Upper bounds on the reliability of quantum information protocols

Naresh Sharma
Tata Institute of Fundamental Research
Mumbai, India

Based on arXiv:1205.1712 (with N.A. Warsi)

Beyond IID in information theory
Cambridge, UK
Jan 11, 2012
Introduction

- For a given channel, how much information could be transmitted reliably per channel use asymptotically?

- Shannon (1948) in his landmark paper identified a property of a communication channel called capacity.

- Channel capacity gives us the highest information transfer rate across the channel with arbitrarily high reliability asymptotically.
• For some channels, the following graph can be proved.

![Graph showing the relationship between reliability and capacity for long messages. The graph has two quadrants: Highly reliable and Highly unreliable. The x-axis represents capacity, ranging from 0 to 1, and the y-axis represents reliability, ranging from 0 to 1. The green area represents Highly reliable, and the pink area represents Highly unreliable.]
• Fidelity (F) of a communication protocol is a measure of closeness between the message sent and the reconstructed message at the receiver.

• $F \approx 1$ and $F \approx 0$ indicate highly reliable and unreliable transfer respectively.

• Converse theorem shows if the rate of the protocol is higher than the capacity, then F is bounded away from 1.
There are two types of converse theorems:

- Weak Converse: For rates above capacity, F is bounded away from 1

- Strong Converse: For rates above capacity, F decays to 0 with the number of channel uses

Not all channels have strong converses. See Dorlas and Morgan (2011) for an example.
• Strong converse for the classical case

• Wolfowitz (1950s)
 \[F \leq \frac{A}{n} + e^{-n(R-C)}, \]
 \(A \) positive, finite

• Arimoto (1973)
 \[F \leq e^{-Kn}, \]
 \(K > 0 \) if \(R > C \)

• It has been shown (though not in full generality) when classical information is sent across a quantum channel by

• Winter (1999)

• Ogawa and Nagaoka (1999)

• König and Wehner (2009)

• Semi-strong converse for sending quantum information over quantum channels (degradable channels) - Morgan and Winter (2012)
Overview

• Prior results
• Provide alternate proof on the Ogawa and Nagaoka upper bound on the reliability
• Provide upper bounds (via the Gallager exponent) on the reliability of sending quantum information across quantum channels
• Applicability to the erasure channel
Prior results

• Most common (weak) converse is by using the Fano inequality

• One of the first results (if not the first) that connected monotonicity with converse is by Blahut (1976)

• Monotonicity \Rightarrow Fano (classical) OR Monotonicity \Rightarrow Converse

• His definition of ‘refinement’ - “By a refinement, we mean the replacement of each point by several new points with the probability of the original point apportioned among the new points”
• Han and Verdú (1994) generalized classical Fano inequality using monotonicity

• Similar generalization for and alternate proof of the quantum Fano inequality (NS, 2008)

• Arimoto (1973) proved strong converse using the Gallager’s exponent

• Csiszár (1995) related Rényi divergence with Gallager’s exponent (using Sibson’s identity)
• Blahut: Monotonicity of divergence => Fano
• Polyanskiy and Verdú (2010): Monotonicity of Rényi divergence + Csiszár’s observation => strong converse for the classical channel capacity theorem
• Has a non-commutative extension - the subject of this talk
• Wolfowitz’s converse from f-relative entropy by choosing f to be the hockey-stick function -
 \[f(x) = (x - \gamma)^+ \]
• Also provide an elegant proof of the additivity of the Gallager’s exponent
Classical information over classical channels

$M \in \{1, \ldots, 2^R\}$

$W_{Y|X}$

R – Rate of the protocol in bits per channel use

$\Pr\{M = \hat{M}\}$ – Fidelity of the protocol
• Weak converse using Fano:

\[\Pr\{M = \hat{M}\} \leq \frac{C}{R} + \frac{1}{nR} \]

• Wolfowitz's Strong Converse:

\[\Pr\{M = \hat{M}\} \leq \frac{4A}{n(R - C)^2} + 2^{-n(R - C)} \]
• **Arimoto's Strong Converse:**

\[
\Pr\{M = \hat{M}\} \leq 2^n[sR - E_0(s, W_{Y|X})_P], \quad s \in [-1, 0)
\]

\[
E_0(s, W_{Y|X})_P := -\log \sum_y \left\{ \sum_x P_X(x) \left[W_{Y|X}(y|x) \right]^{\frac{1}{1+s}} \right\}^{1+s}
\]

• \(-sR + E_0(s, W_{Y|X})_P\) is called the Gallager's exponent who first proposed it in a different context

• **Key property:** \[\left. \frac{\partial E_0(s, W_{Y|X})_P}{\partial s} \right|_{s=0} = I(X; Y)\]
Classical information over quantum channels

\[M \in \{1, \ldots, 2^R\} \]

\[X \]

\[\hat{M} \]

\[Y \]

\[\mathcal{N} \]

\[\rho_{MA'} \]

\[\rho_{MB} \]

\[\mathcal{R} \] – Rate of the protocol in bits per channel use

\[\Pr\{M = \hat{M}\} \] – Fidelity of the protocol
• Ogawa and Nagaoka gave an Arimoto-like strong converse (for product inputs)

• We provide an alternate proof
• Key quantity to deal with:

\[\mathcal{K}^{(c)}(A; B)_{\rho} := \inf_{\sigma^B \in \mathcal{S}(\mathcal{H}_B)} \mathcal{D}(\rho^{AB} \| \rho^A \otimes \sigma^B) \]

• Satisfies certain monotonicity inequalities

• Satisfies a Holevo-like bound

\[\mathcal{K}^{(c)}(X; Y) \leq \mathcal{K}^{(c)}(M; B)_{\rho} \]
• Define a non-commutative hockey-stick divergence

\[\mathcal{D}(\rho \| \sigma) = \text{Tr}(\rho - \gamma \sigma)^+, \quad \gamma > 1 \]

• Satisfies the required properties (monotonicity etc.)
Quantum information over quantum channels

\[
\begin{align*}
|\phi\rangle^{AS} & \quad \xrightarrow{\text{Encoder}} \quad \rho^{AA'} \\
\rho^S &= \frac{1}{|S|} \\
\channel^{A'\rightarrow B} & \quad \xrightarrow{\text{Channel}} \quad \rho^{AB} \\
\rho^{A\hat{S}} & \quad \xrightarrow{\text{Decoder}} \\
\end{align*}
\]

\[\mathcal{R} = \frac{\log_2 |S|}{n}\] is the rate of the protocol

\[F = \langle \phi|^{AS} \rho^{A\hat{S}} |\phi\rangle^{AS} - \text{Fidelity of the protocol}\]
• Key quantity to deal with:

\[\mathcal{K}^{(q)}(A; B)_{\rho} := \inf_{\sigma^B \in S(H_B)} \mathcal{D}(\rho^{AB} \| 1 \otimes \sigma^B) \]

• Need a quantum version of Sibson’s identity

\[D_\lambda(\rho^{AB} \| 1 \otimes \sigma^B) = D_\lambda(\sigma^* \| \sigma^B) + \frac{\lambda}{\lambda - 1} \log \text{Tr} \left[\text{Tr}_A (\rho^{AB})^\lambda \right]^{\frac{1}{\lambda}}, \]

\[\sigma^* = \frac{\left[\text{Tr}_A (\rho^{AB})^\lambda \right]^{\frac{1}{\lambda}}}{\text{Tr} \left[\text{Tr}_A (\rho^{AB})^\lambda \right]^{\frac{1}{\lambda}}}. \]
• Quantum Gallager's exponent

\[F' \leq 2^s R - E_0(s, \mathcal{N}^{A'\to B})_\rho, \quad s \in [-1/2, 0) \]

\[E_0(s, \mathcal{N}^{A'\to B})_\rho := -\log \text{Tr} \left\{ \text{Tr}_A \left[\mathcal{N}^{A'\to B} (\rho^{AA'})^{1/(1+s)} \right]^{1+s} \right\} \]

• Key property:

\[\frac{\partial E_0(s, \mathcal{N}^{A'\to B})_\rho}{\partial s} \bigg|_{s=0} = I(A)B)_\sigma = H(B)_\sigma - H(AB)_\sigma \]
Why should this work (if it works)?

Since E_0 obeys $E_0(0) = 0$, $\left. \frac{\partial E_0(s)}{\partial s} \right|_{s=0} = I$, for a negative s near 0, $-E_0(s) \approx -sI \leq -sC$

and the above bound could be weakened to give $F \lesssim e^{s(R-C)}$

Hence, if $R > C$, then F is always exponentially bounded away from 1

For n channel uses and some (elusive) additivity conditions, if they hold, one could write the above bound as $F \lesssim e^{sn(R-C)}$
• What are the additivity conditions?

\[E_0^* (s, \mathcal{N}) := \min_{\rho^{AA'}} E_0 (s, \mathcal{N})_{\rho} \]

\[E_0^* (s, \mathcal{N}^{\otimes n+m}) = E_0^* (s, \mathcal{N}^{\otimes n}) + E_0^* (s, \mathcal{N}^{\otimes m}) \]
Strong converse for erasure channel for some inputs

• Erasure channel:

\[\mathcal{N}_{p}^{A'\rightarrow B}(\rho^{AA'}) = (1 - p)\sigma^{AB} + p\rho^{A} \otimes |e\rangle \langle e|^{B} \]

\[\sigma^{AB} = \mathcal{G}^{A'\rightarrow B}(\rho^{AA'}) \]

\(\mathcal{G} \) increases the dimension but leaves the state intact

• Quantum capacity:

\[Q = (1 - 2p)^{+} \log |A'| \]
• Strong converse holds for maximally entangled channel inputs

\[F \leq \exp \{ n [sR - E_0(s)] \} \]

\[E_0(s) := -\ln \left[(1 - p)|A'|^{-s} + p|A'|^s \right] \]

\[Q = \lim_{s \uparrow 0} \frac{E_0(s)}{s} \]
• Strong converse from the hockey-stick divergence

\[F \leq 2^{-\frac{n}{2}} [\mathcal{R} - Q] + 2^{-\frac{n}{2p}} \left[\frac{(2p-1)^+}{2} + \frac{\mathcal{R}}{4 \log |A'|} \right]^2. \]
Open issues

• Approach is quite general - holds for any relative entropies that satisfy monotonicity and some other properties

• Can we find a divergence that gives the strong converse and for which additivity is easier to prove?

• If single letter formula for the capacity is available, does it necessarily imply a strong converse?

• Extension to network scenarios?