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Discrepancy Theory

“How well can you approximate a discrete
object by a continuous one.”

e.g. Given a set family Sy, ..., S,,;, € [n], find a
red-blue coloring [n] = R U B such that every
set is half red and half blue.

How well can you do in general?



Discrepancy Theory

“How well can you approximate a discrete
object by a continuous one.”

e.g. Given a set family Sy, ..., S,,;, € [n], find a
red-blue coloring [n] = R U B such that every
set is half red and half blue.

In general, a random coloring gives

S.
disc: = max ||S; N R| |21| < 0(\/nlog m).
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“How well can you approximate a discrete
object by a continuous one.”

e.g. Given a set family Sy, ..., S,,;, € [n], find a
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Discrepancy Theory

“How well can you approximate a discrete
object by a continuous one.”

e.g. Given a set family Sy, ..., S,, € [n], find a
red-blue coloring [n] = R U B such that every
set is half red and half blue.

Spencer: There exists a coloring with

S.
disc: = max [|S; N R] lzll < 3 /n.
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A Spectral Discrepancy
Theorem
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“Each part approximates the whole.”

J

vectors ||v;|| < € and energy one in each
direction:

v[ul| = 1 2<u, )2 =1
[

Then there is a partition T; U T, such that each
part has energy close to half in each direction:

1
Vil =1 ) (ww)? =5 x5
LET ;
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Theorem: Good
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exists.
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In Higher Dimensions

Main Theorem. Suppose vy, ..., V,,, € R™ are
vectors ||v;|| < € and energy one in each

direction:
v[ul| = 1 Zw, )2 =1
i

Then there is a partition T; U T, such that each
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1
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Optimal in high dim
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Unnormalized Version

SuppOFn |l ~A¥+ ~AvrA A viA~kAr~ 347 way __aa ,hich are
not isc Fact: A B © CAC < CBC

for invertible C

lVVl Y S § 7 J

Consider v; == W -and apply theorem to v;.
1
Normalized vectors he e [|v;||% = ||W zw;||* = €

(" )

<%—5\/E>I<W_%<Zwiwf>w ; < +5\/_>

lETj

\_ J




Unnormalized Version

Suppose | get some vectors wy, ..., W, which are
not isotropic:

zwiwiT=W> 0
i

Consider v; := W 2w; and apply theorem to v;.
1

\

Normalized vectors have ||v;||? = ||W zw;]||* = €
4 )
(%—&/E)W%(ZWL ) ( +5\/‘>
S j




Unnormalized Theorem

Given arbitrary vectors wy, ..., w,,, € R" there is a
partition [m] = T; U T, with
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Unnormalized Theorem

Given arbitrary vectors wy, ..., w,,, € R" there is a
partition [m] = T; U T, with

(3-3)(Soewt) 3wt (5-v2) (e

lET]

Where € := max || W 2Wl||2
L

Any quadratic form in which no vector has too much
influence can be split into two representative pieces.
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1. Graph Theory

Given an undirected graph G = (V, E),
consider its Laplacian matrix:

T
Le = 2(51-—5,-)(51-—@-) —D—4
{jeE

Quadratic form:

xTLx = Z (x; — xj)z for x € R™
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Cuts and the Quadratic Form

For characteristic vector g € {0,1}" of SCV
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Cuts and the Quadratic Form

For characteristic vector g € {0,1}" of SCV

viLars = »  wij(a(i) — (4))’

The Laplacian Quadratic form encodes the entire
cut structure of the graph.
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Recursive Application Gives:

1. Graph Sparsification Theorem [Batson-
Spielman-S’09]: Every graph G has a weighted
O(1)-cut approximation H with O(n) edges.

G H ®—e

0 (n?) edges O(n) edges

Unweighted
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Cut Approximation [Benczur-Karger'96]
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Approximating One Graph by
Another

_ | G and H have same cuts. Equivalent for min
Cut Approximati cut, max cut, sparsest cut...

G H@.
>. °

\ 7 @ ° 1672

For every cut,
weight of edges in G = weight of edges in H
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Recursive Application Gives:

2. Unweighted Graph Sparsification Every
transitive graph G can be partitioned into

O(1)-cut approximations with O(n) edges.

>

Expander graphs

K

Generalizes [Frieze-Molloy]



Recursive Application Gives:

2. Unweighted Graph Sparsification Every
transitive graph G can be partitioned into

O(1)-cut approximations with O(n) edges.

- i &
e
Same cut structure

[ ]
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2. Uncertainty Principles

Proof.

Let f, = (exp(

Fix a subset S c [n] of Vn coords.
The restricted normis:

|[x1s11% = Xxlxls, fi)?
a quadratic form in yn dimensions.
Apply the theorem.
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2. Uncertainty Principles

Applications in analytic number theory,

harmonic analysis.
Proof.

Let f, = (exp(

Fix a subset S c [n] of Vn coords.
The restricted normis:

|[x1s11% = Xxlxls, fi)?
a quadratic form in yn dimensions.
Apply the theorem.

a2mik

)) be the Fourier basis.
n k<n
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Weaver 2002: Discrepancy theoretic formulation
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In General

Anything that can be encoded as a quadratic
form can be split into pieces while preserving
certain properties.

Many different things can be gainfully
encoded this way.



Proof



Main Theorem

Suppose vy, ..., V,,, € R™ are vectors . I Z

l|v;]]? < € and
EviviT:In J
\ L

Then there is a partition T; U T, such that

- V

(%—5\/?)1 < E.Ul-viT < (%+5\/E>I {

\

>




Equivalent Theorem

Suppose vy, ..., V,,, € R™ are vectors
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\ L J

\
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Idea 1: Random Partition

Choose T; UT, = |[m] randomly

Want:
1 1
z viv;'r = (E + 5\/E> 2 vivér < (E + 5/€
iETl iETZ

Trick: embed in blocks of 2n X 2n matrix

Z vv; 0

(€T
! = max E Vv
T j

O Z Ul'vi iETj




Idea 1: Random Partition

Define independent random v, ..., v,,, € R4™

( (13) with prob 0.5

Vi = 3 0
( ) with prob. 0.5
N

E Z v;v! || = E; max 2 vv;
j

L lETj

Then
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sums of independent bdd random numbers.
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Main Theorem

If vy, ...,

Then

>

l

T
E X viv;

UiU;r

I
— —dn
2

v, € R*™ are independent,

%+0(J_
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Main Theorem 3v4, ..., v, suchthat
DRTAESER
i

If v, ..., v, € R" are inder at,

EY;vivi 7 and||v]|*> <e

<1+0(@/e)



Idea 2: The Expected Polynomial

Just like yesterday,

z vV || = Amax (det(xl — Z vv; ))

l l

Consider

1(x): = Edet (xI — Z vmf)

[
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3-Step Plan
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Central Identity

Suppose V4, ..., U, are independent random
vectors with 4; = IEvivf. Then

Edet (xI — Z vm?)

l
m

_ H (1 ai) det (x[ + z zl-Al->

=1 L

Z1=+=Zm=0
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3-Step Plan

1. Show that there exist vq, ..., v,,, with

Amax X (Z vivz ) < Amax[EX (Z UiviT )

l l

2. Calculate

Ey =:ulx) = 1_[(1 — d,, ) det (xl + 2 ZiAi)
i=1 i

3. Bound the largest root A, t(x) < 1 ++/€

Assuming EY. v,v; =Tand||v;||? <€
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The Univariate Case

Basic Question: What does (1 — @) do to roots?

Answer: Interlacing

Consider p(x) = (x — A¢) ... (x — A,,) distinct
p'(x) = Zj Hi;tj(x — ;)

/
P (x) 1. . . .
Then & o = ) 2, 15 a rational function with

n poles.
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A Rational Function

=1

| 1
p(x) =(x—4) ..(x—4,) , p'(x) z
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The Barrier Function
Define:

D, (x) = p'(x)

p(x) )L
—_ — — VI ——
Ni 153 A3 0

To bound roots of p — p’, find a point above
the roots of p with ®,,(b) < 1.

Level sets {®,, < 1} contain no zerosof p — p’
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The Barrier Method [BSS’09]

Theorem. If b is above the roots of p and

o,(b) <1-1/6 then
o, (b+6)<1-1/5

Relates level sets of @, to level sets of ®(;_5),
Robust version of {®,, < 1} argument — can be iterated.
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Evolution of level sets of o,

i@o’sf‘(, < "'/51

N
3

)\ M )3
P
(1-2)p
2
(\/by P "t Gives bounds on

Am(1 = 8)*p(x)
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The Bivariate Case

Given p(x,y), | want to bound the roots of
(1—8,)(1 - dy)p(x, )

Define bivariate barrier function

- (Oxp(x,y) Oyp(x,y)
(%) _( p(x,y) * p(x,y) )
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Evolution of Bivariate ® Level Sets

p(x,y) real stable.
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The Bivariate Case
(1 o 6y)p(x, y)
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Key Ingredient

Helton-Vinnikov’92: All bivariate real stable
polynomials are determinants:

p(x,y) =det(xA+ yB + ()

with4 > 0,B >0

This implies that the bivariate barrier has the
same properties as the univariate one, and
the old proof goes through.



Basic Principle

Can track the evolution of multivariate zeros

under (1 — d,) operators by studying related
rational functions.

A quantitative version of the stability
preserving property.



End Result

If Tr(A;) < €and ),; A; = I then

li[@ — 0, ) det (xl + Z ziAi)

l

Z1=..Zm=0

Has roots bounded by (1 + /€)?



3-Step Plan

1. Show that there exist vq, ..., v,,, with

Amax X (Z vivf ) < Amax[EX (Z 1]iViT )

i i
2. Calculate

Ey =:ulx) = 1_[(1 — d,, ) det (xl + z ZiAi)
i=1 i

3. Bound the largest root A, t(x) < 1 ++/€

~ ~

leoooo
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Assuming EY. v,v; =Tand||v;||? <€



Main Theorem

If v, ..., v, € R™ are independent,

EY;v;v; =Tand||v]|? <€

<1+0(/e)




Spectral Discrepancy Theorem

Suppose v, ..., Uy, € R™ are vectors ||v;||* <

€ and
( N
z viv] =1,

\ L J

Then there is a partition T; U T, such that
4 )

(%—5&)14 Zviv{< (% 5\/2)1

L iETj y




Open Questions

Quantitative analysis of other stability-
preserving operators.

More applications of discrepancy theorem.

Algorithms.
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Jacobi’s Formula:

0, det(M + tA) = det(M) 9,(1 + M~1A)
= det(M) Tr(M~1A)
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