
Quantum algorithms Monsoon 2007

Lecture 10

Lecturer: Pranab Sen Date: August 30

In the last lecture, we saw how characters of a finite abelian group G may play a role in identifying the
hidden subgroup H from a uniform superposition over a coset of H . In this lecture, we build on this idea
and show how to solve the HSP in G efficiently using the quantum Fourier transform QFTG over G as a
black box. In the next two lectures, we shall show how to implement good approximations to QFTG in time
polylog|G|.

1 Fourier sampling the coset state

Let G be a finite abelian group given as a direct product of cyclic groups. The elements ofG are represented
as tuples according to its cyclic decomposition. Suppose we have a black box performing QFTG. Let
f : G → S be given via the standard reversible oracle F (f) : |g〉|s〉 7→ |g〉|s ⊕ f(g)〉 for all g ∈ G and
s ∈ S. Suppose f hides the subgroup H ≤ G. The basic quantum algorithm for finding H is given below.

|0〉S

S QFTG

F (f)

|0〉G

Figure 1. Fourier sampling the coset state of H in G

The transform S generates the uniform superposition over all elements of G, given the identity element
|0〉 of G as input. We shall see below how S can be implemented with polylog|G| gates. The state of the
first register after the application of F (f) is nothing but the coset state σGH of H in G. Consider the uniform
superposition over a coset x+H , x ∈ G. Applying QFTG to |x+H〉 gives

QFTG(|x+H〉) =
1√
|H|

∑
h∈H
|χx+h〉 =

1√
|G| · |H|

∑
y∈G

∑
h∈H

χx+h(y)|y〉

=
1√

|G| · |H|

∑
y∈G

χx(y)

(∑
h∈H

χh(y)

)
|y〉

=

√
|H|
|G|

∑
y∈H⊥

χx(y)|y〉.

10-1

Quantum algorithms Lecture 10 Monsoon 2007

The third equality above follows because χx+h(y) = χy(x+ h) = χy(x)χy(h) = χx(y)χh(y). This shows
that the Fourier transform moves the information about the particular coset into the phases of the basis states.

Thus, applying QFTG to the coset state ρGH of H in G followed by measuring in the computational
basis gives us a uniformly random element of H⊥. Repeating this procedure k := O(log |G|) times gives
independent uniform samples y1, . . . , yk ∈ H⊥. With high probability, H⊥ = 〈y1, . . . , yk〉. In order to see
this, define an ascending chain Y0 ≤ Y1 ≤ · · ·Yk of subgroups ofG, where Y0 := {0} and Yi := 〈y1, . . . , yi〉
for 1 ≤ i ≤ k. If Yi < H⊥ for some i, then with probability at least 1/2, yi+1 6∈ Yi, in which case
|Yi+1| ≥ 2|Yi|. From this, it can be shown via elementary probability theory that for k ≥ Ω(log |H⊥|),
Yk = H⊥ with high probability. We shall see below how one can recover H from H⊥.

2 Implementing S efficiently

We now see how to implement a polylog|G|-sized quantum circuit for the unitary operator S that maps
the identity element |0〉 to the uniform superposition over all group elements |G〉. Since G is given via a
cyclic decomposition and its elements are represented as tuples according to this decomposition, it suffices
to be able to implement S for the case of G = Zn. Our circuit will use single qubit unitaries whose entries
depend on n; in fact, the entries can be estimated to within δ in deterministic time polylog(n, 1/δ). These
single qubit unitaries can be approximated by the Solovay-Kitaev theorem to within spectral distance ε by
polylog(1/ε)-sized circuits made up of Hadamard and π/8-gates, and these approximating circuits can also
be constructed in time polylog(n, 1/δ, 1/ε).

Our circuit for implementing S for G = Zn is given below. The main idea behind our circuit for im-
plementing S for G = Zn is a special case of a more general principle called exact amplitude amplification
which we shall study in a later lecture. Let m := dlog ne be the number of qubits used to store elements of
Zn; 2m−1 < n ≤ 2m. Define the single qubit unitary Rn by

Rn : |0〉 7→
√

2m−2

n
|0〉+

√
1− 2m−2

n
|1〉, |1〉 7→

√
1− 2m−2

n
|0〉 −

√
2m−2

n
|1〉.

Let M be the unitary that flips the phase of its input basis state if the first qubit is |0〉 and the remaining m
qubits encode a number less than n, that is,

M : |b〉|i〉 =
{
−|b〉|i〉 if b = 0 and i < n
|b〉|i〉 otherwise

.

Let M ′ denote the unitary that flips the phase of its basis state input iff it is not all zeroes, that is,

M ′ : |b〉|i〉 =
{
|b〉|i〉 if b = 0 and i = 0
−|b〉|i〉 otherwise

.

Let A := Rn ⊗ H⊗m, where H is the single qubit Hadamard gate; observe that A† = A. The circuit for
implementing S for G = Zn is AM ′AMA applied to the all-zeroes initial state.

10-2

Quantum algorithms Lecture 10 Monsoon 2007

We now trace through the operation of the circuit.

AM ′AMA(|0〉|0〉) = AM ′AM

((
1

2
√
n
|0〉+

√
1

2m
− 1

4n
|1〉

)
⊗

2m−1∑
i=0

|i〉

)

= AM ′A

(
1

2
√
n
|0〉 ⊗

(
−
n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

)

= AM ′A

(
1
2

(
1

2
√
n
|0〉+

√
1

2m
− 1

4n
|1〉

)
⊗

2m−1∑
i=0

|i〉+

1
2

(
1

2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

))

= AM ′
(

1
2
|0〉|0〉+A

(
1
2

(
1

2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

)))

= A

(
1
2
|0〉|0〉 − A

(
1
2

(
1

2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

)))

=
1
2

((
1

2
√
n
|0〉+

√
1

2m
− 1

4n
|1〉

)
⊗

2m−1∑
i=0

|i〉

)
−

1
2

(
1

2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

)

=
1√
n

n−1∑
i=0

|i〉.

The fifth equality above follows from the fact that

1
2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

is orthogonal to

A(|0〉|0〉) =

(
1

2
√
n
|0〉+

√
1

2m
− 1

4n
|1〉

)
⊗

2m−1∑
i=0

|i〉,

10-3

Quantum algorithms Lecture 10 Monsoon 2007

so

A

(
1

2
√
n
|0〉 ⊗

(
−3

n−1∑
i=0

|i〉+
2m−1∑
i=n

|i〉

)
+

√
1

2m
− 1

4n
|1〉 ⊗

2m−1∑
i=0

|i〉

)
is orthogonal to |0〉|0〉, that is, it is a superposition of basis states other than the all zeroes basis state.

Using standard techniques of clean deterministic reversible computation, we can implement the unitary
operator using Toffoli gates and ancilla qubits. We can convert M̂ to M by the standard trick of converting
a bit flip function oracle into a phase flip oracle via Hadamard gates. A similar thing can be done in order to
implement M ′. The Toffoli gates can be replaced by the following circuit made up of single qubit gates and
CNOT, which is an example of a general technique to implement multiply controlled unitaries by circuits of
single qubit unitaries and CNOTs (see Chapter 4, Nielsen and Chuang’s book for more details).

U =

(
1 0
0 e−iπ/4

)

V V †

V

V

=

V = e−iπ/4eiπX/4 =
√

X

H H H H

=

W † W

U

W = eiπX/8 =
√

V H = 1√
2

(
1 1
1 −1

)
ZW †Z = WHXH = Z

Figure 2. Implementing Toffoli by single qubit gates and CNOTs

Overall,M ,M ′ can be implemented usingO(m) = O(log n) single qubit gates and CNOTs, and as a result,
S can be implemented with a similar amount of resources.

3 Recovering H from H⊥

We now see how to recover H from a generating set y1, . . . , yk of H⊥ by a polynomial time deterministic
algorithm. Suppose G is given via the cyclic decomposition G = Zn1 × · · · × Znl

and elements of G

10-4

Quantum algorithms Lecture 10 Monsoon 2007

are represented as l-tuples. Evaluating a character χy, y = (y1, . . . , yl) ∈ G at a group element x =
(x1, . . . , xl) ∈ G reduces to computing χy(x) = exp(2πi

|G|
∑l

j=1
|G|
nj
xjyj). Then, recovering H = (H⊥)⊥

from H⊥ = 〈y1, . . . , yk〉 amounts to solving the set of equations

|G| zi +
l∑

j=1

|G| yi,j
nj

xj = 0, 1 ≤ i ≤ k,

where (x1, . . . , xl) is the l-tuple of integer valued unknowns representing elements of H , (yi,1, . . . , yi,l is
the l-tuple representation of yi, 1 ≤ i ≤ k and z1, . . . , zk are additional integer valued unknowns. A integer
basis for the solution space of this system can be obtained by putting the constraint matrix into the so-called
Smith normal form by elementary row and column operations over the integers. Thus, every integer solution
to this system is an integer linear combination of the basis solutions. It is easy to see that the integer solutions
to this system are in bijection with the elements of H . Hence, we obtain a generating set for H .

10-5

