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@ Graph G with n nodes and m edges.
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@ Unweighted for this talk (weighted cases work similarly).
@ m>> nlogn

@ Obtain G’ with fewer edges but with all cuts of G preserved
approximately.
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The Setting

@ Graph G with n nodes and m edges.
@ Unweighted for this talk (weighted cases work similarly).
@ m>> nlogn

@ Obtain G’ with fewer edges but with all cuts of G preserved
approximately.

@ G will be weighted.
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An Example

@ Two nodes with m edges connected the two.
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An Example

@ Two nodes with m edges connected the two.

@ Replace by a single edge of weight m.
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An Example

@ Two nodes with m edges connected the two.
@ Replace by a single edge of weight m.

@ The general case is more complex because there are many cuts
in a graph.
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A Randomized Approach: Benczur, Karger

@ Sample each edge e with probability p. and give it weight 1/pe.
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A Randomized Approach: Benczur, Karger

@ Sample each edge e with probability p. and give it weight 1/pe.

@ For any cut, its expected weight in the new graph G’ equals its
weight in G.
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A Randomized Approach: Benczur, Karger

@ Sample each edge e with probability p. and give it weight 1/pe.

@ For any cut, its expected weight in the new graph G’ equals its
weight in G.

@ Do ALL cuts in G have weight in G’ that is (1 + ¢€) of the
corresponding weight in G, w.h.p?
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A Randomized Approach: Benczur, Karger

@ Sample each edge e with probability p. and give it weight 1/pe.

@ For any cut, its expected weight in the new graph G’ equals its
weight in G.

@ Do ALL cuts in G have weight in G’ that is (1 + ¢€) of the
corresponding weight in G, w.h.p?

@ And how many edges does G’ have?
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What should pe be?

® pe ~ z:? (de is min of the degrees
of e’s endpoints). NO!
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What should pe be?

® pe ~ z:? (de is min of the degrees
of e’s endpoints). NO!

® pe ~ 1 > -7 (ke is the connectivity
of e). NO!

Ramesh Hariharan Graph Sparsification Maintaining Cuts



What should pe be?

® pe ~ z:? (de is min of the degrees
of e’s endpoints). NO!

@ per~ kle > dle? (ke is the connectivity ”G— ‘PW
of ). NO! Ne—eo e/
@ po~ ELZKL? MAYBE! .
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Chernoff Bound for Sampled Cut Weight.
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sampling probability.
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Chernoff Bound for Sampled Cut Weight.

@ Focus on a particular cut of size A.

@ Group edges in this cut into doubling value categories based on
sampling probability.

° Colnsider one group S of edges with sampling probabilities
~ 2901
e 20"
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Chernoff Bound for Sampled Cut Weight.

@ Focus on a particular cut of size A.

@ Group edges in this cut into doubling value categories based on
sampling probability.
° Colnsider one group S of edges with sampling probabilities
~ logni1
e 20"

@ Forany A’ > |S|,

EZMA/)

Pr(|Ssamp — [S|] > eA') < PG —o(4)

=n
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Chernoff Bound for Sampled Cut Weight.

@ Focus on a particular cut of size A.

@ Group edges in this cut into doubling value categories based on
sampling probability.
° Colnsider one group S of edges with sampling probabilities
~ logni1
e 20"

@ Forany A’ > |S|,

EZMA/)

Pr(|Ssamp — [S|] > eA') < PG —o(4)

=n

@ We need ¢A’ to add up at most €A over all groups.
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Chernoff Bound for Sampled Cut Weight.

@ Focus on a particular cut of size A.

@ Group edges in this cut into doubling value categories based on
sampling probability.
° Colnsider one group S of edges with sampling probabilities
~ logni1
e 20"

@ Forany A’ > |S|,

EZMA/)

Pr(|Ssamp — [S|] > eA') < PG —o(4)

=n

@ We need ¢A’ to add up at most €A over all groups.

@ And we need n_e(%) to be small enough to offset the number of
such groups S over all cuts.
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How many cuts?

@ Focus on a particular cut of size A, and the subset of edges with
connectivity ~ 2'.
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How many cuts?

@ Focus on a particular cut of size A, and the subset of edges with
connectivity ~ 2.

@ How many such distinct sets of edges exist, over all cuts?
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How many cuts?

@ Focus on a particular cut of size A, and the subset of edges with
connectivity ~ 2.

@ How many such distinct sets of edges exist, over all cuts?

@ n9A/2) 1 will show later.
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2927.
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2927.

@ For this group,

Pr(|Ssamp — |S| > €eA) < n_e(ﬁ)
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2527.

@ For this group,

Pr(|Ssamp — |S| > €eA) < n_e(ﬁ)

@ The number of distinct groups of edges S over all cuts of size A is
A
n°G) (to be shown).
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2527.

@ For this group,

Pr(|Ssamp — |S| > €eA) < n_e(ﬁ)

@ The number of distinct groups of edges S over all cuts of size A is
A
n°G) (to be shown).

@ Soin every cut of size A, the corresponding group contributes a
deviation of €eA.
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2527.

@ For this group,

Pr(|Ssamp — |S| > €eA) < n_e(ﬁ)

@ The number of distinct groups of edges S over all cuts of size A is
A
n°G) (to be shown).

@ Soin every cut of size A, the corresponding group contributes a
deviation of €eA.

@ There are at most log n groups in each cut.
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Putting it Together

@ Focus on a particular cut of size A, and the group S of edges with

sampling probabilities ~ '2527.

@ For this group,

Pr(|Ssamp — |S| > €eA) < n_e(ﬁ)

@ The number of distinct groups of edges S over all cuts of size A is
A
n°G) (to be shown).

@ Soin every cut of size A, the corresponding group contributes a
deviation of €eA.

@ There are at most log n groups in each cut.

@ So every cut has deviation at most eA log n. But we need Al
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Another Attempt
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Another Attempt

log® n
Ezke )

@ Up sampling probabilities to ~

@ Focus on a particular cut of size A, and the set S of edges with

sampling probabilities ~ log? n
pling p 2407 "
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Another Attempt

log® n
Ezke )

@ Up sampling probabilities to ~

@ Focus on a particular cut of size A, and the set S of edges with

sampling probabilities ~ log? n
pling p 2407 "

o(2)

A _
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Another Attempt

log® n
Ezke )

@ Up sampling probabilities to ~

@ Focus on a particular cut of size A, and the set S of edges with

sampling probabilities ~ log? n
pling p 2407 "

o(2)

A _

@ The number of such groups S over all cuts of size A is nCG),
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Another Attempt

log® n
Ezke )

@ Up sampling probabilities to ~

@ Focus on a particular cut of size A, and the set S of edges with

sampling probabilities ~ log? n
pling p 2407 "

o(2)

A _
Pr(|Ssamp — |S|| > 6@) <n

@ The number of such groups S over all cuts of size A is nCG),

@ So in every cut of size A, the corresponding group contributes a
deviation of e%.
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Another Attempt

log® n
Ezke )

@ Up sampling probabilities to ~

@ Focus on a particular cut of size A, and the set S of edges with

sampling probabilities ~ log? n
pling p 2407 "

o(2)

A _

@ The number of such groups S over all cuts of size A is nCG),

@ So in every cut of size A, the corresponding group contributes a
deviation of e%.

@ So every cut has deviation at most eA over all log n groups.
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Expected Size of Sampled Graph
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Expected Size of Sampled Graph

® We show that >°, - < n—1. So the T e
expected number of edges in the Witness for e, ik, \1
sampled graph is < '022 "(n—1). e ¥

/’O ,f
'y ’
P "o,
@
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Expected Size of Sampled Graph

® We show that >°, - < n—1. So the R e
expected number of edges in the Witnessf for e, wy=k, \1 .
sampled graph is < '022 "(n—1). -

/
B .
4

/,O/
@ Consider the Gomory-Hu (GH) tree. %

T e %
Each Gomory-Hu edge f has weight ®
wr equal to the number of graph
edges that cross it. e

”
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Expected Size of Sampled Graph

® We show that >°, - < n—1. So the R e
expected number of edges in the Witnessf for e, wy=k, \1 .
sampled graph is < '022 "(n—1). e ¥

/’O ,I

@ Consider the Gomory-Hu (GH) tree. e - “o %6

Each Gomory-Hu edge f has weight
wr equal to the number of graph .-
edges that cross it. ®

@ e crosses a witness Gomory-Hu
edge with weight ke.
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Expected Size of Sampled Graph

® We show that >°, - < n—1. So the R e
expected number of edges in the Witnessf for e, wy=k, \1 .
sampled graph is < '022 "(n—1). e ¥

/’O ,I

@ Consider the Gomory-Hu (GH) tree. e - “o %6

Each Gomory-Hu edge f has weight
wr equal to the number of graph .-
edges that cross it. ®

@ e crosses a witness Gomory-Hu
edge with weight ke.

© Y L <Y wpx1/wp=n—1.
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Wrapping Up: Sampling by Connectivity
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Wrapping Up: Sampling by Connectivity
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Wrapping Up: Sampling by Connectivity

log® n
2ke

@ Sample edge e with probability (ke is the connectivity of e).
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Wrapping Up: Sampling by Connectivity

@ Sample edge e with probability '°9 4 " (ke is the connectivity of e).

@ The expected number of edges in the sampled graph is O(n '°9 L))
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Wrapping Up: Sampling by Connectivity

@ Sample edge e with probability '°9 4 " (ke is the connectivity of e).

@ The expected number of edges in the sampled graph is O(n '°9 L))

@ And each cut is preserved within a (1 + €) multiplicative factor,
with inverse polynomial failure probability.
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@ Consider a cut of size A.
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@ Consider a cut of size A.

@ Define its 2/-projection to be the subset of edges with connectivity
~ 2
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@ Consider a cut of size A.

@ Define its 2/-projection to be the subset of edges with connectivity
~ 2

@ How many distinct 2/_projections exist over all cuts of size A? We
show nO(&/2)
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Recall Karger’s Cut Counting Method
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Recall Karger’s Cut Counting Method

@ Randomly choose edges and compress.
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Recall Karger’s Cut Counting Method

@ Randomly choose edges and compress.

@ Let k be the min-cut size.
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Recall Karger’s Cut Counting Method

@ Randomly choose edges and compress.

@ Let k be the min-cut size.

@ Probability of being left with a particular cut of size A is
A A A
>1--—)1--—). .. (1 - —-—
= nk/2)( (n—1)k/2) ( (2TA+1)/</2)

n—(n—28 —1)-2A/k
2 +1

n—2A/k)(n—1 —2A/k
n n—1

> ( ) ( )

—2a
>Nk
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Recall Karger’s Cut Counting Method

@ Randomly choose edges and compress.

@ Let k be the min-cut size.

@ Probability of being left with a particular cut of size A is
A A A
>1--—)1--—). .. (1 - —-—
= nk/2)( (n—1)k/2) ( (2TA+1)/</2)

n—(n—28 —1)-2A/k
2 +1

n—2A/k)(n—1 —2A/k
n n—1

> ( ) ( )

—2a
>Nk

@ So the number of distinct cuts of size A in a graph with min-cut k
is at most n .
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Counting 2/-projections
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Counting 2/-projections

@ Randomly choose edges and compress.
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Counting 2/-projections

@ Randomly choose edges and compress.

@ If min-cut was 2/ then done.
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Counting 2/-projections

@ Randomly choose edges and compress.

@ If min-cut was 2/ then done.

@ What if there are vertices with degree < 2/?
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Counting 2/-projections

@ Randomly choose edges and compress.

@ If min-cut was 2' then done.
@ What if there are vertices with degree < 2/?

@ Edges incident on such vertices are not part of a 2/-projection.
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Counting 2/-projections

@ Randomly choose edges and compress.

@ If min-cut was 2’ then done.

@ What if there are vertices with degree < 2/?

@ Edges incident on such vertices are not part of a 2/-projection.

@ So split-off these vertices.
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Splitting Off
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Splitting Off

@ Edges incident on a vertex v can be
paired and ’shortcut’. - s
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Splitting Off
@ Edges incident on a vertex v can be - —/-,O"r
paired and 'shortcut’. T s
@ So v gets removed from the graph. ot
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Splitting Off
@ Edges incident on a vertex v can be
paired and ’shortcut’. - s
@ So v gets removed from the graph. ’

@ The connectivity of edges with ‘ .
connectivity >= 2’ does not fall below 2'.
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Splitting Off

@ Edges incident on a vertex v can be =P
paired and 'shortcut’. - /!

@ So v gets removed from the graph. ,’

@ The connectivity of edges with ‘ .
connectivity >= 2’ does not fall below 2'.

@ And no cut increases in size (to see this,
note that any edge across a cut after
splitting-off must have a sub-edge across
the cut before splitting-off), so a cut of size
A remains of size at most A.
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Why Splitting Off?
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Why Splitting Off?

@ Compressing an edge causes potential - ’
increase in the cut size A. ,
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Why Splitting Off?

. ) -»Y

@ Compressing an edge causes potential e T L,

increase in the cut size A. /

£
r

@ Deleting an edge causes potential /

decrease in connectivity 2'. R4

#
u
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Why Splitting Off?

. ) -»Y
@ Compressing an edge causes potential e T L,
increase in the cut size A. /
£
r
@ Deleting an edge causes potential /
decrease in connectivity 2'. R4

@ Adding an edge causes potential increase
in the cut size A.
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Why Splitting Off?

. : -
@ Compressing an edge causes potential e T L,
increase in the cut size A. /
£
r
@ Deleting an edge causes potential .
. . H s
decrease in connectivity 2'. R4

@ Adding an edge causes potential increase
in the cut size A.

@ Only splitting ensures that connnectivity 2/
does not drop and cut size A does not
increase.
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Back to counting 2/-projections

Graph Sparsification Maintaining Cuts



Back to counting 2/-projections

@ Randomly choose edges and compress.
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Back to counting 2/-projections

@ Randomly choose edges and compress.

@ If a vertex with degree < 2' is created, split it off.
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Back to counting 2/-projections

@ Randomly choose edges and compress.

@ If a vertex with degree < 2' is created, split it off.

@ Edges in any 2'-projection stay 2/ connected.
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Back to counting 2/-projections

@ Randomly choose edges and compress.

@ If a vertex with degree < 2' is created, split it off.
@ Edges in any 2'-projection stay 2/ connected.

@ So such edges stay intact even as vertices are split off.
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Back to counting 2/-projections

@ Randomly choose edges and compress.

@ If a vertex with degree < 2' is created, split it off.
@ Edges in any 2'-projection stay 2/ connected.
@ So such edges stay intact even as vertices are split off.

@ Probability of being left with a particular 2/-projection (of cuts of
size A) is

> (1= A/n2Y1 = A/(n—1)2)... > nB/?
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Back to counting 2/-projections

@ Randomly choose edges and compress.

@ If a vertex with degree < 2' is created, split it off.
@ Edges in any 2'-projection stay 2/ connected.
@ So such edges stay intact even as vertices are split off.

@ Probability of being left with a particular 2/-projection (of cuts of
size A) is

> —A/mY1—A/(n—1)2))... > n 22

@ The number of distinct 2/-projections over all cuts of size A is
o(%)
n-tai’,
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Back to Splitting Off
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Back to Splitting Off

@ We need to prove that: - /
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Back to Splitting Off

-0Y
@ We need to prove that: --mnTT ,,’/
@ Given edge uv, there exists vw such Rt
that:
,/
u
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Back to Splitting Off

@ We need to prove that: - /

@ Given edge uv, there exists vw such ‘
that: .

@ Removing uv, vw and adding uw
ensures the following: u
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Back to Splitting Off

@ We need to prove that: - y

@ Given edge uv, there exists vw such !
that: ’

@ Removing uv, vw and adding uw
ensures the following: u

@ All other edges with connectivity
a = 2' or higher remain at least «
connected.
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The Challenge with Splitting Off /W

aora+l 2 a-2ora-1
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The Challenge with Splitting Off /W

@ The only cuts that reduce in size are g
those which split u and v.

aora+l 2 a-2ora-1
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The Challenge with Splitting Off /W

@ The only cuts that reduce in size are g
those which split u and v.

@ If there exists such a cut of size o or
a + 1, it will drop below « iff w is on
the same size as u in this cut.

aora+l 2 a-2ora-1
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The Challenge with Splitting Off /W

@ The only cuts that reduce in size are g
those which split u and v.

@ If there exists such a cut of size o or
a + 1, it will drop below « iff w is on
the same size as u in this cut.

aora+l 2 a-2ora-1

@ A problem if such a cut splits a o /f
critical vertex pair b, b’ whose 4@ o,
connectivity must be maintained at

a. ,,C/
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Proof of Splitting Off

aora+l 2 a-2ora-1

-/ V

o,
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Proof of Splitting Off

@ v must have a neighbour on the v

. . /
right side of the cut. N o 7)

@ o,

aora+l 2 a-2ora-1
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Proof of Splitting Off

aora+l 2 a-2ora-1

@ v must have a neighbour on the e
right side of the cut. | 7)
. @ o,
@ Otherwise, move v to the left and
the cut size falls below a. C/
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Proof of Splitting Off

@ v must have a neighbour on the
right side of the cut.

@ Otherwise, move v to the left and
the cut size falls below a.

@ So band b’ are less than «
connected, a contradiction.

aora+l 2 a-2ora-1

-/ V

o,
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Proof of Splitting Off Contd. aor o+l
VN /)V
@

aora+l
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Proof of Splitting Off Contd. aora+l

.

v
@ But how do we find a w that is /)
on the same side as v in all
critical cuts?

aora+l
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aor a+l

Proof of Splitting Off Contd.

v
@ But how do we find a w that is ® /)
on the same side as v in all b
critical cuts?

aora+l

@ What if there are crossing J

critical cuts? . s
\ - a
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aora+l

Critical Cuts do /0

not cross.

aoratl ¢ ¢, +d,+d, =eor arl
“ tey+di+d,=aoratl
G +ey+d; >=a
a. C;+e;+d; >=a
— R
=>d,=1
Cy cHctd, = a
Ciietd = a

= €3=C4,d; =1

@ a = ¢ e +d, is odd

€; -

C2




aora+l

Critical Cuts do y /OV

not cross.

aora+l ¢ opco+d,+d,=aor atl
o If all vertices J C,+¢s+dy+dy = aor arl
G +ey+d; >=a
have even g @ ctetd —a
degrees! : dy>=1
=d,=1
Cs cHctd, = a
cHetd,=a
= €37C,d; =1
d; d = cytc,+d; is odd
Cy Cz
()
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Splitting Off: Wrapping Up.
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Splitting Off: Wrapping Up.

@ How do we handle odd degrees?
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Splitting Off: Wrapping Up.

@ How do we handle odd degrees?

@ Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Splitting Off: Wrapping Up.

@ How do we handle odd degrees?

@ Simply double each edge! Cut sizes and connectivities
double. Still good enough to estimate number of cuts.

@ And splitting off and edge compression preserve evenness.
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Computing Sampling Probabilities
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Computing Sampling Probabilities

@ It suffices to underestimate edge connectivites, i.e., compute
K, < kKe.
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Computing Sampling Probabilities

@ It suffices to underestimate edge connectivites, i.e., compute
K, < kKe.

@ Because sampling probabilities are used only in the Chernoff
bound, which has the form:

Pr(|Ssamp — |S|| > ex) < n—@(ﬁ)
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Sampling using Nagamochi-lbaraki Trees
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Sampling using Nagamochi-lbaraki Trees

@ A collection of edge-disjoint forests.
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Sampling using Nagamochi-lbaraki Trees

@ A collection of edge-disjoint forests.

@ If uand v are connected in forest /, they are also connected in
forests 1...7 —1.

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Sampling using Nagamochi-lbaraki Trees

@ A collection of edge-disjoint forests.

@ If uand v are connected in forest /, they are also connected in
forests 1...7 —1.

o Ifedge e=uvisintree i, then i = kj < ke.
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Sampling using Nagamochi-lbaraki Trees

@ A collection of edge-disjoint forests.

@ If uand v are connected in forest /, they are also connected in
forests 1...7 —1.

o Ifedge e=uvisintree i, then i = kj < ke.

log® n
€2k},

@ So sampling with probability
w.h.p.

preserves all cuts within 1 + ¢
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Sampling using Nagamochi-lbaraki Trees

@ A collection of edge-disjoint forests.

@ If uand v are connected in forest /, they are also connected in
forests 1...7 —1.

o Ifedge e=uvisintree i, then i = kj < ke.

log® n
€2k},

@ So sampling with probability
w.h.p.

preserves all cuts within 1 + ¢

° Zklé < nlog n (as opposed to 3 - < n)

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Sampling using Nagamochi-lbaraki Trees

A collection of edge-disjoint forests.

If u and v are connected in forest /, they are also connected in
forests 1...7 —1.

If edge e = uvisintree i, then i = Kk}, < ke.

log® n
€2k},

So sampling with probability
w.h.p.

preserves all cuts within 1 + ¢

> klé < nlog n (as opposed to > | kle <n)

Expected number of edges in the sparsified graph

log® n 1 _ _log®n
€2 Ze/Té_ 2
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Nagamochi-lbaraki Sampling: Tighter Analysis

Graph Sparsification Maintaining Cuts



Nagamochi-lbaraki Sampling: Tighter Analysis

@ Define the 2/-projection of a cut to be the subset of its edges with
k., ~ 2.
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Define the 2/-projection of a cut to be the subset of its edges with
k., ~ 2.

@ Consider those cuts C where the size of the 2/-projection plus the
size of 2/~ '-projection is A;.
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Define the 2/-projection of a cut to be the subset of its edges with
K, ~2'.
@ Consider those cuts C where the size of the 2/-projection plus the

size of 2/~ '-projection is A;.

@ We show that the number of distinct 2/-projections over cuts in C

. 2
is n°(z).
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Define the 2/-projection of a cut to be the subset of its edges with
k., ~ 2.

@ Consider those cuts C where the size of the 2/-projection plus the
size of 2/~ '-projection is A;.

@ We show that the number of distinct 2/-projections over cuts in C
Aj
is n°G),
A
@ Note contrast from before where we had n°G/).
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Nagamochi-lbaraki Sampling: Tighter Analysis
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Go back to sampling edge e with probability '029;(7 (k. is the index

of the NI tree containing e).
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Go back to sampling edge e with probability '029;(7 (k. is the index

of the NI tree containing e).

. Ly}
@ The number of distinct 2'-projections over cuts in C is n°G),
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Go back to sampling edge e with probability '029;(7 (k. is the index

of the NI tree containing e).
]

@ The number of distinct 2/-projections over cuts in C is n°G),

@ For a particular 2/-projection S,

4j
Pr(|Ssamp —|S|| > €Aj) < n—@(;)
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Go back to sampling edge e with probability '029;(7 (k. is the index

of the NI tree containing e).

. Ly}
@ The number of distinct 2'-projections over cuts in C is n°G),

@ For a particular 2/-projection S,

4j
Pr(|Ssamp —|S|| > €Aj) < n—@(;)

@ For any given cut, >, A; < 2A.
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Nagamochi-lbaraki Sampling: Tighter Analysis

@ Go back to sampling edge e with probability '029;(7 (k. is the index

of the NI tree containing e).
]

@ The number of distinct 2/-projections over cuts in C is n°G),

@ For a particular 2/-projection S,

4j
Pr(|Ssamp —|S|| > €Aj) < n—@(;)

@ For any given cut, >, A; < 2A.

@ So every cut has deviation at most 2¢A!

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Bounding the number of 2/-projections
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Bounding the number of 2/-projections

@ Take subgraph G’ formed by edges in NI trees 2/-2 ... 2.
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Bounding the number of 2/-projections

@ Take subgraph G’ formed by edges in NI trees 2/-2 ... 2.

@ Key Property: An edge in Nl trees 2-1 ... 2/ is at least 2/—2
connected in G'.
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Bounding the number of 2/-projections

@ Take subgraph G’ formed by edges in NI trees 2/-2 ... 2.

@ Key Property: An edge in Nl trees 2-1 ... 2/ is at least 2/—2
connected in G'.

. Aj
@ So the number of 2'-projections in cuts of size A; in G’ is n%G=2),
as needed.
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Nagamochi-lbaraki Tree Construction
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Nagamochi-lbaraki Tree Construction

@ Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).
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Nagamochi-lbaraki Tree Construction

@ Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

@ For each vertex v, define /(v) as the index of the first NI tree
where v is singleton.
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Nagamochi-lbaraki Tree Construction

@ Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

@ For each vertex v, define /(v) as the index of the first NI tree
where v is singleton.

@ For each edge e = uv processed, add e to tree min(/(u), /(v)).
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Nagamochi-lbaraki Tree Construction

@ Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

@ For each vertex v, define /(v) as the index of the first NI tree
where v is singleton.

@ For each edge e = uv processed, add e to tree min(/(u), /(v)).

@ Increment the smaller of /(u), /(v) by 1; if both are equal,
increment both.

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Nagamochi-lbaraki Tree Construction

@ Process vertices in (a to be specified) order; for the chosen
vertex, add all incident edges (these are incident on yet
unprocessed vertices).

@ For each vertex v, define /(v) as the index of the first NI tree
where v is singleton.

@ For each edge e = uv processed, add e to tree min(/(u), /(v)).

@ Increment the smaller of /(u), /(v) by 1; if both are equal,
increment both.

@ Successively pick the vertex with the largest /() value for
processing.
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Nagamochi-lbaraki Tree Construction

Contd. .
e
[ ]
This edge will be
/ added l:!e-'.fﬂre i
¢ o
®
i
e
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Nagamochi-lbaraki Tree Construction

Contd. é @
°
@ Key invariant: If a new connected
component is created in a tree, it e
stays separate even after all future . .
. This edge will be
edge add't'ons. / added before e
e o _—
S
.-"e
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Nagamochi-lbaraki Tree Construction

Contd. é o

@ Key invariant: If a new connected
component is created in a tree, it
stays sep.a.rate even after all future B rhisedge wil be
edge additions. \ added before e

6 o —

@ O(nlogn+ m) ~ O(m) time.
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Nagamochi-lbaraki Sampling: Wrap Up
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Nagamochi-lbaraki Sampling: Wrap Up

@ Sample edge e with probability '€°2ng (k. is the index of the NI tree
containing e).
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Nagamochi-lbaraki Sampling: Wrap Up

@ Sample edge e with probability '€°2ng (k. is the index of the NI tree
containing e).

@ Every cut is preserved within a 1 + 2¢ factor, with inverse
polynomial failure probability.
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Nagamochi-lbaraki Sampling: Wrap Up

@ Sample edge e with probability '°29k7 (k. is the index of the NI tree
containing e).

@ Every cut is preserved within a 1 + 2¢ factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n 'og )

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Nagamochi-lbaraki Sampling: Wrap Up

@ Sample edge e with probability "’3{7 (k. is the index of the NI tree
containing e).

@ Every cut is preserved within a 1 + 2¢ factor, with inverse
polynomial failure probability.

The size of the sampled graph is O(n 'og )

@ The time taken for sampling is O(nlog n + m).
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Effective Resistances
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Effective Resistances

@ The Effective Resistance r. of an edge e is defined as follows:
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Effective Resistances

@ The Effective Resistance r. of an edge e is defined as follows:

@ Treat the graph as a network of unit resistances.
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Effective Resistances

@ The Effective Resistance r. of an edge e is defined as follows:

@ Treat the graph as a network of unit resistances.

@ Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.
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Effective Resistances

@ The Effective Resistance r. of an edge e is defined as follows:

@ Treat the graph as a network of unit resistances.

@ Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

@ What is the voltage drop across the edge? This is re.
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Effective Resistances

@ The Effective Resistance r. of an edge e is defined as follows:
@ Treat the graph as a network of unit resistances.

@ Push unit current into one endpoint of the edge, take unit current
out of the other endpoint.

@ What is the voltage drop across the edge? This is re.

@ re is also the fraction of spanning trees containing e.
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Sampling by Effective Conductance
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Sampling by Effective Conductance

log? n
€2Ce

@ Sample edge e with probability (where ce = 1/re).
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Sampling by Effective Conductance

°n
Ce

o Sample edge e with probability %" (where ce = 1/re).

@ Key Property: ce < k.
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Sampling by Effective Conductance

°n
Ce

o Sample edge e with probability %" (where ce = 1/re).
@ Key Property: ce < k.

@ Recall that underestimating ke’s suffices.
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Sampling by Effective Conductance

°n
Ce

o Sample edge e with probability %" (where ce = 1/re).
@ Key Property: ce < k.
@ Recall that underestimating ke’s suffices.

>, Cie =Y ofe = n— 1 (use the spanning tree fraction
interpretation).
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Sampling by Effective Conductance

(where Ce = 1/re).

@ Key Property: ce < k.
@ Recall that underestimating ke’s suffices.

>, Cie =Y ofe = n—1 (use the spanning tree fraction
interpretation).

@ So sampling with effective conductance yields a graph with

O(nIog ™) edges that preserves all cuts within a (1 + ¢) factor,
w.h.p.
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Ce < ke, Why?

@ Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and k.
paths pose a resistance of at least 1/ke. So Ce < ke.
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Ce < ke, Why?

@ Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and k.
paths pose a resistance of at least 1/ke. So Ce < ke.

@ But there are other edges around.
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Ce < ke, Why?

@ Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and k.
paths pose a resistance of at least 1/ke. So Ce < ke.

@ But there are other edges around.

@ Shrink these edges.
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Ce < ke, Why?

@ Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and k.
paths pose a resistance of at least 1/ke. So Ce < ke.

@ But there are other edges around.
@ Shrink these edges.

@ Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.
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Ce < ke, Why?

@ Intuition: If the graph is just k edge-disjoint paths between the
endpoints of e, then each path has resistance at least 1, and k.
paths pose a resistance of at least 1/ke. So Ce < ke.

@ But there are other edges around.
@ Shrink these edges.

@ Shrinking edge f is like setting its resistance to 0, so effective
resistance of e should only decrease, i.e., conductance increases.

@ Equivalently, given a random spanning tree T,
P(ee T|f € T) < P(e € T). Rayleigh’s monotonicity principle!
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Proving Rayleigh’s Monotonicity Principle: Energy
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Proving Rayleigh’s Monotonicity Principle: Energy

@ A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.
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Proving Rayleigh’s Monotonicity Principle: Energy

@ A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

@ The energy of a feasible flow is ", i,2 over all edges f.
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Proving Rayleigh’s Monotonicity Principle: Energy

@ A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

@ The energy of a feasible flow is ", i,2 over all edges f.

@ The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).
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Proving Rayleigh’s Monotonicity Principle: Energy

@ A feasible flow is an assignment of current to the edges satisfying
current conservation at each vertex, except the endpoints of e
which have a deficit/excess of 1, respectively.

@ The energy of a feasible flow is ", i,2 over all edges f.

@ The energy of a feasible flow is also the voltage drop across e,
which is the effective resistance of e (easy proof using current
conservation).

@ Of all feasible flows, the one that minimizes energy has currents
that are differences of endpoint voltages (can be shown using the
primal-dual approach, for instance).
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Proof of Rayleigh’s Monotonicity Principle
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Proof of Rayleigh’s Monotonicity Principle

@ If you shrink an edge f, then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f.
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Proof of Rayleigh’s Monotonicity Principle

@ If you shrink an edge f, then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f.

@ The least energy flow after shrinking f then only reduces energy
further.
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Proof of Rayleigh’s Monotonicity Principle

@ If you shrink an edge f, then the least energy flow prior to
shrinking f is still a feasible flow after shrinking f.

@ The least energy flow after shrinking f then only reduces energy
further.

@ So the effective resistance of e decreases when an edge f is
shrunk.
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Another Nagamochi-Ibaraki Sampling Scheme
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k! is the index of the first NI
tree where the endpoints of e are not in the same connected

component).
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k” is the index of the first NI
tree where the endpoints of e are not in the same connected

component).

@ Consider the graph G” comprising edges e with k2 > 2/-1.
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k” is the index of the first NI
tree where the endpoints of e are not in the same connected

component).

@ Consider the graph G” comprising edges e with k2 > 2/-1.

@ Any edge e with k! > 2 is ©(kZ) connected in G".
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k” is the index of the first NI
tree where the endpoints of e are not in the same connected

component).

@ Consider the graph G” comprising edges e with k2 > 2/-1.
@ Any edge e with k! > 2 is ©(kZ) connected in G".

@ Replicate an edge in G” with k! ~ 2/ j > i —1, n/2/ times, to
obtain graph H”.
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k” is the index of the first NI
tree where the endpoints of e are not in the same connected

component).

@ Consider the graph G” comprising edges e with k2 > 2/-1.
@ Any edge e with k! > 2 is ©(kZ) connected in G".

@ Replicate an edge in G” with k! ~ 2/ j > i —1, n/2/ times, to
obtain graph H”.

@ Any edge e with k” > 2' is ©(n) connected in H".
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Another Nagamochi-Ibaraki Sampling Scheme

@ Sample edge e with probability L%?(,’Z (k” is the index of the first NI
tree where the endpoints of e are not in the same connected

component).

@ Consider the graph G” comprising edges e with k2 > 2/-1.
@ Any edge e with k! > 2 is ©(kZ) connected in G".

@ Replicate an edge in G” with k! ~ 2/ j > i —1, n/2/ times, to
obtain graph H”.

@ Any edge e with k” > 2' is ©(n) connected in H".

@ The number of distinct 2/-projections in cuts of size X in H" is
o(%)
n=tn),
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Another

Nagamochi-lbaraki Niggn 28"
Sampling Scheme Contd.

A Cutof sized

—_ The2 projection

Cutin H” of size

Zei NjN/2

]
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Another —__The2 projection

Nagamochi-Ibaraki
Sampling Scheme Contd.

Njogn 2/%8" T — ]

@ Consider one cut.
How much deviation
does the 2/-projection
contribute?

Cutin H” of size

Zei NjN/2

A Cutof sized
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Another —__The2 projection
Nagamochi-Ibaraki Niggn 2/°8" T/

an < S T— .

Sampling Scheme Contd.

@ Consider one cut.
How much deviation
does the 2/-projection
contribute?

® X i1 ¥2' =
0]
212/—1 2/—=i Cutin H” of size

Zei NjN/2

A Cutof sized
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Another

Nagamochi-Ibaraki
Sampling Scheme Contd.

@ Consider one cut.
How much deviation
does the 2/-projection
contribute?

M3 o
nj
€2 i1 g1+
@ Overall deviation

€ j>—0 Z/ZM 571“/ =
O(€ > j>0 Nj) = O(ed)

—__ The 2 projection
n logn 2logn ——

Cutin H” of size

Zei NjN/2

A Cutof sized

Ramesh Hariharan
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Sampling by Strong Connectivity
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Sampling by Strong Connectivity

logn
€25Ce

@ Sample edge e with probability
of e).

(sce is the strong connectivity

Ramesh Hariharan Graph Sparsification Maintaining Cuts



Sampling by Strong Connectivity

@ Sample edge e with probability
of e).

'gg” (sce is the strong connectivity

€“SCe

@ Consider the graph G” comprising edges e with sce > 2'.
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Sampling by Strong Connectivity

@ Sample edge e with probability
of e).

'gg” (sce is the strong connectivity

€“SCe

@ Consider the graph G” comprising edges e with sce > 2'.

@ Any edge e with sce > 2 is ©(sce) connected in G”.
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Sampling by Strong Connectivity

@ Sample edge e with probability
of e).

'gg” (sce is the strong connectivity

€“SCe

@ Consider the graph G” comprising edges e with sce > 2'.
@ Any edge e with sce > 2 is ©(sce) connected in G”.

@ So the same proof holds.
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Sampling by Strong Connectivity

@ Sample edge e with probability
of e).

'gg” (sce is the strong connectivity

€“SCe

@ Consider the graph G” comprising edges e with sce > 2'.
@ Any edge e with sce > 2 is ©(sce) connected in G”.
@ So the same proof holds.

@ ) .SCe < n—1,so this yields an O(n"’%) size sparsifier.
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Connectivity o NIIndex 2
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NlIndex 1 panectivity

Nio, 7logn

gn <

ACutof sized ACutof sized ACutof sizeA g
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Other Results

@ An O(n"’%) size sparsifier in time O(nlog n+ m) (Hariharan and
Panigrahy)
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Other Results

@ An O(n"’%) size sparsifier in time O(nlog n+ m) (Hariharan and
Panigrahy)

@ Sampling by conductance yields an O(n"’%) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.
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Other Results

@ An O(n"’%) size sparsifier in time O(nlog n+ m) (Hariharan and
Panigrahy)

@ Sampling by conductance yields an O(n"’%) size sparsifier

(Spielman, Srivastava); this is more general as well, but
conductances are more complex to compute.

@ An O(4%) size sparsifier (Batson, Spielman, Srivastava).

€
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Open Problem




Open Problem

@ Show that sampling by connectivity yields an O( ) size
sparsifier, w.h.p.
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Open Problem

@ Show that sampling by connectivity yields an O(n I°9’”) size
sparsifier, w.h.p.

@ This will yield a corresponding corollary for sampling by
conductances.

Ramesh Hariharan Graph Sparsification Maintaining Cuts






@ THANK YOU J

ph Sparsification Maintaining



