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Main problems studied in this thesis

Goal of computational complexity: Determine the exact amount

of resources required to solve a problem by a mathematical model of

computation.

In this thesis, we study some problems in computational complex-

ity, where the models of computation have an algebraic flavour.

Predecessor problem Quantum cell probe model

Round elimination problem Quantum communication model

Membership problem Quantum bit probe model

Computation of S2
n(X) ΣΠΣ arithmetic circuits
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Main results: I

Predecessor problem Ω
(

min
{

log logm
log log logm,

√
logn

log logn

})
lower

bound on #queries in bounded error
address-only quantum cell probe model
(a new result even for the classical version).
(With Venkatesh, ICALP 2001).

Round elimination problem [t, a, b]A quantum protocol for f(n) with
worst case error δ ⇒
[t− 1, a, b]B quantum protocol for f with

worst case error at most δ +O

((
a
n

)1/4
)

(a new result even for the classical version).
(With Venkatesh, ICALP 2001).
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Main results: II

Membership problem Tradeoff
∑n
i=0

(
m
i

)
≤
∑nt
i=0

(
s
i

)
in the exact

quantum bit probe model.

Ω
(
n log(m/n)
ε1/6 log(1/ε)

)
lower bound on space for

the single query bounded ε-error
quantum bit probe model. (With Radhakrishnan
& Venkatesh, FOCS 2000).

Computing S2
n(X) Exact bound of

⌈
n
2

⌉
over C for all n.

For the odd cover problem, exact bound of⌈
n
2

⌉
for infinitely many odd and even n

(Graham-Pollack theorem mod2). (With
Radhakrishnan & Vishwanathan, FSTTCS 2000).
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The predecessor problem

• Universe [m].

• Store a subset S ⊆ [m], |S| ≤ n (usually m� n), using s cells each

of size w bits.

• Given query x ∈ [m], find predecessor of x in S making at most t

cell probes.

Goal: Use small space and few cell probes. Study tradeoffs between

s, w and t.
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The quantum cell probe model: I

Set S is stored as a table T [S] of s cells, each cell w bits long. Let
s = 2r. Note that the quantum bit probe model is nothing but the
quantum cell probe model with w = 1.

Storage scheme creates a reversible black box OS corresponding to
the table T [S], similar to the one in e.g. Grover’s search algorithm,

OS : |j, b, z〉 7→ |j, b⊕ T [S](j), z〉,

where j is r qubits long and denotes an address in the table T [S], b
is w qubits long and denotes the contents of a cell and z denotes the
remaining qubits of the query circuit.

Can feed superpositions to OS too!
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The quantum cell probe model: II

Quantum query scheme with t quantum probes is just a sequence of

unitary transformations

U0 → OS → U1 → OS → . . . Ut−1 → OS → Ut,

where Uj’s are arbitrary unitary transformations that do not depend

on the set S stored.

For a query x ∈ [m], the computation starts in an observational basis

state |x〉|0〉.
The result of the query is got by measuring some of the wires in the

final state of the circuit.

Worst case ε-error scheme means that for every (x, S), the measured

answer is wrong with probability at most ε.
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Address-only quantum cell probe model

OS : |j, b, z〉 7→ |j, b⊕ T [S](j), z〉.

State vector before an application of OS is a tensor product of a

state vector on j, z, depending upon query, S and probe number, and

a state vector on b, independent of query and S but maybe depending

on probe number.

Intuitively, we are using quantum parallelism over ‘address-lines’ only.

In classical querying, state vector on data lines is |0〉.
In Grover’s algorithm, state vector on data line is (|0〉 − |1〉)/

√
2.

Høyer, Neerbek and Shi’s algorithm (ICALP 2001) is also address-

only!
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Results about predecessor: I

Universe [m], store S ⊆ [m], |S| ≤ n, answer predecessor queries.

If s = nO(1), w = (logm)O(1), then

t = Ω
(

log logm
log log logm

)
as a function of m,

t = Ω
(√

logn
log logn

)
as a function of n.

This result is in the address-only quantum cell probe model.
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Results about predecessor: II

Universe [m], store S ⊆ [m], |S| ≤ n, answer predecessor queries.

The lower bound for predecessor in the address-only quantum cell
probe model is actually stronger than what was known earlier, even
for classical randomised query schemes. Thus, this result proves a
new classical lower bound using quantum information theory!

For classical deterministic schemes, Beame and Fich had proved a
similar lower bound; however, the proof in the thesis is much simpler.

A matching classical deterministic upper bound was proved by Beame
and Fich.
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Two-party quantum communication model

f : X × Y → Z is a function. In the communication game for f , Alice
is given x ∈ X, Bob is given y ∈ Y , and they have to compute f(x, y).

Alice and Bob hold qubits. Initial superposition is |x〉A|0〉A|y〉B|0〉B.
Alice and Bob take turns to apply unitary transformations and send
qubits. Sending qubits does not change the overall state vector, but
rather the ownership of the qubits. At end of protocol, last recipient
of qubits performs a measurement on the qubits in her possession to
obtain an answer. Worst case error ε means that for any (x, y) ∈ X×Y ,
the measured answer is equal to f(x, y) with probability at least 1− ε.

[t, a, b]A quantum protocol — t rounds of communication, per round
message complexity of Alice and Bob a and b qubits respectively, Alice
speaks first.
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Quantum round elimination lemma: I

f : X × Y → Z is a function. In the communication game for f(n),

Alice is given x1, . . . , xn ∈ X, Bob is given i ∈ [n], y ∈ Y , and a copy

of x1, . . . , xi−1; they have to compute f(xi, y).

Round elimination lemma: Suppose there is a [t, a, b]A quantum

protocol for f(n) with worst case error δ. Then there is a [t− 1, a, b]B

quantum protocol for f with worst case error at most δ+O

((
a
n

)1/4
)

.

Informally, the first message of Alice cannot contain much informa-

tion about xi, if n � a. Hence, the first round can be eliminated

without much increase in the error probability.
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Quantum round elimination lemma: II

Miltersen, Nisan, Safra and Wigderson (JCSS 1998) had proved a

round elimination lemma for classical randomised protocols. Their

proof technique was ad hoc.

The quantum round elimination lemma in this thesis is stronger than

the classical round elimination lemma of Miltersen et al.! It plays

a crucial role in proving the stronger lower bounds for predecessor.

The weaker round elimination lemma of Miltersen et al. was unable

to prove such strong bounds. Its proof uses quantum information-

theoretic techniques, similar to those employed by Nayak, Ta-Shma,

Zuckerman and Klauck (STOC 2001). The information-theoretic ap-

proach brings out more clearly the intuition behind round elimination.
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The membership problem

• Universe U of size m.

• Store a subset S ⊆ U, |S| ≤ n (usually m� n), using a table of s

bits.

• Answer membership queries “Is x ∈ S?”, using at most t bit

probes.

Goal: Use small space and few bit probes. Study tradeoffs between

s and t.
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Results about membership: I

Universe U, |U| = m, store S ⊆ U, |S| ≤ n, answer membership queries.

In this thesis, set membership is studied in the quantum bit probe

model.

Exact quantum:

n∑
i=0

(m
i

)
≤

nt∑
i=0

(s
i

)
.

⇒ If t = 1, s ≥ m (Bit vectors optimal for single bit probe).

⇒ If s = O(n logm), t = Ω(logm) (Fredman-Komlós-Szemerédi scheme

optimal for information-theoretic minimum space).
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Results about membership: II

Universe U, |U| = m, store S ⊆ U, |S| ≤ n, answer membership queries.

Two-sided error at most ε:

If t = 1, s = Ω

(
n log(m/n)

ε1/6 log(1/ε)

)
.

A few extensions: Two-sided bounded error multiple quantum bit

probes, simpler or stronger proofs for classical versions.

These lower bounds are similar to the classical lower bounds proved

by Buhrman, Miltersen, Radhakrishnan and Venkatesh (STOC 2000)

and almost match the classical upper bounds.
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ΣΠΣ arithmetic circuits

A ΣΠΣ arithmetic circuit is of the form

r∑
i=1

si∏
j=1

Lij(X),

where each Lij is a (possibly inhomogeneous) linear form in variables

X1, . . . , Xn.

In homogeneous ΣΠΣ circuits, all the Lij(X) are homogeneous i.e.

have constant term zero.

Or else the circuit is said to be inhomogeneous.
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Computing S2
n(X) using ΣΠΣ circuits

We want to compute the degree two elementary symmetric polyno-
mial

S2
n(X1, . . . , Xn)

∆
=

∑
1≤i<j≤n

XiXj,

using ΣΠΣ arithmetic circuits i.e. we want to write S2
n(X1, . . . , Xn) in

the form

S2
n(X1, . . . , Xn) =

r∑
i=1

si∏
j=1

Lij(X).

We want upper and lower bounds on the number of multiplication
gates required i.e. on r, in such an expression.

This problem has connections to graph theory!
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Graph covering problems and S2
n(X1, . . . , Xn)

Graham-Pollack problem: Cover a complete graph by complete bi-

partite graphs such that each edge is covered exactly once. Exact

bound of n− 1 known earlier.

Odd cover problem: Cover a complete graph by complete bipar-

tite graphs such that each edge is covered an odd number of times.

Trivial upper bound of n − 1. A lower bound of
⌊
n
2

⌋
known earlier

(Babai-Frankl).

The above problems are related to the number of multiplication gates

in ΣΠΣ circuits for S2
n(X1, . . . , Xn), over the fields R and GF(2) re-

spectively.
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Results about computing S2
n(X1, . . . , Xn)

Find bounds on r in S2
n(X1, . . . , Xn) =

∑r
i=1

∏si
j=1Lij(X).

Exact bound of n− 1 on the number of multiplication gates for com-

puting S2
n(X1, . . . , Xn) if the underlying field is Q,R.

Exact bound of
⌈
n
2

⌉
if the underlying field is C.

Exact bound of
⌈
n
2

⌉
for infinitely many even and odd n for the odd

cover problem.

Similar results for the 1 mod p cover problem and for computing

S2
n(X1, . . . , Xn) over GF(pr) p odd. In each case, bounds are exact for

infinitely many n.
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Conclusions

Lower bounds for predecessor in the address-only quantum cell probe

model.

A quantum round elimination lemma — used to show rounds vs com-

munication tradeoffs for various communication problems.

Lower bounds for membership in the quantum bit probe model.

Bounds for computing S2
n(X1, . . . , Xn) using ΣΠΣ circuits over var-

ious fields, and bounds for the odd cover problem.
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Further work

Lower bounds in the general quantum cell probe model.

Using the round elimination technique to prove lower bounds for
other data structure (e.g. approximate nearest neighbour on Ham-
ming cube) and communication complexity problems. Quantum lower
bound for pointer chasing already done (with Jain and Radhakrish-
nan, FOCS 2002 and FSTTCS 2002). An important open problem is
rounds versus communication tradeoffs for set disjointness. Recently,
Razborov (unpublished) proved an Ω(

√
n ) quantum lower bound for

set disjointness.

Proving super polynomial lower bounds for ΣΠΣ circuits over infi-
nite fields, computing an explicit function.
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