
Quantum algorithms Monsoon 2007

Lecture 9

Lecturer: Pranab Sen Date: August 27

In the last lecture we saw an instance of finding a strict period in the the abelian group Zn2 viz. Simon’s
problem. In this and the next lecture, we generalise Simon’s problem and its solution to finding strict
periods in any finite abelian group G, also known as the hidden subgroup problem in G. For that, we will
have to first develop a little bit of the theory of characters of finite abelian groups.

1 The hidden subgroup problem

Definition 1.1 (Hidden subroup problem (HSP)). Let G be a group, S a set and f : G → S a function.
We are given an oracle for a reversible version of f , F (f) : |x〉|s〉 7→ |x〉|s ⊕ f(x)〉, where the first and
second registers denote elements of G and S respectively, and the operation ⊕ is a bitwise XOR of binary
strings. The function f satisfies the promise that there exists a subgroupH ≤ G, called the hidden subgroup,
such that f is constant on the left cosets of H and distinct on distinct cosets. The aim is to find a generating
set for H by making queries to F (f). Ideally, we would require the total running time of the algorithm to
be polylog(|G|).

The hidden subgroup problem is nothing but finding the subgroup H of periods of a function f : G → S
under the promise that f is strictly periodic, that is, for all x, y ∈ G, f(x) = f(y) iff y = xh for some
h ∈ H . The ‘if’ direction is the periodic part of the definition (it may be clearer to see this for abelian G
with the group law written additively), and the ‘only if’ direction is the strict part of the definition (which in
the case of G = Zn is equivalent to saying that f is one-one within a periodic interval). Note that the set of
periods of a function f defined over a group G always forms a subgroup H ≤ G.

Many important computational problems reduce to instances of the HSP. For example, integer factoring
reduces to HSP in Z, discrete logarithm over Zp reduces to HSP in Zp−1 × Zp−1 and isomorphism of two
n-vertex graphs reduces to HSP in S2n, the group of permutations of 2n letters. The classical randomised
query complexity of finding H is typically |G|Ω(1), even for simple cases like G = Zn, G = Z2k etc.
The lower bound argument for Simon’s problem typically generalises to many groups G. On the other
hand, the quantum query complexity of this problem is O(log |G|) for any G, H as shown by Ettinger,
Høyer and Knill. Moreover, for the special case of abelian G, we can get a quantum algorithm with total
running time O(log3 |G|). This fact lies at the heart of most problems where quantum computation seems to
offer superpolynomial speedup over classical computation, including Shor’s famous quantum algorithms for
integer factoring and discrete logarithm. A notable exception where quantum computation seemingly gives
superpolynomial speedups over classical computation that does not fit into the hidden subgroup paradigm is
a class of quantum algorithms based on knot theory, discovered very recently.

For the rest of the lecture, we restrict ourselves to finite groups. For a subset X ⊆ G, we define
|X〉 := |X|−1/2

∑
x∈X |x〉, the uniform superposition over elements of X . The main approach to solving

HSP is the so-called coset state approach. In this approach, we start off by preparing the coset state σGH

9-1

Quantum algorithms Lecture 9 Monsoon 2007

of the hidden subgroup H in the ambient group G defined as σGH =
∑

x∈G/H |xH〉〈xH|, where G/H is
a set of representatives of left cosets of H in G. If we can generate the uniform superposition |G〉 over all
elements of G, which can be done efficiently for many groups of interest, then it is easy to prepare the coset
state σGH as follows:

|G|−1/2
∑
g∈G
|g〉G|0〉S

F (f)7−→ |G|−1/2
∑
g∈G
|g〉G|f(g)〉S

TrS7−→ σGH .

We can prepare several independent copies of σGH and then perform a, in general, joint measurement on them
in order to discover H . Indeed this was precisely the approach of Ettinger, Høyer and Knill for solving the
HSP with log |G| independent copies of σGH . Unfortunately, it is not known how to implement their algorithm
efficiently. However for abelian G, it turns out that we can efficiently perform a certain measurement on a
single copy of σGH and repeat the procedure O(log |G|) times in order to discover H with high probability.
In the next section, we shall try to understand some properties of this special measurement.

2 Characters of finite abelian groups

We will use additive notation for abelian groups. Let x+H be a particular coset in the abelian groupG of the
hidden subgroupH . If we could somehow ensure that x were 0, then just by measuring in the computational
basis, we would have sampled a random element of H . By repeating this procedure O(log |G|) times, with
high probability, we would have got a generating set for H . The problem with this is that all we have is a
uniformly random element x of G/H , and the probability of x being 0 is typically very small. Thus, we
would like to find a way to ‘forget’ x, and generate a probability distribution that depends only on H . The
abelianness of G implies the existence of such a procedure, as explained below.

Let C[G] denote the vector space of functions from G to C under pointwise addition and pointwise
scalar multiplication. In the literature, C[G] is sometimes referred to as the group algebra of G over C,
since there is a natural multiplication of elements of C[G], sometimes called convolution, viewing elements
of C[G] as formal linear combinations of elements of G. In addition, we can define an inner product of any
pair of elements a, b ∈ C[G] by 〈a|b〉 :=

∑
g∈G a(g)b(g), which makes C[G] into an inner product space.

The Dirac point mass basis, which will also be our computational basis, is defined as |g〉 : x 7→ δg,x for
every g ∈ G. It is easy to see that {|g〉}g∈G is an orthonormal basis for C[G]. Thus, elements of C[G] can
be naturally thought of as |G|-tuples.

For every x ∈ G, define the unitary operator Tx : |y〉 7→ |x + y〉 on C[G]; Tx translates C[G] by x.
Since G is abelian, the operators {Tx}x∈G commute. Thus, they have a common orthonormal eigenbasis
for C[G] that we call {χ1, . . . , χ|G|} for now. For x ∈ G and i ∈ [n], let λx,i be the eigenvalue of Tx for
eigenvector χi; |λx,i| = 1 since Tx is unitary. The uniform superposition over H can be expressed in terms
of the common eigenbasis as |H〉 =

∑|G|
i=1 αH,iχi. Then the uniform superposition over a coset can be

expressed as

|x+H〉 = Tx|H〉 =
|G|∑
i=1

λH,iαH,iχi.

If we now measure |x+H〉 in the common eigenbasis, then

Pr[“i′′] = |λx,i|2|αH,i|2 = |αH,i|2,

9-2

Quantum algorithms Lecture 9 Monsoon 2007

which depends only on H and not on the particular coset x + H . We will see in the next lecture that
O(log |G|) iterations of producing a fresh independent coset state σGH and measuring in the common eigen-
basis gives sufficient information to recover H efficiently.

We now proceed to understand what this common eigenbasis really is; it will turn out that they are the
so-called characters of G. A character of the finite abelian group G is a homomorphism χ : G → S1 from
G to the multiplicative group S1 of unit absolute value complex numbers. Note that the group law for G is
written additively whereas the group law for S1 is written multiplicatively; thus, χ(x+ y) = χ(x)χ(y) for
all x, y ∈ G and χ(0) = 1 for any character χ of G. This implies that the image of χ(x) for any x ∈ G is
a |G|th root of unity. The characters of G form an abelian group under pointwise multiplication denoted by
Ĝ. The identity element of Ĝ is the trivial or identity character 11 : x 7→ 1 for all x ∈ G. The characters of
an abelian group G are in fact the so-called one-dimensional representations of G.

We now list several properties of characters of abelian groups.

Lemma 2.1. Ẑn ∼= Zn.

Proof: We write Zn additively. Let x ∈ Zn. Define χx ∈ Ẑn by χx(y) := exp(2πixy/n) for all y ∈ Zn.
Note that χx = (χ1)x. Finally, since the values taken by any character χ ∈ Ẑn are nth roots of unity, and
because χ is determined by the value of χ(1) = exp(2πix′/n), we have χ = χx′ . This completes the proof
of the lemma. �

Proposition 2.1. For groups G1, G2, Ĝ1×G2
∼= Ĝ1 × Ĝ2.

Proof: Let χ ∈ Ĝ1, τ ∈ Ĝ2. Define the character (χ, τ) ∈ Ĝ1×G2 by (χ, τ)(x1, x2) := χ(x1)τ(x2) for
all x1 ∈ G1, x2 ∈ G2. It is easy to verify that this gives an homomorphism from Ĝ1 × Ĝ2 into Ĝ1×G2.
The homomorphism is injective since its kernel is trivial viz. (χ, τ) = 11 iff χ = 11 and τ = 11 as is easy to
check. To show that it is also surjective, consider ω ∈ Ĝ1×G2. Define characters χ ∈ Ĝ1 and τ ∈ Ĝ2 by
χ(x1) := ω(x1, 1) and τ(x2) := ω(1, x2) for all x1 ∈ G1 and x2 ∈ G2. It is easy to see that (χ, τ) = ω.
This completes the proof of the lemma. �

Proposition 2.2. For any finite abelian group G, Ĝ ∼= G.

Proof: Since every finite abelian group is isomorphic to a direct product of cyclic groups, we can use
Lemma 2.1 and Proposition 2.1 to derive the result. �

Remarks:
1. The isomorphism in Proposition 2.2 is not ‘natural’, in the sense that it depends on the cyclic decompo-
sition of G as well as on the choice of a primitive nth root of unity for a cyclic factor Zn.
2. Suppose G ∼= Zn1 × · · · × Znk

is the chosen cyclic decomposition of G in Proposition 2.2. For any
x ∈ G, let χx denote its corresponding character under the isomorphism of Proposition 2.2. Let us rep-
resent elements of G as k-tuples according to this decomposition. Then for any x := (x1, . . . , xk), y :=
(y1, . . . , yk) ∈ G, χx(y) = exp(2πi(x · y)/|G|), where x · y :=

∑k
j=1

|G|
nj
xjyj is the ‘dot product’ of x and

y according to G.
3. The isomorphism of Proposition 2.2 has the additional property that χx(y) = χy(x) for all x, y ∈ G.

9-3

Quantum algorithms Lecture 9 Monsoon 2007

Lemma 2.2. For groups G1, G2, C[G1 ×G2] ∼= C[G1]⊗ C[G2].

Proof: The map (x1, x2) 7→ |x1〉⊗|x2〉, x1 ∈ G1, x2 ∈ G2 extended by C-linearity defines an isomorphism
from C[G1 ×G2] to C[G1]⊗ C[G2]. Moreover, it is inner product preserving. �

For a character χ of a finite abelian group G, define the unit length vector |χ〉 := |G|−1/2
∑

y∈G χ(y)|y〉.
Proposition 2.3. For any finite abelian group G, {|χ〉}

χ∈ bG forms an orthonormal basis for C[G].

Proof: It is easy to verify for G = Zn that 〈χx|χx′〉 = δx,x′ for x, x′ ∈ Zn. This shows that {|χx〉}x∈Zn

forms an orthonormal basis of C[Zn]. Since every finite abelian group is isomorphic to a direct product of
cyclic groups, we can use Lemmas 2.1 and 2.2, and Proposition 2.2 to derive the result. �

By Proposition 2.3, for a finite abelian group G, the change of basis from Dirac point mass to the scaled
characters is a unitary transformation of C[G] called the quantum Fourier transform over G, defined by
QFTG : |x〉 7→ |χx〉 for all x ∈ G. The vectors |χx〉 are also called the Fourier basis vectors of C[G].

Proposition 2.4. For finite abelian G1, G2, QFTG1×G2
= QFTG1

⊗QFTG2
.

Proof: Follows from Proposition 2.1 and the definition of QFT. �

In view of Proposition 2.4, in order to design circuits for QFTG for finite abelian G, it suffices to build
circuits for QFTZn

for any integer n ≥ 2. We shall see how to do this in subsequent lectures.
The next proposition combined with the arguments at the beginning of this section indicates why the

Fourier basis is useful for solving the HSP in abelian groups.

Proposition 2.5. For a finite abelian group G, {|χ〉}
χ∈ bG form a common eigenbasis for the unitary opera-

tors {Tx}x∈G, the translations by elements of G.

Proof: It is easy to see that Tx|χx′〉 = χx(x′)|χx′〉 for all x, x′ ∈ G. The result now follows from Proposi-
tion 2.3. �

For a subgroup H ≤ G, define its orthogonal subgroup H⊥ := {y ∈ G : χy(h) = 1 ∀h ∈ H}.
Proposition 2.6. For any subgroup H of a finite abelian group G, |H⊥| = |G|/|H|.

Proof: Let y ∈ G. Then, ∑
h∈H

χy(h) =
{
|H| if y ∈ H⊥
0 otherwise

,

where the second equality follows because in that case χy restricted to H is a non-trivial character of H
which must be orthogonal to the trivial character of H . Thus,

|H| · |H⊥| =
∑
y∈G

∑
h∈H

χy(h) =
∑
h∈H

∑
y∈G

χh(y) = |G|,

where the third equality follows because χh is a non-trivial character of G if h 6= 0 by Proposition 2.2, and
so χh must be orthogonal to the trivial character of G. This completes the proof of the proposition. �

Proposition 2.7. For any subgroup H of a finite abelian group G, (H⊥)⊥ = H .

Proof: It is easy to see that H ≤ (H⊥)⊥. The equality follows because |(H⊥)⊥| = |H| by Proposi-
tion 2.6. �

9-4

