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◮ LCP formulations
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Linear Complementarity Problem (LCP)

Given an n × n matrix M, and a vector q, find a vector y

∀i : Miy ≤ qi , yi ≥ 0 and yi · (qi − Miy) = 0.
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Linear Complementarity Problem (LCP)

Given an n × n matrix M, and a vector q, find a vector y

∀i : Miy ≤ qi , yi ≥ 0 and yi · (qi − Miy) = 0.

◮ LCP generalizes Linear Programming (LP), Convex Quadratic
Programming (QP)

Assumption: the polyhedron is non-degenerate.

◮ Every solution is at a vertex - rationality follows.
◮ solution may not exist
◮ in general, checking existence is NP-complete
◮ set of solutions may be disconnected
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How to Pivot?

∀i : Miy ≤ qi , yi ≥ 0 and yi · (qi − Miy) = 0.

Using slack variables v, we obtain the equivalent formulation.

My + v = q, y ≥ 0, v ≥ 0 and y · v = 0
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Lemke’s Algorithm (1965)

My + v = q, y ≥ 0, v ≥ 0 and y · v = 0 (1)

Ingenious idea of Lemke: introduce a new variable and consider

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0 (2)
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◮ Solutions of (2) with z = 0 ↔ Solutions of (1)

◮ S: Solutions of (2)
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Lemke’s Algorithm

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0

◮ Vertex of S with z > 0 has a duplicate label

- for some i , both yi = 0 and vi = 0. Degree 2 in S.

◮ with z = 0: Degree 1.
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Lemke’s Algorithm

My + v − z1 = q, y ≥ 0, v ≥ 0, z ≥ 0 and y · v = 0

◮ Vertex of S with z > 0 has a duplicate label

- for some i , both yi = 0 and vi = 0. Degree 2 in S.

◮ with z = 0: Degree 1.

z = 0

z = 0

z = 0

Constraint

◮ A ray - unbounded edge of S incident on a vertex.
◮ If y = 0 then primary else secondary
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Lemke’s Algorithm

◮ Lemke’s algorithm traces the path of S starting from the
primary ray using complementary pivoting. At a vertex

◮ if vi = 0 becomes tight, then relax yi = 0; and vice-versa.

vi = 0
y = 0
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Lemke’s Algorithm

◮ Lemke’s algorithm traces the path of S starting from the
primary ray using complementary pivoting. At a vertex

◮ if vi = 0 becomes tight, then relax yi = 0; and vice-versa.

z = 0

vi = 0
y = 0

yi > 0
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Market Equilibrium Problem



Arrow-Debreu Exchange Market Model

◮ A set of agents A, a set of goods G

- |A| = m and |G| = n

◮ Every agent i has

- an initial endowment (wi1, . . . ,win)
- a utility function Ui : Rn

+ → R+
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Simple Example

Two agents: Alice and Bob
Three goods: Bread, Milk and Cheese

wA = (1, 0, 0), UA = x11 + 2 ∗ x12 + 3 ∗ x13

wB = (0, 1, 1), UB = x21 + x22 + 2 ∗ x23

At prices (1,1,1): Both want to buy cheese only!

At prices (1,1,2): Alice wants cheese and Bob is indifferent.

◮ Equilibrium. Allocation xA = (0, 0, 0.5), xB = (1, 1, 0.5)
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Existence

◮ Arrow-Debreu (1954) - Existence
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Existence

◮ Arrow-Debreu (1954) - Existence non-constructive!

Using Kakutani fixed point theorem

◮ Leon Walras (1874) - Tatonnement

◮ Irving Fisher (1891)
◮ Buyers/Sellers
◮ Buyers come to the market with money
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Algorithms and Complexity

Concave
∪

Irrationality Piecewise Linear Concave (PLC) PPAD-hard
∪

Rationality Separable PLC PPAD-complete
∪

Linear Polynomial
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SPLC Utilities

◮ fj : R+ → R+ is a PLC utility function of agent i for good j .

◮ Ui (x) =
∑

j fj(xj) (separable across goods)

fj

xj

Ujk

ljk

utility/unit of j
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Computing Equilibrium for SPLC

◮ PPAD-complete (Chen, Dai, Du, Teng (2009), Chen & Teng
(2009), Vazirani & Yannakakis (2009))

Open: LCP formulation, systematic and path-following algorithm

◮ Eaves (1975), Devanur and Kannan (2008), Vazirani and
Yannakakis (2009)
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SPLC markets

G., Mehta, Sohoni, Vazirani (STOC’12)

◮ LCP formulation and complementary pivot algorithm

◮ A systematic way of finding equilibrium

◮ Elementary proof of existence, rationality, oddness, ...
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Deriving the LCP

◮ LCP has two parts:
◮ each agent gets an optimal bundle
◮ market clearing

◮ Variables:

fij

xij

Uijk

lijk

utility/unit of j

qijk : amount of money
spent on segment (i , j , k)

pj : price of good j

qijk ≤ lijkpj

Jugal Garg LCPs and Market Equilibria



Market Clearing

Assumption (wlog): ∀j ∈ G :
∑

i wij = 1

∀j ∈ G :
∑

i ,k

qijk = pj

∀i ∈ A :
∑

j ,k

qijk =
∑

j

wijpj

≡

∀j ∈ G :
∑

i ,k

qijk ≤ pj

∀i ∈ A :
∑

j

wijpj ≤
∑

j ,k

qijk
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Optimal Bundle

Given prices p, optimal bundle for an agent i :

◮ bang-per-buck for a segment (i , j , k) =
Uijk

pj

◮ Sort all her segments by decreasing bpb.

◮ Partition by equality: Q1, Q2, . . . ,Ql , . . .

◮ Start allocating until money runs out.
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Forced, Flexible and Undesirable Partitions

Partitions: Q1, Q2, . . . ,Ql , . . .

◮ Flexible: last allocated partition

◮ Forced: all partitions before flexible

◮ Undesirable: all partitions after flexible
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Forced, Flexible and Undesirable Partitions

Partitions: Q1, Q2, . . . ,Ql , . . .

◮ Flexible: last allocated partition

- segments can be partially allocated

◮ Forced: all partitions before flexible

- all segments fully allocated

◮ Undesirable: all partitions after flexible

- no segments allocated
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Optimal Bundle Conditions

1

λi

: will be bpb of flexible partition

Consider a segment (i , j , k). If it is:

◮ Flexible:
Uijk

pj

=
1

λi

and 0 ≤ qijk ≤ lijkpj

◮ Forced:
Uijk

pj

>
1

λi

and qijk = lijkpj

◮ Undesirable:
Uijk

pj

<
1

λi

and qijk = 0
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Supplementary Price

γijk : Supplementary price for segment (i , j , k)

Forced:
Uijk

pj + γijk

=
1

λi

, γijk > 0

Uijk

pj + γijk

≤
1

λi

comp qijk ≥ 0 & qijk ≤ lijkpj comp γijk ≥ 0

◮ Flexible:
Uijk

pj

=
1

λi

and 0 ≤ qijk ≤ lijkpj

◮ Forced:
Uijk

pj

>
1

λi

and qijk = lijkpj

◮ Undesirable:
Uijk

pj

<
1

λi

and qijk = 0
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Complete LCP formulation

∀j ∈ G :
∑

i ,k

qijk − pj ≤ 0 comp pj ≥ 0

∀i ∈ A :
∑

j

wijpj −
∑

j ,k

qijk ≤ 0 comp λi ≥ 0

∀(i , j , k) : Uijkλi − pj − γijk ≤ 0 comp qijk ≥ 0

∀(i , j , k) : qijk − lijkpj ≤ 0 comp γijk ≥ 0
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Final LCP formulation

∀j ∈ G :
∑

i ,k

qijk − p′

j ≤ 1 comp p′

j ≥ 0

∀i ∈ A :
∑

j

wijp
′

j −
∑

j ,k

qijk ≤ −
∑

j

wij comp λi ≥ 0

∀(i , j , k) : Uijkλi − p′

j − γijk ≤ 1 comp qijk ≥ 0

∀(i , j , k) : qijk − lijkp′

j ≤ lijk comp γijk ≥ 0
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Main Theorems

Theorem 1. Solutions of LCP ↔ Market equilibria.
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Main Theorems

Theorem 1. Solutions of LCP ↔ Market equilibria.

Theorem 2. Under the weakest known sufficiency conditions, NO

secondary rays.

- elementary proof of existence, i.e., without fixed point
theorems

- proof of rationality, oddness

- membership in PPAD
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Spending Constraint Utilities

fj

xj

Ujk

utility/unit of j

Bjk
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Bjk

- Defined by Vazirani (2003)
- Applications in e-commerce
- Efficient algorithms
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G., Mehta, Sohoni, Vishnoi (2012):

◮ LCP formulation

◮ complementary pivot algorithm - polynomially many pivots!

Jugal Garg LCPs and Market Equilibria



Spending Constraint Utilities

fj

xj

Ujk

utility/unit of j

Bjk

- Defined by Vazirani (2003)
- Applications in e-commerce
- Efficient algorithms

G., Mehta, Sohoni, Vishnoi (2012):

◮ LCP formulation

◮ complementary pivot algorithm - polynomially many pivots!

also works for perfect price discrimination and linear markets

Jugal Garg LCPs and Market Equilibria



LCP formulation

Input: U = [Uijk ], B = [Bijk ], M = (Mi )
Variables: qijk , pj , γijk
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LCP formulation

Input: U = [Uijk ], B = [Bijk ], M = (Mi )
Variables: qijk , pj , γijk

Uijkλi − pj − γijk ≤ 0; qijk ≥ 0; qijk(Uijkλi − pj − γijk) = 0
qijk ≤ Bijk ; γijk ≥ 0; γijk(qijk − Bijk) = 0

∑

j ,k qijk = Mi
∑

i ,k qijk = pj

λi ≥ 0

Theorem. Solutions of LCP ↔ Market equilibria.
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LCP formulation

Input: U = [Uijk ], B = [Bijk ], M = (Mi )
Variables: qijk , pj , γijk

Uijkλi − pj − γijk ≤ 0; qijk ≥ 0; qijk(Uijkλi − pj − γijk) = 0
qijk ≤ Bijk ; γijk ≥ 0; γijk(qijk − Bijk) = 0

∑

j ,k qijk = Mi
∑

i ,k qijk = pj

λi ≥ 0

Theorem. Solutions of LCP ↔ Market equilibria.

Very similar to the LCP formulation of SPLC utilities
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Observations

Input: (U, M, B)

◮ If all Uijk ’s are same, then it is trivial to obtain the solution.
◮ All prices are same.

◮ For a tuple (i , j , k), Uijk appears exactly in one inequality in
the LCP.
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Observations

Input: (U, M, B)

◮ If all Uijk ’s are same, then it is trivial to obtain the solution.
◮ All prices are same.

◮ For a tuple (i , j , k), Uijk appears exactly in one inequality in
the LCP.

Strategy:

◮ Start with input where all utilities are same and its solution.

◮ Fix Uijks one by one to their desired values.
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Basic Algorithm

Notations:

◮ P(U) - polyhedron of the LCP for input (U, M, B)

◮ Umax = max Uijk ; U0 = [Umax ]

◮ S0 - vertex in P(U0): solution of LCP for input (U0, M, B).
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Basic Algorithm

Notations:

◮ P(U) - polyhedron of the LCP for input (U, M, B)

◮ Umax = max Uijk ; U0 = [Umax ]

◮ S0 - vertex in P(U0): solution of LCP for input (U0, M, B).

Algorithm:

P(U0) ↔ S0

↓
P(U1)

Jugal Garg LCPs and Market Equilibria



Basic Algorithm
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Algorithm:
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Basic Algorithm

Notations:

◮ P(U) - polyhedron of the LCP for input (U, M, B)

◮ Umax = max Uijk ; U0 = [Umax ]

◮ S0 - vertex in P(U0): solution of LCP for input (U0, M, B).

Algorithm:

P(U0) ↔ S0

one inequality changed ∩ ↓
P(U1) ↔ S1
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Basic Algorithm

Notations:

◮ P(U) - polyhedron of the LCP for input (U, M, B)

◮ Umax = max Uijk ; U0 = [Umax ]

◮ S0 - vertex in P(U0): solution of LCP for input (U0, M, B).

Algorithm:

P(U0) ↔ S0

one inequality changed ∩ ↓ complementary pivoting in P(U1)
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Basic Algorithm

Notations:

◮ P(U) - polyhedron of the LCP for input (U, M, B)

◮ Umax = max Uijk ; U0 = [Umax ]

◮ S0 - vertex in P(U0): solution of LCP for input (U0, M, B).

Algorithm:

P(U0) ↔ S0

one inequality changed ∩ ↓ complementary pivoting in P(U1)

P(U1) ↔ S1

∩ ↓
...

...
P(UN) ↔ SN
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S l from S l−1: Pictorially
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S l from S l−1

Recall that:

◮ P(U l−1) ⊂ P(U l) and they differ in Uijkλi − pj − γijk ≤ 0.

◮ S l needs to satisfy
◮ feasibility and complementarity conditions
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S l from S l−1

Recall that:

◮ P(U l−1) ⊂ P(U l) and they differ in Uijkλi − pj − γijk ≤ 0.

◮ S l needs to satisfy
◮ feasibility and complementarity conditions

◮ S l−1 ∈ P(U l). It may violate only qijk(U l
ijkλi − pj − γijk) = 0
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S l from S l−1

Recall that:

◮ P(U l−1) ⊂ P(U l) and they differ in Uijkλi − pj − γijk ≤ 0.

◮ S l needs to satisfy
◮ feasibility and complementarity conditions

◮ S l−1 ∈ P(U l). It may violate only qijk(U l
ijkλi − pj − γijk) = 0

H1 : qijk = 0 and H2 : U l
ijkλi − pj − γijk = 0.
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S l from S l−1

Recall that:

◮ P(U l−1) ⊂ P(U l) and they differ in Uijkλi − pj − γijk ≤ 0.

◮ S l needs to satisfy
◮ feasibility and complementarity conditions

◮ S l−1 ∈ P(U l). It may violate only qijk(U l
ijkλi − pj − γijk) = 0

H1 : qijk = 0 and H2 : U l
ijkλi − pj − γijk = 0.

◮ If qijk = 0 at S l−1, then S l = S l−1.
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S l from S l−1

◮ At S l−1: If qijk > 0 then U l−1λi − pj − γijk = 0

- S l−1 is on an edge of P(U l).

◮ Goal: Reach either H1 or H2 without violating other
complementarity conditions.
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S l from S l−1

◮ At S l−1: If qijk > 0 then U l−1λi − pj − γijk = 0

- S l−1 is on an edge of P(U l).

◮ Goal: Reach either H1 or H2 without violating other
complementarity conditions.

From S l−1:

◮ A clear direction to move towards H2.
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S l from S l−1

◮ At S l−1: If qijk > 0 then U l−1λi − pj − γijk = 0

- S l−1 is on an edge of P(U l).

◮ Goal: Reach either H1 or H2 without violating other
complementarity conditions.

From S l−1:

◮ A clear direction to move towards H2.

◮ A vertex is hit, say u.
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S l from S l−1

◮ At S l−1: If qijk > 0 then U l−1λi − pj − γijk = 0

- S l−1 is on an edge of P(U l).

◮ Goal: Reach either H1 or H2 without violating other
complementarity conditions.

From S l−1:

◮ A clear direction to move towards H2.

◮ A vertex is hit, say u.

◮ If either of H1 or H2 is tight at u, then S l = u.
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S l from S l−1

◮ At S l−1: If qijk > 0 then U l−1λi − pj − γijk = 0

- S l−1 is on an edge of P(U l).

◮ Goal: Reach either H1 or H2 without violating other
complementarity conditions.

From S l−1:

◮ A clear direction to move towards H2.

◮ A vertex is hit, say u.

◮ If either of H1 or H2 is tight at u, then S l = u.

◮ If there is a duplicate label, then complementary pivoting.
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Convergence

Uijkλi − pj − γijk ≤ 0; qijk ≥ 0; qijk(Uijkλi − pj − γijk) = 0
qijk ≤ Bijk ; γijk ≥ 0; γijk(qijk − Bijk) = 0

∑

j ,k qijk = Mi
∑

i ,k qijk = pj

λi ≥ 0

Need to show that:

- no cycling
- existence of duplicate label
- does not end up at a ray
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Convergence

Uijkλi − pj − γijk ≤ 0; qijk ≥ 0; qijk(Uijkλi − pj − γijk) = 0
qijk ≤ Bijk ; γijk ≥ 0; γijk(qijk − Bijk) = 0

∑

j ,k qijk = Mi
∑

i ,k qijk = pj

λi ≥ 0

Need to show that:

- no cycling
- existence of duplicate label path is monotonic!

- does not end up at a ray
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Convergence

Need to show that:

- no cycling
- existence of duplicate label path is monotonic!

- does not end up at a ray

Does not work for SPLC utilities.
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Convergence

Need to show that:

- no cycling
- existence of duplicate label path is monotonic!

- does not end up at a ray

Does not work for SPLC utilities.

A finite time Simplex-like algorithm. Polynomial?
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Uijk = α
nijk

◮ Suppose all Uijk = αnijk , α > 1, and nijk ∈ Z+

◮ U ′ is same as U except for one (i , j , k) where U ′

ijk = αnijk−1.

◮ S and S ′ are the solution vertices of P(U) and P(U ′).
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Uijk = α
nijk

◮ Suppose all Uijk = αnijk , α > 1, and nijk ∈ Z+

◮ U ′ is same as U except for one (i , j , k) where U ′

ijk = αnijk−1.

◮ S and S ′ are the solution vertices of P(U) and P(U ′).

Theorem: The number of pivots from S to S ′ is at most 4(m + n).
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Uijk = α
nijk

◮ Suppose all Uijk = αnijk , α > 1, and nijk ∈ Z+

◮ U ′ is same as U except for one (i , j , k) where U ′

ijk = αnijk−1.

◮ S and S ′ are the solution vertices of P(U) and P(U ′).

Theorem: The number of pivots from S to S ′ is at most 4(m + n).

By applying a scaling technique:

◮ Total number of pivotings are poly(log nmax), nmax = max nijk
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Traditional Utilities

◮ Uijk ≈ αnijk , where size of α, n′ijks are polynomial.

◮ The combinatorial structure of the solutions is same.
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Thanks!


