n 1}}{b_{m n}-b_{m n}}\left(\begin{array}{cc}
x_{11} & x_{m n} \\
\int_{x_{n 1}} & \int_{n n}
\end{array}\right)
\end{aligned}
$$

The value of a semide finite program

$$
\begin{aligned}
& \text { fa semide finite program } \\
& \sup \{C \cdot X: A(X)=0, x \geqslant 0\}, \text { finite }_{\text {unbounded }}
\end{aligned}
$$

Warning Even if the value is finite, it may not be attained.

Example: Maximize $-x_{11}$
subject to $\quad x_{12}=1$
$x \geqslant 0$
value $=0$, not attained. $\quad\left(\begin{array}{ll}x_{11} & 1 \\ 1 & x_{22}\end{array}\right), x_{11} x_{22} \geqslant 1$
Standardization

- Inequalities
- Additional real raniables

Slack rañables

$$
\begin{gathered}
A 0 X+y_{1} \geqslant \beta \\
\vdots \\
z_{i}=u_{i}-v_{i} \\
u_{i}, v_{i} \geqslant 0
\end{gathered}
$$

Theorem: $P:$ a semidefinite program
Please see Please see
Tho. 2.6 .1 of $\|X\|_{F} \leq R \quad$ for all feasible X
the text.

$$
\begin{aligned}
& \|x\|_{F}= \\
& \sqrt{\sum_{i j} x_{i j}^{2}}
\end{aligned}
$$

There is an algorithon that outputs

- A matrix x^{*} that satisfies all equality constraints, S.t. $\left\|X^{*}-X\right\|_{F} \leqslant \varepsilon$ for some solution
X feasible and

$$
C \circ X^{*} \geqslant \operatorname{value}_{\varepsilon}(P)-\varepsilon
$$

Rumina time depends on $\log (R / \varepsilon)$

- An ellipsoid E whose points satisfy all equality constraints, E contains all feasible points, and has volume less than an E-ball's.

- $\operatorname{val}\left(x^{*}\right) \geqslant \operatorname{val}(y)-\varepsilon \quad \forall y$ that is ε-deep.
- $\left\|x-x^{*}\right\|_{F} \leqslant \varepsilon$.

Positive semidefinite matrices $M \in \mathbb{R}^{n \times n}$

- Symmetric $M^{\top}=M$

Suck matrices have

- an orthonormal basis of eigenvectors
- with corresponding real eigenvalues
- All eigenvalues are non-negatire

Theorem: Assume $M \in \mathbb{R}^{n \times n}$ is symmetric.
M is pod $\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n} \geqslant 0\right)$

$$
\begin{aligned}
& \Leftrightarrow \quad x^{\top} M x \geqslant 0 \quad \forall x \in \mathbb{R}^{N} \\
& \Leftrightarrow \quad M=B^{\top} B \text { for some } B \in \mathbb{R}^{n \times n}
\end{aligned}
$$

$P S D_{n}$: set of all positive semidefinite matrices $M \in \mathbb{R}^{n \times n}$.
$M \in P S D_{n}$ is positive definite if $x^{\top} M x>0 \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}$
M is positive definite

$$
\begin{aligned}
& \Leftrightarrow \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0 \\
& \Leftrightarrow M=B^{\top} B \text { for sone non-singular } B \in \mathbb{R}^{n \times n}
\end{aligned}
$$

Cholesky factorization
Given: $M \in \mathbb{R}^{n \times n}$ symmetric
Task: Output a non-singular B st. $M=B^{\top} B$
OR
Output $\begin{aligned} x \in \mathbb{R}^{n} \\ x \neq 0\end{aligned}$ s.t. $x^{t} M x \leqslant 0$
Ilea: Gaussian elimination

$$
\begin{aligned}
& M=U^{\top} D U
\end{aligned}
$$

$-a_{i} \quad m_{i j}-\frac{a_{i} a_{j}}{m_{n-1}}$

$$
\begin{aligned}
& E_{1} M=\left[\begin{array}{lll}
m_{n} & \\
0 & \\
0 & \\
0 &
\end{array}\right]_{\text {symmetric }} E_{1}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]
\end{aligned}
$$

$$
E_{1} M E_{1}^{\top}=\underbrace{\left[\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 \\
0 & &
\end{array}\right]}_{m_{2}} \text { positive definite? }
$$

$$
\underbrace{E_{n} \cdots E_{2} E_{1} M}_{B^{\top}} \underbrace{E_{1}^{\top} E_{2}^{\top} \cdots E_{B}^{\top}}_{B}=\left[\begin{array}{ll}
d_{1} & \\
& d_{n}
\end{array}\right]
$$

upper trionugular

$$
E_{i}=\left[\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & 1 & \ddots & \\
& & & & \\
& & &
\end{array}\right]
$$

non-singuler

- If we encounter a $d_{i} \leqslant 0$, then

$$
y^{\top} \quad E_{i-1} \ldots E_{1} M E_{1}^{\top} \ldots E_{i-1}^{\top} y=y^{\top}\left[\begin{array}{l}
d_{1} \\
\\
d_{i}
\end{array}\right] y
$$

Set $y=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)_{i}$ and $x=\underbrace{E_{1}^{\top} \ldots E_{i-1}^{\top} y}_{\text {non-zero }}$
Then, $\quad x^{\top} M x=y^{\top} M_{i} y \leqslant 0$.

- Otherwise, at the end, we hare

$$
\begin{aligned}
B^{\top} M B & =\underbrace{\left(B^{\top}\right)^{-1}}_{[} D \underbrace{B^{-1}}_{\text {bower triangular }} \\
M & =\text { upper triangular }(U) \\
& =U^{T} D U
\end{aligned}
$$

For PSD, repeat the same argument.
Observe, if some $d_{i}=0$, them the $i^{\text {th }}$ row and $i^{\text {the }}$ column of M_{i} must already be 0 . (Why?)
[Stint: Suppose

$$
M_{i}=\left(\begin{array}{lll}
d_{1} & & \\
& d_{2} & \\
& & d_{i} \\
& \\
& & \alpha \\
& \beta
\end{array}\right)
$$

Examine the 2×2 mali $\left(\begin{array}{ll}0 & \alpha \\ \alpha & \beta\end{array}\right)$.
Assume $\alpha \neq 0$, and obtain a rector $\binom{a}{b}$ s.t.

$$
\left.\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{ll}
0 & \alpha \\
\alpha & \beta
\end{array}\right)\binom{a}{b}<0 .\right]
$$

