#### NEXP is not contained in $ACC^0$

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

An outline of the proof by Ryan Williams May 6, 2011

Nutan (IITB)

Э May 2011 1 / 24

#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

| Complexity classes and lower bounds    |                  |  |
|----------------------------------------|------------------|--|
| (model of computation, resource bound) | complexity class |  |
| (Det TM, poly time)                    | Ρ                |  |
| (Non-Det TM, poly time)                | NP               |  |
| (Non-Det TM, exp time)                 | NEXP             |  |
| (Circuits, poly size)                  | P/poly           |  |

May 2011 3 / 24

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

#### Circuits as a model of computation



- Set of variables  $X = \{x_1, x_2, \dots, x_n\}.$
- Directed acyclic graph (DAG) with labels from  $X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}.$
- Computes a function  $f: \{0,1\}^n \rightarrow \{0,1\}.$

May 2011 4 / 24

#### Circuits as a model of computation



- Set of variables  $X = \{x_1, x_2, \dots, x_n\}.$
- Directed acyclic graph (DAG) with labels from  $X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}.$
- Computes a function  $f: \{0,1\}^n \to \{0,1\}.$

Definition (Circuits computing a language)

 ${\mathscr C}$  is said to compute language L if

$$\forall x: \quad x \in L \cap \{0,1\}^n \Leftrightarrow C_n(x) = 1$$

#### Circuits as a model of computation



- Set of variables  $X = \{x_1, x_2, \dots, x_n\}.$
- Directed acyclic graph (DAG) with labels from  $X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}.$
- Computes a function  $f: \{0,1\}^n \to \{0,1\}.$

Definition (Circuits computing a language)

 ${\mathscr C}$  is said to compute language L if

$$\forall x: \ x \in L \cap \{0,1\}^n \Leftrightarrow C_n(x) = 1$$

Allow for a different algorithm per input length. Can compute even undecidable languages.

Nutan (IITB)

May 2011 4 / 24

# $\mathsf{ACC}^0$ and $\mathsf{MOD}_m$

ACC<sup>0</sup> Circuits:

Constant depth circuits over AND, OR, NOT,  $MOD_m$  for any m > 1.

- Set of variables
  - $X = \{x_1, x_2, \dots, x_n\}.$
- Directed acyclic graph (DAG) with labels from  $X \cup \overline{X} \cup \{\land, \lor, \mathsf{MOD}_m\} \cup \{0, 1\}.$
- Computes a function  $f: \{0,1\}^n \to \{0,1\}.$

 $\mathsf{MOD}_2((\overline{x}_1 \lor x_2), (x_2 \lor x_3))$ 



# $ACC^0$ and $MOD_m$

#### MOD<sub>6</sub> computing MOD<sub>3</sub>



#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

#### NEXP and ACC<sup>0</sup>

Theorem (Williams, 2010)

There exists a language in NEXP that has no polynomial sized ACC<sup>0</sup> circuits.

#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

Circuits allow a different algorithm for every input length.

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP?

Open

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP?

No not even for P Parity does not have constant depth polynomial sized circuits. [Frust-Saxe-Sipser, 1981], [Ajtai, 1983], [Yao, 1985], [Håstad, 1986]

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP?

No not even for P MOD<sub>3</sub> cannot be computed by constant depth polynomial sized circuits with MOD<sub>2</sub> gates. [Razborov, 1987], [Smolensky, 1987]

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP?

Open

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP? Open

Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for EXP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP? Open

Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for EXP?

Open .. ?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with  $MOD_2$  gates for NP? No Are there poly sized O(1) depth circuits with  $MOD_6$  for NP? Open Are there poly sized O(1) depth circuits with  $MOD_6$  for EXP? Open Are there poly sized O(1) depth circuits with  $MOD_6$  for NEXP?

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP? Open Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for EXP? Open Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NEXP? Hmm ...

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized O(1) depth circuits with MOD<sub>2</sub> gates for NP? No Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NP? Open Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for EXP? Open Are there poly sized O(1) depth circuits with MOD<sub>6</sub> for NEXP? This is what we will study today.

#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

Э

# Preliminaries for the proof: CIRCUIT-SAT:

- Given: a circuit C on n variables
- Check: does there exist an assignment for the variables that makes the circuit evaluate to 1.

# Preliminaries for the proof: CIRCUIT-SAT:

- Given: a circuit C on n variables
- Check: does there exist an assignment for the variables that makes the circuit evaluate to 1.

SUCCINCT-3SAT:

- Given: a formula  $\phi$  on  $2^n$  variables and  $2^n$  clauses encoded by a circuit of size poly(n)
- Check: is  $\phi$  satisfiable?

# Preliminaries for the proof: CIRCUIT-SAT:

- Given: a circuit C on n variables
- Check: does there exist an assignment for the variables that makes the circuit evaluate to 1.

SUCCINCT-3SAT:

- Given: a formula  $\phi$  on  $2^n$  variables and  $2^n$  clauses encoded by a circuit of size poly(n)
- Check: is  $\phi$  satisfiable?

Theorem (Nondeterministic time heirarchy theorem)

 $\forall k > 0 \text{ and } \exists f : \{0,1\}^* \rightarrow \{0,1\}, \text{ such that } f \in \textit{NTIME}[2^n] \text{ but } f \notin \textit{NTIME}[2^n/n^k].$ 

Proof Outline:

Let  $L \in \mathsf{NTIME}[2^n]$ .

- 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
- 2 From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x \in L$ .
- 3 Prove D is ACC<sup>0</sup>, poly sized.
- 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in time  $O(2^n/n^k)$ .

Proof Outline:

Let  $L \in \mathsf{NTIME}[2^n]$ .

- 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
- 2 From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x \in L$ .
- 3 Prove D is ACC<sup>0</sup>, poly sized.
- 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in time  $O(2^n/n^k)$ .

Theorem (Nondeterministic time heirarchy theorem)

 $\forall k > 0 \text{ and } \exists f : \{0,1\}^* \rightarrow \{0,1\}$ , such that  $f \in NTIME[2^n]$  but  $f \notin NTIME[2^n/n^k]$ .

Proof Outline:

Let  $L \in \mathsf{NTIME}[2^n]$ .

- 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
- ${\mathcal 2}$  From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x\in L.$  \*
- 3 Prove D is ACC<sup>0</sup>, poly sized. \*
- 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in time  $O(2^n/n^k)$ .
- \* Assuming NEXP in ACC<sup>0</sup>.

Step 1: Reduction to SUCCINCT-3SAT

NEXP is not contained in  $ACC^0$ 

∃ ⊳ 12 / 24 May 2011

3

#### Step 1: Reduction to SUCCINCT-3SAT

SUCCINCT-3SAT:

- Given: a formula  $\phi$  on  $2^n$  variables and  $2^n$  clauses using a circuit of size poly(n)
- Check: is  $\phi$  satisfiable?

Step 1: Reduction to SUCCINCT-3SAT

SUCCINCT-3SAT:

- Given: a formula  $\phi$  on  $2^n$  variables and  $2^n$  clauses using a circuit of size poly(n)
- Check: is  $\phi$  satisfiable?

Deterministic polynomial time reduction from any language L in NTIME $[2^n]$  to SUCCINCT-3SAT:

[Tourlakis, 2001], [Fortnow-Lipton-van Melkebeek-Viglas, 2005]

$$x \longrightarrow C_x$$

 $|x| = n \longrightarrow \text{size of } C_x O(n^5)$  $n + 5 \log n \text{ inputs}$ 

 $x \in L \quad \Leftrightarrow \quad C_x \text{ is satisfiable}$ 

na C

#### Proof Outline

- Let  $L \in \mathsf{NTIME}[2^n]$ .
  - 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
  - 2 From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x \in L$ . (Assuming NEXP in ACC<sup>0</sup>.)
  - $\mathcal{S}$  Prove D is ACC<sup>0</sup>, poly sized. (Assuming NEXP in ACC<sup>0</sup>.)
  - 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in NTIME $[2^n/n^k]$ .

#### Succinct-3SAT to Circuit-Sat



| $C_x$   |                                          |
|---------|------------------------------------------|
| Input:  | index $i$ of a clause                    |
| Output: | variables $x_{i1}, x_{i2}, x_{i3}$       |
|         | in clause $i$ with signs                 |
| W       |                                          |
| Input:  | a variable index $i$                     |
| Output: | value of $x_i$ in the lex first          |
|         | satisfying assignment                    |
| D       |                                          |
| Input:  | index $i$ of a clause                    |
| Output: | 1 iff clause $i$ <b>not</b> satisfied by |
|         | assignment given by $W$                  |

May 2011 14 / 24

æ

#### Succinct-3SAT to Circuit-Sat



| $C_x$   |                                          |
|---------|------------------------------------------|
| Input:  | index $i$ of a clause                    |
| Output: | variables $x_{i1}, x_{i2}, x_{i3}$       |
|         | in clause $i$ with signs                 |
| W       |                                          |
| Input:  | a variable index $i$                     |
| Output: | value of $x_i$ in the lex first          |
|         | satisfying assignment                    |
| D       |                                          |
| Input:  | index $i$ of a clause                    |
| Output: | 1 iff clause $i$ <b>not</b> satisfied by |
|         | assignment given by $W$                  |

If formula encoded by  $C_x$  is satisfiable then D is not satisfiable.

If formula encoded by  $C_x$  is not satisfiable then D is satisfiable.

#### Succinct-3SAT to Circuit-Sat



| $C_x$   |                                          |
|---------|------------------------------------------|
| Input:  | index $i$ of a clause                    |
| Output: | variables $x_{i1}, x_{i2}, x_{i3}$       |
|         | in clause $i$ with signs                 |
| W       |                                          |
| Input:  | a variable index $i$                     |
| Output: | value of $x_i$ in the lex first          |
|         | satisfying assignment                    |
| D       |                                          |
| Input:  | index $i$ of a clause                    |
| Output: | 1 iff clause $i$ <b>not</b> satisfied by |
|         | assignment given by $W$                  |

Assume NEXP has polysized circuits.

The satisfiable instance of SUCCINCT-3SAT have polynomial size circuits encoding the satisfying assignments. [Impagliazzo-Kabanets-Wigderson, 2002]

Nutan (IITB)

May 2011

14 / 24

#### Proof Outline

#### Let $L \in \mathsf{NTIME}[2^n]$ .

- 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
- 2 From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x \in L$ . (Assuming NEXP in ACC<sup>0</sup>.)
- 3 Prove D is ACC<sup>0</sup>, poly sized. (Assuming NEXP in ACC<sup>0</sup>.)
- 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in TIME $[2^n/n^k]$ .

#### Making $D \operatorname{ACC}^0$ ?

#### Lemma

For an instance  $C_x$  of SUCCINCT-3SAT there is an equivalent ACC<sup>0</sup> circuit C such that for all  $y \in \{0,1\}^{n+5\log n} C_x(y) = C(y)$ .

Proof: As NEXP is contained in  $ACC^0$ , P is contained in  $ACC^0$ .

Let A be an ACC<sup>0</sup> circuit for the Circuit Value Problem.

Feed  $C_x$  as an input to A.

 $A(C_x, y)$  evaluates  $C_x$  on y and is an ACC<sup>0</sup> circuit.

#### Proof Outline

#### Let $L \in \mathsf{NTIME}[2^n]$ .

- 1 Given  $x \in \{0,1\}^n$ . Reduce to an instance of SUCCINCT-3SAT  $C_x$
- 2 From  $C_x$  obtain a circuit D such that D is unsatisfiable if and only if  $x \in L$ . (Assuming NEXP in ACC<sup>0</sup>.)
- 3 Prove D is ACC<sup>0</sup>, poly sized. (Assuming NEXP in ACC<sup>0</sup>.)
- 4 Give a fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT, running in NTIME $[2^n/n^k]$ .

#### Design fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT

Outline:

- $\bullet$  Any ACC  $^0$  circuit can be converted into a SYM  $^+$  circuit.
- There is a fast dynamic programming algorithm for circuit satisfiability of SYM<sup>+</sup> circuits.

*Design fast algorithm for* ACC<sup>0</sup>-CIRCUIT-SAT SYM<sup>+</sup>:

Depth 2 circuit which is a symmtric function \* of ANDs of the input variables.

\* Symmetric function: output depends only on the number of 1s in the input.

# Design fast algorithm for ACC<sup>0</sup>-CIRCUIT-SAT SYM<sup>+</sup>:

Depth 2 circuit which is a symmtric function of ANDs of the input variables.



18 / 24

## $ACC^0$ to $SYM^+$

Theorem ([Yao, 1990], [Beigel-Tarui, 1994], [Allender-Gore, 1994])

Any ACC<sup>0</sup> circuit of size  $n^5$  can be converted into a SYM<sup>+</sup> circuit of size  $n^{O(\log^d n)}$  in time  $n^{O(\log^d n)}$ . And the symmetric function can be computed in time  $n^{O(\log^d n)}$ . (d: a constant depending on the depth)

Fast evaluation of SYM<sup>+</sup>

Let  $S \subseteq [n]$ . For a SYM<sup>+</sup> circuit:

Let  $h: 2^{[n]} \to \mathbb{N}$  be defined as:

h(S) = j if *j*-many AND gates have S feeding into them.

#### Fast evaluation of SYM<sup>+</sup>

Let  $S \subseteq [n]$ . For a SYM<sup>+</sup> circuit:

Let  $h: 2^{[n]} \to \mathbb{N}$  be defined as:

h(S) = j if *j*-many AND gates have S feeding into them.

Let  $g:2^{[n]}\to \mathbb{N}$  be defined as:  $g(T)=\sum_{S\subseteq T}h(S).$ 

g(T) = # of true AND gates under  $x_i = 1$  for  $i \in T$  and  $x_i = 0$  for  $i \notin T$ 

#### Fast evaluation of SYM<sup>+</sup>

Let  $S \subseteq [n]$ . For a SYM<sup>+</sup> circuit:

Let  $h: 2^{[n]} \to \mathbb{N}$  be defined as:

h(S) = j if *j*-many AND gates have S feeding into them.

Let  $g: 2^{[n]} \to \mathbb{N}$  be defined as:  $g(T) = \sum_{S \subseteq T} h(S)$ .

g(T) = # of true AND gates under  $x_i = 1$  for  $i \in T$  and  $x_i = 0$  for  $i \notin T$ 

# Computing SYM<sup>+</sup> circuit on all its inputs equivalent to Computing g for all $T \subseteq [n]$

20 / 24

IN I NOR

#### Computing g on all $T \subseteq [n]$

 $\bullet \ {\rm Computing} \ h$ 

Takes time  $O(2^n + s poly(n))$ , where s is the size of the circuit.

#### Computing g on all $T \subseteq [n]$

• Computing h

Takes time  $O(2^n + s \ poly(n))$ , where s is the size of the circuit.

• Computing g: Dynamic Programming Set  $g_0(T) = h(T)$  for all  $T \subseteq [n]$ 

$$g_{i+1}(T) = \begin{cases} g_i(T) &+ g_i(T \setminus \{i\}) & \text{if } i \in T \\ g_i(T) & \text{otherwise} \end{cases}$$

Computing g on all  $T \subseteq [n]$ 

• Computing h

Takes time  $O(2^n + s \ poly(n))$ , where s is the size of the circuit.

• Computing g: Dynamic Programming Set  $g_0(T) = h(T)$  for all  $T \subseteq [n]$ 

$$g_{i+1}(T) = \begin{cases} g_i(T) &+ g_i(T \setminus \{i\}) & \text{if } i \in T \\ g_i(T) & \text{otherwise} \end{cases}$$

 $g_i(T)$  equals  $\sum_{S\subseteq T} h(S)$ , for S such that  $S\cap [n]\setminus [i] = T\cap [n]\setminus [i]$ Note:  $g_n = g$ .

The function  $g_{i+1}$  can be computed from  $g_i$  in time  $O(2^n poly(n))$ Therefore the total time  $= O(2^n poly(n) + s poly(n)).$ 

- 4 同 🔸 モ 🕨 - モ 🛛 りへの

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

<u>Proof:</u> Obtain C' from C:



$$C'$$
:  
size:  $2^l n^5$ ,  
inputs:  $m - l$ , where  
 $m = n + 5 \log n$ .

May 2011 22 / 24

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

<u>Proof:</u> Obtain C' from C:



 $\begin{array}{ll} C': & \\ {\rm size:} & 2^l n^5, \\ {\rm inputs:} & m-l, \, {\rm where} \\ & m=n+5\log n. \end{array}$ 

#### Theorem ([Yao, 1990], [Beigel-Tarui, 1994], [Allender-Gore, 1994])

Any ACC<sup>0</sup> circuit of size *s* can be converted into a SYM<sup>+</sup> circuit of size  $s^{O(\log^d s)}$  in time  $s^{O(\log^d s)}$ . Assuming the symmetric function can be computed in time  $s^{O(\log^d s)}$ . (*d*: a constant depending on the depth)

Nutan (IITB)

NEXP is not contained in ACC<sup>U</sup>

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

<u>Proof:</u> Obtain C' from C:



C':  
size: 
$$2^{l}n^{5}$$
,  
nputs:  $m - l$ , where  
 $m = n + 5 \log n$ 

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

To evaluate AND gates:  $O(2^{m-l}poly(n))$ 

To evaluate symmetric function:  $(2^l n^5)^{O(l \log^d n)}$ 

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

Proof: SYM<sup>+</sup> circuit C'':  $(2^l n^5)^{O(l\log^d n)}$ size: m-linputs: Fast satisfiability algorithm: For  $l = \log^2 n$  $O(2^{m-l}poly(n)) = O(2^{n-\log^2 n}poly(n))$ To evaluate AND gates:  $(2^{l}n^{5})^{O(l\log^{d} n)} = n^{O(\log^{d'} n)}$ To evaluate symmetric function:

#### Theorem

CIRCUIT-SAT for any ACC<sup>0</sup> circuit C with  $n + 5 \log n$  inputs and  $n^5$  size can be determined in time  $O(2^{n-\log^2 n} poly(n))$ .

Proof: SYM<sup>+</sup> circuit C'':  $(2^l n^5)^{O(l\log^d n)}$ size: m-linputs: Fast satisfiability algorithm: For  $l = \log^2 n$  $O(2^{m-l}poly(n)) = O(2^{n-\log^2 n}poly(n))$ To evaluate AND gates:  $(2^{l}n^{5})^{O(l\log^{d} n)} = n^{O(\log^{d'} n)}$ To evaluate symmetric function:

#### Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions

Ŧ

# Thank you!

NEXP is not contained in  $ACC^{0}$ 

31.1€ May 2011

999 24 / 24

æ