From línear to semidefinite Source: Matoušek and bärtner, Approximation Algorithms and semidefinite Programming, Chapter 2.

maximulae $C^{T}x$ subject to $Ax = b$ $x \ge 0$ $C = \begin{pmatrix} c_{11} & c_{22} \\ c_{22} & c_{22} \end{pmatrix}$ $A_{X} = \begin{pmatrix} a_{11} & a_{22} \\ a_{22} & a_{22} \end{pmatrix}$	Maximùze Subject to (Symmetric) posit	$C \cdot X$ $A_1 \cdot X = b_1$ $A_2 \cdot X = b_2$ \vdots $A_m \cdot X = b_m$ $X \ge 0$ are semidefinite
$\mathcal{B} \circ X = \sum_{i,j} b_{ij} x_{ij}$ \uparrow Hadamard product		N > x ⁷ Nx
$= T_r \mathcal{B} \times$ $\begin{pmatrix} b_{11} & b_{12} \\ & \\ b_{n1} & b_{n2} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ & \\ x_{n1} & x_{n2} \end{pmatrix} =$ $The value of a semidefinite$	Jo (by - b by - b	$ \int_{\alpha_{1}}^{\alpha_{1}} \begin{pmatrix} X_{1} & X_{1\alpha} \\ J & J \\ \chi_{1\alpha} & \chi_{1\alpha} \end{pmatrix} $
The value of a semidefinite $Sup \{ C \cdot X : A$	$A(\mathbf{x}) = \mathbf{O}_{\mathbf{y}} \mathbf{x}$	>0} / un bounded

$$\frac{\text{Maxming}}{\text{not be altouned.}}$$

Example: Maximize $-x_{11}$

Subject to $x_{12} = 1$

 $X \ge 0$

Value = 0, not attained. $\begin{pmatrix} x_{11} & 1 \\ 1 & x_{22} \end{pmatrix}, \quad x_{11}x_{22} \ge 1$

Standardization

• Jnequelities

• Additional real variables

Slack variables

 $A \circ X + y \ge \beta$

 \vdots

 $Z_i = U_i - v_i$

 $U_i, v_i \ge 0$

Theorem: P: a semidefinite program
Please see
Thm. 241 of
the text.
There is an algorithm that outputs
• A matrix
$$x^*$$
 that satisfies all equality anstraints
st. $\|X^+ - X\|_F \leq E$ for some solution
 X feasible and
 $C \circ X^* \geq Value(P) - E$
• An ellipsoid E whose points satisfy
all equality constraints, E cantains all feasible
points, and has volume less than an E -ball's.
• $\|X - x^*\|_F \leq E$.

Positire semidefinite matrices
$$M \in \mathbb{R}^{n \times n}$$

• Symmetric $M^{T} = M$
Such matrices have
• an orthonormal basis of eigenvectors
• with corresponding real eigenvalues
• All eigenvalues are non-negative
Theorem: Assume $M \in \mathbb{R}^{n \times n}$ is symmetric.
 M is psd $(\lambda_{1} \ge \lambda_{2} \ge \dots \ge \lambda_{n} \ge 0)$
 $\Rightarrow x^{T}M x \ge 0 \quad \forall x \in \mathbb{R}^{n}$
 $\Rightarrow M = B^{T}B$ for some $B \in \mathbb{R}^{n \times n}$
PSD_n: set of all positive semidefinite matrices $M \in \mathbb{R}^{n \times n}$
 $M \in PSD_{n}$ is positive definite if $x^{T}Mx \ge 0 \quad \forall x \in \mathbb{R}^{n}$
 $M \in PSD_{n}$ is positive definite if $x^{T}Mx \ge 0 \quad \forall x \in \mathbb{R}^{n \times n}$
 $M = B^{T}B$ for some $B \in \mathbb{R}^{n \times n}$
 $M = B^{T}B$ for some $B \in \mathbb{R}^{n \times n}$
 $M \in PSD_{n}$ is positive definite if $x^{T}Mx \ge 0 \quad \forall x \in \mathbb{R}^{n \times n}$
 $M = B^{T}B$ for some $n = Singular \quad B \in \mathbb{R}^{n \times n}$

Cholesky factorization
biven:
$$M \in \mathbb{R}^{n \times n}$$
 symmetric
Task: Output a non-singular B s.t. $M = BB$
Output $x \in \mathbb{R}^{n}$ st. $x^{t}Mx \leq 0$
 $x \neq 0$
Jolea: baussian elimination
 $M = U^{T}DU$
 $= \begin{bmatrix} U^{T}DU \\ U \end{bmatrix} \begin{bmatrix} a & d \end{bmatrix} \begin{bmatrix} m \\ m \end{bmatrix} = \begin{bmatrix} m \\ m \end{bmatrix} \begin{bmatrix} a & d \end{bmatrix} \begin{bmatrix} m \\ m \end{bmatrix} \begin{bmatrix} a & d \end{bmatrix} \begin{bmatrix} m \\ m \end{bmatrix} \begin{bmatrix}$

$$E_{n} \cdots E_{2}E M E_{1}^{T} E_{2}^{T} \cdots E_{n}^{T} = \begin{bmatrix} d_{1} & & \\ d_{n} & & \\ B^{T} & & \\ S^{T} &$$

For PSD, repeat the same argument.
Observe, if some
$$d_i = 0$$
, then the ith row and
ith column of M; must already be 0. (klhy?)
[Hint: Suppose
 $M_{\tilde{i}} = \begin{pmatrix} d_{1} & d_{2} & d_{3} \\ d_{2} & d_{3} & d_{4} \\ d_{5} & d_{5} \end{pmatrix}$
Examine the 2×2 malnix $\begin{pmatrix} 0 & \swarrow \\ & & \beta \end{pmatrix}$.
Assume $\forall \neq 0$, and obtain a vector $\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ & & \beta \end{pmatrix} \begin{pmatrix} a \\ & & \beta \end{pmatrix} \langle b \end{pmatrix} < 0$.