
Graph Sparsification while Maintaining Cuts

Ramesh Hariharan
Strand Life Sciences

8 May 2011

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Setting

Graph G with n nodes and m edges.

Unweighted for this talk (weighted cases work similarly).

m >> n log n

Obtain G′ with fewer edges but with all cuts of G preserved
approximately.

G′ will be weighted.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Setting

Graph G with n nodes and m edges.

Unweighted for this talk (weighted cases work similarly).

m >> n log n

Obtain G′ with fewer edges but with all cuts of G preserved
approximately.

G′ will be weighted.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Setting

Graph G with n nodes and m edges.

Unweighted for this talk (weighted cases work similarly).

m >> n log n

Obtain G′ with fewer edges but with all cuts of G preserved
approximately.

G′ will be weighted.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Setting

Graph G with n nodes and m edges.

Unweighted for this talk (weighted cases work similarly).

m >> n log n

Obtain G′ with fewer edges but with all cuts of G preserved
approximately.

G′ will be weighted.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Setting

Graph G with n nodes and m edges.

Unweighted for this talk (weighted cases work similarly).

m >> n log n

Obtain G′ with fewer edges but with all cuts of G preserved
approximately.

G′ will be weighted.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

An Example

Two nodes with m edges connected the two.

Replace by a single edge of weight m.

The general case is more complex because there are many cuts
in a graph.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

An Example

Two nodes with m edges connected the two.

Replace by a single edge of weight m.

The general case is more complex because there are many cuts
in a graph.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

An Example

Two nodes with m edges connected the two.

Replace by a single edge of weight m.

The general case is more complex because there are many cuts
in a graph.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

A Randomized Approach: Benczur, Karger

Sample each edge e with probability pe and give it weight 1/pe.

For any cut, its expected weight in the new graph G′ equals its
weight in G.

Do ALL cuts in G have weight in G′ that is (1± ε) of the
corresponding weight in G, w.h.p?

And how many edges does G′ have?

Ramesh Hariharan Graph Sparsification Maintaining Cuts

A Randomized Approach: Benczur, Karger

Sample each edge e with probability pe and give it weight 1/pe.

For any cut, its expected weight in the new graph G′ equals its
weight in G.

Do ALL cuts in G have weight in G′ that is (1± ε) of the
corresponding weight in G, w.h.p?

And how many edges does G′ have?

Ramesh Hariharan Graph Sparsification Maintaining Cuts

A Randomized Approach: Benczur, Karger

Sample each edge e with probability pe and give it weight 1/pe.

For any cut, its expected weight in the new graph G′ equals its
weight in G.

Do ALL cuts in G have weight in G′ that is (1± ε) of the
corresponding weight in G, w.h.p?

And how many edges does G′ have?

Ramesh Hariharan Graph Sparsification Maintaining Cuts

A Randomized Approach: Benczur, Karger

Sample each edge e with probability pe and give it weight 1/pe.

For any cut, its expected weight in the new graph G′ equals its
weight in G.

Do ALL cuts in G have weight in G′ that is (1± ε) of the
corresponding weight in G, w.h.p?

And how many edges does G′ have?

Ramesh Hariharan Graph Sparsification Maintaining Cuts

What should pe be?

pe ∼ 1
de

? (de is min of the degrees
of e’s endpoints). NO!

pe ∼ 1
ke
≥ 1

de
? (ke is the connectivity

of e). NO!

pe ∼ log n
ε2

1
ke

? MAYBE!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

What should pe be?

pe ∼ 1
de

? (de is min of the degrees
of e’s endpoints). NO!

pe ∼ 1
ke
≥ 1

de
? (ke is the connectivity

of e). NO!

pe ∼ log n
ε2

1
ke

? MAYBE!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

What should pe be?

pe ∼ 1
de

? (de is min of the degrees
of e’s endpoints). NO!

pe ∼ 1
ke
≥ 1

de
? (ke is the connectivity

of e). NO!

pe ∼ log n
ε2

1
ke

? MAYBE!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Chernoff Bound for Sampled Cut Weight.

Focus on a particular cut of size ∆.

Group edges in this cut into doubling value categories based on
sampling probability.

Consider one group S of edges with sampling probabilities
∼ log n

ε2
1
2i .

For any ∆′ ≥ |S|,

Pr(|Ssamp − |S|| ≥ ε∆′) ≤ e−Θ(ε2 log n
ε22i ∆

′)
= n−Θ(∆′

2i)

.
We need ε∆′ to add up at most ε∆ over all groups.

And we need n−Θ(∆′

2i) to be small enough to offset the number of
such groups S over all cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

How many cuts?

Focus on a particular cut of size ∆, and the subset of edges with
connectivity ∼ 2i .

How many such distinct sets of edges exist, over all cuts?

nO(∆/2i)! Will show later.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

How many cuts?

Focus on a particular cut of size ∆, and the subset of edges with
connectivity ∼ 2i .

How many such distinct sets of edges exist, over all cuts?

nO(∆/2i)! Will show later.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

How many cuts?

Focus on a particular cut of size ∆, and the subset of edges with
connectivity ∼ 2i .

How many such distinct sets of edges exist, over all cuts?

nO(∆/2i)! Will show later.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

How many cuts?

Focus on a particular cut of size ∆, and the subset of edges with
connectivity ∼ 2i .

How many such distinct sets of edges exist, over all cuts?

nO(∆/2i)! Will show later.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Putting it Together

Focus on a particular cut of size ∆, and the group S of edges with
sampling probabilities ∼ log n

ε22i .

For this group,

Pr(|Ssamp − |S| ≥ ε∆) ≤ n−Θ(∆

2i)

.
The number of distinct groups of edges S over all cuts of size ∆ is
nO(∆

2i) (to be shown).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε∆.

There are at most log n groups in each cut.

So every cut has deviation at most ε∆ log n. But we need ∆!
Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Attempt

Up sampling probabilities to ∼ log2 n
ε2ke

.

Focus on a particular cut of size ∆, and the set S of edges with
sampling probabilities ∼ log2 n

ε2∗2i .

Pr(|Ssamp − |S|| ≥ ε
∆

log n
) ≤ n−Θ(∆

2i)

.

The number of such groups S over all cuts of size ∆ is nO(∆

2i).

So in every cut of size ∆, the corresponding group contributes a
deviation of ε ∆

log n .

So every cut has deviation at most ε∆ over all log n groups.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Expected Size of Sampled Graph

We show that
∑

e
1
ke
≤ n − 1. So the

expected number of edges in the
sampled graph is ≤ log2 n

ε2 (n − 1).

Consider the Gomory-Hu (GH) tree.
Each Gomory-Hu edge f has weight
wf equal to the number of graph
edges that cross it.

e crosses a witness Gomory-Hu
edge with weight ke.∑ 1

ke
≤

∑
f wf ∗ 1/wf = n − 1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Wrapping Up: Sampling by Connectivity

Sample edge e with probability log2 n
ε2ke

(ke is the connectivity of e).

The expected number of edges in the sampled graph is O(n log2 n
ε2).

And each cut is preserved within a (1± ε) multiplicative factor,
with inverse polynomial failure probability.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Wrapping Up: Sampling by Connectivity

Sample edge e with probability log2 n
ε2ke

(ke is the connectivity of e).

The expected number of edges in the sampled graph is O(n log2 n
ε2).

And each cut is preserved within a (1± ε) multiplicative factor,
with inverse polynomial failure probability.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Wrapping Up: Sampling by Connectivity

Sample edge e with probability log2 n
ε2ke

(ke is the connectivity of e).

The expected number of edges in the sampled graph is O(n log2 n
ε2).

And each cut is preserved within a (1± ε) multiplicative factor,
with inverse polynomial failure probability.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Wrapping Up: Sampling by Connectivity

Sample edge e with probability log2 n
ε2ke

(ke is the connectivity of e).

The expected number of edges in the sampled graph is O(n log2 n
ε2).

And each cut is preserved within a (1± ε) multiplicative factor,
with inverse polynomial failure probability.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Wrapping Up: Sampling by Connectivity

Sample edge e with probability log2 n
ε2ke

(ke is the connectivity of e).

The expected number of edges in the sampled graph is O(n log2 n
ε2).

And each cut is preserved within a (1± ε) multiplicative factor,
with inverse polynomial failure probability.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting Cuts

Consider a cut of size ∆.

Define its 2i -projection to be the subset of edges with connectivity
∼ 2i .

How many distinct 2i -projections exist over all cuts of size ∆? We
show nO(∆/2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting Cuts

Consider a cut of size ∆.

Define its 2i -projection to be the subset of edges with connectivity
∼ 2i .

How many distinct 2i -projections exist over all cuts of size ∆? We
show nO(∆/2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting Cuts

Consider a cut of size ∆.

Define its 2i -projection to be the subset of edges with connectivity
∼ 2i .

How many distinct 2i -projections exist over all cuts of size ∆? We
show nO(∆/2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting Cuts

Consider a cut of size ∆.

Define its 2i -projection to be the subset of edges with connectivity
∼ 2i .

How many distinct 2i -projections exist over all cuts of size ∆? We
show nO(∆/2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting Cuts

Consider a cut of size ∆.

Define its 2i -projection to be the subset of edges with connectivity
∼ 2i .

How many distinct 2i -projections exist over all cuts of size ∆? We
show nO(∆/2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Recall Karger’s Cut Counting Method

Randomly choose edges and compress.

Let k be the min-cut size.

Probability of being left with a particular cut of size ∆ is

≥ (1− ∆

nk/2
)(1− ∆

(n − 1)k/2
) · · · (1− ∆

(2∆
k + 1)k/2

)

≥ (
n − 2∆/k

n
)(

n − 1− 2∆/k
n − 1

) · · · (
n − (n − 2∆

k − 1)− 2∆/k
2∆
k + 1

)

≥ n
−2∆

k

So the number of distinct cuts of size ∆ in a graph with min-cut k
is at most n

2∆
k .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Recall Karger’s Cut Counting Method

Randomly choose edges and compress.

Let k be the min-cut size.

Probability of being left with a particular cut of size ∆ is

≥ (1− ∆

nk/2
)(1− ∆

(n − 1)k/2
) · · · (1− ∆

(2∆
k + 1)k/2

)

≥ (
n − 2∆/k

n
)(

n − 1− 2∆/k
n − 1

) · · · (
n − (n − 2∆

k − 1)− 2∆/k
2∆
k + 1

)

≥ n
−2∆

k

So the number of distinct cuts of size ∆ in a graph with min-cut k
is at most n

2∆
k .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Recall Karger’s Cut Counting Method

Randomly choose edges and compress.

Let k be the min-cut size.

Probability of being left with a particular cut of size ∆ is

≥ (1− ∆

nk/2
)(1− ∆

(n − 1)k/2
) · · · (1− ∆

(2∆
k + 1)k/2

)

≥ (
n − 2∆/k

n
)(

n − 1− 2∆/k
n − 1

) · · · (
n − (n − 2∆

k − 1)− 2∆/k
2∆
k + 1

)

≥ n
−2∆

k

So the number of distinct cuts of size ∆ in a graph with min-cut k
is at most n

2∆
k .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Recall Karger’s Cut Counting Method

Randomly choose edges and compress.

Let k be the min-cut size.

Probability of being left with a particular cut of size ∆ is

≥ (1− ∆

nk/2
)(1− ∆

(n − 1)k/2
) · · · (1− ∆

(2∆
k + 1)k/2

)

≥ (
n − 2∆/k

n
)(

n − 1− 2∆/k
n − 1

) · · · (
n − (n − 2∆

k − 1)− 2∆/k
2∆
k + 1

)

≥ n
−2∆

k

So the number of distinct cuts of size ∆ in a graph with min-cut k
is at most n

2∆
k .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Recall Karger’s Cut Counting Method

Randomly choose edges and compress.

Let k be the min-cut size.

Probability of being left with a particular cut of size ∆ is

≥ (1− ∆

nk/2
)(1− ∆

(n − 1)k/2
) · · · (1− ∆

(2∆
k + 1)k/2

)

≥ (
n − 2∆/k

n
)(

n − 1− 2∆/k
n − 1

) · · · (
n − (n − 2∆

k − 1)− 2∆/k
2∆
k + 1

)

≥ n
−2∆

k

So the number of distinct cuts of size ∆ in a graph with min-cut k
is at most n

2∆
k .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Counting 2i -projections

Randomly choose edges and compress.

If min-cut was 2i then done.

What if there are vertices with degree < 2i?

Edges incident on such vertices are not part of a 2i -projection.

So split-off these vertices.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off

Edges incident on a vertex v can be
paired and ’shortcut’.

So v gets removed from the graph.

The connectivity of edges with
connectivity >= 2i does not fall below 2i .

And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
∆ remains of size at most ∆.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off

Edges incident on a vertex v can be
paired and ’shortcut’.

So v gets removed from the graph.

The connectivity of edges with
connectivity >= 2i does not fall below 2i .

And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
∆ remains of size at most ∆.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off

Edges incident on a vertex v can be
paired and ’shortcut’.

So v gets removed from the graph.

The connectivity of edges with
connectivity >= 2i does not fall below 2i .

And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
∆ remains of size at most ∆.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off

Edges incident on a vertex v can be
paired and ’shortcut’.

So v gets removed from the graph.

The connectivity of edges with
connectivity >= 2i does not fall below 2i .

And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
∆ remains of size at most ∆.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off

Edges incident on a vertex v can be
paired and ’shortcut’.

So v gets removed from the graph.

The connectivity of edges with
connectivity >= 2i does not fall below 2i .

And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
∆ remains of size at most ∆.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Why Splitting Off?

Compressing an edge causes potential
increase in the cut size ∆.

Deleting an edge causes potential
decrease in connectivity 2i .

Adding an edge causes potential increase
in the cut size ∆.

Only splitting ensures that connnectivity 2i

does not drop and cut size ∆ does not
increase.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Why Splitting Off?

Compressing an edge causes potential
increase in the cut size ∆.

Deleting an edge causes potential
decrease in connectivity 2i .

Adding an edge causes potential increase
in the cut size ∆.

Only splitting ensures that connnectivity 2i

does not drop and cut size ∆ does not
increase.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Why Splitting Off?

Compressing an edge causes potential
increase in the cut size ∆.

Deleting an edge causes potential
decrease in connectivity 2i .

Adding an edge causes potential increase
in the cut size ∆.

Only splitting ensures that connnectivity 2i

does not drop and cut size ∆ does not
increase.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Why Splitting Off?

Compressing an edge causes potential
increase in the cut size ∆.

Deleting an edge causes potential
decrease in connectivity 2i .

Adding an edge causes potential increase
in the cut size ∆.

Only splitting ensures that connnectivity 2i

does not drop and cut size ∆ does not
increase.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Why Splitting Off?

Compressing an edge causes potential
increase in the cut size ∆.

Deleting an edge causes potential
decrease in connectivity 2i .

Adding an edge causes potential increase
in the cut size ∆.

Only splitting ensures that connnectivity 2i

does not drop and cut size ∆ does not
increase.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to counting 2i -projections

Randomly choose edges and compress.

If a vertex with degree < 2i is created, split it off.

Edges in any 2i -projection stay 2i connected.

So such edges stay intact even as vertices are split off.

Probability of being left with a particular 2i -projection (of cuts of
size ∆) is

≥ (1−∆/n2i)(1−∆/(n − 1)2i) · · · ≥ n−∆/2i

The number of distinct 2i -projections over all cuts of size ∆ is
nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to Splitting Off

We need to prove that:

Given edge uv , there exists vw such
that:

Removing uv , vw and adding uw
ensures the following:

All other edges with connectivity
α = 2i or higher remain at least α
connected.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to Splitting Off

We need to prove that:

Given edge uv , there exists vw such
that:

Removing uv , vw and adding uw
ensures the following:

All other edges with connectivity
α = 2i or higher remain at least α
connected.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to Splitting Off

We need to prove that:

Given edge uv , there exists vw such
that:

Removing uv , vw and adding uw
ensures the following:

All other edges with connectivity
α = 2i or higher remain at least α
connected.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to Splitting Off

We need to prove that:

Given edge uv , there exists vw such
that:

Removing uv , vw and adding uw
ensures the following:

All other edges with connectivity
α = 2i or higher remain at least α
connected.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Back to Splitting Off

We need to prove that:

Given edge uv , there exists vw such
that:

Removing uv , vw and adding uw
ensures the following:

All other edges with connectivity
α = 2i or higher remain at least α
connected.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Challenge with Splitting Off

The only cuts that reduce in size are
those which split u and v .

If there exists such a cut of size α or
α + 1, it will drop below α iff w is on
the same size as u in this cut.

A problem if such a cut splits a
critical vertex pair b, b′ whose
connectivity must be maintained at
α.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Challenge with Splitting Off

The only cuts that reduce in size are
those which split u and v .

If there exists such a cut of size α or
α + 1, it will drop below α iff w is on
the same size as u in this cut.

A problem if such a cut splits a
critical vertex pair b, b′ whose
connectivity must be maintained at
α.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Challenge with Splitting Off

The only cuts that reduce in size are
those which split u and v .

If there exists such a cut of size α or
α + 1, it will drop below α iff w is on
the same size as u in this cut.

A problem if such a cut splits a
critical vertex pair b, b′ whose
connectivity must be maintained at
α.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

The Challenge with Splitting Off

The only cuts that reduce in size are
those which split u and v .

If there exists such a cut of size α or
α + 1, it will drop below α iff w is on
the same size as u in this cut.

A problem if such a cut splits a
critical vertex pair b, b′ whose
connectivity must be maintained at
α.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off

v must have a neighbour on the
right side of the cut.

Otherwise, move v to the left and
the cut size falls below α.

So b and b′ are less than α
connected, a contradiction.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off

v must have a neighbour on the
right side of the cut.

Otherwise, move v to the left and
the cut size falls below α.

So b and b′ are less than α
connected, a contradiction.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off

v must have a neighbour on the
right side of the cut.

Otherwise, move v to the left and
the cut size falls below α.

So b and b′ are less than α
connected, a contradiction.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off

v must have a neighbour on the
right side of the cut.

Otherwise, move v to the left and
the cut size falls below α.

So b and b′ are less than α
connected, a contradiction.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off Contd.

But how do we find a w that is
on the same side as v in all
critical cuts?

What if there are crossing
critical cuts? .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off Contd.

But how do we find a w that is
on the same side as v in all
critical cuts?

What if there are crossing
critical cuts? .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off Contd.

But how do we find a w that is
on the same side as v in all
critical cuts?

What if there are crossing
critical cuts? .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Critical Cuts do
not cross.

If all vertices
have even
degrees!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Critical Cuts do
not cross.

If all vertices
have even
degrees!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off: Wrapping Up.

How do we handle odd degrees?

Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

And splitting off and edge compression preserve evenness.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off: Wrapping Up.

How do we handle odd degrees?

Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

And splitting off and edge compression preserve evenness.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off: Wrapping Up.

How do we handle odd degrees?

Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

And splitting off and edge compression preserve evenness.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Splitting Off: Wrapping Up.

How do we handle odd degrees?

Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

And splitting off and edge compression preserve evenness.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Computing Sampling Probabilities

It suffices to underestimate edge connectivites, i.e., compute
k ′e ≤ ke.
Because sampling probabilities are used only in the Chernoff
bound, which has the form:

Pr(|Ssamp − |S|| ≥ εx) ≤ n−Θ(x
2i)

.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Computing Sampling Probabilities

It suffices to underestimate edge connectivites, i.e., compute
k ′e ≤ ke.
Because sampling probabilities are used only in the Chernoff
bound, which has the form:

Pr(|Ssamp − |S|| ≥ εx) ≤ n−Θ(x
2i)

.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Computing Sampling Probabilities

It suffices to underestimate edge connectivites, i.e., compute
k ′e ≤ ke.
Because sampling probabilities are used only in the Chernoff
bound, which has the form:

Pr(|Ssamp − |S|| ≥ εx) ≤ n−Θ(x
2i)

.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling using Nagamochi-Ibaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest i , they are also connected in
forests 1 . . . i − 1.

If edge e = uv is in tree i , then i = k ′e ≤ ke.

So sampling with probability log2 n
ε2k ′e

preserves all cuts within 1± ε

w.h.p.∑ 1
k ′e
≤ n log n (as opposed to

∑ 1
ke
≤ n)

Expected number of edges in the sparsified graph
log2 n

ε2

∑
e

1
k ′e

= n log3 n
ε2 .

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Define the 2i -projection of a cut to be the subset of its edges with
k ′e ∼ 2i .

Consider those cuts C where the size of the 2i -projection plus the
size of 2i−1-projection is ∆i .

We show that the number of distinct 2i -projections over cuts in C
is nO(

∆i
2i).

Note contrast from before where we had nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Define the 2i -projection of a cut to be the subset of its edges with
k ′e ∼ 2i .

Consider those cuts C where the size of the 2i -projection plus the
size of 2i−1-projection is ∆i .

We show that the number of distinct 2i -projections over cuts in C
is nO(

∆i
2i).

Note contrast from before where we had nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Define the 2i -projection of a cut to be the subset of its edges with
k ′e ∼ 2i .

Consider those cuts C where the size of the 2i -projection plus the
size of 2i−1-projection is ∆i .

We show that the number of distinct 2i -projections over cuts in C
is nO(

∆i
2i).

Note contrast from before where we had nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Define the 2i -projection of a cut to be the subset of its edges with
k ′e ∼ 2i .

Consider those cuts C where the size of the 2i -projection plus the
size of 2i−1-projection is ∆i .

We show that the number of distinct 2i -projections over cuts in C
is nO(

∆i
2i).

Note contrast from before where we had nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Define the 2i -projection of a cut to be the subset of its edges with
k ′e ∼ 2i .

Consider those cuts C where the size of the 2i -projection plus the
size of 2i−1-projection is ∆i .

We show that the number of distinct 2i -projections over cuts in C
is nO(

∆i
2i).

Note contrast from before where we had nO(∆

2i).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Tighter Analysis

Go back to sampling edge e with probability log n
ε2k ′e

(k ′e is the index
of the NI tree containing e).

The number of distinct 2i -projections over cuts in C is nO(
∆i
2i).

For a particular 2i -projection S,

Pr(|Ssamp − |S|| ≥ ε∆i) ≤ n−Θ(
∆i
2i)

.
For any given cut,

∑
i ∆i ≤ 2∆.

So every cut has deviation at most 2ε∆!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Bounding the number of 2i -projections

Take subgraph G′ formed by edges in NI trees 2i−2 . . . 2i .

Key Property: An edge in NI trees 2i−1 . . . 2i is at least 2i−2

connected in G′.

So the number of 2i -projections in cuts of size ∆i in G′ is nO(
∆i

2i−2),
as needed.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Bounding the number of 2i -projections

Take subgraph G′ formed by edges in NI trees 2i−2 . . . 2i .

Key Property: An edge in NI trees 2i−1 . . . 2i is at least 2i−2

connected in G′.

So the number of 2i -projections in cuts of size ∆i in G′ is nO(
∆i

2i−2),
as needed.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Bounding the number of 2i -projections

Take subgraph G′ formed by edges in NI trees 2i−2 . . . 2i .

Key Property: An edge in NI trees 2i−1 . . . 2i is at least 2i−2

connected in G′.

So the number of 2i -projections in cuts of size ∆i in G′ is nO(
∆i

2i−2),
as needed.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Bounding the number of 2i -projections

Take subgraph G′ formed by edges in NI trees 2i−2 . . . 2i .

Key Property: An edge in NI trees 2i−1 . . . 2i is at least 2i−2

connected in G′.

So the number of 2i -projections in cuts of size ∆i in G′ is nO(
∆i

2i−2),
as needed.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction

Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

For each vertex v , define l(v) as the index of the first NI tree
where v is singleton.

For each edge e = uv processed, add e to tree min(l(u), l(v)).

Increment the smaller of l(u), l(v) by 1; if both are equal,
increment both.

Successively pick the vertex with the largest l() value for
processing.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction
Contd.

Key invariant: If a new connected
component is created in a tree, it
stays separate even after all future
edge additions.

O(n log n + m) ∼ O(m) time.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction
Contd.

Key invariant: If a new connected
component is created in a tree, it
stays separate even after all future
edge additions.

O(n log n + m) ∼ O(m) time.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Tree Construction
Contd.

Key invariant: If a new connected
component is created in a tree, it
stays separate even after all future
edge additions.

O(n log n + m) ∼ O(m) time.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Wrap Up

Sample edge e with probability log n
ε2k ′e

(k ′e is the index of the NI tree
containing e).

Every cut is preserved within a 1± 2ε factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n log2 n
ε2).

The time taken for sampling is O(n log n + m).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Wrap Up

Sample edge e with probability log n
ε2k ′e

(k ′e is the index of the NI tree
containing e).

Every cut is preserved within a 1± 2ε factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n log2 n
ε2).

The time taken for sampling is O(n log n + m).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Wrap Up

Sample edge e with probability log n
ε2k ′e

(k ′e is the index of the NI tree
containing e).

Every cut is preserved within a 1± 2ε factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n log2 n
ε2).

The time taken for sampling is O(n log n + m).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Wrap Up

Sample edge e with probability log n
ε2k ′e

(k ′e is the index of the NI tree
containing e).

Every cut is preserved within a 1± 2ε factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n log2 n
ε2).

The time taken for sampling is O(n log n + m).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Nagamochi-Ibaraki Sampling: Wrap Up

Sample edge e with probability log n
ε2k ′e

(k ′e is the index of the NI tree
containing e).

Every cut is preserved within a 1± 2ε factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n log2 n
ε2).

The time taken for sampling is O(n log n + m).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Effective Resistances

The Effective Resistance re of an edge e is defined as follows:

Treat the graph as a network of unit resistances.

Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

What is the voltage drop across the edge? This is re.

re is also the fraction of spanning trees containing e.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Effective Conductance

Sample edge e with probability log2 n
ε2ce

(where ce = 1/re).

Key Property: ce ≤ ke.

Recall that underestimating ke’s suffices.∑
e

1
ce

=
∑

e re = n − 1 (use the spanning tree fraction
interpretation).

So sampling with effective conductance yields a graph with
O(n log2 n

ε2) edges that preserves all cuts within a (1± ε) factor,
w.h.p.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

ce ≤ ke, Why?

Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and ke
paths pose a resistance of at least 1/ke. So ce ≤ ke.

But there are other edges around.

Shrink these edges.

Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

Equivalently, given a random spanning tree T ,
P(e ∈ T |f ∈ T) ≤ P(e ∈ T). Rayleigh’s monotonicity principle!

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proving Rayleigh’s Monotonicity Principle: Energy

A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

The energy of a feasible flow is
∑

f i2f over all edges f .

The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proving Rayleigh’s Monotonicity Principle: Energy

A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

The energy of a feasible flow is
∑

f i2f over all edges f .

The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proving Rayleigh’s Monotonicity Principle: Energy

A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

The energy of a feasible flow is
∑

f i2f over all edges f .

The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proving Rayleigh’s Monotonicity Principle: Energy

A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

The energy of a feasible flow is
∑

f i2f over all edges f .

The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proving Rayleigh’s Monotonicity Principle: Energy

A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

The energy of a feasible flow is
∑

f i2f over all edges f .

The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Rayleigh’s Monotonicity Principle

If you shrink an edge f , then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f .

The least energy flow after shrinking f then only reduces energy
further.

So the effective resistance of e decreases when an edge f is
shrunk.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Rayleigh’s Monotonicity Principle

If you shrink an edge f , then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f .

The least energy flow after shrinking f then only reduces energy
further.

So the effective resistance of e decreases when an edge f is
shrunk.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Rayleigh’s Monotonicity Principle

If you shrink an edge f , then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f .

The least energy flow after shrinking f then only reduces energy
further.

So the effective resistance of e decreases when an edge f is
shrunk.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Rayleigh’s Monotonicity Principle

If you shrink an edge f , then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f .

The least energy flow after shrinking f then only reduces energy
further.

So the effective resistance of e decreases when an edge f is
shrunk.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another Nagamochi-Ibaraki Sampling Scheme

Sample edge e with probability log n
ε2k ′′e

(k ′′e is the index of the first NI
tree where the endpoints of e are not in the same connected
component).

Consider the graph G′′ comprising edges e with k ′′e ≥ 2i−1.

Any edge e with k ′′e ≥ 2i is Θ(k ′′e) connected in G′′.

Replicate an edge in G′′ with k ′′e ∼ 2j , j ≥ i − 1, n/2j times, to
obtain graph H ′′.

Any edge e with k ′′e ≥ 2i is Θ(n) connected in H ′′.

The number of distinct 2i -projections in cuts of size X in H ′′ is
nO(X

n).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another
Nagamochi-Ibaraki
Sampling Scheme Contd.

Consider one cut.
How much deviation
does the 2i -projection
contribute?

ε
∑

j≥i−1
nj∗ n

2j
n ∗ 2i =

ε
∑

j≥i−1
nj

2j−i .

Overall deviation
ε
∑

i>=0
∑

j≥i−1
nj

2j−i =
O(ε

∑
j≥0 nj) = O(ε∆)

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another
Nagamochi-Ibaraki
Sampling Scheme Contd.

Consider one cut.
How much deviation
does the 2i -projection
contribute?

ε
∑

j≥i−1
nj∗ n

2j
n ∗ 2i =

ε
∑

j≥i−1
nj

2j−i .

Overall deviation
ε
∑

i>=0
∑

j≥i−1
nj

2j−i =
O(ε

∑
j≥0 nj) = O(ε∆)

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another
Nagamochi-Ibaraki
Sampling Scheme Contd.

Consider one cut.
How much deviation
does the 2i -projection
contribute?

ε
∑

j≥i−1
nj∗ n

2j
n ∗ 2i =

ε
∑

j≥i−1
nj

2j−i .

Overall deviation
ε
∑

i>=0
∑

j≥i−1
nj

2j−i =
O(ε

∑
j≥0 nj) = O(ε∆)

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Another
Nagamochi-Ibaraki
Sampling Scheme Contd.

Consider one cut.
How much deviation
does the 2i -projection
contribute?

ε
∑

j≥i−1
nj∗ n

2j
n ∗ 2i =

ε
∑

j≥i−1
nj

2j−i .

Overall deviation
ε
∑

i>=0
∑

j≥i−1
nj

2j−i =
O(ε

∑
j≥0 nj) = O(ε∆)

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Sampling by Strong Connectivity

Sample edge e with probability log n
ε2sce

(sce is the strong connectivity
of e).

Consider the graph G′′′ comprising edges e with sce ≥ 2i .

Any edge e with sce ≥ 2i is Θ(sce) connected in G′′′.

So the same proof holds.∑
e sce ≤ n − 1, so this yields an O(n log n

ε2) size sparsifier.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Other Results

An O(n log n
ε2) size sparsifier in time O(n log n + m) (Hariharan and

Panigrahy)

Sampling by conductance yields an O(n log n
ε2) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.

An O(n
ε2) size sparsifier (Batson, Spielman, Srivastava).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Other Results

An O(n log n
ε2) size sparsifier in time O(n log n + m) (Hariharan and

Panigrahy)

Sampling by conductance yields an O(n log n
ε2) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.

An O(n
ε2) size sparsifier (Batson, Spielman, Srivastava).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Other Results

An O(n log n
ε2) size sparsifier in time O(n log n + m) (Hariharan and

Panigrahy)

Sampling by conductance yields an O(n log n
ε2) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.

An O(n
ε2) size sparsifier (Batson, Spielman, Srivastava).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Other Results

An O(n log n
ε2) size sparsifier in time O(n log n + m) (Hariharan and

Panigrahy)

Sampling by conductance yields an O(n log n
ε2) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.

An O(n
ε2) size sparsifier (Batson, Spielman, Srivastava).

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Open Problem

Show that sampling by connectivity yields an O(n log n
ε2) size

sparsifier, w.h.p.

This will yield a corresponding corollary for sampling by
conductances.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Open Problem

Show that sampling by connectivity yields an O(n log n
ε2) size

sparsifier, w.h.p.

This will yield a corresponding corollary for sampling by
conductances.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Open Problem

Show that sampling by connectivity yields an O(n log n
ε2) size

sparsifier, w.h.p.

This will yield a corresponding corollary for sampling by
conductances.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

THANK YOU

Ramesh Hariharan Graph Sparsification Maintaining Cuts

THANK YOU

Ramesh Hariharan Graph Sparsification Maintaining Cuts

