# Poset Dimension and Boxicity

#### L. Sunil Chandran

Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in

# Boxicity (a geometric definition)

- A k-box is a Cartesian product of k intervals.
- The boxicity of a graph G, box(G) is the minimum integer k such that G can be represented as an intersection graph of k-boxes in the k-dimensional Euclidean space.



 Interval graphs are precisely the class of graphs with boxicity at most 1.

# Boxicity (a geometric definition)

- A k-box is a Cartesian product of k intervals.
- The boxicity of a graph G, box(G) is the minimum integer k such that G can be represented as an intersection graph of k-boxes in the k-dimensional Euclidean space.



 Interval graphs are precisely the class of graphs with boxicity at most 1.

# Boxicity (a geometric definition)

- A k-box is a Cartesian product of k intervals.
- The boxicity of a graph G, box(G) is the minimum integer k such that G can be represented as an intersection graph of k-boxes in the k-dimensional Euclidean space.



 Interval graphs are precisely the class of graphs with boxicity at most 1.

# Cubicity

The cubicity of a graph is the minimum dimension k in which a given graph can be represented as an intersection graph of axis parallel k-dimensional unit cubes.



- Unit-interval graphs are precisely the class of graphs with cubicity at most 1.
- $box(G) \leq cub(G)$

# Cubicity

The cubicity of a graph is the minimum dimension k in which a given graph can be represented as an intersection graph of axis parallel k-dimensional unit cubes.



- Unit-interval graphs are precisely the class of graphs with cubicity at most 1.
- $box(G) \leq cub(G)$

# Cubicity

The cubicity of a graph is the minimum dimension k in which a given graph can be represented as an intersection graph of axis parallel k-dimensional unit cubes.



- Unit-interval graphs are precisely the class of graphs with cubicity at most 1.
- $box(G) \leq cub(G)$

- Boxicity and cubicity were introduced by Roberts in 1969.
- Determining if the boxicity of a graph is ≥ 2 is an NP-complete problem [Kratochvíl].
- Boxicity of a graph is at most [n/2] where n is the order of the graph.
- Determining if the cubicity of a graph is ≥ 3 is an NP-complete problem [Yannakakis].
- Cubicity of a graph is at most  $\lfloor 2n/3 \rfloor$ .

- Boxicity and cubicity were introduced by Roberts in 1969.
- Determining if the boxicity of a graph is ≥ 2 is an NP-complete problem [Kratochvíl].
- Boxicity of a graph is at most [n/2] where n is the order of the graph.
- Determining if the cubicity of a graph is ≥ 3 is an NP-complete problem [Yannakakis].
- Cubicity of a graph is at most  $\lfloor 2n/3 \rfloor$ .

# Partially Ordered Set (Poset)

 $\mathcal{P} = (X, P)$  where X is a non-empty finite set and P is the partial order on X satisfying reflexivity, anti symmetry and transitivity.



A total order or a linear order is one where all pairs of elements a comparable.

# Partially Ordered Set (Poset)

 $\mathcal{P} = (X, P)$  where X is a non-empty finite set and P is the partial order on X satisfying reflexivity, anti symmetry and transitivity.



A total order or a linear order is one where all pairs of elements a comparable.

## Dimension of a Poset

The dimension of a poset  $\mathcal{P}(X, P)$ , denoted by dim $(\mathcal{P})$  is the minimum integer k such that there exist k total orders  $\{L_1, L_2, \ldots, L_k\}$  satisfying: for any two distinct elements x and y, x < y in P if and only if x < y in each  $L_i$ .



- Introduced by Dushnik and Miller in 1941
- The dimension of a poset is 1 if and only if it is a linear order.
- It is NP-complete to determine if the dimension of a poset is at most 3 [Yannakakis].
- Hegde and Jain proved that there exists no polynomial-time algorithm to approximate the dimension of an *n*-element poset within a factor of O(n<sup>0.5-ε</sup>) for any ε > 0, unless NP = ZPP.

- Introduced by Dushnik and Miller in 1941
- The dimension of a poset is 1 if and only if it is a linear order.
- It is NP-complete to determine if the dimension of a poset is at most 3 [Yannakakis].
- Hegde and Jain proved that there exists no polynomial-time algorithm to approximate the dimension of an *n*-element poset within a factor of O(n<sup>0.5-ε</sup>) for any ε > 0, unless NP = ZPP.

### Posets and Comparability Graphs deriving comparability graph of a poset $\mathcal{P} = (X, P)$

The underlying comparability graph of a poset  $\mathcal{P} = (X, P)$  is an undirected simple graph with vertex set X and two vertices are adjacent in G if and only if they are comparable in  $\mathcal{P}$ . We will denote it by  $G_{\mathcal{P}}$ .



- Posets with the same underlying comparability graph have the same dimension [Trotter, Moore and Sumner].
- The dimension of a poset is at most 2 if and only if the complement of its comparability graph is also a comparability graph.

### Posets and Comparability Graphs deriving comparability graph of a poset $\mathcal{P} = (X, P)$

The underlying comparability graph of a poset  $\mathcal{P} = (X, P)$  is an undirected simple graph with vertex set X and two vertices are adjacent in G if and only if they are comparable in  $\mathcal{P}$ . We will denote it by  $G_{\mathcal{P}}$ .



- Posets with the same underlying comparability graph have the same dimension [Trotter, Moore and Sumner].
- The dimension of a poset is at most 2 if and only if the complement of its comparability graph is also a comparability graph.

### First Result

Let  $\mathcal{P}$  be a poset and  $\mathcal{G}_{\mathcal{P}}$  its underlying comparability graph. Then, box $(\mathcal{G}_{\mathcal{P}})/(\chi(\mathcal{G}_{\mathcal{P}})-1) \leq \dim(\mathcal{P}) \leq 2box(\mathcal{G}_{\mathcal{P}})$ , where,  $\chi(\mathcal{G}_{\mathcal{P}})$  is the chromatic number of  $\mathcal{G}_{\mathcal{P}}$ .

## Height-2 Posets

For a height-2 poset, the underlying comparability graph is a bipartite graph. Therefore,

$$\mathsf{box}(\mathcal{G}_{\mathcal{P}}) \leq \mathsf{dim}(\mathcal{P}) \leq 2\mathsf{box}(\mathcal{G}_{\mathcal{P}}),$$

Some tight examples:

- a 4-cycle:  $box(G_{\mathcal{P}}) = dim(\mathcal{P}) = 2$ .
- The crown poset  $S_n^0$ : box $(G_P) = n/4$  while dim(P) = n/2.

## Height-2 Posets

For a height-2 poset, the underlying comparability graph is a bipartite graph. Therefore,

$$\mathsf{box}(\mathcal{G}_{\mathcal{P}}) \leq \mathsf{dim}(\mathcal{P}) \leq 2\mathsf{box}(\mathcal{G}_{\mathcal{P}}),$$

Some tight examples:

- a 4-cycle:  $box(G_{\mathcal{P}}) = dim(\mathcal{P}) = 2$ .
- The crown poset  $S_n^0$ : box $(G_P) = n/4$  while dim(P) = n/2.

### Second Result

#### Extended Double Cover



 $box(G)/2 \le box(G_c) \le box(G) + 2.$ 

### Second Result

#### Extended Double Cover



 $box(G)/2 \le box(G_c) \le box(G) + 2.$ 

## On combining the two results...

We can associate with every graph G, a height-2 poset  $\mathcal{P}_C$  such that  $box(G) = \Theta(dim(\mathcal{P}_C))$ .

The constant involved here is between 1/2 and 2.

# Some Interesting Consequences

New upper bounds for poset dimension:

- dim(𝒫) ≤ 2 tree-width (𝒪𝒫) + 4 (from [Chandran and Sivadasan])
- $\mathsf{dim}(\mathcal{P}) \leq \mathsf{MVC}(\mathcal{G}_{\mathcal{P}}) + 2$  (from [Chandran, Das and Shah])
- dim(P) ≤ 4 if G<sub>P</sub> is outer planar and dim(P) ≤ 6 if G<sub>P</sub> is planar (from [Scheinerman] and [Thomassen] respectively)

# Some Interesting Consequences...

Boxicity and maximum degree ( $\Delta$ ):

- box(G) < cΔ(log Δ)<sup>2</sup>, where c is some constant (from a result of [Füredi and Kahn]). This is an improvement over the previously best known bound of Δ<sup>2</sup> + 2 [Esperet].
- There exist graphs with boxicity Ω(Δ log Δ) (from a result of [Erdős, Kierstead and Trotter]). This disproves a conjecture by Chandran et al. that box(G) = O(Δ).

There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on *n*-vertices with a factor of  $O(n^{0.5-\epsilon})$  for any  $\epsilon > 0$ , unless NP = ZPP. (from [Hegde and Jain])

# Some Interesting Consequences...

Boxicity and maximum degree ( $\Delta$ ):

- box(G) < cΔ(log Δ)<sup>2</sup>, where c is some constant (from a result of [Füredi and Kahn]). This is an improvement over the previously best known bound of Δ<sup>2</sup> + 2 [Esperet].
- There exist graphs with boxicity Ω(Δ log Δ) (from a result of [Erdős, Kierstead and Trotter]). This disproves a conjecture by Chandran et al. that box(G) = O(Δ).

There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on *n*-vertices with a factor of  $O(n^{0.5-\epsilon})$  for any  $\epsilon > 0$ , unless NP = ZPP. (from [Hegde and Jain])

# Some Interesting Consequences...

Boxicity and maximum degree ( $\Delta$ ):

- box(G) < cΔ(log Δ)<sup>2</sup>, where c is some constant (from a result of [Füredi and Kahn]). This is an improvement over the previously best known bound of Δ<sup>2</sup> + 2 [Esperet].
- There exist graphs with boxicity Ω(Δ log Δ) (from a result of [Erdős, Kierstead and Trotter]). This disproves a conjecture by Chandran et al. that box(G) = O(Δ).

There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on *n*-vertices with a factor of  $O(n^{0.5-\epsilon})$  for any  $\epsilon > 0$ , unless NP = ZPP. (from [Hegde and Jain])