Linear programs

maximize $C^{T}X$ Subject to $A \times \leq b$

Equational form

maximize $c^{T} \times$ Subject to $A \times = b \leftarrow$ equalities $\times > 0 \leftarrow$ the only inequalities

Transforming an arbitrary linear program to equational form

o Inequalities to equalities $2\times_{1}-\times_{2} \leq 4 \quad \text{and} \quad 2\times_{1}-\times_{2}+\overline{Z_{1}}=4$ $Z_{1} \geq 0$ $x_{1}+3x_{2} \geq 4 \quad \text{and} \quad x_{1}+3x_{2}-\overline{Z_{2}}=4$

· Uconstained variables

For each variable x_i introduce two new variables y_i and z_i . Replace x_i by $y_i - z_i$ everywhere, and add the non-negativity constraints $y_i > 0$ and $z_i > 0$

Geometry

hyperplanes corresponding to the equality constraints

-affine space corresponding to Ax=6

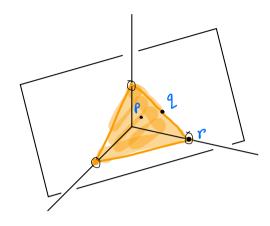
The feasible region is the intersection of this affine space with the positive orthant corresponding to $\infty > 0$

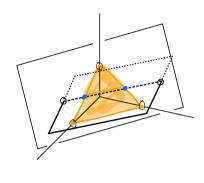
Assumptions

- The system $A \times = b$ has at least one solution;
- · The rows of the matrix A are linearly independent

A is an mxn matrix with m linearly independent rows.

Basic feasible solutions





For an mxn malrix A and a subset \mathcal{B} of $[n] = \{1,2,...,n\}$ let A_R denote the matrix consisting of those alumns of A whose indices appear in 6.

A basic feasible solution of the linear program

maximize cx Subject to Ax = b $(A \in \mathbb{R}^{m \times n})$



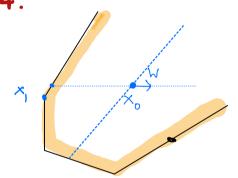
is a feasible solution $x \in \mathbb{R}^n$ for which there exists an m-element set B such that

- · columns of AB are linearly independent;
- · $x_j = 0$ for $j \notin B$.

Proposition: For every $B \subseteq \{1,2,...,n\}$ with A_B non-singular, there exists at most one feasible solution $X \in \mathbb{R}^n$ with $X_j = 0$ for all $j \notin B$. $B \times_B = b$

Theorem: If the objective function of an LP is bounded above, then for every feasible solution \times_0 , there is a basic feasible solution $\stackrel{<}{\times}_0$, $\stackrel{<}{\times}_0$

Presented again $C \times > C \times_0$. in Lecture 4.



 $A \times_{o} = b$ $K = \{j: \times_{o}[j] > 0\}$

If Ax is singular,

there is a $\omega \neq 0$ supported on K s.t. $A_N = 0$.

Corollary:

LP feasible and bounded I optimum solution

I basic feasible optimum solution

Convexity and convex polyhedra

 $X \subseteq \mathbb{R}^n$ is convex if $\forall u, v \in X \ \forall t \in [0,1]$ $tu + (1-t) v \in X$

 $S \subseteq \mathbb{R}^n$: The covex hull of S is the smallest convex set containing S, that is, the intersection of all convex sets that contain S.

A convex combination of points $x_1, x_2, ..., x_k \in \mathbb{R}^n$ is a point x that can be expressed as $x = t_1 x_1 + t_2 x_2 + ... + t_k x_k$ where $t_i \ge 0$ and $t_1 + t_2 + ... + t_k = 1$.

Proposition: Let X C R. Then,

Convex hall of $X = \left\{ \begin{array}{l} x \in \mathbb{R}^n : x \text{ is a convex} \\ \text{Combination of Some finite} \\ \text{Set of points in } X \end{array} \right\}.$

hyperplane = $\left\{ \times \in \mathbb{R}^n : a^T \times = b \right\}, a \neq 0, b$ \mathbb{R}^n \mathbb{R}

Closed half-space = $\left\{x \in \mathbb{R}^n : a^T \times \geq b\right\}$

A convex polyhedron is an intersection of finitely many closed half-spaces.

A bounded convex polyhedron is a convex polytope.

The dimension of a convex polyhedron PCR is the smallest dimension of an affine subspace containing P. Examples

- Cubes
- · Crosspolytope
- · Simplex

vertices and basic feasible solutions

P: a polyhedron

A point v in P is a restex of P if there is a nonzero vector c s.t.

 $C^{T}V > C^{T}y$ $\forall y \in P \setminus \{v\}$.

The $\mathcal{H} = \{x \in \mathbb{R}^n : C^T x = \overline{c}v\}$ intersects P exactly at v, an P lies entirely in one of the closed half-spaces defined by \mathcal{H} .

Theorem: P: the set of all feasible solutions of a linear program in equational form.

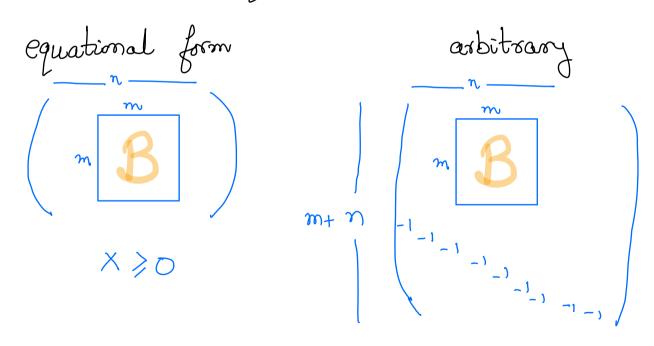
Convex polyhedron is v is a vertex of P

(ii) V is a basic feasible solution of the LP.

Arbitrary linear programs

A basic feasible solution of a linear program maximize $c^T \times$ Subject to $A \times = b$ (not necessarily in equational form)

is a basic feasible solution for which some n linearly independent constraints are satisfied with equality.



- There are General) LPs none of whose infinitely many optimal solutions is basic.
- · Vertices and extremal points

 A point in the convex set where vertex Some linear function attains its unique maximum.
- A point in the convex set that cannot be conten as a convex point combination of two other points in the convex set.

For convex polyhedra x is a vortex

* is an extreme point

The main theorem of convex polytopes

A polytope is equal to the convex hull of its set of vertices.

Not obvious!