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Discrepancy Theory

“How well can you approximate a discrete 
object by a continuous one.”

e.g. Given a set family 𝑆1, … , 𝑆𝑚 ⊂ [𝑛], find a 
red-blue coloring 𝑛 = 𝑅 ∪ 𝐵 such that every 
set is half red and half blue.
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Discrepancy Theory

“How well can you approximate a discrete 
object by a continuous one.”

e.g. Given a set family 𝑆1, … , 𝑆𝑛 ⊂ [𝑛], find a 
red-blue coloring 𝑛 = 𝑅 ∪ 𝐵 such that every 
set is half red and half blue.

Spencer: There exists a coloring with

𝑑𝑖𝑠𝑐: = max
𝑖

|𝑆𝑖 ∩ 𝑅| −
|𝑆𝑖|

2
≤ 3 𝑛.



A Spectral Discrepancy 
Theorem



Quadratic Forms and Energy
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“Each part approximates the whole.”
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Many Possible Partitions

Theorem: Good 
partition always 

exists.
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Optimal in high dim
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Unnormalized Theorem

Given arbitrary vectors 𝑤1, … , 𝑤𝑚 ∈ ℝ𝑛 there is a 
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Unnormalized Theorem

Given arbitrary vectors 𝑤1, … , 𝑤𝑚 ∈ ℝ𝑛 there is a 
partition 𝑚 = 𝑇1 ∪ 𝑇2 with
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Any quadratic form in which no vector has too much
influence can be split into two representative pieces.
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1. Graph Theory

Given an undirected graph 𝐺 = (𝑉, 𝐸), 
consider its Laplacian matrix:

𝐿𝐺 =  

𝑖𝑗∈𝐸

𝛿𝑖 − 𝛿𝑗)(𝛿𝑖 − 𝛿𝑗
𝑇

= 𝐷 − 𝐴

Quadratic form:

𝑥𝑇𝐿𝑥 =  

𝑖𝑗∈𝐸

𝑥𝑖 − 𝑥𝑗
2

𝑓𝑜𝑟 𝑥 ∈ 𝑹𝑛
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An example:
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An example:

xTLx=  i,j 2 E (x(i)-x(j))2 = 28
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Another example:
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The Laplacian Quadratic Form

Another example:

xT LGx = 3
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0

0

+1
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Cuts and the Quadratic Form

For characteristic vector

The Laplacian Quadratic form encodes the entire 
cut structure of the graph.
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Application to Graphs

G

Theorem

H1

H2

𝑥𝑇𝐿𝐻1
𝑥 ≈

1

2
𝑥𝑇𝐿𝐺𝑥



Recursive Application Gives:

1. Graph Sparsification Theorem  [Batson-
Spielman-S’09]: Every graph G has a weighted
O(1)-cut approximation H with O(n) edges.

G H

𝑂 𝑛2 edges 𝑂 𝑛 edges

Unweighted Weighted
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Approximating One Graph by 
Another

Cut Approximation [Benczur-Karger’96]

For every cut, 

weight of edges in G ≈ weight of edges in H

G H

G and H have same cuts. Equivalent for min 
cut, max cut, sparsest cut…
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Recursive Application Gives:

2. Unweighted Graph Sparsification Every 
transitive graph G can be partitioned into 
O(1)-cut approximations with O(n) edges.

𝐾𝑛 𝐻1 …𝐻𝑛

Expander graphs 

Generalizes [Frieze-Molloy]



Recursive Application Gives:

2. Unweighted Graph Sparsification Every 
transitive graph G can be partitioned into 
O(1)-cut approximations with O(n) edges.

Same cut structure

G
H1

H2
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𝑎2𝜋𝑖𝑘

𝑛
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𝑘≤𝑛
〉

Uncertainty Principle: 𝑥 and  𝑥 cannot be 
simultaneously localized.

𝑠𝑢𝑝𝑝 𝑥 × 𝑠𝑢𝑝𝑝  𝑥 ≥ 𝑛

If 𝑥 is supported on 𝑆 = √𝑛 coordinates,

𝑠𝑢𝑝𝑝  𝑥 ≥ 𝑛
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2. Uncertainty Principles

Proof.

Let 𝑓𝑘 = exp(−
𝑎2𝜋𝑖𝑘

𝑛
)

𝑘≤𝑛
be the Fourier basis.

Fix a subset 𝑆 ⊂ 𝑛 of √𝑛 coords.

The restricted norm is:

||𝑥|𝑆||
2 =  𝑘 𝑥|𝑆, 𝑓𝑘

2

a quadratic form in 𝑛 dimensions.

Apply the theorem.



2. Uncertainty Principles

Proof.

Let 𝑓𝑘 = exp(−
𝑎2𝜋𝑖𝑘

𝑛
)

𝑘≤𝑛
be the Fourier basis.

Fix a subset 𝑆 ⊂ 𝑛 of √𝑛 coords.

The restricted norm is:

||𝑥|𝑆||
2 =  𝑘 𝑥|𝑆, 𝑓𝑘

2

a quadratic form in 𝑛 dimensions.

Apply the theorem.

Applications in analytic number theory, 
harmonic analysis.
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3. The Kadison-Singer Problem

Kadison-Singer 1959: Does this lead to a 
satisfactory notion of measurement?

Conjecture: about ∞ matricesAnderson 1979: Reduced to a question about 
finite matrices. 

Akemann-Anderson 1991: Reduced to a question 
about finite projection matrices. 

This work: Proof of Weaver’s conjecture.



In General

Anything that can be encoded as a quadratic 
form can be split into pieces while preserving 

certain properties.

Many different things can be gainfully 
encoded this way.



Proof



Main Theorem

Suppose 𝑣1, … , 𝑣𝑚 ∈ 𝑹𝑛 are vectors

||𝑣𝑖||
2 ≤ 𝜖 and
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1

2
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2
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Idea 1: Random Partition

Define independent random 𝑣1, … , 𝑣𝑚 ∈ ℝ2𝑛

𝑣𝑖 =

𝑣𝑖

0
𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 0.5

0

𝑣𝑖
𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 0.5

Then

𝔼  

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝔼𝑇 max

𝑗
 

𝑖∈𝑇𝑗

𝑣𝑖𝑣𝑖
𝑇



The Matrix Chernoff Bound
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𝑇 =
𝐼

2
and ||𝑣𝑖||

2 ≤ 𝜖

Tropp 2011

𝔼  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤

1

2
+ 𝑂( 𝜖 log 𝑛)

Analogous for the scalar Chernoff bound for 
sums of independent bdd random numbers.
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Then

ℙ  

𝑖
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∃𝑣1, … , 𝑣𝑚 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

|| 

𝑖

𝑣𝑖𝑣𝑖
𝑇|| ≤ 1 + √𝜖



Idea 2: The Expected Polynomial

Just like yesterday,

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝜆𝑚𝑎𝑥 det(𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇)

Consider

𝜇 𝑥 := 𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇
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𝜒( 𝑖 𝑣𝑖𝑣𝑖
𝑇) 𝑥

𝑣𝑖~𝑣𝑖

is an interlacing family

𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 =   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯=𝑧𝑚=0



3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 



3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate

𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇





Central Identity

Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

=   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯=𝑧𝑚=0



3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate 

𝔼𝜒 =: 𝜇 𝑥 =   

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯0







3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate 

3. Bound the largest root 𝜆𝑚𝑎𝑥𝜇 𝑥 ≤ 1 + 𝜖

𝔼𝜒 =: 𝜇 𝑥 =   

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯0

Assuming 𝔼  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and ||𝑣𝑖||

2 ≤ 𝜖







3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate 

3. Bound the largest root 𝜆𝑚𝑎𝑥𝜇 𝑥 ≤ 1 + 𝜖

𝔼𝜒 =: 𝜇 𝑥 =   

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯0

Assuming 𝔼  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and ||𝑣𝑖||

2 ≤ 𝜖





?



3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate 

3. Bound the largest root 𝜆𝑚𝑎𝑥𝜇 𝑥 ≤ 1 + 𝜖

𝔼𝜒 =: 𝜇 𝑥 =   

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯0

Assuming 𝔼  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and ||𝑣𝑖||

2 ≤ 𝜖



Bounding the Roots

Need to bound the roots of 

as a function of the 𝐴𝑖 .
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det 𝑥𝐼 +  

𝑖
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𝑧1=…𝑧𝑚=0
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Quantitative version of the fact that it preserves 
real stability.



Bounding the Roots

Need to bound the roots of 

as a function of the 𝐴𝑖 .

Basic Question: What does (1 − 𝜕) do to roots?

  

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=…𝑧𝑚=0

Quantitative version of the fact that it preserves 
real stability.



The Univariate Case

Basic Question: What does (1 − 𝜕) do to roots?



The Univariate Case

Basic Question: What does (1 − 𝜕) do to roots?

Answer: Interlacing



The Univariate Case

Consider 𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 distinct

𝑝′ 𝑥 =  𝑗  𝑖≠𝑗 𝑥 − 𝜆𝑖

Then 
𝑝′ 𝑥

𝑝 𝑥
=  𝑖

1

𝑥−𝜆𝑖
is a rational function with 

n poles.

Basic Question: What does (1 − 𝜕) do to roots?

Answer: Interlacing



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖

roots of 𝑝′



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖

𝑝′

𝑝
= 1



A Rational Function

𝑝 𝑥 = 𝑥 − 𝜆1 … 𝑥 − 𝜆𝑛 ,
𝑝′ 𝑥

𝑝 𝑥
=  

𝑖

1

𝑥 − 𝜆𝑖

𝑝′

𝑝
= 1

roots of 𝑝 − 𝑝′!



The Barrier Function

Define:

Φ𝑝 𝑥 =
𝑝′ 𝑥

𝑝 𝑥



The Barrier Function

Define:

Φ𝑝 𝑥 =
𝑝′ 𝑥

𝑝 𝑥

To bound roots of 𝑝 − 𝑝′, find a point above 
the roots of p with Φ𝑝(𝑏) < 1.



The Barrier Function

Define:

Φ𝑝 𝑥 =
𝑝′ 𝑥

𝑝 𝑥

To bound roots of 𝑝 − 𝑝′, find a point above 
the roots of p with Φ𝑝(𝑏) < 1.

Level sets {Φ𝑝 < 1} contain no zeros of 𝑝 − 𝑝′



The Barrier Method [BSS’09]

Theorem. If b is above the roots of p and

Φ𝑝 𝑏 ≤ 1 − 1/𝛿 then
Φ𝑝−𝑝′ 𝑏 + 𝛿 ≤ 1 − 1/𝛿



The Barrier Method [BSS’09]

Theorem. If b is above the roots of p and

Φ𝑝 𝑏 ≤ 1 − 1/𝛿 then
Φ𝑝−𝑝′ 𝑏 + 𝛿 ≤ 1 − 1/𝛿

Relates level sets of Φ𝑝 to level sets of Φ 1−𝜕 𝑝



The Barrier Method [BSS’09]

Theorem. If b is above the roots of p and

Φ𝑝 𝑏 ≤ 1 − 1/𝛿 then
Φ𝑝−𝑝′ 𝑏 + 𝛿 ≤ 1 − 1/𝛿

Relates level sets of Φ𝑝 to level sets of Φ 1−𝜕 𝑝

Robust version of {Φ𝑝 < 1} argument – can be iterated.



Evolution of  level sets of  Φ𝑝



Evolution of  level sets of  Φ𝑝



Evolution of  level sets of  Φ𝑝



Evolution of  level sets of  Φ𝑝



Evolution of  level sets of  Φ𝑝



Evolution of  level sets of  Φ𝑝

Gives bounds on 
𝜆𝑚 1 − 𝜕 𝑘𝑝(𝑥)



The Bivariate Case

Given 𝑝 𝑥, 𝑦 , I want to bound the roots of
1 − 𝜕𝑥 1 − 𝜕𝑦 𝑝(𝑥, 𝑦)



The Bivariate Case

Example: roots of 𝑝 𝑥, 𝑦 real stable.



The Bivariate Case

Example: roots of 1 − 𝜕𝑦 𝑝 𝑥, 𝑦



The Bivariate Case

Example: roots of 1 − 𝜕𝑦 𝑝 𝑥, 𝑦
How to 

track these?



The Bivariate Case

Given 𝑝 𝑥, 𝑦 , I want to bound the roots of
1 − 𝜕𝑥 1 − 𝜕𝑦 𝑝(𝑥, 𝑦)

Define bivariate barrier function

Φ𝑝 𝑥, 𝑦 =
𝜕𝑥𝑝 𝑥, 𝑦

𝑝 𝑥, 𝑦
,
𝜕𝑦𝑝 𝑥, 𝑦

𝑝 𝑥, 𝑦



Evolution of  Bivariate Φ Level Sets

𝑝 𝑥, 𝑦 real stable.



Evolution of  Bivariate Φ Level Sets

𝑝 𝑥, 𝑦 real stable.



The Bivariate Case

1 − 𝜕𝑦 𝑝 𝑥, 𝑦



The Bivariate Case

1 − 𝜕𝑦 𝑝 𝑥, 𝑦



Several Perturbations



Several Perturbations



Several Perturbations



Several Perturbations



Several Perturbations



Several Perturbations



Several Perturbations



Key Ingredient

Helton-Vinnikov’92: All bivariate real stable 
polynomials are determinants:

𝑝 𝑥, 𝑦 = det(𝑥𝐴 + 𝑦𝐵 + 𝐶)

with 𝐴 ≽ 0, 𝐵 ≽ 0

This implies that the bivariate barrier has the 
same properties as the univariate one, and 
the old proof goes through.



Basic Principle

Can track the evolution of multivariate zeros 
under 1 − 𝜕𝑧 operators by studying related 
rational functions.

A quantitative version of the stability 
preserving property.



End Result

If 𝑇𝑟 𝐴𝑖 ≤ 𝜖 and  𝑖 𝐴𝑖 = 𝐼 then

  

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=…𝑧𝑚=0

Has roots bounded by 1 + 𝜖 2



3-Step Plan

1. Show that there exist 𝑣1, … , 𝑣𝑚 with

𝜆𝑚𝑎𝑥 𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 𝜆𝑚𝑎𝑥𝔼𝜒  

𝑖

𝑣𝑖𝑣𝑖
𝑇

2. Calculate 

3. Bound the largest root 𝜆𝑚𝑎𝑥𝜇 𝑥 ≤ 1 + 𝜖

𝔼𝜒 =: 𝜇 𝑥 =   

𝑖=1

𝑚

1 − 𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯0

Assuming 𝔼  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and ||𝑣𝑖||

2 ≤ 𝜖









Main Theorem

If 𝑣1, … , 𝑣𝑚 ∈ ℝ𝑛 are independent, 

𝔼 𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and ||𝑣𝑖||

2 ≤ 𝜖

Then

ℙ  

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≤ 1 + 𝑂( 𝜖) > 0





Spectral Discrepancy Theorem

Suppose 𝑣1, … , 𝑣𝑚 ∈ 𝑹𝑛 are vectors ||𝑣𝑖||
2 ≤

𝜖 and

Then there is a partition 𝑇1 ∪ 𝑇2 such that 

1

2
− 5 𝜖 𝐼 ≼  

𝑖∈𝑇𝑗

𝑣𝑖𝑣𝑖
𝑇 ≼

1

2
+ 5 𝜖 𝐼

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝐼𝑛 



Open Questions

Quantitative analysis of other stability-
preserving operators.

More applications of discrepancy theorem.

Algorithms.



Two Tools

Matrix-Determinant Lemma:

det 𝑀 + 𝑣𝑣𝑇 = det 𝑀 det 𝐼 + 𝑀−1𝑣𝑣𝑇

= det(𝑀)(1 + 𝑣𝑇𝑀−1𝑣)



Two Tools

Matrix-Determinant Lemma:

det 𝑀 + 𝑣𝑣𝑇 = det 𝑀 det 𝐼 + 𝑀−1𝑣𝑣𝑇

= det(𝑀)(1 + 𝑣𝑇𝑀−1𝑣)

Jacobi’s Formula:

𝜕𝑡 det 𝑀 + 𝑡𝐴 = det 𝑀 𝜕𝑡 I + M−1A

= det 𝑀 𝑇𝑟(𝑀−1𝐴)



(1 − 𝜕𝑧) operators = rank-1 updates

𝔼det 𝑀 − 𝑣𝑣𝑇 = 𝔼det(M)(1 − 𝑣𝑇𝑀−1𝑣)

= det(M)(1 − 𝔼𝑇𝑟(𝑀−1𝑣𝑣𝑇))

= det(𝑀)(1 − 𝑇𝑟(𝑀−1𝔼𝑣𝑣𝑇))

= det 𝑀 − det 𝑀 𝑇𝑟(𝑀−1 𝔼𝑣𝑣𝑇)

= (1 − 𝜕𝑡)det 𝑀 + 𝑡𝔼𝑣𝑣𝑇 |𝑡=0
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Proof  of  Central Identity

𝔼det 𝑀 − 𝑣𝑣𝑇 = 1 − 𝜕𝑧 det 𝑀 + 𝑧𝔼𝑣𝑣𝑇  
𝑧=0

𝔼det 𝑥𝐼 − 𝑣1𝑣1
𝑇 − 𝑣2𝑣2

𝑇

= 1 − 𝜕𝑧1
𝔼det(𝑥𝐼 − 𝑣2𝑣2

𝑇 + 𝑧1𝐴1)|𝑧1=0

= det(𝑥𝐼 + 𝑧2𝐴2 + 𝑧1𝐴1)|𝑧1=𝑧2=0
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