NEXP is not contained in ACC^0

Nutan Limaye

Indian Institute of Technology, Bombay
nutan@cse.iitb.ac.in

An outline of the proof by Ryan Williams
May 6, 2011
Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions
Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions
Complexity classes and lower bounds

(model of computation, resource bound) complexity class

(Det TM, poly time) P

(Non-Det TM, poly time) NP

(Non-Det TM, exp time) $NEXP$

(Circuits, poly size) $P/poly$
Circuits as a model of computation

Set of variables
\[X = \{x_1, x_2, \ldots, x_n\}. \]

Directed acyclic graph (DAG) with labels from \(X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\} \).

Computes a function
\[f : \{0, 1\}^n \rightarrow \{0, 1\}. \]
Circuits as a model of computation

Let $C = \{C_n\}_{n=0}^\infty$.

Definition (Circuits computing a language)

C is said to compute language L if

$$\forall x : x \in L \cap \{0, 1\}^n \Leftrightarrow C_n(x) = 1$$

- Set of variables
 \[X = \{x_1, x_2, \ldots, x_n\}. \]
- Directed acyclic graph (DAG) with labels from $X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}$.
- Computes a function $f : \{0, 1\}^n \to \{0, 1\}$.

NEXP is not contained in ACC0
Circuits as a model of computation

\[(\overline{x}_1 \lor x_2) \land (x_2 \lor 0)\]

Let \(C = \{C_n\}_{n=0}^{\infty}\).

- Set of variables
 \(X = \{x_1, x_2, \ldots, x_n\}\).
- Directed acyclic graph (DAG) with labels from
 \(X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}\).
- Computes a function
 \(f : \{0, 1\}^n \rightarrow \{0, 1\}\).

Definition (Circuits computing a language)

\(C\) is said to compute language \(L\) if

\[\forall x : x \in L \cap \{0, 1\}^n \Leftrightarrow C_n(x) = 1\]

Allow for a different algorithm per input length.
Can compute even undecidable languages.
ACC^0 and MOD_m

ACC^0 Circuits:
Constant depth circuits over AND, OR, NOT, MOD_m for any \(m > 1 \).

- Set of variables
 \[X = \{x_1, x_2, \ldots, x_n\} \].

- Directed acyclic graph (DAG) with labels from \(X \cup \overline{X} \cup \{\land, \lor, \text{MOD}_m\} \cup \{0, 1\} \).

- Computes a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \).
\textbf{ACC}^0 and MOD_m

MOD_6 computing MOD_3

$\text{MOD}_3(x_1, x_2, \ldots, x_n)$
Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions
NEXP and ACC^0

Theorem (Williams, 2010)

There exists a language in NEXP that has no polynomial sized ACC^0 circuits.
Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions
History: Lower bounds

Circuits allow a different algorithm for every input length.
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP?
Open
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP?

No not even for P

Parity does not have constant depth polynomial sized circuits.

[Frust-Saxe-Sipser, 1981], [Ajtai, 1983], [Yao, 1985], [Håstad, 1986]
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? **Open**

Are there polynomial sized constant depth circuits for NP? **No**

Are there poly sized \(O(1)\) depth circuits with \(\text{MOD}_2\) gates for NP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

not even for P

MOD$_3$ cannot be computed by constant depth polynomial sized circuits with MOD$_2$ gates. [Razborov, 1987], [Smolensky, 1987]
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD_2 gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD_6 for NP? Open
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for EXP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for EXP? Open .. ?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for EXP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NEXP?
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open

Are there polynomial sized constant depth circuits for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for EXP? Open

Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NEXP? Hmm …
History: Lower bounds

Circuits allow a different algorithm for every input length.

Are there polynomial sized circuits for NP? Open
Are there polynomial sized constant depth circuits for NP? No
Are there poly sized $O(1)$ depth circuits with MOD$_2$ gates for NP? No
Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NP? Open
Are there poly sized $O(1)$ depth circuits with MOD$_6$ for EXP? Open
Are there poly sized $O(1)$ depth circuits with MOD$_6$ for NEXP?
This is what we will study today.
Outline

- Introduction to complexity classes
- The statement of the main theorem
- History and importance
- Proof
- Future directions
Proof

Preliminaries for the proof:

\textbf{Circuit-Sat:}

Given: a circuit C on n variables
Check: does there exist an assignment for the variables
that makes the circuit evaluate to 1.
Proof

Preliminaries for the proof:

Circuit-Sat:
- Given: a circuit C on n variables
- Check: does there exist an assignment for the variables that makes the circuit evaluate to 1.

Succinct-3SAT:
- Given: a formula ϕ on 2^n variables and 2^n clauses encoded by a circuit of size $\text{poly}(n)$
- Check: is ϕ satisfiable?
Proof

Preliminaries for the proof:

Circuit-Sat:
- Given: a circuit C on n variables
- Check: does there exist an assignment for the variables that makes the circuit evaluate to 1.

Succinct-3SAT:
- Given: a formula ϕ on 2^n variables and 2^n clauses encoded by a circuit of size $\text{poly}(n)$
- Check: is ϕ satisfiable?

Theorem (Nondeterministic time heirarchy theorem)

\[\forall k > 0 \text{ and } \exists f : \{0, 1\}^* \rightarrow \{0, 1\}, \text{ such that } f \in \text{NTIME}[2^n] \text{ but } f \notin \text{NTIME}[2^n/n^k]. \]
Proof

Proof Outline:

Let $L \in \text{NTIME}[2^n]$.

1. Given $x \in \{0, 1\}^n$. Reduce to an instance of \textsc{Succinct-3SAT} C_x

2. From C_x obtain a circuit D such that D is unsatisfiable if and only if $x \in L$.

3. Prove D is ACC0, poly sized.

4. Give a fast algorithm for ACC0-\textsc{Circuit-Sat}, running in time $O(2^n/n^k)$.
Proof

Proof Outline:

Let \(L \in \text{NTIME}[2^n] \).

1. Given \(x \in \{0, 1\}^n \). Reduce to an instance of \textsc{Succinct-3SAT} \(C_x \).

2. From \(C_x \) obtain a circuit \(D \) such that \(D \) is unsatisfiable if and only if \(x \in L \).

3. Prove \(D \) is \(\text{ACC}^0 \), poly sized.

4. Give a fast algorithm for \(\text{ACC}^0\text{-Circuit-Sat} \), running in time \(O(2^n/n^k) \).

\hspace{1cm}

\textbf{Theorem (Nondeterministic time heirarchy theorem)}

\(\forall k > 0 \) and \(\exists f : \{0, 1\}^* \rightarrow \{0, 1\} \), such that \(f \in \text{NTIME}[2^n] \) but \(f \notin \text{NTIME}[2^n/n^k] \).
Proof

Proof Outline:

Let $L \in \text{NTIME}[2^n]$.

1. Given $x \in \{0, 1\}^n$. Reduce to an instance of \textsc{Succinct-3SAT} C_x.

2. From C_x obtain a circuit D such that D is unsatisfiable if and only if $x \in L$. *

3. Prove D is ACC^0, poly sized. *

4. Give a fast algorithm for ACC^0-CIRCUIT-SAT, running in time $O(2^n/n^k)$.

* Assuming NEXP is not contained in ACC^0.
Step 1: Reduction to Succinct-3SAT

Given: a formula ϕ on 2^n variables and 2^n clauses using a circuit of size $\text{poly}(n)$

Check: is ϕ satisfiable?

Deterministic polynomial time reduction from any language L in NTIME[2^n] to Succinct-3SAT:

Nutan (IITB)

NEXP is not contained in ACC0

May 2011 12 / 24
Step 1: Reduction to Succinct-3SAT

Succinct-3SAT:

Given: a formula ϕ on 2^n variables and 2^n clauses using a circuit of size $\text{poly}(n)$

Check: is ϕ satisfiable?

Nutan (IITB)
Step 1: Reduction to Succinct-3SAT

Succinct-3SAT:

Given: a formula \(\phi \) on \(2^n \) variables and \(2^n \) clauses using a circuit of size \(\text{poly}(n) \)

Check: is \(\phi \) satisfiable?

Deterministic polynomial time reduction from any language \(L \) in NTIME[\(2^n \)] to Succinct-3SAT:

[Tourlakis, 2001], [Fortnow-Lipton-van Melkebeek-Viglas, 2005]

\[
x \quad \rightarrow \quad C_x
\]

\[
|x| = n \quad \rightarrow \quad \text{size of } C_x \quad O(n^5)
\]

\[
n + 5 \log n \quad \text{inputs}
\]

\[
x \in L \quad \iff \quad C_x \text{ is satisfiable}
\]
Proof Outline

Let $L \in \text{NTIME}[2^n]$.

1. Given $x \in \{0, 1\}^n$. Reduce to an instance of $\text{SUCCINCT-3SAT} \ C_x$

2. From C_x obtain a circuit D such that D is unsatisfiable if and only if $x \in L$. (Assuming NEXP in ACC^0.)

3. Prove D is ACC^0, poly sized. (Assuming NEXP in ACC^0.)

4. Give a fast algorithm for ACC^0-CIRCUIT-SAT, running in $\text{NTIME}[2^n/n^k]$.

Nutan (IITB)
Succinct-3SAT to Circuit-Sat

- **C_x**
 - Input: index i of a clause
 - Output: variables x_{i1}, x_{i2}, x_{i3} in clause i with signs

- **W**
 - Input: a variable index i
 - Output: value of x_i in the lex first satisfying assignment

- **D**
 - Input: index i of a clause
 - Output: 1 iff clause i not satisfied by assignment given by W

Assume NEXP has polysized circuits.

The satisfiable instance of Succinct-3SAT have polynomial size circuits enclosing the satisfying assignments.

[Impagliazzo-Kabanets-Wigderson, 2002]
Succinct-3SAT to Circuit-Sat

C
- Input: index i of a clause
- Output: variables x_{i1}, x_{i2}, x_{i3} in clause i with signs

W
- Input: a variable index i
- Output: value of x_i in the lex first satisfying assignment

D
- Input: index i of a clause
- Output: 1 iff clause i **not** satisfied by assignment given by W

If formula encoded by C_x is satisfiable then D is not satisfiable.

If formula encoded by C_x is not satisfiable then D is satisfiable.
Succinct-3SAT to Circuit-Sat

\[C_x \]
Input: index \(i \) of a clause
Output: variables \(x_{i1}, x_{i2}, x_{i3} \) in clause \(i \) with signs

\[W \]
Input: a variable index \(i \)
Output: value of \(x_i \) in the lex first satisfying assignment

\[D \]
Input: index \(i \) of a clause
Output: 1 iff clause \(i \) not satisfied by assignment given by \(W \)

Assume \(\text{NEXP} \) has polysized circuits.

The satisfiable instance of \textbf{Succinct-3SAT} have polynomial size circuits encoding the satisfying assignments.

[Impagliazzo-Kabanets-Wigderson, 2002]
Proof Outline

Let $L \in \text{NTIME}[2^n]$.

1. Given $x \in \{0, 1\}^n$. Reduce to an instance of $\text{SUCCINCT}-3\text{SAT} \ C_x$
2. From C_x obtain a circuit D such that D is unsatisfiable if and only if $x \in L$. (Assuming $\text{NEXP} \subseteq \text{ACC}^0$.)
3. Prove D is ACC^0, poly sized. (Assuming $\text{NEXP} \subseteq \text{ACC}^0$.)
4. Give a fast algorithm for ACC^0-CIRCUIT-SAT, running in $\text{TIME}[2^n/n^k]$.

Making D ACC0?

Lemma

For an instance C_x of Succinct-3SAT there is an equivalent ACC0 circuit C such that for all $y \in \{0, 1\}^{n+5\log n}$ $C_x(y) = C(y)$.

Proof: As NEXP is contained in ACC0, P is contained in ACC0.

Let A be an ACC0 circuit for the Circuit Value Problem.

Feed C_x as an input to A.

$A(C_x, y)$ evaluates C_x on y and is an ACC0 circuit.
Proof Outline

Let $L \in \text{NTIME}[2^n]$.

1. Given $x \in \{0, 1\}^n$. Reduce to an instance of $\text{SUCCINCT-3SAT } C_x$
2. From C_x obtain a circuit D such that D is unsatisfiable if and only if $x \in L$. (Assuming NEXP in ACC^0.)
3. Prove D is ACC^0, poly sized. (Assuming NEXP in ACC^0.)
4. Give a fast algorithm for ACC^0-CIRCUIT-SAT, running in $\text{NTIME}[2^n/n^k]$.

Nutan (IITB)
NEXP is not contained in ACC^0
May 2011
Design fast algorithm for ACC0-Circuit-Sat

Outline:
- Any ACC0 circuit can be converted into a SYM$^+$ circuit.
- There is a fast dynamic programming algorithm for circuit satisfiability of SYM$^+$ circuits.
Design fast algorithm for ACC^0-\textsc{Circuit-Sat}

SYM^+:

Depth 2 circuit which is a symmetric function $*$ of ANDs of the input variables.

$*$ Symmetric function: output depends only on the number of 1s in the input.
Design fast algorithm for ACC^0-Circuit-Sat

SYM^+:

Depth 2 circuit which is a symmetric function of ANDs of the input variables.
$\text{ACC}^0 \text{ to SYM}^+$

Theorem ([Yao, 1990],[Beigel-Tarui, 1994],[Allender-Gore, 1994])

Any ACC^0 circuit of size n^5 can be converted into a SYM^+ circuit of size $n^{O(\log^d n)}$ in time $n^{O(\log^d n)}$. And the symmetric function can be computed in time $n^{O(\log^d n)}$. (d: a constant depending on the depth)
Fast evaluation of SYM^+

Let $S \subseteq [n]$. For a SYM^+ circuit:

Let $h : 2^n \rightarrow \mathbb{N}$ be defined as:

$h(S) = j$ if j-many AND gates have S feeding into them.
Fast evaluation of \textbf{SYM}⁺

Let $S \subseteq [n]$. For a SYM⁺ circuit:

Let $h : 2^{[n]} \rightarrow \mathbb{N}$ be defined as:

$h(S) = j$ if j-many AND gates have S feeding into them.

Let $g : 2^{[n]} \rightarrow \mathbb{N}$ be defined as: $g(T) = \sum_{S \subseteq T} h(S)$.

$g(T) = \#$ of true AND gates under
$x_i = 1$ for $i \in T$ and $x_i = 0$ for $i \notin T$
Fast evaluation of SYM^+

Let $S \subseteq [n]$. For a SYM^+ circuit:

Let $h : 2^{[n]} \rightarrow \mathbb{N}$ be defined as:

$h(S) = j$ if j-many AND gates have S feeding into them.

Let $g : 2^{[n]} \rightarrow \mathbb{N}$ be defined as: $g(T) = \sum_{S \subseteq T} h(S)$.

$g(T) = \#$ of true AND gates under $x_i = 1$ for $i \in T$ and $x_i = 0$ for $i \notin T$

Computing SYM^+ circuit on all its inputs equivalent to

Computing g for all $T \subseteq [n]$
Computing g on all $T \subseteq [n]$

- Computing h

 Takes time $O(2^n + s \text{poly}(n))$, where s is the size of the circuit.
Computing g on all $T \subseteq [n]$

- Computing h

 Takes time $O(2^n + s \text{ poly}(n))$, where s is the size of the circuit.

- Computing g: Dynamic Programming

 Set $g_0(T) = h(T)$ for all $T \subseteq [n]$

 $$g_{i+1}(T) = \begin{cases}
 g_i(T) + g_i(T \setminus \{i\}) & \text{if } i \in T \\
 g_i(T) & \text{otherwise}
 \end{cases}$$
Computing g on all $T \subseteq [n]$

- Computing h

 Takes time $O(2^n + s \text{ poly}(n))$, where s is the size of the circuit.

- Computing g: Dynamic Programming

 Set $g_0(T) = h(T)$ for all $T \subseteq [n]$

 \[
 g_{i+1}(T) = \begin{cases}
 g_i(T) + g_i(T \setminus \{i\}) & \text{if } i \in T \\
 g_i(T) & \text{otherwise}
 \end{cases}
 \]

 $g_i(T)$ equals $\sum_{S \subseteq T} h(S)$, for S such that $S \cap [n] \setminus \{i\} = T \cap [n] \setminus \{i\}$

 Note: $g_n = g$.

 The function g_{i+1} can be computed from g_i in time $O(2^n \text{ poly}(n))$

 Therefore the total time $= O(2^n \text{ poly}(n) + s \text{ poly}(n))$.
Fast ACC0-Circuit-Sat algorithm

Theorem

Circuit-Sat for any ACC0 circuit C with $n + 5 \log n$ inputs and n^5 size can be determined in time $O(2^{n-\log^2 n} \text{poly}(n))$.

Proof: Obtain C' from C:

C':
- size: $2^l n^5$,
- inputs: $m - l$, where $m = n + 5 \log n$.

Nutan (IITB)
Fast ACC\(^0\)-Circuit-Sat algorithm

Theorem

Circuit-Sat for any ACC\(^0\) circuit \(C\) with \(n + 5 \log n\) inputs and \(n^5\) size can be determined in time \(O(2^{n - \log^2 n}\text{poly}(n))\).

Proof: Obtain \(C'\) from \(C\):

![Diagram of Circuit-Sat algorithm]

\(C'\):
- **size:** \(2^l n^5\),
- **inputs:** \(m - l\), where \(m = n + 5 \log n\).

Recall:

Theorem ([Yao, 1990],[Beigel-Tarui, 1994],[Allender-Gore, 1994])

Any ACC\(^0\) circuit of size \(s\) can be converted into a SYM\(^+\) circuit of size \(s^{O(\log^d s)}\) in time \(s^{O(\log^d s)}\). Assuming the symmetric function can be computed in time \(s^{O(\log^d s)}\). (\(d\): a constant depending on the depth)
Fast ACC0-Circuit-Sat algorithm

Theorem

Circuit-Sat for any ACC0 circuit C with $n + 5 \log n$ inputs and n^5 size can be determined in time $O(2^{n - \log^2 n} \text{poly}(n))$.

Proof: Obtain C'' from C:

SYM$^+$ circuit C''':

- size: $(2^l n^5)O(l \log d n)$
- inputs: $m - l$

\[C''': \]

\[\begin{array}{c}
\text{size:} \\
\text{inputs:}
\end{array} \]

\[2^l n^5, \\
m - l, \quad \text{where} \\
m = n + 5 \log n. \]
Fast ACC⁰-Circuit-Sat algorithm

Theorem

Circuit-Sat for any ACC⁰ circuit C with $n + 5 \log n$ inputs and n^5 size can be determined in time $O(2^{n - \log^2 n} \text{poly}(n))$.

Proof:

SYM⁺ circuit C'':

- **size:** $(2^l n^5)^{O(l \log^d n)}$
- **inputs:** $m - l$

Fast satisfiability algorithm:

- To evaluate AND gates: $O(2^{m-l} \text{poly}(n))$
- To evaluate symmetric function: $(2^l n^5)^{O(l \log^d n)}$

Nutan (IITB)
Fast ACC\(^0\)-Circuit-Sat algorithm

Theorem

Circuit-Sat for any ACC\(^0\) circuit \(C\) with \(n + 5 \log n\) inputs and \(n^5\) size can be determined in time \(O(2^{n-\log^2 n} \text{poly}(n))\).

Proof:

SYM\(^+\) circuit \(C''\):

- size: \((2^l n^5)O(l \log^d n)\)
- inputs: \(m - l\)

Fast satisfiability algorithm:

For \(l = \log^2 n\)

To evaluate AND gates: \(O(2^{m-l} \text{poly}(n)) = O(2^{n-\log^2 n} \text{poly}(n))\)

To evaluate symmetric function: \((2^l n^5)O(l \log^d n) = nO(\log^{d'} n)\)
Fast ACC⁰-Circuit-Sat algorithm

Theorem

\textbf{Circuit-Sat} for any ACC⁰ circuit \(C \) with \(n + 5 \log n \) inputs and \(n^5 \) size can be determined in time \(O(2^{n-\log^2 n} \text{poly}(n)) \).

Proof:

SYM⁺ circuit \(C'' \):

- size: \((2^l n^5)O(l \log^d n)\)
- inputs: \(m - l \)

Fast satisfiability algorithm:

For \(l = \log^2 n \)

To evaluate AND gates: \(O(2^{m-l} \text{poly}(n)) = O(2^{n-\log^2 n} \text{poly}(n)) \)

To evaluate symmetric function: \((2^l n^5)O(l \log^d n) = n^{O(\log^d' n)}\)
Outline

• Introduction to complexity classes
• The statement of the main theorem
• History and importance
• Proof
• Future directions
Thank you!