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The Problem

Some Definitions

A matching in a graph is a set of
edges M such that no two edges in
M share a common endpoint.
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The Problem

The Problem

A matching is maximal if for each vertex v :
v is matched or
v does not have a free neighbor.

Problem
Maintain maximal matching in a dynamic graph

Expectation from the algorithm
Update time should be polylog(n)
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The Problem

Previous Work

Ivkovic and Llyod(1994) - O((n + m)0.7072)

Onak and Rubinfeld(2010) gave a c-approximation of
maximum matching in O(log2 n) update time.
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A Simple Agorithm

A Naive Approach

Insertion of an edge

f m Do Nothing

f f m m

Deletion of an edge

m mf f

Search neighborhood of both ver-
tex for free vertex

Insertion =
O(1)

Deletion =
O(n)
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A Simple Agorithm

The difficulty

Deletion of a matched edge
Handling high degree vertex

Possible ways to solve
Make sure that high degree vertex are always matched
Make sure that a matched edge is deleted rarely
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The overview of the approach

Partition the vertices into two buckets(level 1 and 0) such
that most of the vertices have high "degree" when they
come to level 1
The partition is dynamic and the vertices may move from
level 1 and level 0
Maintain the following invariant

The vertex at level 1 are always matched
The vertex at level 0 has degree <

√
n in G[V0] and each

free vertex at this level has all its neighbors matched

Level 1 Level 0
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The overview of the approach

Notion of ownership

Each edge present in the graph will be owned by one or both of
its end points as follows

If both the end points are at level 0, then it is owned by
both the endpoints
If only one endpoint is at level 1, then it owns the edge
If both the end points are at the same level, we can break
the tie arbitrarily

Level 1 Level 0
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Overview of the analysis

Notion of matched epoch
Epoch of (u, v) is the maximal continuous time period for which
it remains in the matching.

t

(u, v)

matched

t + 1

Add(u, w)

t + 2

Del(v , z)

t + 3

. . .

t ′ − 1

(u, v)

removed
from

matching

t ′
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Algorithm

Epoch of Level 0

Inv2:The vertex at level 0 has degree
√

n in G[V0] and each free vertex at this level has all its neighbors
matched

Start of the epoch

u v u v

But...what if u has more than
√

n edges in G[V0] after edge insertion?

End of the epoch

m mf f

Search only the edges whose other endpoint are at level 0

Start = O(1)

End = O(
√

n)
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Algorithm

Epoch at level 1: Start

Inv2:The vertex at level 0 has degree
√

n in G[V0] and each free vertex at this level has all its neighbors
matched

Level 1 Level 0
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Invariant 2 does not hold for vertex u

→ Vertex u moves to level 1

→ Make u the owner of all its edges at level 0

→ Find a random edge from the

owned edges, say (u, v)

→ Add (u, v) to M

→ Move v to level 1

→ Make v the owner of all its adjacent edges

Start of an epoch at level 1 = O(
√

n)
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Algorithm

Epoch at level 1: End

Level 1 Level 0
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Edge (u, v) is deleted

→ Give up the ownership of the edges at level 1

→ If u is still the owner of≥
√

n edges

the the procedure is same as in the previous slide

→ Else u moves to level 1 and starts level 0 epoch there

→ But the degree of vertex a in G[V0] increses by 1

and may move to level 1

→ All such vertex move up and start a epoch at level 1

End of an epoch at level 1 = O(n)
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Algorithm

Epochs Start End Total
cost

Total number of
Epochs

Total computation
cost

Level 0 O(1) O(
√

n) O(
√

n) T O(T
√

n)

Level 1 O(
√

n) O(n) O(n)

O(T/
√

n)
O(T
√

n)

The algorithm has O(
√

n) update time.
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Speeding up the algorithm

Balance

In the two level algorithm, we define a threshold α(n) for a
vertex to move from level 0 to level 1

The update time at level 0 is O(α(n))

The update time at level 1 is O(n/α(n))

Both the update time are same when α(n) =
√

n

Speeding up the algorithm
Try to minimize the gap between the number of edges a
vertex can own in an epoch and the number of edges it
owned at the moment it created the epoch
This ratio is

√
n in 2-level algorithm
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Speeding up the algorithm

An overview of the log n-level algorithm

Maintain log n levels
When a vertex creates an epoch at level i , it would own at
least 2i edges, and during the epoch it will be allowed to
own at most 2i+1 edges
The ratio is a constant
In implementing these ideas, an extra factor of O(log n)
comes up due to the log n level hierarchy
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Speeding up the algorithm

Example

v

-1

0

1

2

3

The number of edges v can own if it rises to level 2 = 2 < 22The number of edges v can own if it rises to level 3 = 4 < 23
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Open Problem

There exists an algorithm for maximal matching in O(log n)
update time but is there a algorithm which maintains
c − approximation of maximum matching where c < 2
Is there any combinatorial algorithm which maintains
maximum matching in o(m) time
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Questions?
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