Graph Sparsification while Maintaining Cuts

Ramesh Hariharan Strand Life Sciences

8 May 2011

Ramesh Hariharan Graph Sparsification Maintaining Cuts

通 とくほ とくほ とう

- Graph *G* with *n* nodes and *m* edges.
- Unweighted for this talk (weighted cases work similarly).
- m >> n log n
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- *G*' will be weighted.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

- Graph *G* with *n* nodes and *m* edges.
- Unweighted for this talk (weighted cases work similarly).

m >> n log n

- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.

- Graph *G* with *n* nodes and *m* edges.
- Unweighted for this talk (weighted cases work similarly).
- m >> n log n
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- *G*' will be weighted.

- Graph *G* with *n* nodes and *m* edges.
- Unweighted for this talk (weighted cases work similarly).
- m >> n log n
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- *G*' will be weighted.

- Graph *G* with *n* nodes and *m* edges.
- Unweighted for this talk (weighted cases work similarly).
- m >> n log n
- Obtain G' with fewer edges but with all cuts of G preserved approximately.
- G' will be weighted.

An Example

- Two nodes with *m* edges connected the two.
- Replace by a single edge of weight *m*.
- The general case is more complex because there are many cuts in a graph.

・ 同 ト ・ ヨ ト ・ ヨ ト …

An Example

- Two nodes with *m* edges connected the two.
- Replace by a single edge of weight *m*.
- The general case is more complex because there are many cuts in a graph.

An Example

- Two nodes with *m* edges connected the two.
- Replace by a single edge of weight *m*.
- The general case is more complex because there are many cuts in a graph.

- Sample each edge *e* with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is (1 ± ε) of the corresponding weight in G, w.h.p?
- And how many edges does G' have?

- Sample each edge *e* with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is (1 ± ε) of the corresponding weight in G, w.h.p?
- And how many edges does G' have?

- Sample each edge *e* with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is (1 ± ε) of the corresponding weight in G, w.h.p?

• And how many edges does G' have?

- Sample each edge *e* with probability p_e and give it weight $1/p_e$.
- For any cut, its expected weight in the new graph G' equals its weight in G.
- Do ALL cuts in G have weight in G' that is (1 ± ε) of the corresponding weight in G, w.h.p?
- And how many edges does G' have?

What should pe be?

- *p_e* ~ ¹/_{d_e}? (*d_e* is min of the degrees of *e*'s endpoints). NO!
- $p_e \sim \frac{1}{k_e} \geq \frac{1}{d_e}$? (k_e is the connectivity of e). NO!

•
$$p_e \sim \frac{\log n}{\epsilon^2} \frac{1}{k_e}$$
? MAYBE!

イロン 不良 とくほう 不良 とうほ

What should pe be?

- *p_e* ~ ¹/<sub>*d_e*? (*d_e* is min of the degrees of *e*'s endpoints). NO!
 </sub>
- *p_e* ~ ¹/_{k_e} ≥ ¹/_{d_e}? (*k_e* is the connectivity of *e*). NO!

• $p_e \sim \frac{\log n}{\epsilon^2} \frac{1}{k_e}$? MAYBE!

・ロト ・ 同ト ・ ヨト ・ ヨト

What should pe be?

- *p_e* ~ ¹/<sub>*d_e*? (*d_e* is min of the degrees of *e*'s endpoints). NO!
 </sub>
- *p_e* ∼ ¹/_{k_e} ≥ ¹/_{d_e}? (*k_e* is the connectivity of *e*). NO!

•
$$p_e \sim \frac{\log n}{\epsilon^2} \frac{1}{k_e}$$
? MAYBE!

<ロ> (四) (四) (三) (三) (三)

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^j}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^{i}} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^{i}})}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^j}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^{i}} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^{i}})}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^l}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^{i}} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^{i}})}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^j}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2'} \Delta')} = n^{-\Theta(\frac{\Delta'}{2'})}$$

• We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.

And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}$$

• We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.

And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need n^{-Θ(^{Δ'}/_{2l})} to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size Δ .
- Group edges in this cut into doubling value categories based on sampling probability.
- Consider one group S of edges with sampling probabilities $\sim \frac{\log n}{\epsilon^2} \frac{1}{2^i}$.
- For any $\Delta' \geq |\mathcal{S}|$,

$$\Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta') \le e^{-\Theta(\epsilon^2 \frac{\log n}{\epsilon^2 2^i} \Delta')} = n^{-\Theta(\frac{\Delta'}{2^i})}$$

- We need $\epsilon \Delta'$ to add up at most $\epsilon \Delta$ over all groups.
- And we need n^{-Θ(\(\frac{\Delta'}{2l}\)}) to be small enough to offset the number of such groups S over all cuts.

- Focus on a particular cut of size △, and the subset of edges with connectivity ~ 2ⁱ.
- How many such distinct sets of edges exist, over all cuts? • $r^{Q(\Delta/2^{i})}$ Will show later
- $n^{O(\Delta/2^i)}!$ Will show later.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Focus on a particular cut of size Δ, and the subset of edges with connectivity ~ 2ⁱ.
- How many such distinct sets of edges exist, over all cuts?
 n^{O(Δ/2ⁱ)}! Will show later.

(同)((日)(日))(日)

- Focus on a particular cut of size Δ, and the subset of edges with connectivity ~ 2ⁱ.
- How many such distinct sets of edges exist, over all cuts?
- $n^{O(\Delta/2^i)}!$ Will show later.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

- Focus on a particular cut of size Δ, and the subset of edges with connectivity ~ 2ⁱ.
- How many such distinct sets of edges exist, over all cuts?
- $n^{O(\Delta/2^i)}!$ Will show later.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/c²pⁱ.
- For this group,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of *ϵ*Δ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

 Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε²2ⁱ.

• For this group,

$$\mathsf{Pr}(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(rac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of *ϵ*Δ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε^{2pi}.
- For this group,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(rac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of *ϵ*Δ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε^{2pi}.
- For this group,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$ (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of *ϵ*Δ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε^{2pi}.
- For this group,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is n^{O(^Δ/_{2ⁱ})} (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of εΔ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε^{2pi}.
- For this group,

.

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is n^{O(^Δ/_{2ⁱ})} (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of εΔ.
- There are at most log *n* groups in each cut.

• So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

- Focus on a particular cut of size Δ, and the group S of edges with sampling probabilities ~ log n/ε^{2pi}.
- For this group,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}| \ge \epsilon \Delta) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

- The number of distinct groups of edges S over all cuts of size Δ is n^{O(^Δ/_{2ⁱ})} (to be shown).
- So in every cut of size Δ, the corresponding group contributes a deviation of εΔ.
- There are at most log *n* groups in each cut.
- So every cut has deviation at most $\epsilon \Delta \log n$. But we need Δ !

Another Attempt

• Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.

 Focus on a particular cut of size ∆, and the set S of edges with sampling probabilities ~ log² n / c²+2^j.

$$Pr(|S_{samp} - |S|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^i})}$$

• The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

So in every cut of size Δ, the corresponding group contributes a deviation of ε^Δ_{log n}.

• So every cut has deviation at most $\epsilon \Delta$ over all log *n* groups.

Another Attempt

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities ~ log² n / ε² + 2^j.

$$Pr(|S_{samp} - |S|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^{\ell}})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^{i}})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of ε^Δ/_{log n}.
- So every cut has deviation at most $\epsilon \Delta$ over all log *n* groups.

.

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities ~ log² n / ε²*2ⁱ.

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^{i}})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^{i}})}$.
- So every cut has deviation at most $\epsilon \Delta$ over all log *n* groups.

.

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities ~ log² n/ε²*2ⁱ.

 $Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^{i}})}$

• The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^{i}})}$.

- So every cut has deviation at most *e*∆ over all log *n* groups.

.

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities ~ log² n / ε²*2ⁱ.

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^{i}})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So in every cut of size Δ, the corresponding group contributes a deviation of ε Δ/log n.

• So every cut has deviation at most $\epsilon\Delta$ over all log *n* groups.

.

- Up sampling probabilities to $\sim \frac{\log^2 n}{\epsilon^2 k_{\theta}}$.
- Focus on a particular cut of size Δ, and the set S of edges with sampling probabilities ~ log² n / ε²*2ⁱ.

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \frac{\Delta}{\log n}) \le n^{-\Theta(\frac{\Delta}{2^{i}})}$$

- The number of such groups S over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.
- So every cut has deviation at most $\epsilon \Delta$ over all log *n* groups.

• We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{c^2}(n-1)$.

- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- e crosses a witness Gomory-Hu edge with weight k_e.

•
$$\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n-1.$$

• We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{c^2}(n-1)$.

- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- e crosses a witness Gomory-Hu edge with weight k_e.

•
$$\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n-1.$$

- We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{e^2}(n-1)$.
- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- e crosses a witness Gomory-Hu edge with weight k_e.

•
$$\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n-1.$$

★ E > < E >

- We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{e^2}(n-1)$.
- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- *e* crosses a witness Gomory-Hu edge with weight *k_e*.

•
$$\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n-1.$$

★ Ξ → ★ Ξ →

- We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{e^2}(n-1)$.
- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- e crosses a witness Gomory-Hu edge with weight k_e.

• $\sum \frac{1}{K_e} \leq \sum_f W_f * 1/W_f = n-1.$

★ E > < E >

- We show that $\sum_{e} \frac{1}{k_e} \le n-1$. So the expected number of edges in the sampled graph is $\le \frac{\log^2 n}{e^2}(n-1)$.
- Consider the Gomory-Hu (GH) tree.
 Each Gomory-Hu edge *f* has weight *w_f* equal to the number of graph edges that cross it.
- e crosses a witness Gomory-Hu edge with weight k_e.

•
$$\sum \frac{1}{k_e} \leq \sum_f w_f * 1/w_f = n-1.$$

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 k_a}$ (k_e is the connectivity of *e*).

• The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{e^2})$.

• And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 k_a}$ (k_e is the connectivity of *e*).

• The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{e^2})$.

• And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of *e*).

• The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{c^2})$.

• And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.

通 と く ヨ と く ヨ と

- Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of *e*).
- The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{e^2})$.

• And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.

▲御▶ ▲理▶ ▲理▶ 二連

- Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 k_e}$ (k_e is the connectivity of *e*).
- The expected number of edges in the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.
- And each cut is preserved within a $(1 \pm \epsilon)$ multiplicative factor, with inverse polynomial failure probability.

- Consider a cut of size Δ .
- Define its 2ⁱ-projection to be the subset of edges with connectivity ~ 2ⁱ.
- How many distinct 2ⁱ-projections exist over all cuts of size Δ? We show n^{O(Δ/2ⁱ)}.

- Consider a cut of size Δ .
- Define its 2ⁱ-projection to be the subset of edges with connectivity ~ 2ⁱ.
- How many distinct 2ⁱ-projections exist over all cuts of size Δ? We show n^{O(Δ/2ⁱ)}.

Consider a cut of size Δ.

- Define its 2ⁱ-projection to be the subset of edges with connectivity ~ 2ⁱ.
- How many distinct 2ⁱ-projections exist over all cuts of size Δ? We show n^{O(Δ/2ⁱ)}.

★ E ► ★ E ►

- Consider a cut of size Δ .
- Define its 2ⁱ-projection to be the subset of edges with connectivity ~ 2ⁱ.
- How many distinct 2ⁱ-projections exist over all cuts of size Δ? We show n^{O(Δ/2ⁱ)}.

個人 くほん くほん 一足

- Consider a cut of size Δ .
- Define its 2ⁱ-projection to be the subset of edges with connectivity ~ 2ⁱ.
- How many distinct 2ⁱ-projections exist over all cuts of size Δ? We show n^{O(Δ/2ⁱ)}.

프 > = > = =

- Randomly choose edges and compress.
- Let *k* be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq (1 - \frac{\Delta}{nk/2})(1 - \frac{\Delta}{(n-1)k/2}) \cdots (1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2})$$
$$\geq (\frac{n - 2\Delta/k}{n})(\frac{n - 1 - 2\Delta/k}{n-1}) \cdots (\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1})$$
$$\geq n^{\frac{-2\Delta}{k}}$$

So the number of distinct cuts of size ∆ in a graph with min-cut k is at most n^{2∆}/_k.

- Randomly choose edges and compress.
- Let *k* be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq (1 - \frac{\Delta}{nk/2})(1 - \frac{\Delta}{(n-1)k/2}) \cdots (1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2})$$
$$\geq (\frac{n - 2\Delta/k}{n})(\frac{n - 1 - 2\Delta/k}{n-1}) \cdots (\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1})$$
$$\geq n^{\frac{-2\Delta}{k}}$$

So the number of distinct cuts of size △ in a graph with min-cut k is at most n^{2△/k}.

- Randomly choose edges and compress.
- Let k be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq (1 - \frac{\Delta}{nk/2})(1 - \frac{\Delta}{(n-1)k/2}) \cdots (1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2})$$
$$\geq (\frac{n - 2\Delta/k}{n})(\frac{n - 1 - 2\Delta/k}{n-1}) \cdots (\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1})$$
$$\geq n^{\frac{-2\Delta}{k}}$$

So the number of distinct cuts of size △ in a graph with min-cut k is at most n^{2△/k}.

- Randomly choose edges and compress.
- Let *k* be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq (1 - \frac{\Delta}{nk/2})(1 - \frac{\Delta}{(n-1)k/2}) \cdots (1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2})$$
$$\geq (\frac{n - 2\Delta/k}{n})(\frac{n - 1 - 2\Delta/k}{n-1}) \cdots (\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1})$$
$$\geq n^{\frac{-2\Delta}{k}}$$

So the number of distinct cuts of size ∆ in a graph with min-cut k is at most n^{2∆}/_k.

- Randomly choose edges and compress.
- Let *k* be the min-cut size.
- Probability of being left with a particular cut of size Δ is

$$\geq (1 - \frac{\Delta}{nk/2})(1 - \frac{\Delta}{(n-1)k/2}) \cdots (1 - \frac{\Delta}{(\frac{2\Delta}{k} + 1)k/2})$$
$$\geq (\frac{n - 2\Delta/k}{n})(\frac{n - 1 - 2\Delta/k}{n-1}) \cdots (\frac{n - (n - \frac{2\Delta}{k} - 1) - 2\Delta/k}{\frac{2\Delta}{k} + 1})$$
$$\geq n^{\frac{-2\Delta}{k}}$$

So the number of distinct cuts of size Δ in a graph with min-cut k is at most n^{2Δ/k}.

- Randomly choose edges and compress.
- If min-cut was 2ⁱ then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2^{*i*}-projection.
- So split-off these vertices.

- Randomly choose edges and compress.
- If min-cut was 2ⁱ then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2ⁱ-projection.
- So split-off these vertices.

< ∃ >

- Randomly choose edges and compress.
- If min-cut was 2^{*i*} then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2ⁱ-projection.
- So **split-off** these vertices.

A E > A E >

- Randomly choose edges and compress.
- If min-cut was 2^{*i*} then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2ⁱ-projection.
- So **split-off** these vertices.

< ∃ >

- Randomly choose edges and compress.
- If min-cut was 2^{*i*} then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2ⁱ-projection.

• So **split-off** these vertices.

- Randomly choose edges and compress.
- If min-cut was 2^{*i*} then done.
- What if there are vertices with degree < 2ⁱ?
- Edges incident on such vertices are not part of a 2ⁱ-projection.
- So **split-off** these vertices.

▲ 프 ▶ - 프

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity >= 2ⁱ does not fall below 2ⁱ.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.

- Edges incident on a vertex v can be paired and 'shortcut'.
- So *v* gets removed from the graph.
- The connectivity of edges with connectivity >= 2ⁱ does not fall below 2ⁱ.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity >= 2ⁱ does not fall below 2ⁱ.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity >= 2ⁱ does not fall below 2ⁱ.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.

- Edges incident on a vertex v can be paired and 'shortcut'.
- So v gets removed from the graph.
- The connectivity of edges with connectivity >= 2ⁱ does not fall below 2ⁱ.
- And no cut increases in size (to see this, note that any edge across a cut after splitting-off must have a sub-edge across the cut before splitting-off), so a cut of size Δ remains of size at most Δ.

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^{*i*}.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connnectivity 2ⁱ does not drop and cut size Δ does not increase.

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^{*i*}.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2ⁱ does not drop and cut size △ does not increase.

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^{*i*}.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2ⁱ does not drop and cut size △ does not increase.

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^{*i*}.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2ⁱ does not drop and cut size △ does not increase.

- Compressing an edge causes potential increase in the cut size Δ.
- Deleting an edge causes potential decrease in connectivity 2^{*i*}.
- Adding an edge causes potential increase in the cut size Δ.
- Only splitting ensures that connectivity 2ⁱ does not drop and cut size Δ does not increase.

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$\geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots\geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$\geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots\geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$\geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots\geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$\geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots\geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$\geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots\geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$n \geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots \geq n^{-\Delta/2^i}$$

• The number of distinct 2^i -projections over all cuts of size Δ is $n^{O(\frac{\Delta}{2^i})}$.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomly choose edges and compress.
- If a vertex with degree $< 2^i$ is created, split it off.
- Edges in any 2^{*i*}-projection stay 2^{*i*} connected.
- So such edges stay intact even as vertices are split off.
- Probability of being left with a particular 2ⁱ-projection (of cuts of size Δ) is

$$n \geq (1-\Delta/n2^i)(1-\Delta/(n-1)2^i)\dots \geq n^{-\Delta/2^i}$$

 The number of distinct 2ⁱ-projections over all cuts of size Δ is n^{O(^Δ/_{2ⁱ})}.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- We need to prove that:
- Given edge *uv*, there exists *vw* such that:
- Removing *uv*, *vw* and adding *uw* ensures the following:
- All other edges with connectivity
 α = 2ⁱ or higher remain at least α
 connected.

- We need to prove that:
- Given edge *uv*, there exists *vw* such that:
- Removing *uv*, *vw* and adding *uw* ensures the following:
- All other edges with connectivity
 α = 2ⁱ or higher remain at least α
 connected.

- We need to prove that:
- Given edge uv, there exists vw such that:
- Removing *uv*, *vw* and adding *uw* ensures the following:
- All other edges with connectivity
 α = 2ⁱ or higher remain at least α
 connected.

- We need to prove that:
- Given edge uv, there exists vw such that:
- Removing *uv*, *vw* and adding *uw* ensures the following:
- All other edges with connectivity
 α = 2ⁱ or higher remain at least α
 connected.

- We need to prove that:
- Given edge *uv*, there exists *vw* such that:
- Removing *uv*, *vw* and adding *uw* ensures the following:
- All other edges with connectivity
 α = 2ⁱ or higher remain at least α
 connected.

- The only cuts that reduce in size are those which split *u* and *v*.
- If there exists such a cut of size α or α + 1, it will drop below α iff w is on the same size as u in this cut.
- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

- The only cuts that reduce in size are those which split *u* and *v*.
- If there exists such a cut of size α or α + 1, it will drop below α iff w is on the same size as u in this cut.
- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

- The only cuts that reduce in size are those which split *u* and *v*.
- If there exists such a cut of size α or α + 1, it will drop below α iff w is on the same size as u in this cut.
- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

- The only cuts that reduce in size are those which split *u* and *v*.
- If there exists such a cut of size α or α + 1, it will drop below α iff w is on the same size as u in this cut.
- A problem if such a cut splits a critical vertex pair b, b' whose connectivity must be maintained at α.

- *v* must have a neighbour on the right side of the cut.
- Otherwise, move ν to the left and the cut size falls below α.
- So b and b' are less than α connected, a contradiction.

< ∃ >

.≣⇒

- v must have a neighbour on the right side of the cut.
- Otherwise, move ν to the left and the cut size falls below α.
- So b and b' are less than α connected, a contradiction.

 α or α +1 $\rightarrow \alpha$ -2 or α -1

프 > 프

- v must have a neighbour on the right side of the cut.
- Otherwise, move *v* to the left and the cut size falls below *α*.

 So b and b' are less than α connected, a contradiction. α or $\alpha+1 \rightarrow \alpha-2$ or $\alpha-1$

▲ 프 ▶ - 프

- *v* must have a neighbour on the right side of the cut.
- Otherwise, move *v* to the left and the cut size falls below *α*.
- So b and b' are less than α connected, a contradiction.

프 > 프

Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts? .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts? .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Ramesh Hariharan Graph Sparsification Maintaining Cuts

Proof of Splitting Off Contd.

- But how do we find a w that is on the same side as v in all critical cuts?
- What if there are crossing critical cuts? .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Critical Cuts do not cross.

 If all vertices have even degrees!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Critical Cuts do not cross.

 If all vertices have even degrees!

<ロ> (四) (四) (三) (三) (三)

- How do we handle odd degrees?
- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.
- And splitting off and edge compression preserve evenness.

個人 くほん くほん しほ

• How do we handle odd degrees?

• Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.

• And splitting off and edge compression preserve evenness.

(個) (ヨ) (ヨ) (ヨ)

- How do we handle odd degrees?
- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.

• And splitting off and edge compression preserve evenness.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- How do we handle odd degrees?
- Simply double each edge! Cut sizes and connectivities double. Still good enough to estimate number of cuts.
- And splitting off and edge compression preserve evenness.

個人 くほん くほん しほ

Computing Sampling Probabilities

- It suffices to underestimate edge connectivites, i.e., compute k_e' ≤ k_e.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$Pr(|S_{samp} - |S|| \ge \epsilon x) \le n^{-\Theta(\frac{x}{2^i})}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Computing Sampling Probabilities

- It suffices to underestimate edge connectivites, i.e., compute k'_e ≤ k_e.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$Pr(|S_{samp} - |S|| \ge \epsilon x) \le n^{-\Theta(\frac{x}{2^i})}$$

Computing Sampling Probabilities

- It suffices to underestimate edge connectivites, i.e., compute k'_e ≤ k_e.
- Because sampling probabilities are used only in the Chernoff bound, which has the form:

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon x) \le n^{-\Theta(\frac{x}{2^i})}$$

(本間) (本語) (本語) (二語)

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²k'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k_{e}} \leq n \log n$ (as opposed to $\sum \frac{1}{k_{e}} \leq n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$

イロン 不同 とくほう 不良 とうほう

• A collection of edge-disjoint forests.

- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²k'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k'_{e}} \le n \log n$ (as opposed to $\sum \frac{1}{k_{e}} \le n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²k'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k'_e} \le n \log n$ (as opposed to $\sum \frac{1}{k_e} \le n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²k'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k'_e} \le n \log n$ (as opposed to $\sum \frac{1}{k_e} \le n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability $\frac{\log^2 n}{\epsilon^2 k'_{\theta}}$ preserves all cuts within $1 \pm \epsilon$ w.h.p.
- $\sum \frac{1}{k_{e}} \leq n \log n$ (as opposed to $\sum \frac{1}{k_{e}} \leq n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_{\sigma} \frac{1}{k'_{\sigma}} = n \frac{\log^3 n}{\epsilon^2}.$

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²κ'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k_{a}} \leq n \log n$ (as opposed to $\sum \frac{1}{k_{e}} \leq n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{K_e} = n \frac{\log^3 n}{\epsilon^2}.$

- A collection of edge-disjoint forests.
- If u and v are connected in forest i, they are also connected in forests 1...i – 1.
- If edge e = uv is in tree *i*, then $i = k'_e \le k_e$.
- So sampling with probability log² n/ε²κ'_e preserves all cuts within 1 ± ε w.h.p.
- $\sum \frac{1}{k'_{e}} \leq n \log n$ (as opposed to $\sum \frac{1}{k_{e}} \leq n$)
- Expected number of edges in the sparsified graph $\frac{\log^2 n}{\epsilon^2} \sum_e \frac{1}{k'_e} = n \frac{\log^3 n}{\epsilon^2}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○ヘ

- Define the 2^{*i*}-projection of a cut to be the subset of its edges with $k'_e \sim 2^i$.
- Consider those cuts C where the size of the 2ⁱ-projection plus the size of 2ⁱ⁻¹-projection is Δ_i.
- We show that the number of distinct 2ⁱ-projections over cuts in C is n^{O(^{Δi}/_{2ⁱ})}.
- Note contrast from before where we had $n^{O(\frac{\Delta}{2^{i}})}$.

- Define the 2ⁱ-projection of a cut to be the subset of its edges with k'_e ~ 2ⁱ.
- Consider those cuts C where the size of the 2ⁱ-projection plus the size of 2ⁱ⁻¹-projection is Δ_i.
- We show that the number of distinct 2ⁱ-projections over cuts in C is n^{O(^{Δi}/_{2ⁱ})}.
- Note contrast from before where we had $n^{O(\frac{\Delta}{2^{i}})}$.

(日)((日))

- Define the 2ⁱ-projection of a cut to be the subset of its edges with k'_e ~ 2ⁱ.
- Consider those cuts C where the size of the 2ⁱ-projection plus the size of 2ⁱ⁻¹-projection is Δ_i.
- We show that the number of distinct 2ⁱ-projections over cuts in C is n^{O(^{Δi}/_{2ⁱ})}.
- Note contrast from before where we had $n^{O(\frac{\Delta}{2^{i}})}$.

- Define the 2ⁱ-projection of a cut to be the subset of its edges with k'_e ~ 2ⁱ.
- Consider those cuts C where the size of the 2ⁱ-projection plus the size of 2ⁱ⁻¹-projection is Δ_i.
- We show that the number of distinct 2ⁱ-projections over cuts in C is n^{O(\frac{\Delta_i}{2^i})}.
- Note contrast from before where we had $n^{O(\frac{\Delta}{2^i})}$.

- Define the 2ⁱ-projection of a cut to be the subset of its edges with k'_e ~ 2ⁱ.
- Consider those cuts C where the size of the 2ⁱ-projection plus the size of 2ⁱ⁻¹-projection is Δ_i.
- We show that the number of distinct 2ⁱ-projections over cuts in C is n^{O(^{Ai}/_{2ⁱ})}.
- Note contrast from before where we had $n^{O(\frac{\Delta}{2i})}$.

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i -projection S,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$$

- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most $2\epsilon\Delta$!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i -projection S,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$$

- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most $2\epsilon\Delta$!

ヘロト ヘアト ヘヨト ヘヨト

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.

• For a particular 2^i -projection S,

 $Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$

• For any given cut, $\sum_i \Delta_i \leq 2\Delta$.

• So every cut has deviation at most $2\epsilon\Delta$!

・ロト ・ 一下・ ・ ヨト ・ ヨト

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i -projection S,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$$

- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most $2\epsilon\Delta$!

ヘロト ヘアト ヘビト ヘビト

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i -projection S,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$$

• For any given cut, $\sum_i \Delta_i \leq 2\Delta$.

• So every cut has deviation at most $2\epsilon\Delta$!

ヘロト ヘアト ヘビト ヘビト

- Go back to sampling edge *e* with probability $\frac{\log n}{e^2 k'_e}$ (k'_e is the index of the NI tree containing *e*).
- The number of distinct 2^i -projections over cuts in C is $n^{O(\frac{\Delta_i}{2^i})}$.
- For a particular 2^i -projection S,

$$Pr(|\mathcal{S}_{samp} - |\mathcal{S}|| \ge \epsilon \Delta_i) \le n^{-\Theta(\frac{\Delta_i}{2^i})}$$

- For any given cut, $\sum_i \Delta_i \leq 2\Delta$.
- So every cut has deviation at most 2εΔ!

ヘロト ヘ回ト ヘヨト ヘヨト

- Take subgraph G' formed by edges in NI trees $2^{i-2} \dots 2^{i}$.
- Key Property: An edge in NI trees 2ⁱ⁻¹...2ⁱ is at least 2ⁱ⁻² connected in G'.

• So the number of 2^i -projections in cuts of size Δ_i in G' is $n^{O(\frac{\Delta_i}{2^{i-2}})}$, as needed.

- Take subgraph G' formed by edges in NI trees $2^{i-2} \dots 2^i$.
- Key Property: An edge in NI trees 2ⁱ⁻¹...2ⁱ is at least 2ⁱ⁻² connected in G'.

• So the number of 2^i -projections in cuts of size Δ_i in G' is $n^{O(\frac{\Delta_i}{2^i-2})}$ as needed.

- Take subgraph G' formed by edges in NI trees $2^{i-2} \dots 2^i$.
- Key Property: An edge in NI trees 2ⁱ⁻¹...2ⁱ is at least 2ⁱ⁻² connected in G'.

So the number of 2ⁱ-projections in cuts of size Δ_i in G' is n^{O(Δ_i/2ⁱ⁻²)}, as needed.

고 > 고

- Take subgraph G' formed by edges in NI trees $2^{i-2} \dots 2^i$.
- Key Property: An edge in NI trees 2ⁱ⁻¹...2ⁱ is at least 2ⁱ⁻² connected in G'.

So the number of 2ⁱ-projections in cuts of size Δ_i in G' is n^{O(Δ_i/2ⁱ⁻²)}, as needed.

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex *v*, define *l*(*v*) as the index of the first NI tree where *v* is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 と ・ 日 と ・ 日 と

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define l(v) as the index of the first NI tree where v is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 と ・ 日 と ・ 日 と

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define l(v) as the index of the first NI tree where v is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 と ・ 日 と ・ 日 と

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define l(v) as the index of the first NI tree where v is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 マン・ 日 マー・

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define l(v) as the index of the first NI tree where v is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 マン・ 日 マー・

- Process vertices in (a to be specified) order; for the chosen vertex, add all incident edges (these are incident on yet unprocessed vertices).
- For each vertex v, define l(v) as the index of the first NI tree where v is singleton.
- For each edge e = uv processed, add e to tree min(I(u), I(v)).
- Increment the smaller of *l*(*u*), *l*(*v*) by 1; if both are equal, increment both.
- Successively pick the vertex with the largest *I*() value for processing.

・ロン ・ 一 マン・ 日 マー・

- Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.
- $O(n \log n + m) \sim O(m)$ time.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.

• $O(n \log n + m) \sim O(m)$ time.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 Key invariant: If a new connected component is created in a tree, it stays separate even after all future edge additions.

3

.⊒...>

3

- Sample edge *e* with probability ^{log n}/_{e²k'_e} (k'_e is the index of the NI tree containing *e*).
- Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n \frac{\log^2 n}{c^2})$.

• The time taken for sampling is $O(n \log n + m)$.

→ Ξ →

Sample edge *e* with probability log *n*/e²k'_e (k'_e is the index of the NI tree containing *e*).

• Every cut is preserved within a $1 \pm 2\epsilon$ factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.

• The time taken for sampling is $O(n \log n + m)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Sample edge *e* with probability log *n*/e²k'_e (k'_e is the index of the NI tree containing *e*).
- Every cut is preserved within a 1 ± 2ε factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n \frac{\log^2 n}{\epsilon^2})$.

• The time taken for sampling is $O(n \log n + m)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Sample edge *e* with probability log *n*/e²k'_e (k'_e is the index of the NI tree containing *e*).
- Every cut is preserved within a 1 ± 2ε factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.

• The time taken for sampling is $O(n \log n + m)$.

▲御▶ ▲理▶ ▲理▶ 二連

Nagamochi-Ibaraki Sampling: Wrap Up

- Sample edge *e* with probability log *n*/e²k'_e (k'_e is the index of the NI tree containing *e*).
- Every cut is preserved within a 1 ± 2ε factor, with inverse polynomial failure probability.

The size of the sampled graph is $O(n\frac{\log^2 n}{\epsilon^2})$.

• The time taken for sampling is $O(n \log n + m)$.

- The Effective Resistance r_e of an edge e is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is *r_e*.
- *r_e* is also the fraction of spanning trees containing *e*.

- The Effective Resistance *r_e* of an edge *e* is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is *r_e*.
- *r_e* is also the fraction of spanning trees containing *e*.

- The Effective Resistance *r_e* of an edge *e* is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is *r_e*.
- *r_e* is also the fraction of spanning trees containing *e*.

- The Effective Resistance *r_e* of an edge *e* is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is *r_e*.
- *r_e* is also the fraction of spanning trees containing *e*.

- The Effective Resistance *r_e* of an edge *e* is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is r_e.
- *r_e* is also the fraction of spanning trees containing *e*.

・同・・モー・ モー・ 王

- The Effective Resistance *r_e* of an edge *e* is defined as follows:
- Treat the graph as a network of unit resistances.
- Push unit current into one endpoint of the edge, take unit current out of the other endpoint.
- What is the voltage drop across the edge? This is *r_e*.
- *r_e* is also the fraction of spanning trees containing *e*.

• Sample edge *e* with probability $\frac{\log^2 n}{e^2 c_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e's suffices.
- $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.

(通) (ヨ) (ヨ) (ヨ)

• Sample edge *e* with probability $\frac{\log^2 n}{e^2 C_e}$ (where $c_e = 1/r_e$).

• Key Property: $c_e \leq k_e$.

Recall that underestimating k_e's suffices.

• $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n - 1$ (use the spanning tree fraction interpretation).

 So sampling with effective conductance yields a graph with O(n log² n / ε²) edges that preserves all cuts within a (1 ± ε) factor, w.h.p.

(個) (目) (日) (日)

• Sample edge *e* with probability $\frac{\log^2 n}{e^2 C_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.
- Recall that underestimating k_e's suffices.
- $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n \frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.

(個) (目) (日) (日)

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.
- Recall that underestimating *k_e*'s suffices.

• $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n - 1$ (use the spanning tree fraction interpretation).

• So sampling with effective conductance yields a graph with $O(n\frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.
- Recall that underestimating *k_e*'s suffices.
- $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n\frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.

<ロト (四) (日) (日) (日) (日) (日) (日)

• Sample edge *e* with probability $\frac{\log^2 n}{\epsilon^2 c_e}$ (where $c_e = 1/r_e$).

- Key Property: $c_e \leq k_e$.
- Recall that underestimating *k_e*'s suffices.
- $\sum_{e} \frac{1}{c_e} = \sum_{e} r_e = n 1$ (use the spanning tree fraction interpretation).
- So sampling with effective conductance yields a graph with $O(n\frac{\log^2 n}{\epsilon^2})$ edges that preserves all cuts within a $(1 \pm \epsilon)$ factor, w.h.p.

<ロト (四) (日) (日) (日) (日) (日) (日)

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

米間 とくほとくほとう ほ

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge *f* is like setting its resistance to 0, so effective resistance of *e* should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

米間 とくほとくほとう ほ

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge f is like setting its resistance to 0, so effective resistance of e should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge *f* is like setting its resistance to 0, so effective resistance of *e* should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

(本間) (本語) (本語) (二語)

- Intuition: If the graph is just k edge-disjoint paths between the endpoints of e, then each path has resistance at least 1, and k_e paths pose a resistance of at least 1/k_e. So c_e ≤ k_e.
- But there are other edges around.
- Shrink these edges.
- Shrinking edge *f* is like setting its resistance to 0, so effective resistance of *e* should only decrease, i.e., conductance increases.
- Equivalently, given a random spanning tree T, $P(e \in T | f \in T) \le P(e \in T)$. Rayleigh's monotonicity principle!

イロト イポト イヨト イヨト 三油

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of *e* which have a deficit/excess of 1, respectively.
- The energy of a feasible flow is $\sum_{f} i_{f}^{2}$ over all edges *f*.
- The energy of a feasible flow is also the voltage drop across *e*, which is the effective resistance of *e* (easy proof using current conservation).
- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).

・ 同 ト ・ ヨ ト ・ ヨ ト

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of *e* which have a deficit/excess of 1, respectively.
- The energy of a feasible flow is $\sum_{f} i_{f}^{2}$ over all edges *f*.
- The energy of a feasible flow is also the voltage drop across *e*, which is the effective resistance of *e* (easy proof using current conservation).
- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).

ヘロア ヘビア ヘビア・

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of *e* which have a deficit/excess of 1, respectively.
- The energy of a feasible flow is $\sum_{f} i_{f}^{2}$ over all edges *f*.
- The energy of a feasible flow is also the voltage drop across *e*, which is the effective resistance of *e* (easy proof using current conservation).
- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).

ヘロア ヘビア ヘビア・

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of *e* which have a deficit/excess of 1, respectively.
- The energy of a feasible flow is $\sum_{f} i_{f}^{2}$ over all edges *f*.
- The energy of a feasible flow is also the voltage drop across *e*, which is the effective resistance of *e* (easy proof using current conservation).
- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).

ヘロア ヘビア ヘビア・

- A feasible flow is an assignment of current to the edges satisfying current conservation at each vertex, except the endpoints of *e* which have a deficit/excess of 1, respectively.
- The energy of a feasible flow is $\sum_{f} i_{f}^{2}$ over all edges *f*.
- The energy of a feasible flow is also the voltage drop across e, which is the effective resistance of e (easy proof using current conservation).
- Of all feasible flows, the one that minimizes energy has currents that are differences of endpoint voltages (can be shown using the primal-dual approach, for instance).

ヘロン ヘアン ヘビン ヘビン

- If you shrink an edge *f*, then the least energy flow prior to shrinking *f* is still a feasible flow after shrinking *f*.
- The least energy flow after shrinking *f* then only reduces energy further.
- So the effective resistance of *e* decreases when an edge *f* is shrunk.

→ Ξ → < Ξ →</p>

- If you shrink an edge *f*, then the least energy flow prior to shrinking *f* is still a feasible flow after shrinking *f*.
- The least energy flow after shrinking *f* then only reduces energy further.
- So the effective resistance of *e* decreases when an edge *f* is shrunk.

A E > A E >

- If you shrink an edge *f*, then the least energy flow prior to shrinking *f* is still a feasible flow after shrinking *f*.
- The least energy flow after shrinking *f* then only reduces energy further.
- So the effective resistance of *e* decreases when an edge *f* is shrunk.

프 > 프

- If you shrink an edge *f*, then the least energy flow prior to shrinking *f* is still a feasible flow after shrinking *f*.
- The least energy flow after shrinking *f* then only reduces energy further.
- So the effective resistance of *e* decreases when an edge *f* is shrunk.

프 > 프

- Sample edge *e* with probability $\frac{\log n}{e^2 k_e''}$ (k_e'' is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

・ロット (四) ・ (日) ・ (日) ・

- Sample edge *e* with probability log *n*/e²k^m/_e (k^m/_e is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(k_e'')$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

・ロット (四) ・ (日) ・ (日) ・

- Sample edge *e* with probability log *n*/e²k^m_e (k^m_e is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

・ロット (四) ・ (日) ・ (日) ・

- Sample edge *e* with probability log *n*/e²k^m_e (k^m_e is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

ヘロン 人間 とくほ とくほ とう

- Sample edge *e* with probability log *n*/e²k^m_e (k^m_e is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

ヘロン 人間 とくほ とくほ とう

- Sample edge *e* with probability log *n*/e²k''_e (k'' is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(n)$ connected in H''.

• The number of distinct 2^{i} -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

ヘロン 人間 とくほ とくほ とう

- Sample edge *e* with probability log *n*/e²k^m_e (k^m_e is the index of the first NI tree where the endpoints of *e* are not in the same connected component).
- Consider the graph G'' comprising edges e with $k''_e \ge 2^{i-1}$.
- Any edge *e* with $k''_e \ge 2^i$ is $\Theta(k''_e)$ connected in G''.
- Replicate an edge in G["] with k["]_e ~ 2^j, j ≥ i − 1, n/2^j times, to obtain graph H["].
- Any edge *e* with $k_e'' \ge 2^i$ is $\Theta(n)$ connected in H''.
- The number of distinct 2^i -projections in cuts of size X in H'' is $n^{O(\frac{X}{n})}$.

ヘロン 人間 とくほ とくほ とう

Another Nagamochi-Ibaraki Sampling Scheme Contd.

 Consider one cut.
 How much deviation does the 2ⁱ-projection contribute?

•
$$\epsilon \sum_{j \ge i-1} \frac{n_j * \frac{n_j}{2}}{n} * 2^i = \epsilon \sum_{j \ge i-1} \frac{n_j}{2^{j-i}}.$$

• Overall deviation $\epsilon \sum_{i>=0} \sum_{j\geq i-1} \frac{n_i}{2^{j-i}} = O(\epsilon \sum_{i\geq 0} n_j) = O(\epsilon \Delta)$

Another Nagamochi-Ibaraki Sampling Scheme Contd.

- Consider one cut.
 How much deviation does the 2ⁱ-projection contribute?
- $\epsilon \sum_{j \ge i-1} \frac{n_j * \frac{n_j}{2j}}{n} * 2^i = \epsilon \sum_{j \ge i-1} \frac{n_j}{2^{j-i}}$.
- Overall deviation $\epsilon \sum_{i>=0} \sum_{j\geq i-1} \frac{n_j}{2^{j-1}} = O(\epsilon \sum_{i\geq 0} n_j) = O(\epsilon \Delta)$

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Another Nagamochi-Ibaraki Sampling Scheme Contd.

 Consider one cut.
 How much deviation does the 2ⁱ-projection contribute?

•
$$\epsilon \sum_{j \ge i-1} \frac{n_j * \frac{n_j}{2^j}}{n} * \mathbf{2}^i = \epsilon \sum_{j \ge i-1} \frac{n_j}{2^{j-i}}.$$

• Overall deviation $e \sum_{i>=0} \sum_{j\geq i-1} \frac{n_j}{2^{j-i}} = O(e \sum_{i>0} n_j) = O(e \Delta)$

Another Nagamochi-Ibaraki Sampling Scheme Contd.

 Consider one cut.
 How much deviation does the 2ⁱ-projection contribute?

•
$$\epsilon \sum_{j \ge i-1} \frac{n_{j*} \frac{n_{j}}{2^{j}}}{n} * \mathbf{2}^{i} = \epsilon \sum_{j \ge i-1} \frac{n_{j}}{2^{j-i}}.$$

• Overall deviation $\epsilon \sum_{i>=0} \sum_{j\geq i-1} \frac{n_j}{2^{j-i}} = O(\epsilon \sum_{j\geq 0} n_j) = O(\epsilon\Delta)$

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

- Sample edge *e* with probability ^{log n}/_{e²sc_e} (sc_e is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \ge 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n-1$, so this yields an $O(n \frac{\log n}{e^{2}})$ size sparsifier.

(소문) 소문) 문

- Sample edge *e* with probability $\frac{\log n}{e^2 s c_e}$ (*sc_e* is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n-1$, so this yields an $O(n \frac{\log n}{e^{2}})$ size sparsifier.

(個) (目) (日) (日)

- Sample edge *e* with probability $\frac{\log n}{e^2 s c_e}$ (*sc_e* is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n-1$, so this yields an $O(n \frac{\log n}{c^{2}})$ size sparsifier.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

- Sample edge *e* with probability $\frac{\log n}{e^2 s c_e}$ (*sc_e* is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n-1$, so this yields an $O(n \frac{\log n}{c^{2}})$ size sparsifier.

- Sample edge *e* with probability $\frac{\log n}{e^2 s c_e}$ (*sc_e* is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n 1$, so this yields an $O(n \frac{\log n}{e^{2}})$ size sparsifier.

- Sample edge *e* with probability $\frac{\log n}{e^2 s c_e}$ (*sc_e* is the strong connectivity of *e*).
- Consider the graph G''' comprising edges e with $sc_e \ge 2^i$.
- Any edge *e* with $sc_e \geq 2^i$ is $\Theta(sc_e)$ connected in G'''.
- So the same proof holds.
- $\sum_{e} sc_{e} \leq n-1$, so this yields an $O(n \frac{\log n}{\epsilon^{2}})$ size sparsifier.

Ramesh Hariharan

Graph Sparsification Maintaining Cuts

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)
- Sampling by conductance yields an $O(n \frac{\log n}{\epsilon^2})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.
- An $O(\frac{n}{c^2})$ size sparsifier (Batson, Spielman, Srivastava).

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)
- Sampling by conductance yields an $O(n \frac{\log n}{\epsilon^2})$ size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.
- An $O(\frac{n}{c^2})$ size sparsifier (Batson, Spielman, Srivastava).

・ 同 ト ・ ヨ ト ・ ヨ ト

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)
- Sampling by conductance yields an O(n^{log n}/_{e²}) size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.
- An $O(\frac{n}{c^2})$ size sparsifier (Batson, Spielman, Srivastava).

・同・ ・ヨ・・

- An $O(n \frac{\log n}{\epsilon^2})$ size sparsifier in time $O(n \log n + m)$ (Hariharan and Panigrahy)
- Sampling by conductance yields an O(n^{log n}/_{e²}) size sparsifier (Spielman, Srivastava); this is more general as well, but conductances are more complex to compute.
- An $O(\frac{n}{\epsilon^2})$ size sparsifier (Batson, Spielman, Srivastava).

ヘロト ヘアト ヘヨト ヘ

Open Problem

- Show that sampling by connectivity yields an O(n^{log n}/_{e²}) size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.

Open Problem

- Show that sampling by connectivity yields an O(n^{log n}/_{e²}) size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.

Open Problem

- Show that sampling by connectivity yields an O(n^{log n}/_{e²}) size sparsifier, w.h.p.
- This will yield a corresponding corollary for sampling by conductances.

Ramesh Hariharan Graph Sparsification Maintaining Cuts

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ●

THANK YOU

Ramesh Hariharan Graph Sparsification Maintaining Cuts

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ