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1 Motivating density matrices

In this section, we start off with the postulate that the state of a large system is pure since it is assumed to be
isolated. We then show how density matrices give us the right definition to work with if we want to study
subsystems of the large system.

Let A, B be two finite dimensional quantum systems. We also use A, B to denote their respective
Hilbert spaces. The Hilbert space of the joint system is A⊗B. Suppose AB is an isolated system with state
vector |ψ〉AB , where the subscript denotes the quantum system whose state is being described. In general,
|ψ〉AB is entangled i.e. it cannot be written as a tensor product of a state vector in A and a state vector in
B. Nevertheless, we still want a mathematical description of the reduced state of A when the global state is
|ψ〉AB .

It is easy to see that |ψ〉AB can be written as |ψ〉AB =
∑

j |αj〉A ⊗ |bj〉B, where {|bj〉}j form an
orthonormal basis of B and {|αj〉}j are vectors in A. Such a decomposition can be obtained, for example,
by expressing |ψ〉AB in terms of an orthonormal tensor basis of A⊗B and then collecting terms in the first
multiplicand for each basis vector |bj〉B of B to form the vectors |αj〉A in A. In general, |αj〉A are neither
of unit length, nor are they orthogonal.

Now, suppose we apply a unitary U on system A only. To understand the action on the system AB, let
us consider the case when the system AB is in a separable initial state |α〉A|β〉B . We would then expect the
final state to be (U |α〉)A ⊗ |β〉B . Thus, the action on AB is UA ⊗ 11B . Now for an, in general entangled,
state vector |ψ〉AB as the initial state, the final state vector will be

(UA ⊗ 11B)|ψ〉AB =
∑
j

(U |αj〉)A ⊗ |bj〉B.

This seems to suggest that the ensemble {|αj〉A}j is a first candidate for mathematically describing the
reduced state of A; the actual identity of the vectors {|bj〉B}j is unimportant as long as they form an or-
thonormal basis of B. Note that

∑
j ‖|α〉j‖2 = 1; thus the ensemble {|αj〉} can be viewed as a probability

distribution of unit length state vectors |α̂j〉 := |αj〉
‖|αj〉‖ with probabilities pj := ‖|αj〉‖2. We call such prob-

ability distributions of unit length state vectors as mixed states; a single state vector is sometimes called a
pure state. We shall use the notations {(pj , |α̂j〉)}j and {|αj〉A}j interchangeably to denote mixed states.
Under action by unitary U on system A, the state evolves to the ensemble {U |αj〉A}j , in line with our
intution about the mixed state being a probabilistic mixture of pure states.

Now let us study what happens when we apply a projective measurement on A alone. We shall use only
the projective measurement version of the measurement postulate of quantum mechanics, but the ensuing
mathematical arguments also work for more general versions of the measurement postulate. As will be seen
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later on in the Quantum information and error correction course, the most general quantum measurement
can be implemented by tensoring to the given system an ancillary system initialised to a fixed state and then
performing a projective measurement on the joint system. Thus, it suffices to check whether our notion of
mixed states as the mathematical description of the reduced state of A stands its ground against projective
measurements on A. Suppose ΠA is an orthogonal projection operator on A corresponding to a particular
outcome of a projective measurement. By a similar reasoning as above, the projection operator for this
outcome viewed over the joint system AB is ΠA ⊗ 11B . Now,

(ΠA ⊗ 11B)|ψ〉AB =
∑
j

(Π|αj〉)A ⊗ |bj〉B.

The probability of this projection succeeding is

Pr[Π succeeds] = ‖(ΠA ⊗ 11B)|ψ〉AB‖2 =
∑
j

‖Π|αj〉‖2 =
∑
j

pj‖Π|α̂j〉‖2,

where pj , |α̂j〉 are defined above. This is exactly what one would expect from a mixed state being a proba-
bilistic mixture of pure states. Moreover, the collapsed state of AB if ΠA ⊗ 11B succeeds is

1√
Pr[Π succeeds]

∑
j

(Π|αj〉)A ⊗ |bj〉B,

which leads us to consider the mixture
{

Π|αj〉√
Pr[Π succeeds]

}
j

as the reduced state of A if Π succeeds. Again,

this is what one would expect if we view a mixed state as a probabilistic mixture of pure states. The
explanation follows. The probability p′j of the jth state of the mixture after Π succeeds is

p′j := Pr[j | Π succeeds] =
Pr[j ∧Π succeeds]

Pr[Π succeeds]
=
pj Pr[Π succeeds | j]

Pr[Π succeeds]
=

pj‖Π|α̂j〉‖2

Pr[Π succeeds]

=
‖Π|α〉j‖2

Pr[Π succeeds]
.

If Π succeeds on the jth state, then the collapsed state is Π|α̂〉j
‖Π|α̂〉j‖ = Π|α〉j

‖Π|α〉j‖ . Thus, the collapsed mixed state
of A if Π succeeds is {(

p′j ,
Π|α〉j
‖Π|α〉j‖

)}
j

=

{
Π|α〉j√

Pr[Π succeeds]

}
j

.

The above arguments strengthen our idea of using mixed states to mathematically describe the reduced
state of system A when it is part of an isolated joint system AB. A careful second look at the above
arguments leads us to consider the operator

ρA :=
∑
j

(|αj〉〈αj |)A =
∑
j

pj(|α̂j〉〈α̂j |)A
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as a more refined notion of the reduced state of A. The subscript indicates that the operators in question act
on the space A. The operator ρA is known as the density operator or density matrix of A. Now observe that

Pr[Π succeeds] =
∑
j

‖Π|αj〉‖2 =
∑
j

Tr (Π|αj〉〈αj |) = Tr

Π

∑
j

|αj〉〈αj |

 = Tr (ΠAρA),

where we use the subscript in the last term to emphasise the fact that the operators considered act only on the
subsystem A. Note that if P , Q are two Hermitian positive semidefinite operators, then Tr (PQ) ≥ 0 even
though PQ, in general, is not even Hermitian (this happens if P , Q do not commute). Thus, Tr (Πρ) ≥ 0
for any projection Π and any density matrix ρ, which agrees with our intuition that whatever be the state
of system A, the probability of a measurement outcome can never be negative. If Π succeeds, the resulting
state of A under the density matrix formalism is∑

j

Π|αj〉〈αj |Π
Pr[Π succeeds]

=
ΠAρAΠA

Tr (ΠAρAΠA)
.

Under evolution by a unitary U on system A, the new state of A becomes∑
j

U |αj〉〈αj |U † = UAρAU
†
A

in the density matrix formalism. Thus, we have seen how two of the fundamental kinds of dynamics of the
quantum system A can be modelled as appropriate functions acting on density matrices.

We now study the tensor product postulate that describes the bringing together two hitherto independent
quantum systems. Thus, if we bring in a new system C with density matrix σC into consideration, the joint
state of system AC will be ρA ⊗ σC as can be verified from the tensor product postulate when two isolated
quantum systems are brought together for consideration, treating ρ to be part of a pure state on AB and σ to
be part of a pure state on CD, where CD is independent of AB.

Now suppose the joint state of system AB is described by a density matrix ωAB . We now describe a
mathematical operation called partial trace to obtain the density matrix for the reduced state ofA from ωAB .
In general, ωAB can be a mixed state. This can happen if AB is entangled with another quantum system
E, for example, E can be the ‘environment’ or the rest of the universe. Let system ABE be in a pure state
|ψ〉ABE . We can express |ψ〉ABE as

|ψ〉ABE =
∑
j,k

|αjk〉A ⊗ |bj〉B ⊗ |ek〉E ,

where {|bj〉}j , {|ek〉}k form orthonormal bases of B, E and {|αjk〉}jk are vectors in A. Then, the reduced
state of A is the probabilistic mixture {|αjk〉}jk with density matrix

ρA :=
∑
jk

(|αjk〉〈αjk|)A.

Also, the reduced state of AB is the probabilistic mixture {
∑

j |αjk〉|bj〉}k with density matrix

ωAB =
∑
k

∑
j

|αjk〉 ⊗ |bj〉

∑
j

〈αjk| ⊗ 〈bj |

 =
∑
k,j,j′

(|αjk〉〈αj′k|)A ⊗ (|bj〉〈bj′ |)B.
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Now, note that the density matrix corresponding to |ψ〉ABE is

|ψ〉〈ψ| =
∑

j,k,j′,k′

(|αjk〉〈αj′k′ |)A ⊗ (|bj〉〈bj′ |)B ⊗ (|ek〉〈bk′ |)E .

So if we define the partial trace overB, TrB , also known as tracing outB, as a C-linear map from operators
on AB to operators on A by

TrE (|ai〉〈ai′ |)A ⊗ (|bj〉〈bj′ |)B := δj,j′(|ai〉〈ai′ |)A,

where {|ai〉}i, {|bj〉}j are orthonormal bases for A, B, then TrE (|ψ〉〈ψ|)ABE = ωAB and

TrBE (|ψ〉〈ψ|)ABE = ρA = TrB ωAB.

Observe that the definition of TrB is independent of the choice of orthonormal bases of A, B that are used
to denote operators on AB and A; thus, TrB is indeed a map from operators on AB to operators on A. It
is easy to check that the partial trace is the unique C-linear map from operators on AB to operators on A
satisfying the property

TrB (MA ⊗M ′B) = Tr (M ′B) ·MA,

where MA, MB are linear operators on A, B; this justifies the name partial trace. It is also easy to check
that the above definition of partial trace agrees with the definition given in Lecture 4, namely,

TrB (MAB) :=
∑
j

(11A ⊗ |bj〉B)MAB(11A ⊗ 〈bj |B),

where MAB is a linear operator on AB. The C-linearity of TrB implies that TrB respects the interpretation
of a mixed state as a probability distribution over pure states. Since by the spectral theorem any Hermitian
positive semidefinite operator is a non-negative linear combination of projections onto its eigenvectors, and
partial trace applied to a rank one projector gives a density matrix (which is easy to check), we see that
partial trace maps positive operators to positive operators and preserves their traces. Thus, density matrices
and partial trace together give us a mathematical formalism to describe the relation between the state of a
joint system and the reduced state of a component.

Thus, it appears that ρA is an accurate notion of the reduced state of A in the following senses:

• ρA suffices to describe the dynamics of system A when operations are applied to A alone, viz. unitary
evolution inA, projective measurement inA, attaching new quantum systems toA and taking reduced
states of subsystems of A;

• Two mixed states having the same density matrix are indistinguishable by any quantum process since
the above operations characterise all quantum processes as per the postulates;

• For any two different density matrices ρ, ρ′ of A, there exists a projective measurement on A that
gives different probability distributions for ρ and ρ′ (to be seen later during the Quantum information
and error correction course);

In view of this, we propose the density matrix to be the correct mathematical notion of the state of a quantum
systemA, even whenA is part of a larger joint system. Note that if systemA is in a pure state |α〉, its density
matrix |α〉〈α| is independent of the global phase of |α〉. This shows that global phase does not matter when
studying the dynamics of a system in a pure state, and hence, a pure state is quite correctly modelled by a
one-dimensional subspace of the Hilbert space.
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2 Embedding classical computaton into quantum

Let f : {0, 1}n → {0, 1}m be a (deterministic) function. In general, the mapping x 7→ f(x) is not
reversible; so it cannot be directly thought of as a unitary transformation. Hence, we use the following
convention to ‘embed’ f into a deterministic reversible function F (f) : {0, 1}n+m → {0, 1}n+m defined
by (x, b) 7→ (x, b ⊕ f(x)), where the first and second registers are n bits and m bits long respectively,
and b ⊕ f(x) denotes the string of length m obtained by the bitwise XOR of the strings b and f(x). We
are now free to think of F (f) as a unitary quantum map, extend by C-linearity to arbitrary superpositions.
Henceforth, when we talk of implementing f by a quantum computer, we will actually mean designing a
circuit for the unitary F (f) using gates from our (finite) basic set of unitaries.

We now need to replace the universal gates for classical, in general irreversible, computation by universal
gates for classical reversible computation. It turns out that we only need a single reversible 3-bit gate for
universal classical reversible computation called the Toffoli gate. It can be shown that one and two-bit
reversible gates are not universal for reversible classical computation, unlike the situation with classical, in
general irreversible, computation. The circuit diagram of the Toffoli gate is given below (note that this is
just a schematic diagram and one should not think of the vertical lines as additional wires nor the junctions
as fanouts).

a

b

c

a

b

c⊕ ab

Figure 1. The Toffoli gate

A few words on the above schematic diagram are in order. In general, if U is a unitary on n qubits, then
controlled-U is a unitary on n + 1 qubits acting as follows, where the first register is a single qubit called
the control and the second register contains n qubits:

|0〉 ⊗ |x〉 7→ |0〉 ⊗ |x〉
|1〉 ⊗ |x〉 7→ |1〉 ⊗ (U |x〉),

extended by C-linearity to superpositions. Thus, controlled-U appliesU on the second register iff the control
qubit is |1〉.

U|x〉

|b〉 |b〉

U b|x〉

Figure 2. A controlled-U gate

This justifies the name controlled-NOT for the CNOT gate, also called controlled-X since the single qubit
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Pauli operatorX is nothing but the NOT gate. Viewed in this light, the Toffoli gate is a controlled-controlled-
NOT.

Since NOT, NAND and FANOUT gates are universal for classical, in general irreversible, computation,
it suffices to show how to simulate the last two by the Toffoli gate (since NOT is already reversible).

a

b

1

a

b

a

b

ab

ab

Figure 3. Implementing NAND using Toffoli

a

a

a

a

1

0

a

1

a

Figure 4. Implementing FANOUT using Toffoli

Thus, if a boolean circuit C computes x 7→ f(x) using possibly extra work bits (initialised to zero by
convention), then we can embed C into a classical reversible circuit C ′ using possibly at most three times
as many work bits. Now C ′ can be thought of as a quantum circuit also using C-linearity to define its action
on superpositions. The circuit C ′ implements a unitary transformation that happens to be a permutation of
computational basis states. In general on input x with work bits initialised to zero, the output of C ′ will
contain, besides f(x), a string correlated to x on the remaining bits which we called garbage in our later
discussion (the reason for this nomenclature will become clear very soon).

work

input output

remaining

input

outputinput

output

}
work

work

remaining

remaininggarbage(x)

C

x

0

f(x)

C ′

0

0

x

f(x)

b b⊕ f(x)

x

garbage(x)7→

Figure 5. Making a classical circuit reversible naively
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The two CNOTs depicted in the circuit as operating on several qubits are actually a transversal system of
two-qubit CNOTs, as detailed in the next figure.

{

{

}

}
≡

x

b

x

b⊕ f(x)

x

b

x

b⊕ f(x)

Figure 6. A transversal system of two-qubit CNOTs

Such transversal systems are very useful in fault tolerant quantum computation.
In a classical randomised circuit C, we have an additional input besides x and the work bits called

the random string r where uniform independent random bits are fed. We can transform C to a classical
reversible circuit C ′ as before, with x, b, r and work bits as its input. We can then transform C ′ into a
quantum circuit C ′′ where the random input to r is generated not by a randomness source but by feeding
zeroes to Hadamard gates and measuring their outputs in the computational basis.

work

random

input

work

input

output

output

remaining

remaining

}(is a random variable)

input output

remaining

{
work (is a random variable)

random y = f(x) with (high) probability px)

H

H7→

|0〉

|0〉

|0〉
C ′

|b〉

|x〉 x

b⊕ y

(y is a random variable,
y = f(x) with probability px)

garbage(x, y)

|0〉

C ′′

y

C

x

0

r

y

garbage(x, y)

(y is a random variable,

Figure 7. Making a classical randomised circuit quantum naively with intermediate measurements

We can avoid the measurement just after the Hadamards by using a general principle of replacing mea-
surement in the computational basis by bringing in fresh ancilla qubits initialised to zero, applying CNOT
and then ignoring these ancillas for the rest of the computation. It is easy to see that this principle mimics
measurement in the computational basis by doing a reduced state calculation for the original qubits of the
circuit.
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work

random

input

input output

output

remaining

(is a random variable)

work

input

remaining

remaining

remaining

output

output

}input
(y is a random variable,

H

H

H

H

|0〉

|0〉

|0〉

|b〉

|x〉

C

x

b⊕ y

garbage(x, y)

|0〉

|0〉

|0〉

|b〉

|x〉

C

|0〉

|0〉

7→

x

∑
y |b⊕ y〉|garbage(x, y)〉

(If first register is measured,
y = f(x) with probability px)

y = f(x) with (high) probability px)

Figure 8. Removing intermediate measurements in a quantum circuit

From the above discussion, we can conclude that P ⊆ BPP ⊆ BQP, where P, BPP and BQP are
the class of problems that can be solved using polynomial time classical deterministic, classical randomised
and quantum algorithms respectively. There is an issue about uniformity of the circuit families out here,
which we resolve by requiring that all circuit families, classical or quantum, be generated by classical
deterministic Turing machines running in polynomial time.

We shall see in the next couple of lectures that there is a finite universal set of basic quantum gates
consisting of only one and two-qubit unitaries. Now, given a uniformly generated polynomial size quantum
circuit composed of gates from this universal set, we can write down theM×M unitary matrix for the overall
circuit in classical deterministic exponential time (EXP), where M is the dimension of the Hilbert space of
the overall circuit. Note that M is single exponential in the input size. This is because we can multiply out
the unitaries corresponding to the individual gates of the circuit in deterministic time polyomial in M . This
shows that BQP ⊆ EXP. We can prove the tighter containment BQP ⊆ PSPACE, where PSPACE
is the class of problems that can be solved in polynomial space by a classical deterministic algorithm, by
observing that the multiplication described above can be done in deterministic space polynomial in logM ,
which is polynomial in the input size. We have thus shown

P ⊆ BPP ⊆ BQP ⊆ PSPACE.

Since P ?= PSPACE is still open (resolving it will be a big breakthrough for computer science), we
do not know for sure if quantum computation could ever offer a superpolynomial speedup over classical
deterministic computation. We have evidence of superpolynomial speedups for some problems like integer
factoring which is not known to be in BPP but which lies in BQP due to Shor’s algorithm. But at the
present moment, that’s all we have, evidence but no proof.

Getting rid of garbage: The embedding of a classical circuit C into a quantum circuit C ′ described above
generates garbage, which is bad if C ′ is to be used as a unitary subroutine in a larger quantum algorithm.
Suppose we would like to ideally use the reversible function F (f) : |x〉|b〉 7→ |x〉|b ⊕ f(x)〉 as a unitary
subroutine in a quantum algorithm. Suppose however, what we actually have is a ‘dirty’ deterministic
reversible implementation of F (f) using possibly some work qubits, of the form

|x〉|b〉|0〉 7→ |x〉|b⊕ f(x)〉|garbage(x, b)〉.
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Above, |garbage(x, b)〉 indicates that the work qubits at the end of the ‘dirty’ implementation may contain
a string that is correlated to the input (x, b). Now suppose that the outer quantum algorithm prepares a
superposition

∑
x,b αx,b|x〉|b〉 and feeds it to the unitary F (f). It would ideally expect the resulting state to

be
∑

x,b αx,b|x〉|b ⊕ f(x)〉. However, because of our ‘dirty’ implementation of F (f), the actual resulting
state will be ∑

x,b

αx,b|x〉|b⊕ f(x)〉|garbage(x, b)〉.

In general, the reduced state of the first two registers after the application of the ‘dirty’ F (f) will be nowhere
close to the state of the first two registers after the application of the ideal F (f).

Thankfully, we can get get rid of garbage in a deterministic reversible implementation of F (f) by the
following procedure, which gives a ‘clean’ reversible circuit for F (f) with complexity at most a constant
times the original deterministic, in general irreversible, circuit complexity of f . By a ‘clean’ reversible
circuit for F (f), we mean a map of the form |x〉|b〉|0〉 7→ |x〉|b⊕ f(x)〉|0〉 implemented by reversible gates.

work

input

work

work

output

work

work

output

C−1C

x

0

0

x

garbage(x)

f(x)

b

x

0

0

b⊕ f(x)

Figure 9. Cleaning garbage

The CNOT gate in the above figure is actually transversal. Note that if the reversible circuit C is made up
of NOT, Hadamard, CNOT and Toffoli gates only, then C−1 = C as these gates are their own inverses.

The above procedure can also be applied to ‘dirty’ quantum circuits that evaluate F (f) with bounded
error, e.g. as in Figure 2, but the resulting circuit will, in general, only be an approximation to a clean
implementation |x〉|b〉|0〉 7→ |x〉|b ⊕ f(x)〉|0〉. The approximation error can be reduced by reducing the
error in evaluting F (f) by the ‘dirty’ circuit, which can be done by standard techniques. Suppose on
input |x〉|0〉|0〉, the second output of the quantum circuit C in Figure 2 would give f(x) with probability
1 − ε, if measured, that is, the output of C is the superposition |x〉 ⊗ (

∑
y |y〉|garbage(x, y)〉), where

‖|garbage(x, f(x))〉‖2 ≥ 1−ε. The global state of the four registers is |x〉⊗(
∑

y |y〉|garbage(x, y)〉)⊗|b〉.
After applying the CNOT gate, it becomes |x〉 ⊗ (

∑
y |y〉|garbage(x, y)〉|b ⊕ y〉), which is within an `2-

distance of
√
ε from |x〉⊗(

∑
y |y〉|garbage(x, y)〉)⊗|b⊕f(x)〉. This shows that the final state of the circuit

of Figure 2 is within an `2-distance of
√
ε from the ideal state |x〉|0〉|0〉|b⊕ f(x)〉. Also by construction, the

reduced state of the first register in the final state is |x〉. This implies by the Cauchy-Schwarz inequality that
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for any superposition
∑

x,b αx,b|x〉|0〉|0〉|b〉 as input, the output state of the circuit is within an `2-distance
of
√
ε2m from the ideal state

∑
x,b αx,b|x〉|0〉|0〉|b⊕ f(x)〉, where the range of f is {0, 1}m. The important

point to note is that the above bound on the approximation error is independent of the number of work qubits,
which enables us to reduce ε by standard techniques (which in general increase the number of work qubits),
decreasing the approximation error to an exponentially small quantity at the expense of a polynomial blowup
in the circuit size. Now, it can be seen via Equation 1 that if the circuit is used in place of F (f) in a larger
quantum algorithm, the larger algorithm will produce an output state within `2-distance of

√
ε2m of its ideal

output state. This implies, as shall be seen later on in the Quantum information and error correction course,
that the probability distribution given by any measurement of the actual output state of the larger quantum
algorithm is within `1-distance of 2

√
ε2m from the probability distribution given by the same measurement

on the ideal output state.
Sometimes, when x 7→ f(x) is a permutation of bit strings of the same length, we may want to use

f itself as a unitary subroutine of a larger quantum algorithm. Hence, we want a ‘clean’ implementation
|x〉|0〉 7→ |f(x)〉|0〉 of f . It turns out that we can do this if we have, possibly irreversible, classical circuits
for f and f−1. Given classical circuits for f and f−1, we can construct ‘clean’ reversible circuits computing
F (f) and F (f−1) exactly. Using them, we can get a ‘clean’ implementation of f as follows:

work work

input

input

output

output

workwork

input

input

output

output

x

0

b

x

b⊕ f−1(x)

0

F (f−1)

x

0

b F (f)

x

b⊕ f(x)

0

Figure 10. Clean reversible implementations of F (f) and F (f−1)

work

input

work

output

work

work

work

work

F (f)

x

0

0

x

f(x)

f(x)

0

0
0

0

0

f(x)

x F (f−1)

Figure 11. Clean reversible implementation of an invertible function

A similar comment as above can be made if we start off with ‘dirty’ reversible circuits evaluating F (f) and
F (f−1) with bounded error.
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