
Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Introduction to Property Testing

Sourav Chakraborty

Chennai Mathematical Institute

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution to
the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What about sub-linear?

Cannot even read the whole input!

But sometimes it is very important for various reasons:

Want the answer in very small time (possibly constant time).

Accessing the input can be costly affair or even impossible.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What about sub-linear?

Cannot even read the whole input!

But sometimes it is very important for various reasons:

Want the answer in very small time (possibly constant time).

Accessing the input can be costly affair or even impossible.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What about sub-linear?

Cannot even read the whole input!

But sometimes it is very important for various reasons:

Want the answer in very small time (possibly constant time).

Accessing the input can be costly affair or even impossible.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What about sub-linear?

Cannot even read the whole input!

But sometimes it is very important for various reasons:

Want the answer in very small time (possibly constant time).

Accessing the input can be costly affair or even impossible.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Property Testing

In Property testing we are usually interested in sub-linear query
complexity, that is, we want to read a small fraction of the input.

But how is it possible?
We have to give up on something. We will assume some promise
on the input.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Equality

Equality of strings

Given two strings x , y ∈ {0, 1}n check if x = y , that is, for every
i ∈ {1, . . . , n} is xi = yi .

The goal is to answer it in CONSTANT time and hence can’t even
read the whole input. −− Not Possible

But, say, there is a promise that either x = y OR x and y differ at
more than 1/4 fraction of the indices. Then ...

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Equality

Equality of strings

Given two strings x , y ∈ {0, 1}n check if x = y , that is, for every
i ∈ {1, . . . , n} is xi = yi .

The goal is to answer it in CONSTANT time and hence can’t even
read the whole input. −− Not Possible

But, say, there is a promise that either x = y OR x and y differ at
more than 1/4 fraction of the indices. Then ...

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Equality

Equality of strings

Given two strings x , y ∈ {0, 1}n check if x = y , that is, for every
i ∈ {1, . . . , n} is xi = yi .

The goal is to answer it in CONSTANT time and hence can’t even
read the whole input.

−− Not Possible

But, say, there is a promise that either x = y OR x and y differ at
more than 1/4 fraction of the indices. Then ...

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Equality

Equality of strings

Given two strings x , y ∈ {0, 1}n check if x = y , that is, for every
i ∈ {1, . . . , n} is xi = yi .

The goal is to answer it in CONSTANT time and hence can’t even
read the whole input. −− Not Possible

But, say, there is a promise that either x = y OR x and y differ at
more than 1/4 fraction of the indices. Then ...

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Equality

Equality of strings

Given two strings x , y ∈ {0, 1}n check if x = y , that is, for every
i ∈ {1, . . . , n} is xi = yi .

The goal is to answer it in CONSTANT time and hence can’t even
read the whole input. −− Not Possible

But, say, there is a promise that either x = y OR x and y differ at
more than 1/4 fraction of the indices. Then ...

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Simple sampling algorithm for testing of equality

Algorithm

Randomly pick 4 indices {i1, i2, i3, i4} uniformly and independently
at random. If

xi1 = yi1 , xi2 = yi2 , xi3 = yi3 , xi4 = yi4 ,

then ACCEPT otherwise REJECT.

If x = y then the algorithm always ACCEPTS.

If x and y differ at 1/4 fraction of the indices then the
algorithm ACCEPTS with probability at most 1/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Simple sampling algorithm for testing of equality

Algorithm

Randomly pick 4 indices {i1, i2, i3, i4} uniformly and independently
at random. If

xi1 = yi1 , xi2 = yi2 , xi3 = yi3 , xi4 = yi4 ,

then ACCEPT otherwise REJECT.

If x = y then the algorithm always ACCEPTS.

If x and y differ at 1/4 fraction of the indices then the
algorithm ACCEPTS with probability at most 1/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Simple sampling algorithm for testing of equality

Algorithm

Randomly pick 4 indices {i1, i2, i3, i4} uniformly and independently
at random. If

xi1 = yi1 , xi2 = yi2 , xi3 = yi3 , xi4 = yi4 ,

then ACCEPT otherwise REJECT.

If x = y then the algorithm always ACCEPTS.

If x and y differ at 1/4 fraction of the indices then the
algorithm ACCEPTS with probability at most 1/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Exit poll

Election

Given a set of n voter (voting for Party A or Party B) check if
Party A has more votes than Party B.

If the goal is to sample a small part of the voters then its not
possible always to give the right answer (even with high
probability).

But if we want to distinguish between whether Party A wins by a
big margin or Party B wins by a big margin: then statistical sample
works.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Exit poll

Election

Given a set of n voter (voting for Party A or Party B) check if
Party A has more votes than Party B.

If the goal is to sample a small part of the voters then its not
possible always to give the right answer (even with high
probability).

But if we want to distinguish between whether Party A wins by a
big margin or Party B wins by a big margin: then statistical sample
works.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Exit poll

Election

Given a set of n voter (voting for Party A or Party B) check if
Party A has more votes than Party B.

If the goal is to sample a small part of the voters then its not
possible always to give the right answer (even with high
probability).

But if we want to distinguish between whether Party A wins by a
big margin or Party B wins by a big margin: then statistical sample
works.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Exit poll

Election

Given a set of n voter (voting for Party A or Party B) check if
Party A has more votes than Party B.

If the goal is to sample a small part of the voters then its not
possible always to give the right answer (even with high
probability).

But if we want to distinguish between whether Party A wins by a
big margin or Party B wins by a big margin: then statistical sample
works.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Bipartiteness.

2-colorability

Given an undirected graph G can we color the vertices of G with 2
colors such that no adjacent vertices are of the same color? Or in
other words is it bipartite.

In general it may require us to look at the whole graph to answer
but can we look at a very small fraction of the graph and
distinguish

The graph is bipartite

A “lot” of edges have to be removed to make it bipartite.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Example: Checking Bipartiteness.

2-colorability

Given an undirected graph G can we color the vertices of G with 2
colors such that no adjacent vertices are of the same color? Or in
other words is it bipartite.

In general it may require us to look at the whole graph to answer
but can we look at a very small fraction of the graph and
distinguish

The graph is bipartite

A “lot” of edges have to be removed to make it bipartite.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x , y ∈ {0, 1}n, dist(x , y) is the fraction of
indices where they differ.

dist(x , y) = |{i |xi 6= yi}|/n.

For a input x and a property P,
dist(x ,P) = miny∈P dist(x , y).

x is ε-far from being a property if dist(x ,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.

k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.

Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.

Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?

Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.

Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Some Examples of Promise Problem

Connectivity Given a graph test is it connected OR far-from
being connected.
k-colorability Given a graph is it k-colorable OR far-from
being connected.
Linearity Testing: Given a truth-table of a function f test is
the function f linear OR the function has to be changed at
at-least ε fraction of the domain to make it linear.
Distribution Testing: Is a given distribution uniform OR is
the `1 distance from uniform more than ε?
Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant depth
read-once branching program OR is far from being accepted
by a constant depth read-once branching program.
Isomorphism Testing: Given two objects O1 and O2 test are
the two isomorphic OR far-from being isomorphic. (For
example: Graph Isomorphism or Function Isomorphism)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Our Goal ...

We want to design a randomized algorithm that answers the
promise problem correctly with high probability.

We want to look at a very small portion of the input.

In the rest of the talk we would not consider the running time of
an algorithm but rather the number of bits of the input that is
read. Accessing each bit of the input is called a QUERY.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Our Goal ...

We want to design a randomized algorithm that answers the
promise problem correctly with high probability.

We want to look at a very small portion of the input.

In the rest of the talk we would not consider the running time of
an algorithm but rather the number of bits of the input that is
read. Accessing each bit of the input is called a QUERY.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Our Goal ...

We want to design a randomized algorithm that answers the
promise problem correctly with high probability.

We want to look at a very small portion of the input.

In the rest of the talk we would not consider the running time of
an algorithm but rather the number of bits of the input that is
read. Accessing each bit of the input is called a QUERY.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Property tester

Definition

Let P be a property. A tester for P is a randomized algorithm A
with black box access to an input x and satisfies:

If x ∈ P ⇒ Pr[A accepts] ≥ 2/3.

If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on the
outcome of previous queries).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “x ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “x ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “x ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Other connected areas...

Statistical estimation - In property testing we consider more
combinatorial objects like properties of Boolean functions and
graphs. .

Evasiveness and Certificate Complexity.

Probabilistically Checkable Proofs (PCP).

Locally Decodable Codes.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph given
as adjacency matrix or adjacency list or some other way.
[Dense graph model, sparse graph model, orientation model in
graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph given
as adjacency matrix or adjacency list or some other way.
[Dense graph model, sparse graph model, orientation model in
graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph given
as adjacency matrix or adjacency list or some other way.
[Dense graph model, sparse graph model, orientation model in
graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph given
as adjacency matrix or adjacency list or some other way.
[Dense graph model, sparse graph model, orientation model in
graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph given
as adjacency matrix or adjacency list or some other way.
[Dense graph model, sparse graph model, orientation model in
graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What kind of questions to ask?

Given a property P what is the query complexity for testing
P.

Design a property tester that tests P using O(q) number of
queries.
Prove that no property tester can test using less than Ω(q)
number of queries.

Classify the set of properties that can be tested using constant
number of queries.

Come up with the right model for testing.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What kind of questions to ask?

Given a property P what is the query complexity for testing
P.

Design a property tester that tests P using O(q) number of
queries.
Prove that no property tester can test using less than Ω(q)
number of queries.

Classify the set of properties that can be tested using constant
number of queries.

Come up with the right model for testing.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What kind of questions to ask?

Given a property P what is the query complexity for testing
P.

Design a property tester that tests P using O(q) number of
queries.
Prove that no property tester can test using less than Ω(q)
number of queries.

Classify the set of properties that can be tested using constant
number of queries.

Come up with the right model for testing.

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

1-sided error testers

1-sided-error property tester

Let P be a property. A 1-sided-error property tester for P is a
randomized algorithm A with black box access to an input x and
satisfies:

(Completeness) If x ∈ P ⇒ Pr[A accepts] = 1.

(Soundness) If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on the
outcome of previous queries).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

1-sided-error tester has its hands tied

The tester has to ACCEPT if the input satisfies the property.

Hence, the only way the tester can reject is if it find a
PROOF that the input does not satisfy the property.

So if the input does not have the property then the tester
must find a PROOF/WITNESS with high probability.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

1-sided-error tester has its hands tied

The tester has to ACCEPT if the input satisfies the property.

Hence, the only way the tester can reject is if it find a
PROOF that the input does not satisfy the property.

So if the input does not have the property then the tester
must find a PROOF/WITNESS with high probability.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

1-sided-error tester has its hands tied

The tester has to ACCEPT if the input satisfies the property.

Hence, the only way the tester can reject is if it find a
PROOF that the input does not satisfy the property.

So if the input does not have the property then the tester
must find a PROOF/WITNESS with high probability.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Typical 1-sided-error tester

1-sided-error algorithm

Query some bits of the input. The bits to be queried can be either
uniformly chosen or chosen in a cleaver co-related fashion.

If the answers of the queried bits contains a WITNESS that
the input is not in the property then REJECT

Else ACCEPT

Goal is to use some nice structure for the property for making the
queries, like

the Szemeredi’s Regularity Lemma for graphs,

properties of Fourier coefficients for algebraic functions, etc

Usually, the proof of SOUNDNESS is the hard part.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

So what is the success probability of the tester?

Say the tester uses the random string r and queries the bits in Qr

(also say |Qr | = q). Then the probability of success is

Pr
r

[Qr contains a WITNESS].

Thus a 1-sided-error property tester can successfully test a
property P with q queries only if, an input x is “far” from P
implies there is a lots of WITNESS of size q hidden in x .

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

So what is the success probability of the tester?

Say the tester uses the random string r and queries the bits in Qr

(also say |Qr | = q). Then the probability of success is

Pr
r

[Qr contains a WITNESS].

Thus a 1-sided-error property tester can successfully test a
property P with q queries only if, an input x is “far” from P
implies there is a lots of WITNESS of size q hidden in x .

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that makes
q queries will catch a WITNESS with very low probability then we
obtain a lower bound of q on the query complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that makes
q queries will catch a WITNESS with very low probability then we
obtain a lower bound of q on the query complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that makes
q queries will catch a WITNESS with very low probability then we
obtain a lower bound of q on the query complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that makes
q queries will catch a WITNESS with very low probability then we
obtain a lower bound of q on the query complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that makes
q queries will catch a WITNESS with very low probability then we
obtain a lower bound of q on the query complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

2-sided-error property tester

2-sided-property tester

Let P be a property. A 2-sided-error tester for P is a randomized
algorithm A with black box access to an input x and satisfies:

(Completeness) If x ∈ P ⇒ Pr[A accepts] ≥ 2/3.

(Soundness) If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on the
outcome of previous queries).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

2-sided-error tester

The tester does not have to find a PROOF/WITNESS to
REJECT or ACCEPT.

The tester can use estimation/approximation as a tool.

For example: Distinguishing whether a string x ∈ {0, 1}n has n/4
1′s OR n/3 1′s can be done using CONSTANT number of queries.

In general 2-sided-error algorithms can be very complicated.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

2-sided-error tester

The tester does not have to find a PROOF/WITNESS to
REJECT or ACCEPT.

The tester can use estimation/approximation as a tool.

For example: Distinguishing whether a string x ∈ {0, 1}n has n/4
1′s OR n/3 1′s can be done using CONSTANT number of queries.

In general 2-sided-error algorithms can be very complicated.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

2-sided-error tester

The tester does not have to find a PROOF/WITNESS to
REJECT or ACCEPT.

The tester can use estimation/approximation as a tool.

For example: Distinguishing whether a string x ∈ {0, 1}n has n/4
1′s OR n/3 1′s can be done using CONSTANT number of queries.

In general 2-sided-error algorithms can be very complicated.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.

The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far from
P and DY be a distribution on the the set of inputs that satisfy P.
The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY

With the other 1/2 probability the input x is chosen according
to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then by
Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn according
to DY then the query complexity is ≥ q.

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Function Properties

The property P is a set of functions from Σn → Σ. For
example: Linear functions, functions that are 1-to-1, functions
accepted by a constant width read-once branching program
etc.

The input is a truth-table of a function f : Σn → Σ.

Queries are of form: x ∈ Σn −→ f (x).

Property Tester for P
A 1-sided-error tester for P is a randomized algorithm A that given
query access to a truth-table of a function f does the following:

If f ∈ P ⇒ Pr[A accepts] = 1.

If for at least ε|Σ|n number of strings in Σn the value of f has
to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Function Properties

The property P is a set of functions from Σn → Σ. For
example: Linear functions, functions that are 1-to-1, functions
accepted by a constant width read-once branching program
etc.

The input is a truth-table of a function f : Σn → Σ.

Queries are of form: x ∈ Σn −→ f (x).

Property Tester for P
A 1-sided-error tester for P is a randomized algorithm A that given
query access to a truth-table of a function f does the following:

If f ∈ P ⇒ Pr[A accepts] = 1.

If for at least ε|Σ|n number of strings in Σn the value of f has
to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Function Properties

The property P is a set of functions from Σn → Σ. For
example: Linear functions, functions that are 1-to-1, functions
accepted by a constant width read-once branching program
etc.

The input is a truth-table of a function f : Σn → Σ.

Queries are of form: x ∈ Σn −→ f (x).

Property Tester for P
A 1-sided-error tester for P is a randomized algorithm A that given
query access to a truth-table of a function f does the following:

If f ∈ P ⇒ Pr[A accepts] = 1.

If for at least ε|Σ|n number of strings in Σn the value of f has
to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1} test
if f is linear, that is, if for all x , y ∈ {0, 1}n,
f (x)⊕ f (y) = f (x ⊕ y).

The obvious test is the following: pick two random x , y ∈ {0, 1}n
and if f (x)⊕ f (y) 6= f (x ⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1} test
if f is linear, that is, if for all x , y ∈ {0, 1}n,
f (x)⊕ f (y) = f (x ⊕ y).

The obvious test is the following: pick two random x , y ∈ {0, 1}n
and if f (x)⊕ f (y) 6= f (x ⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1} test
if f is linear, that is, if for all x , y ∈ {0, 1}n,
f (x)⊕ f (y) = f (x ⊕ y).

The obvious test is the following: pick two random x , y ∈ {0, 1}n
and if f (x)⊕ f (y) 6= f (x ⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Generalization of Linearity Testing

Given query access to a function f : Fn → F test if f is a degree d
polynomial.

Low-degree testing [Babai-Fortnow-Lund, Rubinfeld-Sudan]

The query complexity for testing degree d polynomials is a
function of |F| and d . When |F| = 2 then the query complexity is
2d and when |F| is around d then the query complexity is poly(d).

This tester in also used in Probabilistically Checkable Proofs
(PCP) [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Generalization of Linearity Testing

Given query access to a function f : Fn → F test if f is a degree d
polynomial.

Low-degree testing [Babai-Fortnow-Lund, Rubinfeld-Sudan]

The query complexity for testing degree d polynomials is a
function of |F| and d . When |F| = 2 then the query complexity is
2d and when |F| is around d then the query complexity is poly(d).

This tester in also used in Probabilistically Checkable Proofs
(PCP) [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Generalization of Linearity Testing

Given query access to a function f : Fn → F test if f is a degree d
polynomial.

Low-degree testing [Babai-Fortnow-Lund, Rubinfeld-Sudan]

The query complexity for testing degree d polynomials is a
function of |F| and d . When |F| = 2 then the query complexity is
2d and when |F| is around d then the query complexity is poly(d).

This tester in also used in Probabilistically Checkable Proofs
(PCP) [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy]

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Degree d tester, when F > d .

Algorithm (For |F| > d)

Pick a random x ∈ Fn

Pick a random line through x. Pick a random y ∈ Fn and
consider all points of form x + λy.

Query at all the |F| points.

If f is a degree d polynomial then restricted to this line it is a
degree d univariate polynomial in variable λ.

Use the points f (x + λy), when λ 6= 0 to fit a degree d
polynomial.

If the polynomial evaluated at λ = 0 is equal to f (x) then
ACCEPT else REJECT.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Monotonicity Testing

Given query access to a function f : {0, 1}n → R test if f is
monotone, that is, if x , y ∈ {0, 1}n are such that for all i ∈ [n]
xi ≤ yi then f (x) ≤ f (y).

Monotonicity Testing [Chakrabarty-Seshadhri,
Briet-C-Garcia-Soriano-Matsliah]

The 1-sided-error query complexity for testing monotonicity with
arbitrary range is Θ(n).

The upper bound is just a pair-tester where the tester picks
x ∈ {0, 1}n and an i ∈ {1, . . . , n} at random and checks if f (x)
and f (x ⊕ ei) satisfies the monotonicity property.

Repeat it O(n) times.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Monotonicity Testing

Given query access to a function f : {0, 1}n → R test if f is
monotone, that is, if x , y ∈ {0, 1}n are such that for all i ∈ [n]
xi ≤ yi then f (x) ≤ f (y).

Monotonicity Testing [Chakrabarty-Seshadhri,
Briet-C-Garcia-Soriano-Matsliah]

The 1-sided-error query complexity for testing monotonicity with
arbitrary range is Θ(n).

The upper bound is just a pair-tester where the tester picks
x ∈ {0, 1}n and an i ∈ {1, . . . , n} at random and checks if f (x)
and f (x ⊕ ei) satisfies the monotonicity property.

Repeat it O(n) times.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Monotonicity Testing

Given query access to a function f : {0, 1}n → R test if f is
monotone, that is, if x , y ∈ {0, 1}n are such that for all i ∈ [n]
xi ≤ yi then f (x) ≤ f (y).

Monotonicity Testing [Chakrabarty-Seshadhri,
Briet-C-Garcia-Soriano-Matsliah]

The 1-sided-error query complexity for testing monotonicity with
arbitrary range is Θ(n).

The upper bound is just a pair-tester where the tester picks
x ∈ {0, 1}n and an i ∈ {1, . . . , n} at random and checks if f (x)
and f (x ⊕ ei) satisfies the monotonicity property.

Repeat it O(n) times.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of combinatorial/complexity measures of functions.

Testing of BP [Newman]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a width w read-once branching program can be
done using O(w) number of queries.

Testing of Junta [Blais]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is k-junta can be done using O(k log k) number of queries.

Testing of Circuit size
[Diakonikolas-Lee-Matulef-Onak-Rubinfeld-Servedio,
C-Garcia-Soriano-Matsliah]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a circuit of size s has query complexity sΘ(1).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of combinatorial/complexity measures of functions.

Testing of BP [Newman]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a width w read-once branching program can be
done using O(w) number of queries.

Testing of Junta [Blais]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is k-junta can be done using O(k log k) number of queries.

Testing of Circuit size
[Diakonikolas-Lee-Matulef-Onak-Rubinfeld-Servedio,
C-Garcia-Soriano-Matsliah]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a circuit of size s has query complexity sΘ(1).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of combinatorial/complexity measures of functions.

Testing of BP [Newman]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a width w read-once branching program can be
done using O(w) number of queries.

Testing of Junta [Blais]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is k-junta can be done using O(k log k) number of queries.

Testing of Circuit size
[Diakonikolas-Lee-Matulef-Onak-Rubinfeld-Servedio,
C-Garcia-Soriano-Matsliah]

Given query access to a function f : {0, 1}n → {0, 1}, testing if f
is accepted by a circuit of size s has query complexity sΘ(1).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Properties of Distributions

A f : {1, . . . , n} → {1, . . . , k} defines a distribution Df on
{1, . . . , k}, where

Pr
x←Df

[x = i] = |f −1(i)|/n.

Testing of Uniformity : Given query access to a function
f : {1, . . . , n} → {1, . . . , k} test if Df is uniform OR `1 distance
from the uniform distribution is more than ε.

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Properties of Distributions

A f : {1, . . . , n} → {1, . . . , k} defines a distribution Df on
{1, . . . , k}, where

Pr
x←Df

[x = i] = |f −1(i)|/n.

Testing of Uniformity : Given query access to a function
f : {1, . . . , n} → {1, . . . , k} test if Df is uniform OR `1 distance
from the uniform distribution is more than ε.

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Properties of Distributions

A f : {1, . . . , n} → {1, . . . , k} defines a distribution Df on
{1, . . . , k}, where

Pr
x←Df

[x = i] = |f −1(i)|/n.

Testing of Uniformity : Given query access to a function
f : {1, . . . , n} → {1, . . . , k} test if Df is uniform OR `1 distance
from the uniform distribution is more than ε.

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sketch of Proof for Testing Uniformity

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Proof.

Upper bound: Take random
√

k samples and check if they fall in
different buckets. If they all fall on distinct buckets estimate the
fraction of elements that fall in these buckets.

Lower bound: Distinguishing whether f is uniform with support
size k from f is uniform with support size k/2 requires

√
k queries.

Just like distinguishing 1-to-1 function from 2-to-1 functions.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sketch of Proof for Testing Uniformity

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Proof.

Upper bound: Take random
√

k samples and check if they fall in
different buckets. If they all fall on distinct buckets estimate the
fraction of elements that fall in these buckets.

Lower bound: Distinguishing whether f is uniform with support
size k from f is uniform with support size k/2 requires

√
k queries.

Just like distinguishing 1-to-1 function from 2-to-1 functions.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sketch of Proof for Testing Uniformity

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√

k).

Proof.

Upper bound: Take random
√

k samples and check if they fall in
different buckets. If they all fall on distinct buckets estimate the
fraction of elements that fall in these buckets.

Lower bound: Distinguishing whether f is uniform with support
size k from f is uniform with support size k/2 requires

√
k queries.

Just like distinguishing 1-to-1 function from 2-to-1 functions.

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of graph property

A property P is a set of graphs. For example: all bipartite
graphs, all graphs that is isomorphic to a particular graph, all
graphs where there exists a path from vertex 1 to vertex 2, ...

How is the graph given as input?

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of graph property

A property P is a set of graphs. For example: all bipartite
graphs, all graphs that is isomorphic to a particular graph, all
graphs where there exists a path from vertex 1 to vertex 2, ...

How is the graph given as input?

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Dense Graph Model

A property P is a set of graphs. For example: all bipartite graphs,
all graphs that is isomorphic to a particular graph, all graphs where
there exists a path from vertex 1 to vertex 2, ...

The graph is given as an adjacency matrix. The input size is
(|V |

2

)
.

A query is of form: Is there an edge between vertex i and j?

Definition

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least ε
(|V |

2

)
number of entries of the adjacency matrix

has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Dense Graph Model

A property P is a set of graphs. For example: all bipartite graphs,
all graphs that is isomorphic to a particular graph, all graphs where
there exists a path from vertex 1 to vertex 2, ...
The graph is given as an adjacency matrix. The input size is

(|V |
2

)
.

A query is of form: Is there an edge between vertex i and j?

Definition

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least ε
(|V |

2

)
number of entries of the adjacency matrix

has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Dense Graph Model

A property P is a set of graphs. For example: all bipartite graphs,
all graphs that is isomorphic to a particular graph, all graphs where
there exists a path from vertex 1 to vertex 2, ...
The graph is given as an adjacency matrix. The input size is

(|V |
2

)
.

A query is of form: Is there an edge between vertex i and j?

Definition

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least ε
(|V |

2

)
number of entries of the adjacency matrix

has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Dense Graph Model

A property P is a set of graphs. For example: all bipartite graphs,
all graphs that is isomorphic to a particular graph, all graphs where
there exists a path from vertex 1 to vertex 2, ...
The graph is given as an adjacency matrix. The input size is

(|V |
2

)
.

A query is of form: Is there an edge between vertex i and j?

Definition

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least ε
(|V |

2

)
number of entries of the adjacency matrix

has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Bipartiteness in the dense graph model

Given query access to the adjacency matrix of a graph G , test if G
is bipartite of one has to remove ε

(|V |
2

)
edges to make it bipartite.

Algorithm [Goldreich-Goldwasser-Ron]

Pick O(1/ε2 log(1/ε)) number of vertices at random.

Query all the pairs of selected vertices.

If the induced graph is not bipartite REJECT else ACCEPT

Proof: If the graph is bipartite the algorithm always accept.

So now we have to prove that if G is ε-far from being bipartite
then the induced graph is not bipartite with high probability.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Bipartiteness in the dense graph model

Given query access to the adjacency matrix of a graph G , test if G
is bipartite of one has to remove ε

(|V |
2

)
edges to make it bipartite.

Algorithm [Goldreich-Goldwasser-Ron]

Pick O(1/ε2 log(1/ε)) number of vertices at random.

Query all the pairs of selected vertices.

If the induced graph is not bipartite REJECT else ACCEPT

Proof: If the graph is bipartite the algorithm always accept.

So now we have to prove that if G is ε-far from being bipartite
then the induced graph is not bipartite with high probability.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Proof of Soundness of the Algorithm for Testing
Bipartiteness

Since it is a 1-sided-error algorithm for every possible bipartition of
the vertex set we should catch a violating edge, that is edges
within the same part.

If the graph is ε-far from being bipartite then any bipartition of the
vertex set will have at least ε|V |2 violating edges.

Note that given a particular bipartition by randomly sampling of
O(1/ε2) edges we would catch a violation for that bipartition with
high probability. But we have to catch for all the bipartitions with
high probability. Unfortunately, simple union bound does not give
the math as the number of such bipartitions is 2|V |.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Proof of Soundness of the Algorithm for Testing
Bipartiteness

Since it is a 1-sided-error algorithm for every possible bipartition of
the vertex set we should catch a violating edge, that is edges
within the same part.

If the graph is ε-far from being bipartite then any bipartition of the
vertex set will have at least ε|V |2 violating edges.

Note that given a particular bipartition by randomly sampling of
O(1/ε2) edges we would catch a violation for that bipartition with
high probability. But we have to catch for all the bipartitions with
high probability. Unfortunately, simple union bound does not give
the math as the number of such bipartitions is 2|V |.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Proof of Soundness of the Algorithm for Testing
Bipartiteness

Since it is a 1-sided-error algorithm for every possible bipartition of
the vertex set we should catch a violating edge, that is edges
within the same part.

If the graph is ε-far from being bipartite then any bipartition of the
vertex set will have at least ε|V |2 violating edges.

Note that given a particular bipartition by randomly sampling of
O(1/ε2) edges we would catch a violation for that bipartition with
high probability. But we have to catch for all the bipartitions with
high probability. Unfortunately, simple union bound does not give
the math as the number of such bipartitions is 2|V |.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Proof of Soundness of the Algorithm for Testing
Bipartiteness (contd...)

So we think of the selected vertices as two sets VA and VB .
Vertices VA induces the subgraph GA.

After we have queried the subgraph GA we show only a “small”
number of partitions survive with high probability.

And then we can say, using union bound, that the second set VB

helps to catch the violations for the small number of surviving
bipartitions.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various other Graph Properties

k-colorability of graphs −− O(k/ε).

Is there a clique of size ρn −− O(1/ε) number of queries.
(2-sided-error)

Triangle free-ness −− tower(1/ε). (Using Regularity Lemma)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various other Graph Properties

k-colorability of graphs −− O(k/ε).

Is there a clique of size ρn −− O(1/ε) number of queries.
(2-sided-error)

Triangle free-ness −− tower(1/ε). (Using Regularity Lemma)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Various other Graph Properties

k-colorability of graphs −− O(k/ε).

Is there a clique of size ρn −− O(1/ε) number of queries.
(2-sided-error)

Triangle free-ness −− tower(1/ε). (Using Regularity Lemma)

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What all can be tested?

Can we characterize all the graph properties that can be tested by
a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under removal
of edges and vertices. Every monotone graph property is testable
with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.
The proof roughly based on the idea that testing monotone graph
properties can be reduced to testing whether the graph has a
regular-partition with certain parameters.
And testing whether a graph has a regular-partition can be tested
with constant number of queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What all can be tested?

Can we characterize all the graph properties that can be tested by
a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under removal
of edges and vertices. Every monotone graph property is testable
with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.
The proof roughly based on the idea that testing monotone graph
properties can be reduced to testing whether the graph has a
regular-partition with certain parameters.
And testing whether a graph has a regular-partition can be tested
with constant number of queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What all can be tested?

Can we characterize all the graph properties that can be tested by
a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under removal
of edges and vertices. Every monotone graph property is testable
with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.

The proof roughly based on the idea that testing monotone graph
properties can be reduced to testing whether the graph has a
regular-partition with certain parameters.
And testing whether a graph has a regular-partition can be tested
with constant number of queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What all can be tested?

Can we characterize all the graph properties that can be tested by
a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under removal
of edges and vertices. Every monotone graph property is testable
with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.
The proof roughly based on the idea that testing monotone graph
properties can be reduced to testing whether the graph has a
regular-partition with certain parameters.

And testing whether a graph has a regular-partition can be tested
with constant number of queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What all can be tested?

Can we characterize all the graph properties that can be tested by
a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under removal
of edges and vertices. Every monotone graph property is testable
with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.
The proof roughly based on the idea that testing monotone graph
properties can be reduced to testing whether the graph has a
regular-partition with certain parameters.
And testing whether a graph has a regular-partition can be tested
with constant number of queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

In the dense-graph-model its all about regularity

Theorem (Alon-Fischer-Newman-Shapira)

A graph property P can be tested with a constant number of
queries if and only if testing P can be reduced to testing the
property of satisfying one of finitely many Szemeredi-partitions.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Connectivity

Problem

Can we test whether in a graph is connected?

Actually, ... this problem does not make much sense - in the dense
graph model.
All graphs are just |V | changes away from being connected and
hence all graphs are ε-close to being connected.

So we need some other models for sparse-graph-properties.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Connectivity

Problem

Can we test whether in a graph is connected?

Actually, ... this problem does not make much sense - in the dense
graph model.
All graphs are just |V | changes away from being connected and
hence all graphs are ε-close to being connected.

So we need some other models for sparse-graph-properties.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Connectivity

Problem

Can we test whether in a graph is connected?

Actually, ... this problem does not make much sense - in the dense
graph model.
All graphs are just |V | changes away from being connected and
hence all graphs are ε-close to being connected.

So we need some other models for sparse-graph-properties.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sparse Graph Model

The input is a graph with m edges.

Queries are of the form: What is the ith neighbor of vertex v?

If the degree of v is less than i then the answer to query is
“NONE”.

Property Tester for Bounded Degree Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be added or removed so
that the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sparse Graph Model

The input is a graph with m edges.

Queries are of the form: What is the ith neighbor of vertex v?

If the degree of v is less than i then the answer to query is
“NONE”.

Property Tester for Bounded Degree Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be added or removed so
that the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sparse Graph Model

The input is a graph with m edges.

Queries are of the form: What is the ith neighbor of vertex v?

If the degree of v is less than i then the answer to query is
“NONE”.

Property Tester for Bounded Degree Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be added or removed so
that the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Sparse Graph Model

The input is a graph with m edges.

Queries are of the form: What is the ith neighbor of vertex v?

If the degree of v is less than i then the answer to query is
“NONE”.

Property Tester for Bounded Degree Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be added or removed so
that the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing Connectivity in Sparse Graph Model

Observation

If a graph G is ε-far (in the sparse-graph-model) from being
connected then it has more than εm + 1 connected components.
And thus it must have at least (ε/2)m number of components of
size at most 2n/εm.

Algorithm

Randomly pick 4n/εm vertices.

Do a BFS from each of the selected vertices till you find
2n/εm vertices.

If you find a component of size less than 2n/εm then
REJECT, else ACCEPT.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing Connectivity in Sparse Graph Model

Observation

If a graph G is ε-far (in the sparse-graph-model) from being
connected then it has more than εm + 1 connected components.
And thus it must have at least (ε/2)m number of components of
size at most 2n/εm.

Algorithm

Randomly pick 4n/εm vertices.

Do a BFS from each of the selected vertices till you find
2n/εm vertices.

If you find a component of size less than 2n/εm then
REJECT, else ACCEPT.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing Connectivity in Sparse Graph Model

Observation

If a graph G is ε-far (in the sparse-graph-model) from being
connected then it has more than εm + 1 connected components.
And thus it must have at least (ε/2)m number of components of
size at most 2n/εm.

Algorithm

Randomly pick 4n/εm vertices.

Do a BFS from each of the selected vertices till you find
2n/εm vertices.

If you find a component of size less than 2n/εm then
REJECT, else ACCEPT.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing Connectivity in Sparse Graph Model

Observation

If a graph G is ε-far (in the sparse-graph-model) from being
connected then it has more than εm + 1 connected components.
And thus it must have at least (ε/2)m number of components of
size at most 2n/εm.

Algorithm

Randomly pick 4n/εm vertices.

Do a BFS from each of the selected vertices till you find
2n/εm vertices.

If you find a component of size less than 2n/εm then
REJECT, else ACCEPT.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Other problems that has constant query complexity in the
sparse graph model

Cycle-freeness,

Eulerianess,

subgraph freeness

All the above has similar algorithms to connectivity testing.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of st-connectedness

Problem

Can we test whether in a graph there is a path from a given vertex
s to another given vertex t?

Actually, ... this problem does not make much sense - in the sparse
graph model also.
All graphs are just 1 change away from having st-connectivity and
hence all graphs are ε-close to being st-connected.

So we need some other models for this.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of st-connectedness

Problem

Can we test whether in a graph there is a path from a given vertex
s to another given vertex t?

Actually, ... this problem does not make much sense - in the sparse
graph model also.
All graphs are just 1 change away from having st-connectivity and
hence all graphs are ε-close to being st-connected.

So we need some other models for this.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of st-connectedness

Problem

Can we test whether in a graph there is a path from a given vertex
s to another given vertex t?

Actually, ... this problem does not make much sense - in the sparse
graph model also.
All graphs are just 1 change away from having st-connectivity and
hence all graphs are ε-close to being st-connected.

So we need some other models for this.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Orientation Model

The input graph is a directed graph.

The underlying un-directed graph is known in advance.

Queries are of the form: What is the orientation of the edge e?

Property Tester for Orientation Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be re-oriented so that
the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Orientation Model

The input graph is a directed graph.

The underlying un-directed graph is known in advance.

Queries are of the form: What is the orientation of the edge e?

Property Tester for Orientation Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be re-oriented so that
the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Orientation Model

The input graph is a directed graph.

The underlying un-directed graph is known in advance.

Queries are of the form: What is the orientation of the edge e?

Property Tester for Orientation Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be re-oriented so that
the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Orientation Model

The input graph is a directed graph.

The underlying un-directed graph is known in advance.

Queries are of the form: What is the orientation of the edge e?

Property Tester for Orientation Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be re-oriented so that
the property P is satisfied then Pr[A rejects] ≥ 2/3.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing in the orientation model

st-connectivity [C-Fischer-Lachish-Matsliah-Newman]

There is a 1-sided-error tester that makes 222O(1/ε)

number of
queries and tests for st-connectivity in the orientation model (ε is
the distance parameter).

Other properties like Eulerianness has also been studied in this
model. But their query complexity is not constant.

Not many properties are known to have constant query
complexity in the orientation model.

Even proving that a constant size witness exist is also hard.
For example: If G is ε far from being s-to-all connected then
does there exist a constant size witness?

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing in the orientation model

st-connectivity [C-Fischer-Lachish-Matsliah-Newman]

There is a 1-sided-error tester that makes 222O(1/ε)

number of
queries and tests for st-connectivity in the orientation model (ε is
the distance parameter).

Other properties like Eulerianness has also been studied in this
model. But their query complexity is not constant.

Not many properties are known to have constant query
complexity in the orientation model.

Even proving that a constant size witness exist is also hard.
For example: If G is ε far from being s-to-all connected then
does there exist a constant size witness?

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization in the Sparse-Graph-Model and
Orientation-Model

Characterization of properties that can be tested using constant
number of queries in the Sparse-Graph-Model. −− OPEN

Characterization of properties that can be tested using constant
number of queries in the Orientation-Model. −− OPEN

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization in the Sparse-Graph-Model and
Orientation-Model

Characterization of properties that can be tested using constant
number of queries in the Sparse-Graph-Model. −− OPEN

Characterization of properties that can be tested using constant
number of queries in the Orientation-Model. −− OPEN

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization in the Sparse-Graph-Model and
Orientation-Model

Characterization of properties that can be tested using constant
number of queries in the Sparse-Graph-Model. −− OPEN

Characterization of properties that can be tested using constant
number of queries in the Orientation-Model. −− OPEN

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What we saw till now...

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What we saw till now...

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

What we saw till now...

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Current directions....

Get tight query complexity for testing various properties.

Classify Boolean function properties that can be tested using
constant number of queries.

Connection to communication complexity: like connection to
gap-Hamming problem.

Get lower bounds on the query complexity (dependence on ε)
for graph properties: connection to additive combinatorics.

Connection to LDC/PIR.

Connection to learning theory.

Outline

1 Introduction

2 Techniques

3 Testing of Function Properties

4 Graph Property testing

5 Isomorphism Testing

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Graph Isomorphism

Let H be a fixed graph. Then given query access to the adjacency
matrix of a graph G test if G is isomorphic to H or if G is ε-far
from being isomorphic to H.

Graph Isomorphism Testing [Fischer-Matsliah]

The 1-sided-query complexity for testing isomorphism to a fixed
graph is Θ̃(|V |), whereas the 2-sided-error query complexity is
Θ̃(
√
|V |).

GI Testing with constant number of queries [Fischer]

The query complexity for testing isomorphism to a fixed graph is
constant iff the given graph is close to a graph that is generated by
a constant number of cliques.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Graph Isomorphism

Let H be a fixed graph. Then given query access to the adjacency
matrix of a graph G test if G is isomorphic to H or if G is ε-far
from being isomorphic to H.

Graph Isomorphism Testing [Fischer-Matsliah]

The 1-sided-query complexity for testing isomorphism to a fixed
graph is Θ̃(|V |), whereas the 2-sided-error query complexity is
Θ̃(
√
|V |).

GI Testing with constant number of queries [Fischer]

The query complexity for testing isomorphism to a fixed graph is
constant iff the given graph is close to a graph that is generated by
a constant number of cliques.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing of Graph Isomorphism

Let H be a fixed graph. Then given query access to the adjacency
matrix of a graph G test if G is isomorphic to H or if G is ε-far
from being isomorphic to H.

Graph Isomorphism Testing [Fischer-Matsliah]

The 1-sided-query complexity for testing isomorphism to a fixed
graph is Θ̃(|V |), whereas the 2-sided-error query complexity is
Θ̃(
√
|V |).

GI Testing with constant number of queries [Fischer]

The query complexity for testing isomorphism to a fixed graph is
constant iff the given graph is close to a graph that is generated by
a constant number of cliques.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Hyper-graph isomorphism testing and its generalizations

Hyper-Graph Isomorphism testing: Let H be a fixed
d-refular-hypergraph. Then given query access to the adjacency
matrix of a d-regular-hypergraph G test if G is isomorphic to H or
if G is ε-far from being isomorphic to H.

Testing Isomorphism under Group Operations: Let G be a
primitive subgroup of Sn. Let x ∈ {0, 1}n be a fixed string. Then
given a string y ∈ {0, 1} test if x is isomorphic to y under
permutation of the indices by elements of the group G, that is, is
there a π ∈ G such that for all i , xi = yπ(i), OR for all π ∈ (G) for
at least εn indices i , xi 6= yπ(i).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Hyper-graph isomorphism testing and its generalizations

Hyper-Graph Isomorphism testing: Let H be a fixed
d-refular-hypergraph. Then given query access to the adjacency
matrix of a d-regular-hypergraph G test if G is isomorphic to H or
if G is ε-far from being isomorphic to H.

Testing Isomorphism under Group Operations: Let G be a
primitive subgroup of Sn. Let x ∈ {0, 1}n be a fixed string. Then
given a string y ∈ {0, 1} test if x is isomorphic to y under
permutation of the indices by elements of the group G, that is, is
there a π ∈ G such that for all i , xi = yπ(i), OR for all π ∈ (G) for
at least εn indices i , xi 6= yπ(i).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Testing Isomorphism under Group Operations: Let G be a
primitive subgroup of Sn. Let x ∈ {0, 1}n be a fixed string. Then
given a string y ∈ {0, 1} test if x is isomorphic to y under
permutation of the indices by elements of the group G, that is, is
there a π ∈ G such that for all i , xi = yπ(i), OR for all π ∈ (G) for
at least εn indices i , xi 6= yπ(i).

Testing Isomorphism under Group Operations [Babai-C]

The query complexity for test isomorphism under primitive group
operation is Θ̃(log |G |). This implies the query complexity for
testing d-regular hypergraph isomorphism is Θ̃(|V |).
For 2-sided-error the bounds are Θ̃(

√
log |G |) and Θ̃(

√
|V |)

respectively.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Boolean Function Isomorphism Testing

Let f : {0, 1}n → {0, 1} be a fixed function. Then given query
access to the truth-table of a function g test if g is isomorphic to
f upto a permutation of its variable, that is, does there exist a
permutation π ∈ Sn such that for all x , f (xπ) = g(x), where
xπ
i = xπ(i).

For example:

Is the function g a dictator function? −− Constant query
complexity.

Is the function a parity on k variable? −− Query complexity
O(k log k) and Ω(k)

Is the function isomorphic to Majority? −− Constant Query
Complexity.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Boolean Function Isomorphism Testing

Let f : {0, 1}n → {0, 1} be a fixed function. Then given query
access to the truth-table of a function g test if g is isomorphic to
f upto a permutation of its variable, that is, does there exist a
permutation π ∈ Sn such that for all x , f (xπ) = g(x), where
xπ
i = xπ(i).

For example:

Is the function g a dictator function? −− Constant query
complexity.

Is the function a parity on k variable? −− Query complexity
O(k log k) and Ω(k)

Is the function isomorphic to Majority? −− Constant Query
Complexity.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Boolean Function Isomorphism Testing

Let f : {0, 1}n → {0, 1} be a fixed function. Then given query
access to the truth-table of a function g test if g is isomorphic to
f upto a permutation of its variable, that is, does there exist a
permutation π ∈ Sn such that for all x , f (xπ) = g(x), where
xπ
i = xπ(i).

Boolean FI testing [Alon-Blais, C-Garcia-Soriano-Matsliah]

The 1-sided-error query complexity for testing isomorphism to a
k-junta is Θ(k log n) where as the 2-sided-error query complexity is
O(k log k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization?

Just like in case of graph isomorphism Fischer proved that query
complexity is constant iff the graph is generated by a constant
number of cliques, can we say something like that for function
isomorphism.

We know isomorphism to k-junta takes only k log k queries. Also
isomorphism to a symmetric function takes constant number of
queries. Can we combine to say something like -

Conjecture

If f (x) depends on |X | and at most k indices then the query
complexity for testing isomorphism to f is O(k log k) and Ω(log k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization?

Just like in case of graph isomorphism Fischer proved that query
complexity is constant iff the graph is generated by a constant
number of cliques, can we say something like that for function
isomorphism.

We know isomorphism to k-junta takes only k log k queries. Also
isomorphism to a symmetric function takes constant number of
queries. Can we combine to say something like -

Conjecture

If f (x) depends on |X | and at most k indices then the query
complexity for testing isomorphism to f is O(k log k) and Ω(log k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Characterization?

Just like in case of graph isomorphism Fischer proved that query
complexity is constant iff the graph is generated by a constant
number of cliques, can we say something like that for function
isomorphism.

We know isomorphism to k-junta takes only k log k queries. Also
isomorphism to a symmetric function takes constant number of
queries. Can we combine to say something like -

Conjecture

If f (x) depends on |X | and at most k indices then the query
complexity for testing isomorphism to f is O(k log k) and Ω(log k).

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Conclusion

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Isomorphism Testing

Generalization of GI testing
Isomorphism to k-junta can be tested with O(k log k) queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Conclusion

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Isomorphism Testing

Generalization of GI testing
Isomorphism to k-junta can be tested with O(k log k) queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Conclusion

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Isomorphism Testing

Generalization of GI testing
Isomorphism to k-junta can be tested with O(k log k) queries.

Introduction Techniques Testing of Function Properties Graph Property testing Isomorphism Testing

Conclusion

Function Property Testing

Linearity, low degree, constant-width-read-once-BP, k-juntas
have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query complexity
Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Isomorphism Testing

Generalization of GI testing
Isomorphism to k-junta can be tested with O(k log k) queries.

	Introduction
	Techniques
	Testing of Function Properties
	Graph Property testing
	Isomorphism Testing

