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Polynomials

Definition

P(x1, x2, . . . , xn) is a polynomial of variables x1, x2, . . ., xn and degree d
over field F if:

P(x1, x2, . . . , xn) =
∑

0≤i1,i2,...,in≤d
ci1,i2,...,inx

i1
1 x

i2
2 · · · x

in
n

where ci1,i2,...,in ∈ F .

Polynomials are one of the fundamental objects in mathematics.

Special polynomials and their properties play a crucial role in a
number of branches.
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Example: Chebyshev Polynomials

Td(x) =

bd/2c∑
k=0

(
d

2k

)
(x2 − 1)kxd−2k .

Solutions of the differential equation

(1− x)2y ′′ − xy ′ + d2y = 0.

Roots are cos(π2
(2k−1)

d ), k = 1, . . . , d .

Bounded within [−1, 1] in the interval [−1, 1], and used in
interpolation.
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Euler Polynomials

Euler function is defined as:

E (x) =
∏
k>0

(1− xk).

This is a power series and can be alternately represented as the
uniformly convergent limit of the polynomial family:

Ed(x) =
d∏

k=1

(1− xk)

in the open disk |x | < 1.

Euler function is ‘canonical’ example of modular functions and is
generating function of partition numbers:

1

E (x)
=
∏
k>0

∑
j≥0

x jk =
∑
j≥0

Πjx
j

where Πj equals the number of partitions of j .
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Example: Determinant Polynomials

detn = det


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...
xn,1 xn,2 · · · xn,n


=

∑
π∈Sn

sgn(π) ·
n∏

i=1

xi ,π(i).

Polynomial over n2 variables, Sn is the set of all permutations over
{1, 2, . . . , n}, and sgn(π) ∈ {−1, 1}.
Roots are precisely all singular matrices.

Linear function on rows and columns.
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Example: Permanent Polynomials

pern = per


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...
xn,1 xn,2 · · · xn,n


=

∑
π∈Sn

n∏
i=1

xi ,π(i).

Polynomial over n2 variables, Sn is the set of all permutations over
{1, 2, . . . , n}.
Similar to Determinant Polynomial, but has very different properties.

Counts the number of perfect matchings in a bipartite graph.
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Classifying Polynomials

Polynomials are typically classified based on number of variables,
degree, and number of non-zero terms.

These classifications, however, do not capture differences in properties
of polynomials well:

I Polynomials
n∏

k=1

xk &
n∏

k=1

(1 + xk)

have similar properties but differ (hugely) in number of non-zero terms.
I Polynomials detn and pern have same degree, number of variables, and

number of non-zero terms, but have very different properties.
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Another Classification

A better way is to use the minimum number of operations needed to
calculate the polynomial.

This parameter captures differences (and similarities) in polynomials
better:

I Polynomials
∏n

k=1 xk and
∏n

k=1(1 + xk) can be computed in n − 1 and
2n − 1 operations respectively.

I Polynomials detn requires nO(1) operations while pern appears to

require 2nΩ(1)

operations.

This parameter is called arithmetic complexity of a polynomial.
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Arithmetic Circuits

Arithmetic circuits over field F represent variables and a sequence of
arithmetic operations over F such that:

Variables are input to the circuit,

Each operation is on variables or result of previous operations,

The result of last operation is output of the circuit.

Allowed operations are addition and multiplication.

Use of constants from the field is also allowed.

The output of any circuit is a polynomial in the input variables.
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An Example

+

∗

+

∗ ∗

∗

+

∗

u

∗

v

+

∗

x

∗

y

∗

+

∗ ∗

−1

2 2

2 2 2 2

−1

inputs

output = (ux + vy)2 + (vx − uy)2 − (u2 + v2) · (x2 + y2)
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Arithmetic Complexity

Crucial parameters associated with arithmetic circuits are:

Size: equals the number of operations in the circuit.

Depth: equals the length of the longest path from a variable to
output of the circuit.

Arithmetic complexity A(P) of a polynomial P is the size of the smallest
arithmetic circuit that outputs the polynomial.
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Circuit Parameters

+

∗

+

∗ ∗

∗

+

∗

u

∗

v

+

∗

x

∗

y

∗

+

∗ ∗

−1

2 2

2 2 2 2

−1

SIZE = 17 DEPTH = 4 DEGREE = 4
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Properties of Arithmetic Circuits

Arithmetic circuits provide a compact way of representing
polynomials.

For example,
(1 + x1) · (1 + x2) · · · · · (1 + xn)

can be represented by an arithmetic circuit of size 2n− 1 even though
it has 2n terms.

I Arithmetic complexity of this polynomial is, therefore, at most 2n − 1.

Given a polynomial as arithmetic circuit, it can be evaluated at any
point efficiently: in time proportional to the size of the circuit.

Note that we cannot say that the complexity of the polynomial is exactly
2n − 1 as there may exist a better way of representing the polynomial.
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Why No Division Operation?

Theorem

Given a circuit of size s, computing polynomial P of degree d , with
addition, multiplication and division operations, all the division operations
can be replaced with addition and multiplication operations at the cost of
increasing the size to (s + d)O(1).
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Arithmetic Complexity of Polynomial Families

There are a number of interesting families of polynomials: Chebyshev
polynomials (Td(x)), Euler polynomials (Ed(x)), Determinant
polynomials (detn(x1,1, . . . , xn,n)).

Each family contains infinitely many polynomials of similar kind, with
different degrees and, at times, different number of variables.

To represent a family of polynomials, we use families of arithmetic
circuits, one circuit for each polynomial in the family.

The arithmetic complexity of such a family is measured as a function
of n and d , the number of variables and degree of polynomials in the
family.
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Examples

A(
∏n

k=1(1 + xk)) = O(n).

A(detn) = nO(1). [Gaussian elimination]

A(Td) = A(Ed) = O(d). [Polynomials are of degree O(d)]
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Bounds on Arithmetic Complexity

Upper Bound

Let P be a polynomial over n variables and degree d . Then

A(P) ≤ dn(d + 1)n ≤ 2(n+log d)2
.

Proof.
Write the polynomial as a sum of (d + 1)n terms. Each terms requires at
most dn multiplications.
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Bounds on Arithmetic Complexity

Lower Bound

Let P be a polynomial over n variables and degree d . Then

A(P) = Ω(n + log d).

Proof.
A(P) ≥ n − 1 since each variable participates in at least one operation.
A ≥ log d since each multiplication at most doubles the degree.
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Classifying Arithmetic Complexity of
Polynomial Families

Polynomial family {Pn,d} has low arithmetic complexity if

A(Pn,d) = (n + log d)O(1):
I The complexity is close to the minimum possible.
I Intuitively, such polynomials are “simple”.
I Examples: {

∏n
k=1(1 + xk)} and {detn}.

Polynomial family {Pn,d} has high arithmetic complexity if

A(Pn,d) = 2(n+log d)Ω(1)
:

I The complexity is close to the maximum possible.
I Intuitively, such polynomials are “difficult”.
I Examples: Conjecturally {pern} and {Ed(x)}.

We now define two classes of polynomial families: one capturing
families of low complexity, and other capturing most of the interesting
polynomials (even of high complexity).
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Capturing Low Complexity Families

The Class VP

Polynomial family {Pn,d} is in VP if A(Pn,d) ≤ (n + log d)O(1) for all n
and d .

The polynomial families in VP are precisely the low arithmetic
complexity families.

Each of these families has a number of nice properties due to being a
‘simple’ family.
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Examples: Polynomial Families in VP

{detn}
Elementary symmetric polynomials:

Sn,d =
∑

1≤k1 6=k2 6=···6=kd≤n

d∏
i=1

xki .

Family {Td}, exploiting the following property:

Td(x) =
(x −

√
x2 − 1)d + (x +

√
x2 − 1)d

2
.
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Capturing Interesting Families

The class VP does not appear to contain several interesting families
of polynomials, e.g., {pern}, {Ed}.
To capture these polynomials, we identify a common property: each
can be written as a large sum of simple monomials.
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Capturing Interesting Families

pern =
∑
π∈Sn

n∏
i=1

xi ,π(i)

It is a large sum (= n!) of monomials, each of which is very simple:∏n
i=1 xi ,π(i) for some π ∈ Sn.

Ed(x) =
d∑

k=0

ckx
k

It is a large sum (= d + 1) of monomials, each of which is ckx
k for

some 0 ≤ k ≤ n.

The constants ck can be computed in P#P, and so the monomials
above are ‘somewhat’ simple.
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Capturing Interesting Families

The Class VNP

Polynomial family {Qn,d} is in VNP if there exists a family {Pn,d} ∈ VP
such that for every n and d :

Qn,d(x1, . . . , xn) =
1∑

y1=0

· · ·
1∑

yn=0

P2n,d(x1, . . . , xn, y1, . . . , yn).

VP and VNP are algebraic analog of the classes P and NP.
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Examples: Polynomial Families in VNP

All polynomial families in VP

{pern}
Jones polynomials: representing invariants of knots

Tutte polynomials:

TG (x , y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |

where G = (V ,E ) is an undirected graph and k(A) is the number of
connected components in the subgraph (V ,A).

Univariate polynomials whose coefficients can be computed in P#P

are all in VNP#P.
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Permanent Family and VNP

Theorem [Valient 1979]

Family {pern} is complete for VNP: for every polynomial family {Qn,d} in
VNP, for every n and d , Qn,d can be expressed as permanent of a
(n + log d)O(1)-size matrix.

This implies that {pern} is the “hardest” family in VNP.
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Is VP 6= VNP?

If VP 6= VNP, it follows that several families (Permanent, Jones
polynomial, Tutte polynomial etc) do not have low complexity.

It is believed that VP 6= VNP, but no proof is known.

Over the years, it has become one of the most active areas of research
in complexity theory.

Polynomial Identity Testing provides an approach to solve this
problem.
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Polynomial Identity Testing

Definition

Given an arithmetic circuit of size s, test if the polynomial computed by
the circuit is non-zero.

A Simpler Version

Given an arithmetic circuit of size s computing a polynomial of degree
≤ s, test if the polynomial computed by the circuit is non-zero.

The problems are referred as PIT and LPIT in short.
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An Example
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∗

+

∗ ∗

∗

+

∗
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+
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y

∗

+

∗ ∗

−1

2 2

2 2 2 2

−1

Is (ux + vy)2 + (vx − uy)2 − (u2 + v2) · (x2 + y2) 6= 0? [NO!]
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Complexity of PIT

A number of randomized polynomial time algorithms are known for the
problem.

The simplest one is by [Schwartz, Zippel 1979]: Substitute random
values from a small subset of Q for each variable, evaluate the circuit,
and output NON-ZERO iff the result is a non-zero number.

Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
. . ..
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Deterministic Algorithm for PIT

Open Question

Is there a deterministic polynomial time algorithm for PIT?

Long-standing open problem.

Also open for LPIT.

A positive answer also yields a lower bound!
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Previous Century

1970s : Definition and first randomized algorithm [Schwartz-Zippel]
for PIT.

1980s : Applications, e.g., multi-set equality, graph matching.

1990s :

More applications, e.g., IP = PSPACE, PCP Theorem.
More randomized algorithms [Chen-Kao 1997] (for
LPIT), [Lewis-Vadhan 1998] (for LPIT), [A-Biswas
1999] (for PIT).
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2001-04

Yet another randomized algorithm [Klivans-Spielman 2001] (for PIT).

Deterministic algorithm for a special class of identities on single
variable: primality test.

Connection of deterministic algorithm with lower bounds
[Kabanets-Impagliazzo 2003]!

Theorem

If there exists a deterministic polynomial time algorithm for LPIT then
either NEXP 6∈ P/poly or VP 6= VNP.

Manindra Agrawal (IIT Kanpur) Polynomials MP 2012 41 / 48



2001-04

Yet another randomized algorithm [Klivans-Spielman 2001] (for PIT).

Deterministic algorithm for a special class of identities on single
variable: primality test.

Connection of deterministic algorithm with lower bounds
[Kabanets-Impagliazzo 2003]!

Theorem

If there exists a deterministic polynomial time algorithm for LPIT then
either NEXP 6∈ P/poly or VP 6= VNP.

Manindra Agrawal (IIT Kanpur) Polynomials MP 2012 41 / 48



2001-04

Yet another randomized algorithm [Klivans-Spielman 2001] (for PIT).

Deterministic algorithm for a special class of identities on single
variable: primality test.

Connection of deterministic algorithm with lower bounds
[Kabanets-Impagliazzo 2003]!

Theorem

If there exists a deterministic polynomial time algorithm for LPIT then
either NEXP 6∈ P/poly or VP 6= VNP.

Manindra Agrawal (IIT Kanpur) Polynomials MP 2012 41 / 48



2005-08

Deterministic polynomial time algorithm for non-commutative LPIT
for formulas [Raz-Shpilka 2005].

Deterministic 2(log d)k
2

time algorithm for 3-PIT with top fanin k
[Dvir-Shpilka 2005].

c-PIT

c-PIT is the restriction of PIT to depth c circuits in which unbounded
fanin gates are allowed and top gate is a +.
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2005-08

Another connection with lower bounds [A 2005].

Theorem

If there exist deterministic polynomial time black-box algorithm for LPIT
then there exists a polynomial family, computable in exponential time, that
is not in VP.

A black-box derandomization of PIT is a deterministic algorithm that can
feed inputs to the circuit and see the output, but does not have access to
the structure of the circuit except the knowledge of its size, depth, and
degree.
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2005-08

Deterministic dO(k) time algorithm for 3-PIT with top fanin k
[Kayal-Saxena 2006].

dO logk d time black-box algorithm for 3-PIT with top fanin k
[Karnin-Shpilka 2008].

Connection of 4-PIT with lower bounds [A-Vinay 2008].

Theorem

If there exist deterministic polynomial time black-box algorithm for 4-PIT
then there exists a polynomial family, computable in exponential time, that
is not in VP.
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2009-11

dk3 log d time black-box algorithm for 3-PIT with top fanin k
[Saxena-Seshadri 2009].

dkk
time black-box algorithm for 3-PIT with top fanin k over

characteristic zero fields [Kayal-Saraf 2009].

dO(k) time black-box algorithm for 3-PIT with top fanin k
[Saxena-Seshadri 2011].
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2009-11

sk
3

time black-box algorithm for 4-PIT on multilinear circuits with
top fanin k [Saraf-Volkovich].

Connecting derandomization to VP 6= VNP [A 2011].

Definition

A multilinear circuit is one in which every gate computes a multilinear
polynomial.

Theorem

If a special black-box polynomial time algorithm, based in Euler
polynomials, solves 4-PIT then VP 6= VNP.
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2012

sk
2

time black-box algorithm for 4-PIT in which every variables occurs
in at most k level two polynomials [A-Saha-Saptharishi-Saxena 2012].

sO(log s) time black-box algorithm for 4-PIT on set-multilinear circuits
[A-Saha-Saxena 2012].

Definition

A set-multilinear circuit of depth four is one in which every level three gate
is a product over the same disjoint set of variables.
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THANK YOU!
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