Fully Dynamic Maximal Matching in $O(\log n)$ update time

Manoj Gupta, IIT Delhi Joint work with Sandeep Sen, IIT Delhi and Surender Baswana, IIT Kanpur

2nd Annual Mysore Park Workshop in Theoretical Computer Science

Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem

Outline

2

Introduction

- The Problem
- A Simple Agorithm

\sqrt{n} algorithm

- The overview of the approach
- Overview of the analysis
- Algorithm
- **3** From \sqrt{n} to $\log n$
 - Speeding up the algorithm

Open Problem

Introduction
00000

 \sqrt{n} algorithm

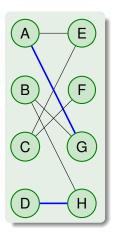
From \sqrt{n} to log n

Open Problem

The Problem

Some Definitions

• A matching in a graph is a set of edges *M* such that no two edges in *M* share a common endpoint.



Introduction
00000

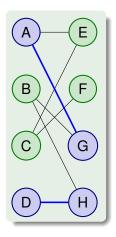
 \sqrt{n} algorithm

From \sqrt{n} to log n000 **Open Problem**

The Problem

Some Definitions

- A matching in a graph is a set of edges *M* such that no two edges in *M* share a common endpoint.
- Matched vertex



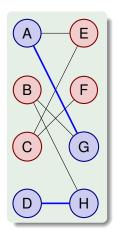
Introduction
00000

From \sqrt{n} to log *n* 000

The Problem

Some Definitions

- A matching in a graph is a set of edges *M* such that no two edges in *M* share a common endpoint.
- Matched vertex
- Free vertex



Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
The Problem			
The Problem			

A matching is maximal if for each vertex v:

- v is matched or
- v does not have a free neighbor.

Introduction ○●○○○	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
The Problem			
The Problem			

A matching is maximal if for each vertex *v*:

- v is matched or
- v does not have a free neighbor.

Problem

Maintain maximal matching in a dynamic graph

Introduction O●OOO	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
The Problem			
The Problem			

A matching is maximal if for each vertex *v*:

- v is matched or
- v does not have a free neighbor.

Problem

Maintain maximal matching in a dynamic graph

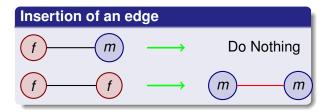
Expectation from the algorithm

Update time should be polylog(n)

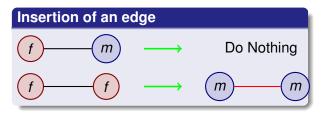
Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
The Problem			
Previous Work			

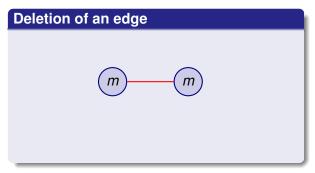
- Ivkovic and Llyod(1994) $O((n+m)^{0.7072})$
- Onak and Rubinfeld(2010) gave a *c*-approximation of maximum matching in O(log² n) update time.

Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
A Simple Agorithm			
A Naive Appr	oach		

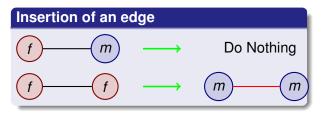


Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
A Simple Agorithm			
A Naive Appr	roach		



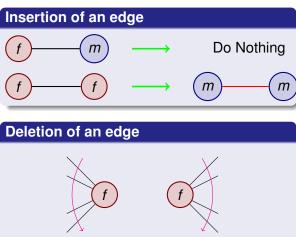


Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
A Simple Agorithm			
A Naive Appr	oach		



Deletion of an edge

Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
A Simple Agorithm			
A Naive Appr	oach		



Search neighborhood of both vertex for free vertex

- Insertion = O(1)
- Deletion =
 O(n)

Introduction ○○○○●	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
A Simple Agorithm			
The difficulty			

- Deletion of a matched edge
- Handling high degree vertex

Introduction ○○○○●	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
A Simple Agorithm			
The difficulty			

- Deletion of a matched edge
- Handling high degree vertex

Possible ways to solve

- Make sure that high degree vertex are always matched
- Make sure that a matched edge is deleted rarely

Introduction \sqrt{n} algorithm 000000

Open Problem

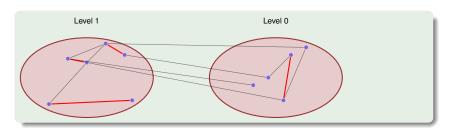
The overview of the approach

- Partition the vertices into two buckets(level 1 and 0) such that most of the vertices have high "degree" when they come to level 1
- The partition is dynamic and the vertices may move from level 1 and level 0
- Maintain the following invariant
 - The vertex at level 1 are always matched
 - The vertex at level 0 has degree $<\sqrt{n}$ in $G[V_0]$ and each free vertex at this level has all its neighbors matched

Introduction

The overview of the approach

- Partition the vertices into two buckets(level 1 and 0) such that most of the vertices have high "degree" when they come to level 1
- The partition is dynamic and the vertices may move from level 1 and level 0
- Maintain the following invariant
 - The vertex at level 1 are always matched
 - The vertex at level 0 has degree < √n in G[V₀] and each free vertex at this level has all its neighbors matched

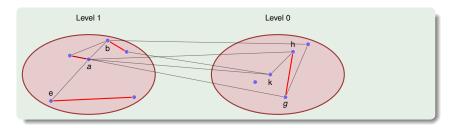


Introduction 00000	\sqrt{n} algorithm $0 = 0 = 0 = 0$	From \sqrt{n} to log n 000	Open Problem		
The overview of the approach					
Notion of owners	ship				

- If both the end points are at level 0, then it is owned by both the endpoints
- If only one endpoint is at level 1, then it owns the edge
- If both the end points are at the same level, we can break the tie arbitrarily

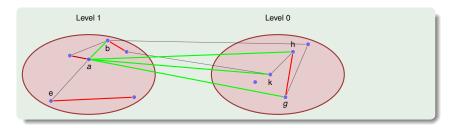
Introduction 00000	\sqrt{n} algorithm $0 = 0 = 0 = 0$	From \sqrt{n} to log n 000	Open Problem		
The overview of the approach					
Notion of owners	ship				

- If both the end points are at level 0, then it is owned by both the endpoints
- If only one endpoint is at level 1, then it owns the edge
- If both the end points are at the same level, we can break the tie arbitrarily



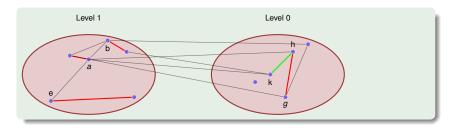
Introduction 00000	\sqrt{n} algorithm $0 = 0 = 0 = 0$	From \sqrt{n} to log n 000	Open Problem		
The overview of the approach					
Notion of owners	ship				

- If both the end points are at level 0, then it is owned by both the endpoints
- If only one endpoint is at level 1, then it owns the edge
- If both the end points are at the same level, we can break the tie arbitrarily



Introduction 00000	\sqrt{n} algorithm $0 = 0 = 0 = 0$	From \sqrt{n} to log n 000	Open Problem		
The overview of the approach					
Notion of owners	ship				

- If both the end points are at level 0, then it is owned by both the endpoints
- If only one endpoint is at level 1, then it owns the edge
- If both the end points are at the same level, we can break the tie arbitrarily



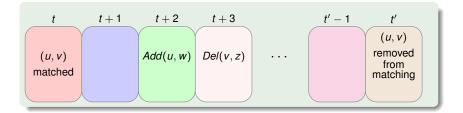
Introduction	

From \sqrt{n} to log n000

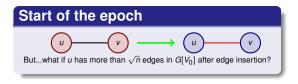
Overview of the analysis

Notion of matched epoch

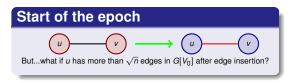
Epoch of (u, v) is the maximal continuous time period for which it remains in the matching.

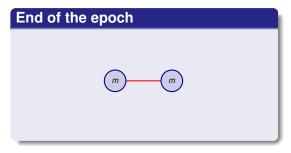


Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
Algorithm			
Epoch of Level 0			

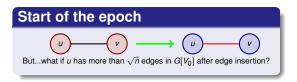


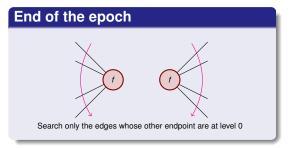
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch of Level 0			





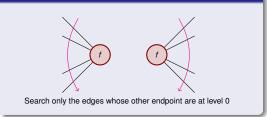
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch of Level 0			





Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch of Lev	el 0		

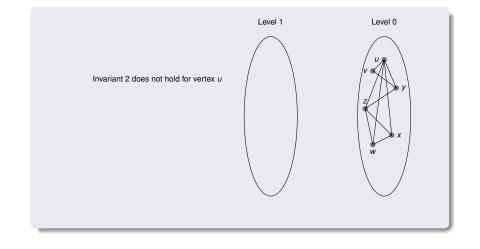
End of the epoch



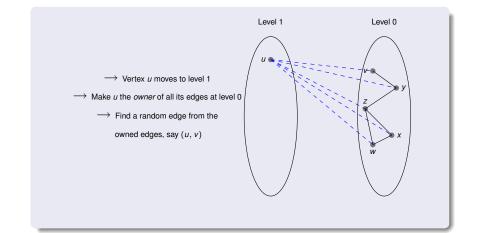
• Start =
$$O(1)$$

• End = $O(\sqrt{n})$

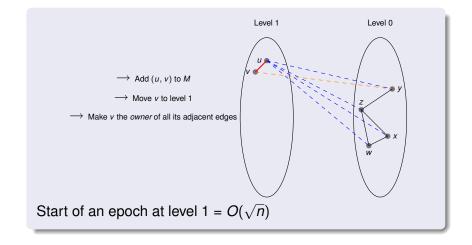
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch at lev	el 1: Start		



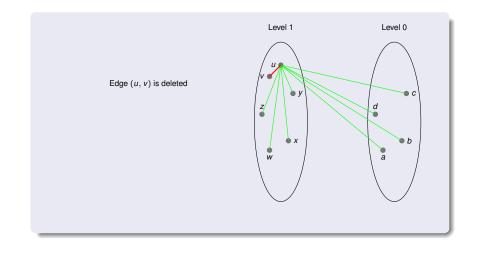
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch at lev	el 1: Start		



Introduction 00000	\sqrt{n} algorithm $000000000000000000000000000000000000$	From \sqrt{n} to log n	Open Problem
Algorithm			
Epoch at lev	el 1: Start		



Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
Algorithm			
Epoch at lev	vel 1: End		

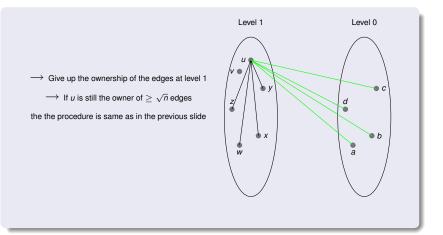


Introductio	
00000	

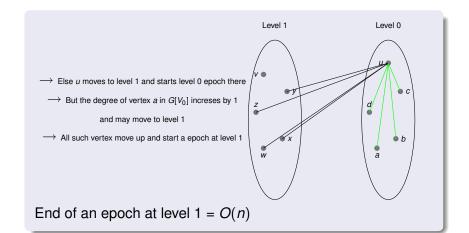
From \sqrt{n} to log r

Algorithm

Epoch at level 1: End



Epoch at level	1: End		
Algorithm			
Introduction 00000	\sqrt{n} algorithm 0000000	From \sqrt{n} to log n 000	Open Problem



Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
Algorithm			

Epochs	Start	End	Total	Total number of	Total computation
			cost	Epochs	cost
Level 0	<i>O</i> (1)	$O(\sqrt{n})$	$O(\sqrt{n})$	Т	$O(T\sqrt{n})$
Level 1	$O(\sqrt{n})$	<i>O</i> (<i>n</i>)	O(n)		
			. ,		

Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Algorithm			

Epochs	Start	End	Total	Total number of	f Total computation
			cost	Epochs	cost
Level 0					$O(T\sqrt{n})$
Level 1	$O(\sqrt{n})$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(T/\sqrt{n})$	
					$O(T\sqrt{n})$

Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n 000	Open Problem
Algorithm			

Epochs	Start	End	Total	Total number c	f Total computation
			cost	Epochs	cost
Level 0	<i>O</i> (1)	$O(\sqrt{n})$	$O(\sqrt{n})$	Т	$O(T\sqrt{n})$
Level 1	$O(\sqrt{n})$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(T/\sqrt{n})$	
					$O(T\sqrt{n})$

The algorithm has $O(\sqrt{n})$ update time.

In the two level algorithm, we define a threshold $\alpha(n)$ for a vertex to move from level 0 to level 1

- The update time at level 0 is O(α(n))
- The update time at level 1 is $O(n/\alpha(n))$
- Both the update time are same when $\alpha(n) = \sqrt{n}$

Speeding up the algorithm

- Try to minimize the gap between the number of edges a vertex can own in an epoch and the number of edges it owned at the moment it created the epoch
- This ratio is \sqrt{n} in 2-level algorithm

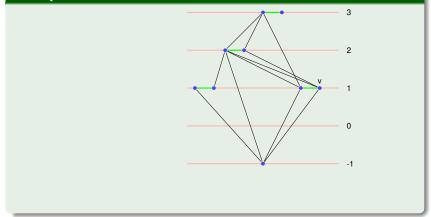
Introduction 00000	\sqrt{n} algorithm	From \sqrt{n} to log n 0 = 0	Open Problem
Speeding up the algorithm			

An overview of the log *n*-level algorithm

- Maintain log n levels
- When a vertex creates an epoch at level *i*, it would own at least 2ⁱ edges, and during the epoch it will be allowed to own at most 2ⁱ⁺¹ edges
- The ratio is a constant
- In implementing these ideas, an extra factor of O(log n) comes up due to the log n level hierarchy

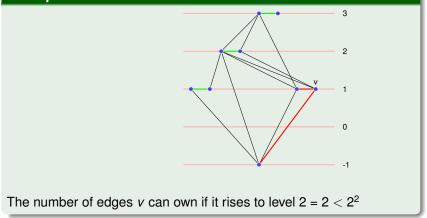
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Speeding up the algorithm			

Example



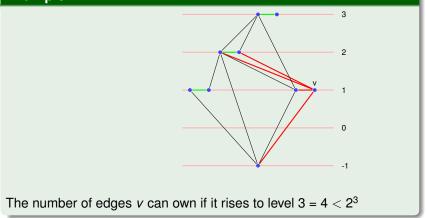
Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Speeding up the algorithm			

Example



Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem
Speeding up the algorithm			

Example



Open Problem

- There exists an algorithm for maximal matching in $O(\log n)$ update time but is there a algorithm which maintains c - approximation of maximum matching where c < 2
- Is there any combinatorial algorithm which maintains maximum matching in o(m) time

Introduction	\sqrt{n} algorithm	From \sqrt{n} to log n	Open Problem

Questions?