Graph Sparsification while Maintaining Cuts

Ramesh Hariharan
Strand Life Sciences

8 May 2011
The Setting

- Graph G with n nodes and m edges.
- Unweighted for this talk (weighted cases work similarly).
- $m \gg n \log n$
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.
The Setting

- Graph G with n nodes and m edges.
- Unweighted for this talk (weighted cases work similarly).
- $m \gg n \log n$
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.
The Setting

- Graph G with n nodes and m edges.
- Unweighted for this talk (weighted cases work similarly).
- $m \gg n \log n$
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.
The Setting

- Graph G with n nodes and m edges.
- Unweighted for this talk (weighted cases work similarly).
- $m \gg n \log n$
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.
The Setting

- Graph G with n nodes and m edges.
- Unweighted for this talk (weighted cases work similarly).
- $m \gg n \log n$
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.
An Example

- Two nodes with m edges connected the two.
- Replace by a single edge of weight m.
- The general case is more complex because there are many cuts in a graph.
An Example

- Two nodes with m edges connected the two.
- Replace by a single edge of weight m.
- The general case is more complex because there are many cuts in a graph.
An Example

- Two nodes with m edges connected the two.
- Replace by a single edge of weight m.
- The general case is more complex because there are many cuts in a graph.
Sample each edge e with probability p_e and give it weight $1/p_e$.

For any cut, its expected weight in the new graph G' equals its weight in G.

Do ALL cuts in G have weight in G' that is $(1 \pm \epsilon)$ of the corresponding weight in G, w.h.p?

And how many edges does G' have?
A Randomized Approach: Benczur, Karger

- Sample each edge e with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is $(1 \pm \epsilon)$ of the corresponding weight in G, w.h.p?
- And how many edges does G' have?
A Randomized Approach: Benczur, Karger

- Sample each edge e with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is $(1 \pm \epsilon)$ of the corresponding weight in G, w.h.p?
- And how many edges does G' have?
Sample each edge e with probability p_e and give it weight $1/p_e$.

For any cut, its expected weight in the new graph G' equals its weight in G.

Do ALL cuts in G have weight in G' that is $(1 \pm \epsilon)$ of the corresponding weight in G, w.h.p?

And how many edges does G' have?
What should p_e be?

- $p_e \sim \frac{1}{d_e}$? (d_e is min of the degrees of e’s endpoints). NO!

- $p_e \sim \frac{1}{k_e} \geq \frac{1}{d_e}$? ($k_e$ is the connectivity of e). NO!

- $p_e \sim \frac{\log n}{\epsilon^2} \frac{1}{k_e}$? MAYBE!
What should p_e be?

- $p_e \sim \frac{1}{d_e}$? (d_e is min of the degrees of e's endpoints). NO!
- $p_e \sim \frac{1}{k_e} \geq \frac{1}{d_e}$? ($k_e$ is the connectivity of e). NO!
- $p_e \sim \frac{\log n}{\varepsilon^2} \frac{1}{k_e}$? MAYBE!
What should p_e be?

- $p_e \sim \frac{1}{d_e}$? (d_e is min of the degrees of e’s endpoints). NO!
- $p_e \sim \frac{1}{k_e} \geq \frac{1}{d_e}$? ($k_e$ is the connectivity of e). NO!
- $p_e \sim \frac{\log n}{\epsilon^2} \frac{1}{k_e}$? MAYBE!
Focus on a particular cut of size Δ.

Group edges in this cut into doubling value categories based on sampling probability.

Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 2^i}$.

For any $\Delta' \geq |S|$,

$$\Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}$$

We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.

And we need $n^{-\Theta(\frac{\Delta'}{2^i})}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.
 - Group edges in this cut into doubling value categories based on sampling probability.
 - Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
 - For any $\Delta' \geq |S|$,
 \[\Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2} \frac{1}{2^i} \Delta')} = n^{-\Theta\left(\frac{\Delta'}{2^i}\right)} \]
 - We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
 - And we need $n^{-\Theta\left(\frac{\Delta'}{2^i}\right)}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.
- Group edges in this cut into doubling value categories based on sampling probability.
 - Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
 - For any $\Delta' \geq |S|$,
 \[
 \Pr(|S_{\text{sam}} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta\left(\frac{\epsilon^2 \log n}{\epsilon^2 2^i} \Delta'\right)} = n^{-\Theta\left(\frac{\Delta'}{2^i}\right)}
 \]
 - We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
 - And we need $n^{-\Theta\left(\frac{\Delta'}{2^i}\right)}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.

- Group edges in this cut into doubling value categories based on sampling probability.

- Consider one group S of edges with sampling probabilities
 \[\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}. \]

 For any $\Delta' \geq |S|$,
 \[
 \Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}.
 \]

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.

- And we need $n^{-\Theta(\frac{\Delta'}{2^i})}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 \cdot 2^i}$.
- For any $\Delta' \geq |S|$,

 $$Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta\left(\frac{\epsilon^2 \log n}{\epsilon^2 2^i} \Delta'\right)} = n^{-\Theta\left(\frac{\Delta'}{2^i}\right)}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need $n^{-\Theta\left(\frac{\Delta'}{2^i}\right)}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.

- Group edges in this cut into doubling value categories based on sampling probability.

- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 2^i}$.

- For any $\Delta' \geq |S|$,

$$
Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}
$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.

- And we need $n^{-\Theta(\frac{\Delta'}{2^i})}$ to be small enough to offset the number of such groups S over all cuts.
Chernoff Bound for Sampled Cut Weight.

- Focus on a particular cut of size Δ.
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
- For any $\Delta' \geq |S|$,

$$
Pr(|S_{samp} - |S|| \geq \epsilon \Delta') \leq e^{-\Theta(\frac{\epsilon^2 \log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}
$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need $n^{-\Theta(\frac{\Delta'}{2^i})}$ to be small enough to offset the number of such groups S over all cuts.
How many cuts?

- Focus on a particular cut of size Δ, and the subset of edges with connectivity $\sim 2^i$.
- How many such distinct sets of edges exist, over all cuts?
- $n^{O(\Delta/2^i)}$! Will show later.
How many cuts?

- Focus on a particular cut of size Δ, and the subset of edges with connectivity $\sim 2^i$.
- How many such distinct sets of edges exist, over all cuts?
- $n^{O(\Delta/2^i)}$! Will show later.
How many cuts?

Focus on a particular cut of size Δ, and the subset of edges with connectivity $\sim 2^i$.

How many such distinct sets of edges exist, over all cuts?

$n^{O(\Delta/2^i)}$! Will show later.
How many cuts?

- Focus on a particular cut of size Δ, and the subset of edges with connectivity $\sim 2^i$.
- How many such distinct sets of edges exist, over all cuts?
- $n^{O(\Delta/2^i)}$! Will show later.
Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^{22^i}}$.

For this group,

$$Pr(|S_{samp} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).

So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

There are at most $\log n$ groups in each cut.

So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^{2^i}}$.

For this group,

$$Pr(|S_{\text{samp}} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Lambda}{2^i})}$ (to be shown).

So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

There are at most $\log n$ groups in each cut.

So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Putting it Together

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 2^i}$.

- For this group,

$$Pr(|S_{samp} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).

- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

- There are at most $\log n$ groups in each cut.

- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^{2i}}$.

For this group,

$$Pr(|S_{samp} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2i})}$$

The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2i})}$ (to be shown).

So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

There are at most $\log n$ groups in each cut.

So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Putting it Together

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 2^i}$.

- For this group,

$$Pr(|S_{samp} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).

- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

- There are at most $\log n$ groups in each cut.

- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Putting it Together

- Focus on a particular cut of size \(\Delta \), and the group \(S \) of edges with sampling probabilities \(\sim \frac{\log n}{\epsilon^2 2^i} \).

- For this group,

\[
Pr(\left| S_{samp} - |S| \right| \geq \epsilon \Delta) \leq n^{-\Theta\left(\frac{\Delta}{2^i}\right)}
\]

- The number of distinct groups of edges \(S \) over all cuts of size \(\Delta \) is \(n^{O\left(\frac{\Delta}{2^i}\right)} \) (to be shown).

- So in every cut of size \(\Delta \), the corresponding group contributes a deviation of \(\epsilon \Delta \).

- There are at most \(\log n \) groups in each cut.

- So every cut has deviation at most \(\epsilon \Delta \log n \). But we need \(\Delta \)!
Putting it Together

Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2 2^i}$.

For this group,

$$\Pr(|S_{\text{samp}} - |S| \geq \epsilon \Delta) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).

So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \Delta$.

There are at most $\log n$ groups in each cut.

So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ!
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_e}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2 \cdot 2^i}$.

$$Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}.$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.
- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_e}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2 \cdot 2^i}$.

$$Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.
- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_e}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2 \cdot 2^i}$.

$$Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.
- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_\epsilon}$.

- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2*2^i}$.

- $\Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}$.

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.

- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_e}$.

- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2 \cdot 2^i}$.

$$Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}.$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.

- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_e}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities $\sim \frac{\log^2 n}{\epsilon^2 \cdot 2^i}$.

$$Pr(|S_{samp} - |S|| \geq \epsilon \frac{\Delta}{\log n}) \leq n^{-\Theta(\frac{\Delta}{2^i})}.$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of $\epsilon \frac{\Delta}{\log n}$.
- So every cut has deviation at most $\epsilon \Delta$ over all $\log n$ groups.
Expected Size of Sampled Graph

- We show that $\sum e \frac{1}{k_e} \leq n - 1$. So the expected number of edges in the sampled graph is $\leq \frac{\log^2 n}{\epsilon^2} (n - 1)$.

- Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge f has weight w_f equal to the number of graph edges that cross it.

- e crosses a witness Gomory-Hu edge with weight k_e.

- $\sum \frac{1}{k_e} \leq \sum f w_f * 1/w_f = n - 1$.
Expected Size of Sampled Graph

- We show that $\sum e \frac{1}{k_e} \leq n - 1$. So the expected number of edges in the sampled graph is $\leq \log^2 n (n - 1)$.

- Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge f has weight w_f equal to the number of graph edges that cross it.

- e crosses a witness Gomory-Hu edge with weight k_e.

- $\sum \frac{1}{k_e} \leq \sum w_f * 1/w_f = n - 1$.
We show that \(\sum_e \frac{1}{k_e} \leq n - 1 \). So the expected number of edges in the sampled graph is \(\leq \frac{\log^2 n}{\epsilon^2} (n - 1) \).

Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge \(f \) has weight \(w_f \) equal to the number of graph edges that cross it.

e crosses a witness Gomory-Hu edge with weight \(k_e \).

\[\sum \frac{1}{k_e} \leq \sum_{f} w_f \cdot \frac{1}{w_f} = n - 1. \]
We show that $\sum e \frac{1}{k_e} \leq n - 1$. So the expected number of edges in the sampled graph is $\leq \frac{\log^2 n}{\epsilon^2} (n - 1)$.

Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge f has weight w_f equal to the number of graph edges that cross it.

- e crosses a witness Gomory-Hu edge with weight k_e.
- $\sum \frac{1}{k_e} \leq \sum f w_f * 1/w_f = n - 1$.

Witness f for e, $w_f=k_e$
We show that $\sum e \frac{1}{k_e} \leq n - 1$. So the expected number of edges in the sampled graph is $\leq \frac{\log^2 n}{\epsilon^2} (n - 1)$.

Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge f has weight w_f equal to the number of graph edges that cross it.

e crosses a witness Gomory-Hu edge with weight k_e.

$\sum \frac{1}{k_e} \leq \sum f w_f \times \frac{1}{w_f} = n - 1$.
Expected Size of Sampled Graph

- We show that $\sum e \frac{1}{k_e} \leq n - 1$. So the expected number of edges in the sampled graph is $\leq \frac{\log^2 n}{\epsilon^2} (n - 1)$.

- Consider the Gomory-Hu (GH) tree. Each Gomory-Hu edge f has weight w_f equal to the number of graph edges that cross it.

- e crosses a witness Gomory-Hu edge with weight k_e.

- $\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n - 1$.

Witness f for e, $w_f=k_e$
Wrapping Up: Sampling by Connectivity

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of e).
- The expected number of edges in the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.
- And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.
Wrapping Up: Sampling by Connectivity

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of e).
- The expected number of edges in the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.
- And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.
Wrapping Up: Sampling by Connectivity

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of e).

- The expected number of edges in the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.

- And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.
Wrapping Up: Sampling by Connectivity

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of e).
- The expected number of edges in the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.

And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.
Wrapping Up: Sampling by Connectivity

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of e).
- The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.
- And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.
Counting Cuts

- Consider a cut of size Δ.
- Define its 2^i-projection to be the subset of edges with connectivity $\sim 2^i$.
- How many distinct 2^i-projections exist over all cuts of size Δ? We show $n^{O(\Delta/2^i)}$.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
Counting Cuts

- Consider a cut of size Δ.
- Define its 2^i-projection to be the subset of edges with connectivity $\sim 2^i$.
- How many distinct 2^i-projections exist over all cuts of size Δ? We show $n^{O(\Delta/2^i)}$.
Counting Cuts

- Consider a cut of size Δ.
 - Define its 2^i-projection to be the subset of edges with connectivity $\sim 2^i$.
 - How many distinct 2^i-projections exist over all cuts of size Δ? We show $n^{O(\Delta/2^i)}$.
Counting Cuts

- Consider a cut of size Δ.
- Define its 2^i-projection to be the subset of edges with connectivity $\sim 2^i$.
- How many distinct 2^i-projections exist over all cuts of size Δ? We show $n^{O(\Delta/2^i)}$.

Ramesh Hariharan

Graph Sparsification Maintaining Cuts
Counting Cuts

Consider a cut of size Δ.

Define its 2^i-projection to be the subset of edges with connectivity $\sim 2^i$.

How many distinct 2^i-projections exist over all cuts of size Δ? We show $n^{O(\Delta/2^i)}$.
Recall Karger’s Cut Counting Method

- Randomly choose edges and compress.
- Let k be the min-cut size.
- Probability of being left with a particular cut of size Δ is

\[
\geq \left(1 - \frac{\Delta}{nk/2}\right) \left(1 - \frac{\Delta}{(n - 1)k/2}\right) \cdots \left(1 - \frac{\Delta}{(2\Delta/k + 1)k/2}\right)
\]

\[
\geq \left(\frac{n - 2\Delta/k}{n}\right) \left(\frac{n - 1 - 2\Delta/k}{n - 1}\right) \cdots \left(\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1}\right)
\]

\[
\geq n^{\frac{-2\Delta}{k}}
\]

- So the number of distinct cuts of size Δ in a graph with min-cut k is at most $n^{\frac{2\Delta}{k}}$.
Recall Karger’s Cut Counting Method

- Randomly choose edges and compress.
- Let k be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq \left(1 - \frac{\Delta}{nk/2}\right) \left(1 - \frac{\Delta}{(n-1)k/2}\right) \cdots \left(1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2}\right)$$

$$\geq \left(\frac{n - 2\Delta/k}{n}\right) \left(\frac{n - 1 - 2\Delta/k}{n - 1}\right) \cdots \left(\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1}\right)$$

$$\geq n^{\frac{-2\Delta}{k}}$$

- So the number of distinct cuts of size Δ in a graph with min-cut k is at most $n^{\frac{2\Delta}{k}}$.

Ramesh Hariharan

Graph Sparsification Maintaining Cuts
Recall Karger’s Cut Counting Method

- Randomly choose edges and compress.
- Let \(k \) be the min-cut size.

The probability of being left with a particular cut of size \(\Delta \) is

\[
\geq \left(1 - \frac{\Delta}{nk/2}\right) \left(1 - \frac{\Delta}{(n-1)k/2}\right) \cdots \left(1 - \frac{\Delta}{(2\Delta/k + 1)k/2}\right)
\]

\[
\geq \left(\frac{n - 2\Delta/k}{n}\right) \left(\frac{n - 1 - 2\Delta/k}{n - 1}\right) \cdots \left(\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1}\right)
\]

\[
\geq n^{\frac{-2\Delta}{k}}
\]

So the number of distinct cuts of size \(\Delta \) in a graph with min-cut \(k \) is at most \(n^{\frac{2\Delta}{k}} \).
Recall Karger’s Cut Counting Method

- Randomly choose edges and compress.
- Let k be the min-cut size.
- Probability of being left with a particular cut of size Δ is

\[
\geq \left(1 - \frac{\Delta}{nk/2}\right)\left(1 - \frac{\Delta}{(n-1)k/2}\right) \cdots \left(1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2}\right)
\]

\[
\geq \left(\frac{n - 2\Delta/k}{n}\right)\left(\frac{n - 1 - 2\Delta/k}{n - 1}\right) \cdots \left(\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1}\right)
\]

\[
\geq n^{\frac{-2\Delta}{k}}
\]

- So the number of distinct cuts of size Δ in a graph with min-cut k is at most $n^{\frac{2\Delta}{k}}$.
Recall Karger’s Cut Counting Method

- Randomly choose edges and compress.
- Let \(k \) be the min-cut size.
- Probability of being left with a particular cut of size \(\Delta \) is

\[
\geq \left(1 - \frac{\Delta}{nk/2}\right) \left(1 - \frac{\Delta}{(n-1)k/2}\right) \cdots \left(1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2}\right)
\]

\[
\geq \left(\frac{n-2\Delta/k}{n}\right) \left(\frac{n-1-2\Delta/k}{n-1}\right) \cdots \left(\frac{n-(n-\frac{2\Delta}{k}-1)-2\Delta/k}{\frac{2\Delta}{k} + 1}\right)
\]

\[
\geq n^{\frac{-2\Delta}{k}}
\]

- So the number of distinct cuts of size \(\Delta \) in a graph with min-cut \(k \) is at most \(n^{\frac{2\Delta}{k}} \).
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
- Edges incident on such vertices are not part of a 2^i-projection.
- So split-off these vertices.
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
- Edges incident on such vertices are not part of a 2^i-projection.
- So split-off these vertices.
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
- Edges incident on such vertices are not part of a 2^i-projection.
- So split-off these vertices.
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
 - Edges incident on such vertices are not part of a 2^i-projection.
 - So split-off these vertices.
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
- Edges incident on such vertices are not part of a 2^i-projection.
- So split-off these vertices.
Counting 2^i-projections

- Randomly choose edges and compress.
- If min-cut was 2^i then done.
- What if there are vertices with degree $< 2^i$?
- Edges incident on such vertices are not part of a 2^i-projection.
- So **split-off** these vertices.
Splitting Off

- Edges incident on a vertex \(v \) can be paired and 'shortcut'.
- So \(v \) gets removed from the graph.
- The connectivity of edges with connectivity \(\geq 2^i \) does not fall below \(2^i \).
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size \(\Delta \) remains of size at most \(\Delta \).
Splitting Off

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity $\geq 2^i$ does not fall below 2^i.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.
Splitting Off

- Edges incident on a vertex v can be paired and 'shortcut'.

- So v gets removed from the graph.

- The connectivity of edges with connectivity $\geq 2^i$ does not fall below 2^i.

- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.
Splitting Off

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity $\geq 2^i$ does not fall below 2^i.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.
Splitting Off

- Edges incident on a vertex \(v \) can be paired and 'shortcut'.
- So \(v \) gets removed from the graph.
- The connectivity of edges with connectivity \(\geq 2^i \) does not fall below \(2^i \).
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size \(\Delta \) remains of size at most \(\Delta \).
Why Splitting Off?

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^i.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2^i does not drop and cut size Δ does not increase.
Why Splitting Off?

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^i.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2^i does not drop and cut size Δ does not increase.
Why Splitting Off?

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^i.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2^i does not drop and cut size Δ does not increase.
Why Splitting Off?

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^i.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2^i does not drop and cut size Δ does not increase.
Why Splitting Off?

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^i.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2^i does not drop and cut size Δ does not increase.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is

$$\geq (1 - \Delta/n2^i)(1 - \Delta/(n - 1)2^i) \cdots \geq n^{-\Delta/2^i}$$

- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is

$$\geq (1 - \Delta/n2^i)(1 - \Delta/(n-1)2^i) \cdots \geq n^{-\Delta/2^i}$$

- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\Delta/2^i)}$.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
 - Edges in any 2^i-projection stay 2^i connected.
 - So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is
 \[
 \geq \left(1 - \frac{\Delta}{n2^i}\right)\left(1 - \frac{\Delta}{(n-1)2^i}\right) \cdots \geq n^{-\Delta/2^i}
 \]
- The number of distinct 2^i-projections over all cuts of size Δ is
 \[n^{O\left(\frac{\Delta}{2^i}\right)}\].
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
 - So such edges stay intact even as vertices are split off.
 - Probability of being left with a particular 2^i-projection (of cuts of size Δ) is

 $$\geq (1 - \Delta/n2^i)(1 - \Delta/(n-1)2^i) \cdots \geq n^{-\Delta/2^i}$$

- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\Delta/2^i)}$.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
- So such edges stay intact even as vertices are split off.

- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is

$$\geq (1 - \Delta/n2^i)(1 - \Delta/(n-1)2^i) \cdots \geq n^{-\Delta/2^i}$$

- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\Delta/2^i)}$.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is

$$\geq (1 - \Delta/n2^i)(1 - \Delta/(n - 1)2^i) \cdots \geq n^{-\Delta/2^i}$$

- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\Delta/2^i)}$.
Back to counting 2^i-projections

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^i-projection stay 2^i connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2^i-projection (of cuts of size Δ) is
 \[
 \geq (1 - \Delta/n2^i)(1 - \Delta/(n - 1)2^i) \cdots \geq n^{-\Delta/2^i}
 \]
- The number of distinct 2^i-projections over all cuts of size Δ is $n^{O(\Delta/2^i)}$.
We need to prove that:

- Given edge uv, there exists vw such that:

- Removing uv, vw and adding uw ensures the following:

- All other edges with connectivity $\alpha = 2^i$ or higher remain at least α connected.
We need to prove that:

Given edge uv, there exists vw such that:

Removing uv, vw and adding uw ensures the following:

All other edges with connectivity $\alpha = 2^i$ or higher remain at least α connected.
We need to prove that:

Given edge uv, there exists vw such that:

- Removing uv, vw and adding uw ensures the following:

- All other edges with connectivity $\alpha = 2^i$ or higher remain at least α connected.
Back to Splitting Off

- We need to prove that:
- Given edge uv, there exists vw such that:
- Removing uv, vw and adding uw ensures the following:
 - All other edges with connectivity $\alpha = 2^i$ or higher remain at least α connected.
Back to Splitting Off

- We need to prove that:
- Given edge uv, there exists vw such that:
- Removing uv, vw and adding uw ensures the following:
- All other edges with connectivity $\alpha = 2^i$ or higher remain at least α connected.
The Challenge with Splitting Off

- The only cuts that reduce in size are those which split u and v.

- If there exists such a cut of size α or $\alpha + 1$, it will drop below α iff w is on the same size as u in this cut.

- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
The Challenge with Splitting Off

- The only cuts that reduce in size are those which split u and v.

- If there exists such a cut of size α or $\alpha + 1$, it will drop below α iff w is on the same size as u in this cut.

- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

Ramesh Hariharan

Graph Sparsification Maintaining Cuts
The only cuts that reduce in size are those which split u and v.

If there exists such a cut of size α or $\alpha + 1$, it will drop below α iff w is on the same size as u in this cut.

A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.
The Challenge with Splitting Off

- The only cuts that reduce in size are those which split u and v.
- If there exists such a cut of size α or $\alpha + 1$, it will drop below α iff w is on the same size as u in this cut.
- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

α or $\alpha + 1 \rightarrow \alpha - 2$ or $\alpha - 1$
Proof of Splitting Off

- v must have a neighbour on the right side of the cut.
- Otherwise, move v to the left and the cut size falls below α.
- So b and b' are less than α connected, a contradiction.
Proof of Splitting Off

- \(v \) must have a neighbour on the right side of the cut.

- Otherwise, move \(v \) to the left and the cut size falls below \(\alpha \).

- So \(b \) and \(b' \) are less than \(\alpha \) connected, a contradiction.
Proof of Splitting Off

- v must have a neighbour on the right side of the cut.
- Otherwise, move v to the left and the cut size falls below α.
- So b and b' are less than α connected, a contradiction.
Proof of Splitting Off

- \(v \) must have a neighbour on the right side of the cut.
- Otherwise, move \(v \) to the left and the cut size falls below \(\alpha \).
- So \(b \) and \(b' \) are less than \(\alpha \) connected, a contradiction.
Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts?
Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts?
Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts?
Critical Cuts do not cross.

- If all vertices have even degrees!

\[c_1 + c_3 + d_1 + d_2 = \alpha \text{ or } \alpha + 1 \]
\[c_2 + c_4 + d_1 + d_2 = \alpha \text{ or } \alpha + 1 \]
\[c_1 + c_4 + d_2 \geq \alpha \]
\[c_2 + c_3 + d_2 \geq \alpha \]
\[d_1 \geq 1 \]
\[\Rightarrow d_1 = 1 \]
\[c_1 + c_3 + d_2 = \alpha \]
\[c_1 + c_4 + d_2 = \alpha \]
\[\Rightarrow c_3 = c_4, d_1 = 1 \]
\[\Rightarrow c_3 + c_4 + d_1 \text{ is odd} \]
Critical Cuts do not cross.

- If all vertices have even degrees!

\[
\begin{align*}
 c_1 + c_3 + d_1 + d_2 &= \alpha \text{ or } \alpha + 1 \\
 c_2 + c_4 + d_1 + d_2 &= \alpha \text{ or } \alpha + 1 \\
 c_1 + c_4 + d_2 &\geq \alpha \\
 c_2 + c_3 + d_2 &\geq \alpha \\
 d_1 &\geq 1 \\
 \Rightarrow d_1 &= 1 \\
 c_1 + c_3 + d_2 &= \alpha \\
 c_1 + c_4 + d_2 &= \alpha \\
 \Rightarrow c_3 = c_4, d_1 &= 1 \\
 \Rightarrow c_3 + c_4 + d_1 &\text{ is odd}
\end{align*}
\]

- How do we handle odd degrees?
- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.
- And splitting off and edge compression preserve evenness.
How do we handle odd degrees?

- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.
- And splitting off and edge compression preserve evenness.
How do we handle odd degrees?

Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.

And splitting off and edge compression preserve evenness.

- How do we handle odd degrees?
- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.
- And splitting off and edge compression preserve evenness.
Computing Sampling Probabilities

- It suffices to underestimate edge connectivities, i.e., compute $k'_e \leq k_e$.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$\Pr(|S_{samp} - |S|| \geq \epsilon x) \leq n^{-\Theta(x^{2l})}$$
Computing Sampling Probabilities

- It suffices to underestimate edge connectivities, i.e., compute $k'_e \leq k_e$.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$\Pr(|S_{samp} - |S|| \geq \epsilon x) \leq n^{-\Theta(\frac{x}{2^l})}$$
Computing Sampling Probabilities

- It suffices to underestimate edge connectivities, i.e., compute $k'_e \leq k_e$.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$\Pr(|S_{samp} - |S|| \geq \epsilon x) \leq n^{-\Theta(\frac{x}{2^l})}$$
Sampling using Nagamochi-Ibaraki Trees

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.
- If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.
- So sampling with probability $\frac{\log^2 n}{c^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)
- Expected number of edges in the sparsified graph

$$\frac{\log^2 n}{c^2} \sum e \frac{1}{k'_e} = n \frac{\log^3 n}{c^2}.$$
A collection of edge-disjoint forests.

If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.

If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.

So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.

$\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)

Expected number of edges in the sparsified graph

$\frac{\log^2 n}{\epsilon^2} \sum e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}$.
Sampling using Nagamochi-Ibaraki Trees

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.
- If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.
- So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}$.
Sampling using Nagamochi-Ibaraki Trees

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.
- If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.

- So sampling with probability $\frac{\log^2 n}{e^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)
- Expected number of edges in the sparsified graph
 $\frac{\log^2 n}{e^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{e^2}$.
A collection of edge-disjoint forests.

If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.

If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.

So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.

$\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)

Expected number of edges in the sparsified graph

$\frac{\log^2 n}{\epsilon^2} \sum e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}$.
Sampling using Nagamochi-Ibaraki Trees

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.
- If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.
- So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)
- Expected number of edges in the sparsified graph

$$\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$$
Sampling using Nagamochi-Ibaraki Trees

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests $1 \ldots i - 1$.
- If edge $e = uv$ is in tree i, then $i = k'_e \leq k_e$.
- So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_e}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k'_e} \leq n \log n$ (as opposed to $\sum \frac{1}{k_e} \leq n$)
- Expected number of edges in the sparsified graph
 $$\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n\frac{\log^3 n}{\epsilon^2}.$$
Nagamochi-Ibaraki Sampling: Tighter Analysis

- Define the 2^i-projection of a cut to be the subset of its edges with $k_e' \sim 2^i$.
- Consider those cuts C where the size of the 2^i-projection plus the size of 2^{i-1}-projection is Δ_i.
- We show that the number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- Note contrast from before where we had $n^{O(\frac{\Delta_i}{2^i})}$.
Define the 2^i-projection of a cut to be the subset of its edges with $k'_e \sim 2^i$.

Consider those cuts \mathcal{C} where the size of the 2^i-projection plus the size of 2^{i-1}-projection is Δ_i.

We show that the number of distinct 2^i-projections over cuts in \mathcal{C} is $n^{O(\frac{\Delta_i}{2^i})}$.

Note contrast from before where we had $n^{O(\frac{\Delta_i}{2^i})}$.
Define the 2^i-projection of a cut to be the subset of its edges with $k'_e \sim 2^i$.

Consider those cuts C where the size of the 2^i-projection plus the size of 2^{i-1}-projection is Δ_i.

We show that the number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

Note contrast from before where we had $n^{O(\frac{\Delta_i}{2^i})}$.
Define the 2^i-projection of a cut to be the subset of its edges with $k_e' \sim 2^i$.

Consider those cuts C where the size of the 2^i-projection plus the size of 2^{i-1}-projection is Δ_i.

We show that the number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

Note contrast from before where we had $n^{O(\frac{\Delta_i}{2^i})}$.
Define the 2^i-projection of a cut to be the subset of its edges with $k'_e \sim 2^i$.

Consider those cuts C where the size of the 2^i-projection plus the size of 2^{i-1}-projection is Δ_i.

We show that the number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

Note contrast from before where we had $n^{O(\frac{\Delta_i}{2^i})}$.
Go back to sampling edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).

The number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

For a particular 2^i-projection S,

$$Pr(|S_{samp} - |S|| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Delta_i}{2^i})}$$

For any given cut, $\sum_i \Delta_i \leq 2\Delta$.

So every cut has deviation at most $2\epsilon \Delta$!
Nagamochi-Ibaraki Sampling: Tighter Analysis

- Go back to sampling edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).
- The number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i-projection S,
 \[
 Pr(|S_{samp} - |S| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Delta_i}{2^i})}
 \]
- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most $2\epsilon \Delta$!
Nagamochi-Ibaraki Sampling: Tighter Analysis

- Go back to sampling edge e with probability $\frac{\log n}{\epsilon^2 k_e'}$ (k_e' is the index of the NI tree containing e).
- The number of distinct 2^i-projections over cuts in \mathcal{C} is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i-projection S,
 \[
 Pr(|S_{samp} - |S|| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Delta_i}{2^i})}
 \]
- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most $2\epsilon \Delta$!
Go back to sampling edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).

The number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

For a particular 2^i-projection S,

$$Pr(|S_{samp} - |S|| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Delta_i}{2^i})}$$

For any given cut, $\sum_i \Delta_i \leq 2\Delta$.

So every cut has deviation at most $2\epsilon \Delta$!
Nagamochi-Ibaraki Sampling: Tighter Analysis

- Go back to sampling edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).

- The number of distinct 2^i-projections over cuts in C is $n^{O(\frac{\Lambda_j}{2^i})}$.

- For a particular 2^i-projection S,

$$Pr(|S_{samp} - |S|| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Lambda_j}{2^i})}$$

- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.

- So every cut has deviation at most $2\epsilon \Delta!$
Nagamochi-Ibaraki Sampling: Tighter Analysis

- Go back to sampling edge \(e\) with probability \(\frac{\log n}{e^2 k'_e}\) (\(k'_e\) is the index of the NI tree containing \(e\)).
- The number of distinct \(2^i\)-projections over cuts in \(C\) is \(n^{O(\frac{\Delta_i}{2^i})}\).
- For a particular \(2^i\)-projection \(S\),

\[
\Pr(|S_{samp} - |S|| \geq \epsilon \Delta_i) \leq n^{-\Theta(\frac{\Delta_i}{2^i})}
\]

- For any given cut, \(\sum_i \Delta_i \leq 2\Delta\).
- So every cut has deviation at most \(2\epsilon \Delta!\)
Bounding the number of 2^i-projections

- Take subgraph G' formed by edges in NI trees $2^{i-2} \ldots 2^i$.
- Key Property: An edge in NI trees $2^{i-1} \ldots 2^i$ is at least 2^{i-2} connected in G'.
- So the number of 2^i-projections in cuts of size Δ_i in G' is $n^{O\left(\frac{\Delta_i}{2^i-2}\right)}$, as needed.
Bounding the number of 2^i-projections

- Take subgraph G' formed by edges in NI trees $2^{i-2} \ldots 2^i$.

- Key Property: An edge in NI trees $2^{i-1} \ldots 2^i$ is at least 2^{i-2} connected in G'.

- So the number of 2^i-projections in cuts of size Δ_i in G' is $n^{O\left(\frac{\Delta_i}{2^{i-2}}\right)}$, as needed.
Bounding the number of 2^i-projections

- Take subgraph G' formed by edges in NI trees $2^{i-2} \ldots 2^i$.

- Key Property: An edge in NI trees $2^{i-1} \ldots 2^i$ is at least 2^{i-2} connected in G'.

- So the number of 2^i-projections in cuts of size Δ_i in G' is $n^{O\left(\frac{\Delta_i}{2^{i-2}}\right)}$, as needed.
Bounding the number of 2^i-projections

- Take subgraph G' formed by edges in NI trees $2^{i-2} \ldots 2^i$.
- Key Property: An edge in NI trees $2^{i-1} \ldots 2^i$ is at least 2^{i-2} connected in G'.
- So the number of 2^i-projections in cuts of size Δ_i in G' is $n^{O\left(\frac{\Delta_i}{2^{i-2}}\right)}$, as needed.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).

- For each vertex \(v \), define \(l(v) \) as the index of the first NI tree where \(v \) is singleton.

- For each edge \(e = uv \) processed, add \(e \) to tree \(\min(l(u), l(v)) \).

- Increment the smaller of \(l(u), l(v) \) by 1; if both are equal, increment both.

- Successively pick the vertex with the largest \(l() \) value for processing.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).

- For each vertex \(v \), define \(l(v) \) as the index of the first NI tree where \(v \) is singleton.

- For each edge \(e = uv \) processed, add \(e \) to tree \(\min(l(u), l(v)) \).

- Increment the smaller of \(l(u), l(v) \) by 1; if both are equal, increment both.

- Successively pick the vertex with the largest \(l() \) value for processing.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).

- For each vertex v, define $l(v)$ as the index of the first NI tree where v is singleton.

- For each edge $e = uv$ processed, add e to tree $\min(l(u), l(v))$.

- Increment the smaller of $l(u), l(v)$ by 1; if both are equal, increment both.

- Successively pick the vertex with the largest $l()$ value for processing.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).

- For each vertex v, define $l(v)$ as the index of the first NI tree where v is singleton.

- For each edge $e = uv$ processed, add e to tree $\min(l(u), l(v))$.

- Increment the smaller of $l(u), l(v)$ by 1; if both are equal, increment both.

- Successively pick the vertex with the largest $l()$ value for processing.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define $l(v)$ as the index of the first NI tree where v is singleton.
- For each edge $e = uv$ processed, add e to tree $\min(l(u), l(v))$.
- Increment the smaller of $l(u), l(v)$ by 1; if both are equal, increment both.
- Successively pick the vertex with the largest $l()$ value for processing.
Nagamochi-Ibaraki Tree Construction

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).

- For each vertex v, define $l(v)$ as the index of the first NI tree where v is singleton.

- For each edge $e = uv$ processed, add e to tree $\min(l(u), l(v))$.

- Increment the smaller of $l(u), l(v)$ by 1; if both are equal, increment both.

- Successively pick the vertex with the largest $l()$ value for processing.
Nagamochi-Ibaraki Tree Construction Contd.

- Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.

- $O(n \log n + m) \sim O(m)$ time.
Nagamochi-Ibaraki Tree Construction Contd.

- Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.
- $O(n \log n + m) \sim O(m)$ time.
Nagamochi-Ibaraki Tree Construction Contd.

- Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.
- $O(n \log n + m) \sim O(m)$ time.
Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).
- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.
- The size of the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.
- The time taken for sampling is $O(n \log n + m)$.
Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).
- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.
- The size of the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.
- The time taken for sampling is $O(n \log n + m)$.
Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k_e'}$ (k_e' is the index of the NI tree containing e).
- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.

- The time taken for sampling is $O(n \log n + m)$.
Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).

- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.

- The time taken for sampling is $O(n \log n + m)$.
Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k'_e}$ (k'_e is the index of the NI tree containing e).

- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.

 The size of the sampled graph is $O(n^{\frac{\log^2 n}{\epsilon^2}})$.

- The time taken for sampling is $O(n\log n + m)$.
Effective Resistances

- The Effective Resistance r_e of an edge e is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is r_e.
- r_e is also the fraction of spanning trees containing e.
The Effective Resistance r_e of an edge e is defined as follows:

- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is r_e.
- r_e is also the fraction of spanning trees containing e.
The Effective Resistance r_e of an edge e is defined as follows:

- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is r_e.
- r_e is also the fraction of spanning trees containing e.
Effective Resistances

The Effective Resistance \(r_e \) of an edge \(e \) is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is \(r_e \).
- \(r_e \) is also the fraction of spanning trees containing \(e \).
Effective Resistances

- The Effective Resistance r_e of an edge e is defined as follows:
 - Treat the graph as a network of unit resistances.
 - Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
 - What is the voltage drop across the edge? This is r_e.
 - r_e is also the fraction of spanning trees containing e.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
The Effective Resistance r_e of an edge e is defined as follows:

- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is r_e.
- r_e is also the fraction of spanning trees containing e.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).
- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e’s suffices.
- $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).
- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e’s suffices.
- $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).
- Key Property: $c_e \leq k_e$.
 - Recall that underestimating k_e's suffices.
 - $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).
 - So sampling with effective conductance yields a graph with $O\left(n\frac{\log^2 n}{\epsilon^2}\right)$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).
- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e’s suffices.

- $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).

- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.

- Recall that underestimating k_e’s suffices.

- $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).

- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
Sampling by Effective Conductance

- Sample edge e with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).
- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e’s suffices.
- $\sum_e \frac{1}{c_e} = \sum_e r_e = n - 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.
$c_e \leq k_e$, Why?

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least $1/k_e$. So $c_e \leq k_e$.

- But there are other edges around.

- Shrink these edges.

- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.

- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \leq P(e \in T)$. Rayleigh’s monotonicity principle!
$c_e \leq k_e$, Why?

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least $1/k_e$. So $c_e \leq k_e$.

- But there are other edges around.

- Shrink these edges.

- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.

- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \leq P(e \in T)$. Rayleigh’s monotonicity principle!
$c_e \leq k_e$, Why?

- **Intuition:** If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least $1/k_e$. So $c_e \leq k_e$.

- But there are other edges around.

 - Shrink these edges.

 - Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.

 - Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \leq P(e \in T)$. Rayleigh’s monotonicity principle!
$c_e \leq k_e$, Why?

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least $1/k_e$. So $c_e \leq k_e$.

- But there are other edges around.

- Shrink these edges.

 - Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.

 - Equivalently, given a random spanning tree T, $P(e \in T|f \in T) \leq P(e \in T)$. Rayleigh’s monotonicity principle!
\(c_e \leq k_e, \text{ Why?} \)

- Intuition: If the graph is just \(k \) edge-disjoint paths between the endpoints of \(e \), then each path has resistance at least 1, and \(k_e \) paths pose a resistance of at least \(1/k_e \). So \(c_e \leq k_e \).

- But there are other edges around.

- Shrink these edges.

- Shrinking edge \(f \) is like setting its resistance to 0, so effective resistance of \(e \) should only decrease, i.e., conductance increases.

- Equivalently, given a random spanning tree \(T \),
 \[P(e \in T|f \in T) \leq P(e \in T). \] Rayleigh’s monotonicity principle!
$c_e \leq k_e$, Why?

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least $1/k_e$. So $c_e \leq k_e$.

- But there are other edges around.

- Shrink these edges.

- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.

- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \leq P(e \in T)$. Rayleigh’s monotonicity principle!
A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of e which have a deficit/excess of 1, respectively.

The energy of a feasible flow is $\sum f i_f^2$ over all edges f.

The energy of a feasible flow is also the voltage drop across e, which is the effective resistance of e (easy proof using current conservation).

Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).
Proving Rayleigh’s Monotonicity Principle: Energy

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of e which have a deficit/excess of 1, respectively.

- The energy of a feasible flow is $\sum f \ i_f^2$ over all edges f.

- The energy of a feasible flow is also the voltage drop across e, which is the effective resistance of e (easy proof using current conservation).

- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).
A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of \(e \) which have a deficit/excess of 1, respectively.

The energy of a feasible flow is \(\sum_f i_f^2 \) over all edges \(f \).

The energy of a feasible flow is also the voltage drop across \(e \), which is the effective resistance of \(e \) (easy proof using current conservation).

Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).
Proving Rayleigh’s Monotonicity Principle: Energy

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of e which have a deficit/excess of 1, respectively.

- The energy of a feasible flow is $\sum_f i_f^2$ over all edges f.

- The energy of a feasible flow is also the voltage drop across e, which is the effective resistance of e (easy proof using current conservation).

- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).
A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of e which have a deficit/excess of 1, respectively.

The energy of a feasible flow is $\sum_f i_f^2$ over all edges f.

The energy of a feasible flow is also the voltage drop across e, which is the effective resistance of e (easy proof using current conservation).

Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).
Proof of Rayleigh’s Monotonicity Principle

- If you shrink an edge f, then the least energy flow prior to shrinking f is still a feasible flow after shrinking f.
- The least energy flow after shrinking f then only reduces energy further.
- So the effective resistance of e decreases when an edge f is shrunk.
Proof of Rayleigh’s Monotonicity Principle

- If you shrink an edge f, then the least energy flow prior to shrinking f is still a feasible flow after shrinking f.
- The least energy flow after shrinking f then only reduces energy further.
- So the effective resistance of e decreases when an edge f is shrunk.
Proof of Rayleigh’s Monotonicity Principle

- If you shrink an edge f, then the least energy flow prior to shrinking f is still a feasible flow after shrinking f.

- The least energy flow after shrinking f then only reduces energy further.

- So the effective resistance of e decreases when an edge f is shrunk.
Proof of Rayleigh’s Monotonicity Principle

- If you shrink an edge f, then the least energy flow prior to shrinking f is still a feasible flow after shrinking f.
- The least energy flow after shrinking f then only reduces energy further.
- So the effective resistance of e decreases when an edge f is shrunk.
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge e with probability $\frac{\log n}{e^2 k_{e}''}$ (k_{e}'' is the index of the first NI tree where the endpoints of e are not in the same connected component).

- Consider the graph G'' comprising edges e with $k_{e}'' \geq 2^{i-1}$.

- Any edge e with $k_{e}'' \geq 2^i$ is $\Theta(k_{e}''')$ connected in G''.

- Replicate an edge in G'' with $k_{e}'' \sim 2^j$, $j \geq i - 1$, $n/2^j$ times, to obtain graph H''.

- Any edge e with $k_{e}'' \geq 2^i$ is $\Theta(n)$ connected in H''.

- The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O(X/n)}$.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
Sample edge e with probability $\frac{\log n}{\epsilon^2 k''_e}$ (k''_e is the index of the first NI tree where the endpoints of e are not in the same connected component).

Consider the graph G'' comprising edges e with $k''_e \geq 2^{i-1}$.

Any edge e with $k''_e \geq 2^i$ is $\Theta(k''_e)$ connected in G''.

Replicate an edge in G'' with $k''_e \sim 2^j, j \geq i - 1, n/2^j$ times, to obtain graph H''.

Any edge e with $k''_e \geq 2^i$ is $\Theta(n)$ connected in H''.

The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O\left(\frac{X}{n}\right)}$.
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge e with probability $\frac{\log n}{c^2 k''_e}$ (k''_e is the index of the first NI tree where the endpoints of e are not in the same connected component).

- Consider the graph G'' comprising edges e with $k''_e \geq 2^{i-1}$.

- Any edge e with $k''_e \geq 2^i$ is $\Theta(k''_e)$ connected in G''.

- Replicate an edge in G'' with $k''_e \sim 2^j, j \geq i - 1, n/2^j$ times, to obtain graph H''.

- Any edge e with $k''_e \geq 2^i$ is $\Theta(n)$ connected in H''.

- The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k''_e}$ (k''_e is the index of the first NI tree where the endpoints of e are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \geq 2^{i-1}$.
- Any edge e with $k''_e \geq 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G'' with $k''_e \sim 2^j$, $j \geq i - 1$, $n/2^j$ times, to obtain graph H''.
- Any edge e with $k''_e \geq 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge \(e \) with probability \(\frac{\log n}{\epsilon^2 k''_e} \) (\(k''_e \) is the index of the first NI tree where the endpoints of \(e \) are not in the same connected component).

- Consider the graph \(G'' \) comprising edges \(e \) with \(k''_e \geq 2^{i-1} \).

- Any edge \(e \) with \(k''_e \geq 2^i \) is \(\Theta(k''_e) \) connected in \(G'' \).

- Replicate an edge in \(G'' \) with \(k''_e \sim 2^j, j \geq i - 1, n/2^j \) times, to obtain graph \(H'' \).

- Any edge \(e \) with \(k''_e \geq 2^i \) is \(\Theta(n) \) connected in \(H'' \).

- The number of distinct \(2^i \)-projections in cuts of size \(X \) in \(H'' \) is \(n^\Theta(\frac{X}{n}) \).
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge e with probability $\frac{\log n}{c^2 k''_e}$ (k''_e is the index of the first NI tree where the endpoints of e are not in the same connected component).

- Consider the graph G'' comprising edges e with $k''_e \geq 2^{i-1}$.

- Any edge e with $k''_e \geq 2^i$ is $\Theta(k''_e)$ connected in G''.

- Replicate an edge in G'' with $k''_e \sim 2^j$, $j \geq i - 1$, $n/2^i$ times, to obtain graph H''.

- Any edge e with $k''_e \geq 2^i$ is $\Theta(n)$ connected in H''.

- The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O\left(\frac{X}{n}\right)}$.

Ramesh Hariharan
Graph Sparsification Maintaining Cuts
Another Nagamochi-Ibaraki Sampling Scheme

- Sample edge e with probability $\frac{\log n}{\epsilon^2 k_e''}$ (k_e'' is the index of the first NI tree where the endpoints of e are not in the same connected component).

- Consider the graph G'' comprising edges e with $k_e'' \geq 2^{i-1}$.

- Any edge e with $k_e'' \geq 2^i$ is $\Theta(k_e'')$ connected in G''.

- Replicate an edge in G'' with $k_e'' \sim 2^j$, $j \geq i - 1$, $n/2^j$ times, to obtain graph H''.

- Any edge e with $k_e'' \geq 2^i$ is $\Theta(n)$ connected in H''.

- The number of distinct 2^i-projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.
Another Nagamochi-Ibaraki Sampling Scheme Contd.

- Consider one cut. How much deviation does the 2^i-projection contribute?

$$\epsilon \sum_{j \geq i-1} \frac{n_j \cdot \frac{n}{2^j}}{n} \cdot 2^j = \epsilon \sum_{j \geq i-1} \frac{n_j}{2^{j-i}}.$$

- Overall deviation

$$\epsilon \sum_{i \geq 0} \sum_{j \geq i-1} \frac{n_j}{2^{j-i}} = O(\epsilon \sum_{j \geq 0} n_j) = O(\epsilon \Delta).$$

A Cut of size Δ
Another Nagamochi-Ibaraki Sampling Scheme Contd.

- Consider one cut. How much deviation does the 2^i-projection contribute?

\[\epsilon \sum_{j \geq i-1} \frac{n_j n}{2^j} \cdot 2^i = \epsilon \sum_{j \geq i-1} \frac{n_j}{2^{j-i}}. \]

- Overall deviation

\[\epsilon \sum_{i=0}^{\infty} \sum_{j \geq i-1} \frac{n_j}{2^{j-i}} = O(\epsilon \sum_{j \geq 0} n_j) = O(\epsilon \Delta) \]
Consider one cut. How much deviation does the 2^i-projection contribute?

$$\epsilon \sum_{j \geq i-1} \frac{n_j \cdot \frac{n}{2^j}}{n} \cdot 2^i = \epsilon \sum_{j \geq i-1} \frac{n_j}{2^{j-i}}.$$

Overall deviation

$$\epsilon \sum_{i=0}^{\infty} \sum_{j \geq i-1} \frac{n_j}{2^{j-i}} = O(\epsilon \sum_{j \geq 0} n_j) = O(\epsilon \Delta).$$
Consider one cut. How much deviation does the 2^i-projection contribute?

$$\epsilon \sum_{j \geq i-1} \frac{n_j \cdot \frac{n}{2^j}}{n} \cdot 2^i = \epsilon \sum_{j \geq i-1} \frac{n_j}{2^{j-i}}.$$

Overall deviation

$$\epsilon \sum_{i=0}^{\infty} \sum_{j \geq i-1} \frac{n_j}{2^{j-i}} = O(\epsilon \sum_{j \geq 0} n_j) = O(\epsilon \Delta).$$
Sampling by Strong Connectivity

- Sample edge e with probability $\frac{\log n}{\epsilon^2 sc_e}$ (sc_e is the strong connectivity of e).
- Consider the graph G'''' comprising edges e with $sc_e \geq 2^i$.
- Any edge e with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G''''.
- So the same proof holds.
- $\sum_e sc_e \leq n - 1$, so this yields an $O(n \frac{\log n}{\epsilon^2})$ size sparsifier.
Sampling by Strong Connectivity

- Sample edge \(e \) with probability \(\frac{\log n}{\epsilon^2 sc_e} \) (\(sc_e \) is the strong connectivity of \(e \)).
- Consider the graph \(G''' \) comprising edges \(e \) with \(sc_e \geq 2^i \).
- Any edge \(e \) with \(sc_e \geq 2^i \) is \(\Theta(sc_e) \) connected in \(G''' \).
- So the same proof holds.
- \(\sum_e sc_e \leq n - 1 \), so this yields an \(O(n \frac{\log n}{\epsilon^2}) \) size sparsifier.
Sampling by Strong Connectivity

- Sample edge e with probability $\frac{\log n}{c^2 sc_e}$ (sc_e is the strong connectivity of e).

- Consider the graph G''' comprising edges e with $sc_e \geq 2^i$.

- Any edge e with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.

- So the same proof holds.

- $\sum_e sc_e \leq n - 1$, so this yields an $O(n \frac{\log n}{c^2})$ size sparsifier.
Sampling by Strong Connectivity

- Sample edge e with probability $\frac{\log n}{c^2 s_{ce}}$ (s_{ce} is the strong connectivity of e).
- Consider the graph G''' comprising edges e with $s_{ce} \geq 2^i$.
- Any edge e with $s_{ce} \geq 2^i$ is $\Theta(s_{ce})$ connected in G'''.
- So the same proof holds.
- $\sum_e s_{ce} \leq n - 1$, so this yields an $O(n\frac{\log n}{c^2})$ size sparsifier.
Sampling by Strong Connectivity

- Sample edge e with probability $\frac{\log n}{\epsilon^2 s_e}$ (s_e is the strong connectivity of e).
- Consider the graph G''' comprising edges e with $s_e \geq 2^i$.
- Any edge e with $s_e \geq 2^i$ is $\Theta(s_e)$ connected in G'''.
- So the same proof holds.
- $\sum_e s_e \leq n - 1$, so this yields an $O(n\frac{\log n}{\epsilon^2})$ size sparsifier.
Sampling by Strong Connectivity

- Sample edge \(e \) with probability \(\frac{\log n}{\epsilon^2 sce} \) (\(sce \) is the strong connectivity of \(e \)).

- Consider the graph \(G''' \) comprising edges \(e \) with \(sce \geq 2^i \).

- Any edge \(e \) with \(sce \geq 2^i \) is \(\Theta(sce) \) connected in \(G''' \).

- So the same proof holds.

- \(\sum_e sce \leq n - 1 \), so this yields an \(O(n\frac{\log n}{\epsilon^2}) \) size sparsifier.
Connectivity

A Cut of size Δ
$\text{dev} = \Delta$

NI Index 1

A Cut of size Δ
$\text{dev} = n_i + n_{i-1}$

NI Index 2

A Cut of size Δ
$\text{dev} = \sum_{j=i-1}^{\infty} \frac{n_j}{2^j}$
Other Results

- An $O(n^{\log n})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy).

- Sampling by conductance yields an $O(n^{\log n})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.

- An $O(n)$ size sparsifier (Batson, Spielman, Srivastava).
Other Results

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)
- Sampling by conductance yields an $O(n \frac{\log n}{\epsilon^2})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.
- An $O(\frac{n}{\epsilon^2})$ size sparsifier (Batson, Spielman, Srivastava).
Other Results

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)

- Sampling by conductance yields an $O(n \frac{\log n}{\epsilon^2})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.

- An $O(\frac{n}{\epsilon^2})$ size sparsifier (Batson, Spielman, Srivastava).
An $O(n^{\log n / \epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy).

Sampling by conductance yields an $O(n^{\log n / \epsilon^2})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.

An $O(\frac{n}{\epsilon^2})$ size sparsifier (Batson, Spielman, Srivastava).
Open Problem

- Show that sampling by connectivity yields an $O(n^{\log n/\epsilon^2})$ size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.
Open Problem

- Show that sampling by connectivity yields an $O(n^{\log n})$ size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.
Open Problem

- Show that sampling by connectivity yields an $O(n^{\log n/\epsilon^2})$ size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.
THANK YOU
THANK YOU