## Rank-1 Two Player Games: A Homeomorphism and a Polynomial Time Algorithm

Ruta Mehta Dept. of CSE, IIT-Bombay

Mysore Park Theory Workshop 2012

August 10, 2012

Joint work with Bharat Adsul, Jugal Garg and Milind Sohoni

- Games, Nash equilibrium and history
- Two player finite games
- Known results
  - Rank and tractability
- Rank-1 games

回 と く ヨ と く ヨ と

3

- Set of players rational, intelligent, selfish.
- Each with a set of strategies finite or infinite.
- Payoffs preference over outcome is described through payoffs.
- Equilibrium State from where no player gains by unilateral deviation.

Two players, say Row and Column.

Each with three strategies - R, P and S.

|   | R    | Р    | S    |
|---|------|------|------|
| R | 0,0  | -1,1 | 1,-1 |
| Р | 1,-1 | 0,0  | -1,1 |
| S | -1,1 | 1,-1 | 0,0  |

*Finite games* have finitely many players each with finitely many strategies.

(3)

Two players, say Row and Column.

Each with three strategies - R, P and S.

|   | R    | Р    | S    |
|---|------|------|------|
| R | 0,0  | -1,1 | 1,-1 |
| Р | 1,-1 | 0,0  | -1,1 |
| S | -1,1 | 1,-1 | 0,0  |

*Finite games* have finitely many players each with finitely many strategies.

### **Equilibrium?**

Mixed strategy: Probability density function over strategy set

同 と く ヨ と く ヨ と

## Mixed Strategies and Nash Equilibrium (NE)

- Mixed strategy: Probability density function over strategy set
- von Neumann (1928) In a (finite) 2-player zero-sum game, equilibrium, mini-max strategies, exists.
- John Nash (1950) Existence of equilibrium in finite games.
  - Proof is through Brouwer's fixed point theorem, hence highly non-constructive.

## Mixed Strategies and Nash Equilibrium (NE)

- Mixed strategy: Probability density function over strategy set
- von Neumann (1928) In a (finite) 2-player zero-sum game, equilibrium, mini-max strategies, exists.
- John Nash (1950) Existence of equilibrium in finite games.
  - Proof is through Brouwer's fixed point theorem, hence highly non-constructive.
- Irrational NE in a 3-player game (3-Nash) (Nash, 1951).

向下 イヨト イヨト

- Lemke-Howson algorithm (1964) for exact 2-Nash -Exponential.
  - Path following. Establishes rationality for 2-Nash.

A 3 >

- Lemke-Howson algorithm (1964) for exact 2-Nash -Exponential.
  - Path following. Establishes rationality for 2-Nash.
- ▶ Papadimitriou (1992) defined PPAD.
  - Guaranteed existence but difficult to compute.
  - Contains Sperner's lemma, approximate fixed point, exact 2-Nash.
  - Approximate fixed point is PPAD-hard.

## Contd.

### PPAD-hardness

- Daskalakis, Goldberg and Papadimitriou (2006) approximate 3-Nash.
- Chen and Deng (2006) exact 2-Nash.
- Chen, Deng and Teng (2006) approximate 2-Nash.

回 と く ヨ と く ヨ と

## Contd.

### PPAD-hardness

- Daskalakis, Goldberg and Papadimitriou (2006) approximate 3-Nash.
- Chen and Deng (2006) exact 2-Nash.
- Chen, Deng and Teng (2006) approximate 2-Nash.
- NP-hardness for 2-Nash: existence of two NE, NE with x payoff, NE with t non-zero strategies, etc.

白 ト イヨ ト イヨト

## Contd.

### PPAD-hardness

- Daskalakis, Goldberg and Papadimitriou (2006) approximate 3-Nash.
- Chen and Deng (2006) exact 2-Nash.
- Chen, Deng and Teng (2006) approximate 2-Nash.
- NP-hardness for 2-Nash: existence of two NE, NE with x payoff, NE with t non-zero strategies, etc.
- Dantzig (1963): mini-max strategies equivalent to linear primal-dual solution.
  - Zero-sum games can be solved efficiently.

向下 イヨト イヨト

- Shapley (1974) oddness for 2-Nash.
- Shapley's index theory assigns a sign to a NE.
  - |NE with +1 index| = 1 + |NE with -1 index|.
  - Puts the NE computation problem in  $\mathcal{PPAD}$ .

個 と く ヨ と く ヨ と

- Shapley (1974) oddness for 2-Nash.
- Shapley's index theory assigns a sign to a NE.
  - |NE with +1 index| = 1 + |NE with -1 index|.
  - Puts the NE computation problem in  $\mathcal{PPAD}$ .
- Kohlberg and Mertens (1986) Homeomorphism between (finite) game space and its NE correspondence.
  - Extends oddness and index results.
  - Existence and characterization of stable NE.
  - Validates the homotopy based NE computation methods.

向下 イヨト イヨト

- Strategy sets:  $S_1 = \{1, ..., m\}$  and  $S_2 = \{1, ..., n\}$ .
- Payoff matrices A and B (in  $\mathbb{R}^{m \times n}$ ).
  - $S_1$  is the set of rows and  $S_2$  is the set of columns.

白 ト イヨト イヨト

- Strategy sets:  $S_1 = \{1, ..., m\}$  and  $S_2 = \{1, ..., n\}$ .
- Payoff matrices A and B (in  $\mathbb{R}^{m \times n}$ ).
  - $S_1$  is the set of rows and  $S_2$  is the set of columns.

▶ Lipton et al. (2003) - when ranks of A and B are constant.

通 とう ほう ううせい

- Strategy sets:  $S_1 = \{1, ..., m\}$  and  $S_2 = \{1, ..., n\}$ .
- Payoff matrices A and B (in  $\mathbb{R}^{m \times n}$ ).
  - $S_1$  is the set of rows and  $S_2$  is the set of columns.
- ▶ Lipton et al. (2003) when ranks of A and B are constant.
- ► Kannan and Theobald (2007)
  - Rank of game (A, B) is rank(A + B).
  - FPTAS for constant rank games.

向下 イヨト イヨト

- Strategy sets:  $S_1 = \{1, ..., m\}$  and  $S_2 = \{1, ..., n\}$ .
- Payoff matrices A and B (in  $\mathbb{R}^{m \times n}$ ).
  - $S_1$  is the set of rows and  $S_2$  is the set of columns.
- ▶ Lipton et al. (2003) when ranks of A and B are constant.
- ► Kannan and Theobald (2007)
  - Rank of game (A, B) is rank(A + B).
  - FPTAS for constant rank games.
- Zero-sum  $\equiv$  rank-0 an LP captures all the NE.

向下 イヨト イヨト

- Strategy sets:  $S_1 = \{1, ..., m\}$  and  $S_2 = \{1, ..., n\}$ .
- Payoff matrices A and B (in  $\mathbb{R}^{m \times n}$ ).
  - $S_1$  is the set of rows and  $S_2$  is the set of columns.
- ▶ Lipton et al. (2003) when ranks of A and B are constant.
- ► Kannan and Theobald (2007)
  - Rank of game (A, B) is rank(A + B).
  - FPTAS for constant rank games.
- Zero-sum  $\equiv$  rank-0 an LP captures all the NE.
- ► Rank-1: No polynomial time algorithm was known.
  - Difficulty: Disconnected NE set. Reduces to solving rank-1 QP (known to be NP-hard in general).

▲圖▶ ★ 国▶ ★ 国▶

- ► Efficient algorithm for an exact NE in rank-1 games Settles an open question by Kannan and Theobald (2007).
- A simplex-like enumeration algorithm for rank-1; finds a NE in general.

- ► Efficient algorithm for an exact NE in rank-1 games Settles an open question by Kannan and Theobald (2007).
- A simplex-like enumeration algorithm for rank-1; finds a NE in general.
- Homeomorphism results for special subspaces of the bimatrix game space.
  - New proofs for existence, oddness and index theorem.

向下 イヨト イヨト

- ► Efficient algorithm for an exact NE in rank-1 games Settles an open question by Kannan and Theobald (2007).
- A simplex-like enumeration algorithm for rank-1; finds a NE in general.
- Homeomorphism results for special subspaces of the bimatrix game space.
  - New proofs for existence, oddness and index theorem.

Based on the STOC'11 paper.

### Homeomorphism

Two spaces are homeomorphic if they are topologically identical (#components, cross intersections, holes, ...)



#### Not clear if homeomorphism preserve subspaces.

•  $\Delta_i$  = Set of probability distributions over  $S_i$ .

白 と く ヨ と く ヨ と 一

3

- $\Delta_i$  = Set of probability distributions over  $S_i$ .
- Given a  $y \in \Delta_2$ ,  $i \in S_1$  fetches  $(A_i \cdot y)$  to the player 1.

白 と く ヨ と く ヨ と 一

- $\Delta_i$  = Set of probability distributions over  $S_i$ .
- Given a  $y \in \Delta_2$ ,  $i \in S_1$  fetches  $(A_i \cdot y)$  to the player 1.

• Example:  $y = (0.5, 0.3, 0.2)^T$ 

$$A \cdot y = \begin{array}{c} R \\ P \\ S \end{array} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.3 \\ -0.2 \end{bmatrix}$$

御 と く ヨ と く ヨ と …

- $\Delta_i$  = Set of probability distributions over  $S_i$ .
- Given a  $y \in \Delta_2$ ,  $i \in S_1$  fetches  $(A_i \cdot y)$  to the player 1.

• Example:  $y = (0.5, 0.3, 0.2)^T$ 

$$A \cdot y = \begin{array}{c} R \\ P \\ S \end{array} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.3 \\ -0.2 \end{bmatrix}$$

Best Response (BR): P

**BR:** 
$$i \in S_1$$
 s.t.  $A_i \cdot y = \max_{k \in S_1} A_k \cdot y$ 

白 と く ヨ と く ヨ と …

▶ Payoff from  $x \in \Delta_1$  is a conv. comb. of  $A_i y$ 's.

• x maximizes payoff iff  $\forall i \in S_1, x_i > 0 \Rightarrow i$  is a BR to y.

3

- ▶ Payoff from  $x \in \Delta_1$  is a conv. comb. of  $A_i y$ 's.
  - x maximizes payoff iff  $\forall i \in S_1, x_i > 0 \Rightarrow i$  is a BR to y.

Similarly, for player 2: Given a  $x \in \Delta_1$ 

• payoff from  $j \in S_2$  is  $x^T \cdot B^j$ .

個 と く ヨ と く ヨ と

- ▶ Payoff from  $x \in \Delta_1$  is a conv. comb. of  $A_i y$ 's.
  - x maximizes payoff iff  $\forall i \in S_1, x_i > 0 \Rightarrow i$  is a BR to y.

Similarly, for player 2: Given a  $x \in \Delta_1$ 

• payoff from  $j \in S_2$  is  $x^T \cdot B^j$ .

Nash Equilibrium: No player gains by unilateral deviation.

 $(x,y) \in \Delta_1 \times \Delta_2, \quad \begin{array}{ll} \forall i \in S_1, \ x_i > 0 \quad \Rightarrow \quad A_i \cdot y = \max_k A_k \cdot y \\ \forall j \in S_2, \ y_j > 0 \quad \Rightarrow \quad x^T \cdot B^j = \max_k x^T \cdot B^k \end{array}$ 

伺下 イヨト イヨト

**NE:**  $(x, y) \in \Delta_1 \times \Delta_2$ ,  $\forall i \in S_1, x_i > 0 \Rightarrow A_i \cdot y = \max_k A_k \cdot y$  $\forall j \in S_2, y_j > 0 \Rightarrow x^T \cdot B^j = \max_k x^T \cdot B^k$ 

Ruta Mehta Rank-1 Two Player Games

個 と く ヨ と く ヨ と …

NE:  $(x, y) \in \Delta_1 \times \Delta_2$ ,  $\begin{array}{l} \forall i \in S_1, \ x_i > 0 \Rightarrow A_i \cdot y = \max_k A_k \cdot y \\ \forall j \in S_2, \ y_j > 0 \Rightarrow x^T \cdot B^j = \max_k x^T \cdot B^k \end{array}$ Best Response Polyhedra (BRPs) (Assume non-degeneracy)  $P = \{(y, \pi_1) \mid A_i y - \pi_1 \le 0, \forall i \in S_1; y_j \ge 0, \forall j \in S_2; \Sigma_{j \in S_2} y_j = 1\}$ 

 $Q = \{(x, \pi_2) \mid x_i \ge 0, \forall i \in S_1; x^T B^j - \pi_2 \le 0, \forall j \in S_2; \Sigma_{i \in S_1} x_i = 1\}$ 

Where  $\pi_i$  captures the best payoff to player *i*.

▲□ → ▲ □ → ▲ □ → □ □

Best Response Polyhedra (BRPs) (Assume non-degeneracy)

$$\begin{split} P &= \{ (y, \pi_1) \mid A_i y - \pi_1 \leq 0, \forall i \in S_1; \quad y_j \geq 0, \quad \forall j \in S_2; \ \Sigma_{j \in S_2} y_j = 1 \} \\ Q &= \{ (x, \pi_2) \mid x_i \geq 0, \quad \forall i \in S_1; \ x^T B^j - \pi_2 \leq 0, \forall j \in S_2; \ \Sigma_{i \in S_1} x_i = 1 \} \end{split}$$

Where  $\pi_i$  captures the best payoff to player *i*.

**Fully-labeled:**  $x_i(A_iy - \pi_1) = 0, \forall i; \quad y_j(x^T B^j - \pi_2) = 0, \forall j$ 

**NE:**  $(x, y) \in \Delta_1 \times \Delta_2$ ,  $\forall i \in S_1, x_i > 0 \Rightarrow A_i \cdot y = \max_k A_k \cdot y$  $\forall j \in S_2, y_j > 0 \Rightarrow x^T \cdot B^j = \max_k x^T \cdot B^k$ Best Response Polyhedra (BRPs) (Assume non-degeneracy)

$$\begin{split} P &= \{ (y, \pi_1) \mid A_i y - \pi_1 \leq 0, \forall i \in S_1; \quad y_j \geq 0, \quad \forall j \in S_2; \ \Sigma_{j \in S_2} y_j = 1 \} \\ Q &= \{ (x, \pi_2) \mid \quad x_i \geq 0, \quad \forall i \in S_1; \ x^T B^j - \pi_2 \leq 0, \forall j \in S_2; \ \Sigma_{i \in S_1} x_i = 1 \} \end{split}$$

Where  $\pi_i$  captures the best payoff to player *i*.

**Fully-labeled:**  $x_i(A_iy - \pi_1) = 0, \forall i; \quad y_j(x^T B^j - \pi_2) = 0, \forall j$ 

#### NE iff fully-labeled. Only vertex pairs.

Note:  $x_i(A_iy - \pi_1) \le 0, \forall i; y_j(x^T B^j - \pi_2) \le 0, \forall j$ 

- (日) (日) (日) (日) (日)

#### Note:

• 
$$x^T A y - \pi_1 \le 0; \quad x^T B y - \pi_2 \le 0$$

• **NE** iff  $x^T A y - \pi_1 = 0$ ;  $x^T B y - \pi_2 = 0$  (fully-labeled).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

#### Note:

► 
$$x^T Ay - \pi_1 \le 0$$
;  $x^T By - \pi_2 \le 0$   
► NE iff  $x^T Ay - \pi_1 = 0$ ;  $x^T By - \pi_2 = 0$  (fully-labeled).

### QP:

max: 
$$x^{T}(A+B)y - \pi_{1} - \pi_{2}$$
  
 $(y,\pi_{1}) \in P, (x,\pi_{2}) \in Q$ 

### Optimal value is always zero.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

### $rank(A+B) = 1 \Rightarrow A+B = \alpha \cdot \beta^T, \ \alpha \in \mathbb{R}^m, \ \beta \in \mathbb{R}^n.$

max: 
$$(x^{T}\alpha)(\beta^{T}y) - \pi_{1} - \pi_{2}$$
  
 $(y, \pi_{1}) \in P, (x, \pi_{2}) \in Q$ 

御 と く ヨ と く ヨ と …

3

 $rank(A+B) = 1 \Rightarrow A+B = \alpha \cdot \beta^T, \ \alpha \in \mathbb{R}^m, \ \beta \in \mathbb{R}^n.$ 

$$\max: (x^{\mathsf{T}}\alpha)(\beta^{\mathsf{T}}y) - \pi_1 - \pi_2 (y, \pi_1) \in P, (x, \pi_2) \in Q$$

**Consider** *B* as  $-A + \alpha \cdot \beta^T$  and replace  $x^T \alpha$  by  $\lambda$  every where.

通 とう ほう うちょう

### $B = -A + \alpha \beta^T$ ; Replace $x^T \alpha$ by $\lambda$

$$P = \{(y, \pi_1) \mid A_i y - \pi_1 \le 0, \forall i \in S_1; \quad y_j \ge 0, \quad \forall j \in S_2; \ \Sigma_{j \in S_2} y_j = 1\}$$
$$Q = \{(x, \pi_2) \mid x_i \ge 0, \quad \forall i \in S_1; \ x^T B^j - \pi_2 \le 0, \forall j \in S_2; \ \Sigma_{i \in S_1} x_i = 1\}$$

 $\begin{aligned} Q' &= \{ (x, \lambda, \pi_2) \mid x_i \ge 0, \ \forall i; \ -x^T A^j + \lambda \beta_j - \pi_2 \le 0, \ \forall j; \ \Sigma_{i \in S_1} x_i = 1 \} \\ & \blacktriangleright \ H_\alpha : \lambda - x^T \alpha = 0. \ Q = Q' \cap H_\alpha. \end{aligned}$ 

<回と < 回と < 回と -

2

## $B = -A + \alpha \beta^T$ ; Replace $x^T \alpha$ by $\lambda$

$$P = \{(y, \pi_1) \mid A_i y - \pi_1 \le 0, \forall i \in S_1; \quad y_j \ge 0, \quad \forall j \in S_2; \ \Sigma_{j \in S_2} y_j = 1\}$$
$$Q = \{(x, \pi_2) \mid x_i \ge 0, \quad \forall i \in S_1; \ x^T B^j - \pi_2 \le 0, \forall j \in S_2; \ \Sigma_{i \in S_1} x_i = 1\}$$

 $\begin{aligned} Q' &= \{ (x, \lambda, \pi_2) \mid x_i \ge 0, \ \forall i; \ -x^T A^j + \lambda \beta_j - \pi_2 \le 0, \ \forall j; \ \Sigma_{i \in S_1} x_i = 1 \} \\ & \blacktriangleright \ H_\alpha : \lambda - x^T \alpha = 0. \ Q = Q' \cap H_\alpha. \end{aligned}$ 

#### QP':

$$\max: \quad \frac{\lambda(\beta^{\mathsf{T}} y) - \pi_1 - \pi_2}{(y, \pi_1) \in P, \ (x, \lambda, \pi_2) \in Q'}$$

In  $P \times Q'$ ,  $\lambda(\beta^T y) - \pi_1 - \pi_2 \leq 0$ . Equality iff fully-labeled.

▲□ → ▲ □ → ▲ □ → □ □

$$\lambda(\beta^T y) - \pi_1 - \pi_2 \leq 0$$
. Equality iff fully-labeled.

- *N* : Solutions of QP'. Set of fully-labeled points of P × Q'.
  NE of (A, B) ↔ *N* ∩ H<sub>α</sub>.
  - ▶ Recall:  $Q = Q' \cap H_{\alpha}$ . NE iff fully-labeled in  $P \times Q$ .

**Goal:** Find a point in  $\mathcal{N} \cap H_{\alpha}$ .

白 ト イヨト イヨト

Recall: Fully-labeled points of  $P \times Q$  are vertex pairs.

- In  $P \times Q'$ ,  $\lambda$  gives an extra degree of freedom for fully-labeled.
  - $\blacktriangleright$   $\mathcal{N}:$  one infinite path, and may be a set of cycles on 1-skeleton.
  - $\mathcal{N}(a)$ : Points of  $\mathcal{N}$  with  $\lambda = a$ .

Recall: Fully-labeled points of  $P \times Q$  are vertex pairs.

In  $P \times Q'$ ,  $\lambda$  gives an extra degree of freedom for fully-labeled.

 $\blacktriangleright$   $\mathcal{N}:$  one infinite path, and may be a set of cycles on 1-skeleton.

• 
$$\mathcal{N}(a)$$
: Points of  $\mathcal{N}$  with  $\lambda = a$ .

$$OPT(\delta) - \begin{array}{c} \max : & \frac{\delta(\beta^T y) - \pi_1 - \pi_2}{(x, \pi_1) \in P, \ (y, \lambda, \pi_2) \in Q', \lambda = \delta} \end{array}$$

 $\mathcal{N}(a) \neq \emptyset$ , and  $OPT(a) = \mathcal{N}(a), \ \forall a \in \mathbb{R}$ .

•  $\mathcal{N}$  forms a single path with  $\lambda$  being monotonic.

伺 と く き と く き とう

### Enumeration Algorithm



 Follow the path N and output whenever hit H<sub>α</sub> (complementary pivot).

### The Efficient Algorithm



### The Efficient Algorithm



### The Efficient Algorithm: BinSearch

▶ Recall: NE of 
$$(A, B) \leftrightarrow \mathcal{N} \cap H_{\alpha}$$
.  
▶  $a_1 = \min_i \alpha_i, a_2 = \max_i \alpha_i; a_1 \le \sum_i \alpha_i x_i \le a_2, \forall x \in \Delta_1$ .

### BinSearch:



### The Efficient Algorithm: BinSearch

▶ Recall: NE of 
$$(A, B) \leftrightarrow \mathcal{N} \cap H_{\alpha}$$
.  
▶  $a_1 = \min_i \alpha_i, \ a_2 = \max_i \alpha_i; \ a_1 \le \sum_i \alpha_i x_i \le a_2, \ \forall x \in \Delta_1$ .

#### BinSearch:

- 1 Let  $a = \frac{a_1 + a_2}{2}$ . If  $\mathcal{N}(a) \in H_{\alpha}$  then output NE; Exit.
- 2 Else if  $\mathcal{N}(a) \in H_{\alpha}^{-}$  then  $a_1 = a$  else  $a_2 = a$ . Repeat from 1.



### The Efficient Algorithm: BinSearch

▶ Recall: NE of 
$$(A, B) \leftrightarrow \mathcal{N} \cap H_{\alpha}$$
.  
▶  $a_1 = \min_i \alpha_i, \ a_2 = \max_i \alpha_i; \ a_1 \le \sum_i \alpha_i x_i \le a_2, \ \forall x \in \Delta_1$ .

#### **BinSearch:**

- 1 Let  $a = \frac{a_1+a_2}{2}$ . If  $\mathcal{N}(a) \in H_{\alpha}$  then output NE; Exit.
- 2 Else if  $\mathcal{N}(a) \in H_{\alpha}^{-}$  then  $a_1 = a$  else  $a_2 = a$ . Repeat from 1.

#### Time Complexity (polynomial time):

- ► Solve an LP to obtain N(a) in Step 1.
- #iterations is  $O(\mathcal{L})$ , where  $\mathcal{L}$  is the input bit length.

ヨト イヨト イヨト

## Homeomorphism

Ruta Mehta Rank-1 Two Player Games

< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

Recall:  $\mathcal N$  is the set of fully-labeled points of  $P \times Q'$ .

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Recall:  $\mathcal{N}$  is the set of fully-labeled points of  $P \times Q'$ .

Fix A and  $\beta$ . Let  $G(\alpha) = (A, -A + \alpha \beta^T)$ ,  $H_{\alpha} : \lambda = x^T \alpha$ .

▶  $P(\alpha) = P$  and  $Q(\alpha) = Q' \cap H_{\alpha}$ . NE of  $G(\alpha) \leftrightarrow \mathcal{N} \cap H_{\alpha}$ .

白 と く ヨ と く ヨ と 一

Recall:  $\mathcal N$  is the set of fully-labeled points of  $P \times Q'$ .

Fix A and  $\beta$ . Let  $G(\alpha) = (A, -A + \alpha \beta^T)$ ,  $H_{\alpha} : \lambda = x^T \alpha$ .

▶  $P(\alpha) = P$  and  $Q(\alpha) = Q' \cap H_{\alpha}$ . NE of  $G(\alpha) \leftrightarrow \mathcal{N} \cap H_{\alpha}$ .

 $\Gamma = \{G(\alpha) \mid \alpha \in \mathbb{R}^m\}$ , and  $E_{\Gamma}$  be its NE correspondence.

- Γ is an *m*-dimensional subspace.
- $\mathcal{N}$  exactly covers  $E_{\Gamma}$ .
  - $(y, \pi_1), (x, \lambda, \pi_2) \in \mathcal{N} \Leftrightarrow (x, y)$  NE of  $G(\gamma)$  with  $\lambda = x^T \gamma$ .
  - Proves  $\mathcal{N}(a) \neq \emptyset$  and in turn  $\mathcal{N}(a) = OPT(a)$ .

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

3

- $\beta^T \cdot y + \lambda$  strictly increases on  $\mathcal{N}$ .
  - Again using  $\mathcal{N}(a) = OPT(a)$ .

白 ト イヨト イヨト

- $\beta^T \cdot y + \lambda$  strictly increases on  $\mathcal{N}$ .
  - Again using  $\mathcal{N}(a) = OPT(a)$ .
- ► Let  $f : E_{\Gamma} \to \Gamma$  be s.t.  $f(\alpha, x, y) = (\beta^T \cdot y + \alpha^T \cdot x, \ \alpha_2 - \alpha_1, \dots, \alpha_m - \alpha_1)^T.$ 
  - Function f establishes homeomorphism between  $E_{\Gamma}$  and  $\Gamma$ .

伺 と く き と く き とう

- $\beta^T \cdot y + \lambda$  strictly increases on  $\mathcal{N}$ .
  - Again using  $\mathcal{N}(a) = OPT(a)$ .

► Let 
$$f : E_{\Gamma} \to \Gamma$$
 be s.t.  
 $f(\alpha, x, y) = (\beta^T \cdot y + \alpha^T \cdot x, \alpha_2 - \alpha_1, \dots, \alpha_m - \alpha_1)^T.$ 

• Function f establishes homeomorphism between  $E_{\Gamma}$  and  $\Gamma$ .

Extends to rank-k by considering  $B = -A + \sum_{l=1}^{k} \alpha^{l} \beta^{l^{T}}$  and replacing  $x^{T} \alpha^{l}$  by  $\lambda_{l}$ .

伺い イヨン イヨン

### **Positives:**

- Let  $G(\alpha) = (A, \mathbf{C} + \alpha \beta^T).$
- ►  $\Gamma = \{G(\alpha) \mid \alpha \in \mathbb{R}^m\}$ , and its NE correspondence  $E_{\Gamma}$ .
- ▶ The set  $\mathcal{N}$  of fully-labeled points ⊂ 1-skeleton of  $P \times Q'$ .
  - NE of  $G(\alpha) \leftrightarrow \mathcal{N} \cap H_{\alpha}$ . Exactly covers  $E_{\Gamma}$ .
  - Forms a path and a set of cycles.

伺 と く き と く き とう

### **Positives:**

• Let 
$$G(\alpha) = (A, \mathbf{C} + \alpha \beta^T).$$

- ►  $\Gamma = \{G(\alpha) \mid \alpha \in \mathbb{R}^m\}$ , and its NE correspondence  $E_{\Gamma}$ .
- ▶ The set  $\mathcal{N}$  of fully-labeled points  $\subset$  1-skeleton of  $P \times Q'$ .
  - NE of  $G(\alpha) \leftrightarrow \mathcal{N} \cap H_{\alpha}$ . Exactly covers  $E_{\Gamma}$ .
  - Forms a path and a set of cycles.

### **Negatives:**

• 
$$\mathcal{N}(a) \neq OPT(a)$$
.

•  $\mathcal{N}$  may indeed contain cycles.

伺 と く き と く き とう

**Proposition.**  $\mathcal{N}$  consists of a set of cycles  $C_i$ s and an infinite path  $\mathcal{P}$ , with a canonical direction.



**Proposition.**  $\mathcal{N}$  consists of a set of cycles  $C_i$ s and an infinite path  $\mathcal{P}$ , with a canonical direction.



Consequences: Existence, Oddness and Index theorem.

- ▶ What about rank-k? Are they hard?
  - ▶ The structural analysis for rank-k may help to answer.
- ▶ We resolved a special class of rank-1 QP; NP-hard in general.
  - Extend the technique to generalize this class.
- ▶ Structural: When does N contain only the path?

# Thanks

Ruta Mehta Rank-1 Two Player Games

・ロン ・四 と ・ ヨ と ・ ヨ と

æ