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1. INTRODUCTION

In this article we present an alternative proof of one of the most advanced
theorems in proof complexity. Our method does not increase the strength of the
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19:2 . E. Ben-Sasson and P. Harsha

claim itself (actually, it proves a slightly weaker claim), but it does improve
the clarity of the proof. Our motivation is twofold. For those not versed in
the intricacies of proof complexity, we offer a simple explanation of one of the
deepest results in the field, using terminology that is familiar to the general
public with moderate background in computational complexity. For “hard-core”
proof-complexity researchers, we hope our presentation will help advance on
other unsolved problems.

The pigeonhole principle is one of the simplest mathematical statements,
and is used heavily in many mathematical proofs. It has special importance in
discrete mathematics and combinatorics, where counting arguments carry the
burden of many a proof. It is also the most extensively studied formula in proof
complexity. In its simplest form, it claims that if n + 1 pigeons sit in n pigeon-
holes, there must be a pigeonhole occupied by more than one pigeon. One of the
major achievements of proof complexity has been to show that this simple claim
is hard to prove in various proof systems such as resolution [Haken 1985], the
polynomial calculus [Razborov 1998], and bounded depth Frege proofs [Ajtai
1994; Krajicek et al. 1995; Pitassi et al. 1993]. In this article we give an al-
ternative proof of the hardness of the pigeonhole principle for bounded depth
Frege proofs.

1.1 Previous Results

The first superpolynomial lower bounds for the pigeonhole principle in bounded
depth Frege were presented by Ajtai [1994]. This proof was simplified and
improved by Bellantoni et al. [1992]. The first exponential lower bounds were
given by Pitassi et al. [1993] and independently by Krajicek et al. [1995].
Several extensions of this result have appeared over the years (see, e.g., Buss
et al. [1996] and the recent Buresh-Oppenheim et al. [2005]). Our article gives
an alternative proof of the following exponential lower bound of Pitassi et al.
[1993] and Krajicek et al. [1995].

THEOREM 1.1 [PrTasst ET AL. 1993; KRAJICEK ET AL. 1995].  For any Frege sys-
tem F, and any integer d, there exists a constant § > 0 such that, for any large
enough n, the size of a depth d F-proof of the pigeonhole principle of size n, is at
least exp(n®).

Both lower bounds of Pitassi et al. [1993] and Krajicek et al. [1995] use a
specially tailored switching lemma, and additionally a nonstandard interpreta-
tion of the lines of the proof. The complex switching lemma, combined with the
nonintuitive interpretation, make the proofs extremely difficult to understand
and explain. One successful line of research has led to the simplification of the
switching lemma. This was initially done by Razborov [1995], and then put in
the context of the pigeonhole principle by Beame [1994]. Finally, Urquhart and
Fu [1996] presented a complete simplified proof of the lower bound using the
simpler proof of the switching lemma.

The other difficulty, which is the nonstandard interpretation of the lines of
a proof, has prevailed in all earlier proofs [Ajtai 1994; Bellantoni et al. 1992;
Pitassi et al. 1993; Krajicek et al. 1995]. We believe that our alternative proof
decreases this difficulty.
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1.2 Constant Depth Circuits and Constant Depth Proofs

It is well-known that constant depth circuits are very inadequate for counting,
and there is a standard technique to prove this—a switching lemma [Furst
et al. 1984; Ajtai 1983; Hastad 1989]. The pigeonhole principle is a statement
about counting, so it is natural to believe that it cannot be proved using rea-
soning that involves only constant depth circuits. A constant depth proof of
the pigeonhole principle is merely a sequence of constant depth circuits. When
seeking a lower bound for constant depth proofs, the first thing a complexity
researcher would do is hit all lines of a purported proof with a restriction,
and use a switching lemma to argue that they are all transformed into sim-
ple functions, and hence cannot prove the pigeonhole principle. On second
thought, there is a big problem with this approach. All lines of the proof, in-
cluding the conclusion, are tautologies. Thus, even without a restriction, the
functions computed by these circuits are the simplest possible—they all com-
pute the constant 1 function! It is clear that one needs to proceed differently.
For this we need to gain a better understanding of a constant depth Frege
proof.

1.3 Proofs as Games

The standard definition of Frege proofs can be found in any introductory book
to mathematical logic. We use a different definition, introduced by Pudlak and
Buss [1994]. Under this definition, the proof of a tautology @ is a two-player
game. Sam the Spoiler claims that he knows an assignment « setting ® to 0.
Pavel the Prover tries to expose his lie. Pavel is restricted to asking Sam only
questions that have a yes/no answer. As a first solution, Pavel can ask the
value of « on all variables and gates of ®. Having done this, there will clearly
be an inconsistency in one of the gates of ®, and Sam’s lie is exposed. The
problem with this approach is that it requires a linear number of queries. A
more efficient way is to present Sam with circuits, and ask for the value of these
circuits on the input «. In this case, Pavel may save on the number of queries.
Notice that Sam can lie in his answers to these queries, just as he was lying
with respect to @. It is Pavel’s role to decide whether to “believe” Sam’s answer
or try to expose the lie within a circuit. The beautiful observation of Pudlak and
Buss [1994] is that the minimal number of queries Pavel needs is proportional
to the logarithm of the minimal size Frege proof of ® !!! Although stated for
Frege proofs, their observation applies just as well to bounded depth proofs,
with the following modification: the minimal number of constant depth queries
needed by Pavel is proportional to the logarithm of a minimal-size constant
depth Frege proof.

1.4 Finding A Strategy for Sam

By the previous discussion, a lower bound on the proof size of ® is reduced to
finding a strategy for Sam that enables him to answer many queries without
contradicting himself. We accomplish this by transforming Pavel’s queries to
simple functions that will be locally consistent with each other. For simplicity
assume @ is a DNF, that is, an OR of terms, where each term is an AND of
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literals. Suppose each query of Pavel is a term of ®. In this case, Sam can
start with no assignment in hand, and with each query he will set one more
variable, in a way that will set the queried term to 0. Thus, if these assignments
do not fix any other term to 1, Sam will be consistent for a long time. Assume
instead Pavel asks an OR of several terms. Sam is forced to answer 0 (otherwise
he contradicts the answer 0 given to ®), but he does not need to extend his
assignment, and only when Pavel asks about each of the terms must Sam
extend his assignment. But by this time, Pavel has asked many queries, and
recall that Sam’s aim is to maximize the number of queries.

Our lower bound is simply a strategy for Sam. We use the observation that,
given n holes, we can comfortably fit n or fewer pigeons into them without any
double occupancies. Thus, Sam’s strategy in response to each query will be to
assign a small number of pigeons to holes, and use this added information to
compute an answer to the queries. If each response assigns & pigeons, he will
succeed in answering consistently for n/% rounds, giving a lower bound of 2%/*
on the minimal bounded depth Frege proof size.

More to the point, Sam transforms every query ¢ to a small domain function
f»» which is a Boolean function that is fixed by an assignment of a small number
of pigeons (hence its name). Sam starts with the assignment « being empty, and
when asked the value of ¢(«), tries to evaluate f,(«). If necessary, Sam fixes a
few more pigeons (remember that f, has small domain), and replies f,(«).

The small domain functions are constructed bottom up. Each variable is
transformed to a function that can be fixed by setting a single pigeon. Negation
gates are easy to handle: if Sam answered ¢ by f,(«) then answering —¢ by
—f,(a) is consistent, and does not increase the size of «. The only tricky case is
that of an OR gate, and this is where the switching lemma comes in. Suppose
Y = V(g1...9r), and suppose we have inductively constructed small domain
functions f,, ... f,, for ¢1, ... ¢z. The switching lemma we use says that, after
applying a random restriction, there exists a small domain function f,, that is
consistent with the functions f,, ... f,,, meaning

(1) fy can be fixed by setting only a small number of pigeons;

(2) for any assignment « fixing f;, to 1 there is some function f, such that
f ©; (o) = 1;

(3) any assignment « setting f, to 0 cannot be extended to an assignment
setting some f,, to 1.

Thus, our answers are consistent also with respect to OR gates. Finally, we
show that under this transformation, the pigeonhole principle is mapped to
the constant 0 function, having an empty domain. This means that on the first
query which is the pigeonhole principle itself, Sam answers 0, and does not
need to extend « at all.

Let us sum up. Given a small purported bounded depth proof 7, in the form
of a set of queries, Sam transforms them to locally consistent, small domain
functions. Sam initializes @ to be empty, and with each query ¢ extends « so
that f,(a) is fixed. He answers ¢ by f,(«). Since « is extended every time by
fixing only a small number of pigeons, and all answers are locally consistent,
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Sam can keep on for many rounds. By the basic theorem of Pudlak and Buss
[1994] this implies that the minimal proof size is of exponential size.

We conclude by making two comments. First, a disclaimer. The switching
lemma and the transformation we use are very similar to those originally used
in previous proofs, most notably that of Urquhart and Fu [1996]. Having said
that, notice that the lower bound we present transferred the problem from the
realm of logic and propositional proofs to that of constructing locally consistent
partial functions. This latter problem is more accessible to computational com-
plexity techniques (such as the switching lemma). We hope that our general
approach can be extended, using similar complexity techniques, to derive lower
bounds for other formulae (e.g., random 3CNFs) and other proof systems (e.g.,
bounded depth Frege with counting gates).

1.5 Article Organization

After giving formal definitions of Pudlak-Buss proofs and the pigeonhole prin-
ciple (Section 2), we present a general sufficient condition for obtaining lower
bounds for Frege proofs (Section 3). This condition applies to any Frege system,
and any tautology ®. We then show how to obtain this condition in the special
case of the pigeonhole principle and constant depth Frege (Section 4). We end
by presenting the lower bound itself (Section 5).

2. PRELIMINARIES

2.1 Bounded Depth Frege—Definitions

We begin by recalling the standard definitions of Frege proof systems and
bounded depth Frege systems, in particular. For simplicity our logical language
will be restricted to constants 0 (representing false), and 1 (representing true),
and connectives {Vv, =} where V is allowed to have unbounded fan-in. We will
use the connective A as a shorthand for — v —, and A = B as a shorthand
for —A v B.

We work with the Frege system H described by Bellantoni et al. [1992],
which is the standard bounded depth Frege system that was used for proving
the exponential lower bounds for the pigeonhole principle. Lines of a proof are
unbounded fan-in formulae over {—, v}. Namely, the allowable formulae are
defined inductively by the following rules:

(1) A variable x is a formula, and so is the literal —x.
(2) If Ais a formula, then so is —A.

(8) IfT is a finite set of formulae, then so is vI'. We will use the notation Av B
to mean V{A, B}.

The depth of a literal is 0, the depth of a formula is the maximal number
of alternations of connectives in it, and the size of the formula is the number
of occurrences of connectives. Under this convention, the depth of a clause
(disjunction of literals) is 0, the depth of a conjunction of literals is 1, the depth
of a DNF is 2, and the depth of a CNF is 3. A conjunction of literals has depth
one larger than a disjunction due to the conversion from A to {—, v}. For similar
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reasons, the depth of a DNF is 2 while that of a CNF is 3. We denote by d(¢)
the depth of the formula ¢.

We now list the rules of H, which form a complete proof system over the
basis {Vv, —}. We use the notation Lﬁ to denote that y can be derived from

{o1---@r}.

(1) Excluded middle axiom: i

(2) Weakening rule: ﬁ,

(3) Merging rule: V{/{(vrru}z)m.
(4) Unmerging rule: %.
(5) Cut rule: (AvB).__Cav0)

A depth d Frege proof of a formula ¢ is a sequence of depth d formulae
7 = {¢1,...9s}, the last one being ¢, where each formula in the sequence is
either an excluded middle axiom, or is derived from previous lines by one of the
other rules listed above. The size of a proofis the sum of the sizes of the formulae
in the proof. The depth of the proof is the maximal depth of the formulae in the
proof.

2.2 Pudlak-Buss Games

Our proof uses the equivalent elegant definition of Frege systems given by
Pudlak and Buss [1994]. A Pudlak-Buss proof of ® is best thought of a two-
player game, very similar to a modern criminal trial. Pavel the Prover (or
Prosecutor) wants to convince us that @ is a tautology, whereas Sam the Spoiler
tries to cheat us into believing this is not the case. The trial starts with Sam
claiming he knows an assignment « such that ®(«) = 0. The trial then proceeds
in rounds. In round ¢, Pavel presents a Boolean formula ¢;, and Sam answers
with a single bit b;, which is the claimed value of ¢;(«). After several rounds,
Pavel addresses the jury and presents an inconsistency in Sam’s answers. The
jury has a very limited understanding of the mysteries of Boolean formulae,
and only knows the definition of the basic Boolean gates (say {—, v}). Thus, for
Pavel to convict Sam, he needs to present an immediate contradiction.

Definition 2.1 (Immediate Contradiction). For B a set of Boolean gates, an
immediate contradiction with respect to B is a set of formulae, ¥, ¢1, ..., ¢ and
a set of bits a, b1, ..., by such that

(1) v is g(e1, ..., ¢r), where g € B;
(2) Sam was asked the formulae v, ¢1, ..., ¢, and gave answers a, by, ..., b, to
them, respectively;

3) a ;ﬁg(bl, ey bk).

If a set of answers b1, ..., bg to a set of queries ¢; ... ¢gs includes no immediate
contradiction as a subset, we call these answers locally consistent.

Notice that, for Condition 1 to hold, we need syntactical equivalence, that is,
¢ has to be syntactically the same as g(¢1, ..., ¢r). The semantical equivalence
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of the two is not enough. For instance, ¢ is not syntactically the same as ——¢ al-
though they are semantically equivalent. This distinction between semantical
and syntactical objects is at the heart of our lower bounds.

A proof of @ is a set of queries that convicts Sam for any answers he gives
to the queries. Naturally, Pavel’s queries may depend on Sam’s answers. Thus,
a proof is a binary tree, called a game tree, where each internal node is la-
beled by a query of Pavel, and each edge is labeled by Sam’s answer to that
query. The root is labeled ® and has a single edge labeled 0. We say that a
game tree convicts Sam (on ®) if every leaf ¢ is labeled by an immediate
contradiction as described in Definition 2.1, where (reusing the notation of
Definition 2.1) ¥, ¢1, ..., ¢ are labels of some nodes on the path leading to ¢,
and a, by, ..., b, are the edges leaving v, ¢1, ..., ¢, respectively, on the path
leading to ¢£. We say a proof has depth d if all queries are depth d formulae
and we define the height of the proof to be the length of longest path from the
root to a leaf in the tree. Finally, the size of the proof is the number of nodes in
it.

The following theorem was originally proved by Pudlak and Buss [1994] for
Frege proofs, but their proof applies directly to bounded Frege.

THEOREM 2.2 (PUDLAK AND Buss [1994], ProprosiTiON 2). For any Frege sys-
tem F there exist integers c, ¢’ such that the following holds.

—If ® has a standard F-proof of size S and maximal depth d, then ® has a
Pudlak-Buss proof of height 1og(S) + O(1) and depth d + ¢ and each query is
of size at most S.

—Conversely, if ® has a Pudldk-Buss proof of height r and depth d, then ® has
a standard F-proof of size 2" and depth at most d + ¢'.

Remarks.

(1) The exact set of connectives B is not extremely important, just as it is
not very important in the definition of a standard Frege system [Cook and
Reckhow 1979]. We only need B to be a complete basis for Boolean functions.
For simplicity in this article we fix B = {—, v} where Vv can have unbounded
fan-in.

(2) Theorem 2.2 holds also for the case of B having gates with unbounded fan-
in. In this case one only need naturally extend the definition of immediate
contradictions to the unbounded fan-in gates. For example, an immediate
contradiction to an unbounded Vv-gate is either an answer of 1 to the output
of the gate and Os to all its inputs, or an answer of 0 to the output and 1 to
one of its inputs.

(3) The size of a line in a standard Frege proof of ® is without loss of generality
polynomially bounded by the number of lines in the proof of ® and the
size of @ itself [Krajicek 1995]. Thus we assume without loss of generality
that the size of each query (i.e., the size of the formula being queried) is
polynomially bounded by the number of nodes in the proof tree, and the
size of ®.

ACM Transactions on Computational Logic, Vol. 11, No. 3, Article 19, Publication date: May 2010.
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For the sake of completeness, we include the proof of the first part, which is
the part we need for our lower bound.

Proor orF THEOREM 2.2 (PART I). Let ¢1,...¢s be a standard Frege proof of
® = ¢g, where each formula has depth < d. We present a Pudlak-Buss proof
for it over a set of Boolean gates B. We assume without loss of generality that
the AND gate (denoted A) has a constant depth encoding in B.

After querying ® and receiving the answer 0, Pavel queries A(¢1,...¢9) .
If Sam answers 1, this immediately contradicts the answer to ®. Otherwise,
Pavel conducts a binary search to find the smallest i such that Sam answers
A@1,...9;) by 1, and A1, ... ;1) by 0. Notice that this requires log(S) queries.
If no such i exists, Sam answered ¢; by 0. By the definition of a Frege system, ¢;
is an axiom, that is, it is defined by a substitution to a constant size tautology
(such as A v —A), and a constant number of queries reveals an immediate
contradiction. If ¢; ;1 is an axiom of the Frege system, we find an immediate
contradiction as in the previous case.

Otherwise, ¢; 1 was derived by some derivation rule (e.g., the cut rule) from
a constant number of previous formulae ¢;, ... ;. Pavel queries ¢;, ...¢;, (a
constant number of queries). If Sam answers any of these queries by 0, this im-
mediately contradicts his answer to A(py, ... ;). Assuming all Sam’s answers
are 1, an additional constant number of queries reveals an immediate contra-
diction, because a Frege rule is defined by a substitution to a constant size
tautology.

Notice that the depth of each query is at most d + ¢, where ¢ is the depth
required for encoding an AND gate in the basis B. O

For the second part of the proof of Theorem 2.2 we refer the interested reader
to the original proof of Pudlak and Buss [1994], noting that the transformation
from Pudlak-Buss proofs to standard ones does not increase the depth by more
than a constant.

2.3 The Pigeonhole Principle

Fix sets D, Rsuchthat DNR=¢, |D|=n+1, |R| =n, and denote S= DU R.
Our set of connectives is {—, v}, so we use the notation A(¢1, ..., ¢) as a short-
hand for —=(\/(—¢1, ..., =¢;)). The pigeonhole principle of size n, denoted PHP,,
is the disjunction of the following four sets of formulae, over the variable set
pij. €D, jeR:

-\/py. ieD. pir Apn, i#jeDkeR,
JER
-\/py. JjeR piApr. €D, j#keR.
ieD

Each variable p;; states whether pigeon i occupies pigeonhole j. It is to be
noted that this version of the pigeonhole principle is called the onto and 1-to-1
version of the PHP. It is fine to work with this weaker version of PHP, as this
only strengthens the corresponding lower bound obtained.
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3. SAM’'S STRATEGY

In this section, we present a general framework for proving lower bounds on
proof size. By Theorem 2.2, a lower bound on the height of game trees directly
translates into a lower bound on the proof size of the related tautology. A lower
bound on the height of the game tree can be proved by demonstrating a strategy
for Sam. Any strategy for Sam to escape being caught lying must satisfy the
following two requirements:

— Answer the tautology ® with 0.
—Answer Pavel’s queries such that they are locally consistent.

A naive strategy to satisfy the second requirement would be to choose an as-
signment and answer Pavel’s queries according to this assignment. However,
no matter which assignment is chosen, this strategy fails to satisfy the first
requirement since ® is a tautology. We instead present an alternative strategy
satisfying both the above requirements using partial functions.

First, for some notation. Let Sbe a set, D C S, and f : D — {0, 1} a function
on D. The ordered pair (D, f) is then called a partial Boolean function on S.
The set D is called the domain of f and is denoted by Dom( f). For any set S,
let TS be the set of all partial Boolean functions defined on S. that is,

YS=(D, AIDCS, f:D— {0,1},}.

For any partial function (D, f) and b € {0, 1}, let f~1(b) = {x € D|f(x) = b}.

For any game tree 7, let X be the set of all formulae that occur in the game
tree 7. Any branch! of the game tree is uniquely determined by the labels of
the internal nodes and edges that occur along the branch. We will identify a
branch with ((¢1, b1), ..., (¢s, bs)), where ¢1, ..., ¢s are the internal node labels
and by, ..., bs the edge labels, respectively, starting from the root. (Notice that
we do not include the label of the leaf in the branch since the leaf is uniquely
specified by the label of the edge leading to it. Moreover, leaves in game trees
are labeled by immediate contradictions, not by queries.)

We now present a strategy for Sam using partial functions. Let 7 be the
game tree for tautology ®, proposed by Pavel, that convicts Sam. Sam applies
a transformation, mapping every formula ¢ € X7 to a partial function (D, f,),
that satisfies the following three conditions:

(1) Vx € Do, folx) =0.
(2) There exists a branch ((¢1, b1), ..., (¢s, bs)) in the game tree 7 such that

(\(Fo) "B # 0.
i=1
(3) Forany subset @ C X7, ifthereexistsax € (1) .o Dom(f,), then the answers
(fo(x))peq to the queries (p),cq are locally consistent.

Condition (3) is the most important one of the above conditions as it ensures
that Sam’s answers to Pavel are locally consistent. We now prove that the
1A branch is a path from the root to a leaf of the tree.
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19:10 . E. Ben-Sasson and P. Harsha

existence of such a transformation provides Sam a strategy to answer Pavel
without causing any immediate contradictions.

THEOREM 3.1. Let ® be a formula and T a game tree of height r for ®. If

there exists a set Sand a transformation ¢ LN (D,, f,), mapping every formula
¢ € T to a partial function (D,, f,) € TS, such that conditions (1), (2), and (3)
are satisfied, then the game tree T does not convict Sam.

Proor. Let @ be a formula and 7 be a game tree of height r for ®. Suppose

there exists a transformation ¢ s f» as mentioned in the statement of the
theorem. By condition (2), there exists a branch ((¢1, b1), ..., (gs, bs)) in the
game tree 7 satisfying

(\(Fo) (B # 0.

=1

Choose any x € (;_;(f,,)~1(b;). Sam answers Pavel’s queries ¢1, ..., ¢; along
this branch with £, (x) = b1, ..., f,,(x) = bs, respectively. Note, Sam answers
Pavel’s first query ¢; = ® with b; = 0 since f,(®) = 0 (by condition (1)). Since
x € (;_; Dom(f,,), we can conclude from condition (3) that Sam’s responses to
Pavel’s queries along this branch are locally consistent. Hence, 7 cannot be a
game tree that convicts Sam on ®. O

4. COVERING PARTIAL FUNCTIONS AND K-TRANSFORMATIONS

In this section, we introduce covering partial functions and k-transformations
which play the role of partial functions required for proving lower bounds on
the proof size for PHP,. We will then show that a k-transformation mapping
each formula to a covering partial function satisfies the three conditions of
Sam’s strategy, thus proving the lower bound. The covering partial functions
and k-transformations introduced here are very similar to the matching de-
cision trees and k-evaluations (introduced by Krajicek et al. [1995]). In fact,
all the steps in this part of the proof can be carried out using matching deci-
sion trees and k-evaluations. We, however, use covering partial functions and
k-transformations since we believe these definitions are more natural to our
proof setting.

Let D, R be two fixed nonempty sets such that DN R = ¢, |D| = n+ 1,
|R| = n and let S = DUR. A matching between D and R is defined as a set of
mutually disjoint unordered pairs {i, j}, where i € D, j € R. M denotes the set
of all matchings between D and R. For a matching =, let ||, called the size of
the matching, denote the number of ordered pairs {i, j} in 7. For any subset
N € M5, of matchings, let |N| denote max, .y ||, that is, the size of the largest
matching in N. Two matching = and =’ are said to be incompatible if 71U’ is
not a matching (i.e., 7Un’ ¢ M®). A matching 7 is said to cover a vertex i if
{i, j} € m for some j € S. If 7 is a matching, then we denote by V(xr) the set of
vertices covered by 7. Given a subset of matchings N € M® and an unordered
pair {i, j}, define

N+ {i, j} = {(mU{i, j} € M%7 € N, 7U{{i, j}} € M®}.
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Informally, N + {i, j} is the set of all matchings in N, compatible with the
(singleton) matching {{i, j}}, extended by the ordered pair {i, j}. For any subset
of matchings N, define

Cover(N) = {x € M®|3n' € N, 7’ C n}.
In other words, Cover(NV) is the set of all possible extensions of matchings in N.

Definition 4.1. A set of matchings N is said to be a complete matching set?
for S= DUR if

—N=¢,or
—there exists i € D (or j € R) such that

N =N, + i jp,

where (i) the union is over all j € R(ori € D) and (ii) each N, ; is a complete
matching set for S\ {i, j} = (D \ iDUR\ {J}).

It easily follows from the above definition, that any distinct pair of matchings
in a complete matching set are incompatible. Furthermore, for every matching
o, there exists a matching in the complete matching set that is compatible with
it, if |p| is not too large.

ProposiTionN 4.2 (URQUHART AND Fu [1996], LEMMA 4.3).  Let N be a complete
matching set for Sand p be a matching in M® such that |p|+|N| < n. Then there
exists a matching w € N such that t1Up € M5,

Definition 4.3. A covering partial function over S(= DUR) is an ordered
pair (N, f) such that

— N is a complete matching set for S,
—(Cover(N), f) is a partial function on M5,
—if 7, 7’ € Cover(N) such that = C =/, then f(x') = f(x).

The last condition states that f on Cover(lNV) is defined by the value of f on the
complete matching set V.

We now introduce k-transformations which play the role of the transforma-
tion I' in Sam’s strategy. We then need to show that such a transformation
satisfies the three conditions mentioned in the earlier section. Lemmas 4.5 and
4.6 imply conditions (3) and (1), respectively, while we defer the proof of con-
dition (2) (Lemma 5.1) to the next section. The notion of k-transformations is
very similar to k-evaluations that was introduced by Krajicek et al. [1995].

If ¢ is a disjunction and ¢;,i € I, those subformulae of ¢ that are not
disjunctions, but every subformula of ¢ properly containing them is a dis-
junction, then the merged form of ¢ is defined as the unbounded disjunction
\/ieI bi-

Let (V, f) and (N, fj), j € J be covering partial functions over S. We say
that (N, f) satisfies Disj [ ;. A(N;, f}] if for all = € Cover(N)

2]t is to be noted that complete matching sets are identical to complete matching trees (see
Urquhart and Fu [1996]), merely stated in terms more convenient in our setting.
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—f(n)=1 = 3j € J, m € Cover(N;) and fj(7) = 1.
—f(r) =0 = Vj e J, either 7 € Cover(N;) and fj(r) = 0 or = ¢ Cover(N;)
(i.e., f; is not defined on ).

Definition 4.4. Let T be a set of formulae closed under subformulae. Let
k > 0. A k-transformation T is a mapping of formulae ¢ € ¥ to covering partial
functions (NN, f,) over S satisfying the following properties:

(1) For all ¢, |[N,| < k.

2) No=N =92
vz € Cover(Ny), fo(m) =0,
Vrr € Cover(Vy), fi(m) =1

(3) Npij = {{z, UG r} s, jilir e R\ {j},s € D\ {i}},
fpij(jT) =1if{i, j} € # and fpij(n) = 0 otherwise.

(4) Negation condition:
N-, = N,; fop(m) = = f,(n), YV € Cover(NN,).

(5) Disjunction condition: If ¢ is a disjunction and \/ jeg ®j 18 the merged form
of ¢, then (N, f,) satisfies Disj [UJEJ{(N%., fo ).

It follows from the above definition that but for the disjunction condition it is
trivial to construct k-transformations. The disjunction condition is the heart of
the k-transformation and ensures that no immediate contradictions arise out
of a disjunction gate. We shall later show how to construct k-transformation
with the disjunction condition. The definition of a k-transformation is tailored
to answer queries locally consistently and answer the PHP, with 0 as seen
from the following two lemmata.

LEMMA 4.5. Let X be a set of a formulae closed under subformulae. Let T
be a k-transformation mapping formulae ¢ € %, to covering partial functions
(Ny. f,) over S. If; for some Q C X, there exists a & € ),.q Dom(f,), then the
answers (f,(7))geq to the queries (¢)ycq are locally consistent.

LEmMa 4.6. If T is k-transformation for a set of formulae containing PHP,,
k <n—1, then fpup,(n) =0 for all = € Cover(Npmp,).

Proor oF LEMMA 4.5. Let &, T, and 7 be as stated in the lemma. Since — and
v are the only two gates allowed in our language, it suffices to consider the
following two cases. (one for negation and the other for disjunction.)

—Negation. Let ¢, —¢ € X. By definition of a k-transformation, f-,(w) = = f,(7)
for all # € Dom(f,) = Cover(NN,). Thus, an immediate contradiction cannot
arise at a — gate.

—Disjunction. Let ¢ = \/;_; ¢; for some I. We have two subcases here.

—True case. Let ¢ € ¥ and ¢; € ¥ for some j € I such that f,,(7) = 1 and
fo(m) = 0. By definition of a k-transformation, f,(r) = 0 implies that, for all

3Note if N = @, then Cover(N) = M".
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i € I, either 7 € Cover(N,,;) and f,, () = 0 or = ¢ Cover(N,,). This contradicts
fo;(m) = 1. Thus, there is no immediate contradiction in this case.

—False case. Let ¢ € ¥ and ¢; € X for all j € I such that f, (7) =0forall j € I
and f,(7) = 1. By definition of a k-transformation, f,(x) = 1 implies there
exists i € I such that f,(x) = 1. This contradicts f,,(7) = 0. Thus, there is
no immediate contradiction in this case too.

Thus, the answers according to evaluation at 7 are locally consistent. DO

Proor oF LEmMA 4.6. PHP,, is the the disjunction of formulae of the form —¢
where ¢ ranges over

\/ pj. ieD, —pixV—pp, i#jeDkeR,
JER
\/pj. JjeR —pyV—pm ie€D j#keR
ieD

From the definition of a k-transformation, we infer that it suffices for us to
show that f,(w) = 1, Vo € Cover(lN,) for each of the above ¢.

Leti € D. Let ¢ = \/jeRpij. Suppose f,(r) = 0 for some = € Cover(NN,).
Let 7 € N, such that f,(x) = 0. Combining the facts that |N,| < k., 7 € N,
and k < n — 1, we obtain |7| < n — 1. Hence, there exists a 7/ € M5 such that
7 C ' and 7’ coversi. Let {i, j} € ' for some j € R. But then fpij(n/) = 1 while
fo(@") = f,(z) = 0, contradicting the disjunction condition in the definition
of a k-transformation. Hence, f,(7) = 1,Vr € Cover(N,) for ¢ of the specified
type.

Leti: # j € D,k € R. Let ¢ = —p; vV —pj. Suppose f,(7r) = 0 for some
7 € Cover(N,). Let # € N, such that f,(7) = 0. As before, we have |[7| <n— 1.
Since 7 is a matching, either {i, k} ¢ 7 or {Jj, k} ¢ 7. Without loss of generality
assume {i, k} ¢ 7. Since || < n— 1, there exists a 7’ € M® such that = € 7’ and
{i,r}, {s,k} € 7' forsomer £k ¢ Rands # i € D. We,now have =" € Cover(N,,, )
and f;, (7') = 0. Hence, f-,, (7") = 1. But, by assumption, f,(n') = f,(x) =0
again contradicting the disjunction condition.

The other two types of formulae are proved similarly. O

For any matching p, let D[, = D\ V(p), R[, = R\ V(p) and S, = S\ V(p)
(recall that V(p) is the set of vertices covered by the matching p). For a set of
matchings N, let N[, = {7 \p € M8\ € N, nUp € Mg}. That is, N7, is the set of
matchings in N, compatible with p, after removing the edges in p. It can easily
be checked that, if N is a complete matching set for S, then N7, is a complete
matching set for SJ,. For (N, f) a covering partial function over S, define f],
Cover(N[,) — {0, 1} as follows: f],(m) = f(xUp) for all = € Cover(N,). It can
easily be checked that (NT,, f[,) is a covering partial function over Sf,. If T
is a k-transformation mapping formulae, ¢ € ¥ to covering partial functiona

N,, S,) over S, then the transformation 7T'[, mapping ¢ € ¥ to the covering
partial function (N, [,, f,[,) over S|, is also a k-transformation.

We need to show that, for any small set X of formulae, there exists a
k-transformation mapping formulae, ¢ € X, to covering partial functions
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(N,, f,) over S. Unfortunately, we won’t be able to do exactly that, but we
instead prove the following, which is equally good. We show that, for any small
set ¥ of formulae, there is a k-transformation mapping formulae, ¢ € X, to
covering partial functions (N, f,) over S|, for some matching p. It can easily
be checked that Lemma 4.5 holds even if the covering partial functions (N, S,)
are over S|, rather than over S.

As mentioned before, the difficulty in constructing a k-transformation lies
in satisfying the disjunction condition. We use the following variant of the
Switching Lemma to build covering partial functions satisfying the disjunction
condition. This version of the Switching Lemma can be proved by methods
similar to those in the Switching Lemma Primer [Beame 1994] and is in fact
a restatement of the Switching Lemma of Urquhart and Fu [1996] in our
terminology.

LEmMmaA 4.7 (UrRQUHART AND Fu [1996], LEMMA 6.4: SwiTcHING LEMMA). Let
(N;, f;),J € J be covering partial functions over S such that |N;| < r for all
jed Letl >10and p = l/n. If r <l and p*n® < 1/10, then, for random
p € MS such that |p| = n — 1, the event that “There exists a covering partial
function (N, f) over S|, such that (N, f) satisfies Disj [ ;. A(N;l,, f;1,)}] and
|N| < 2s” holds with probability at least 1 — (11p*n’r)°.

In other words, with high probability a random restriction converts the disjunc-
tion into a formula that only depends on a complete matching set of small size
(2s). Note that this is not the same as saying that the disjunction is converted
to a formula that involves only 2s variables.

LEMMA 4.8. Let d be an integer, 0 < € < 1/5,0 < 8 < €%, and X a set of
formulae of depth d, closed under subformulae. If |$| < 2", and n is sufficiently
large, then there exists a matching p € MS of size n — n<’ such that there is a
2n’-transformation T mapping formulae ¢ € X, to covering partial functions

(Ny, f,) over S|,

Proor. The proofis by induction on d. For d = 1, the only formulae in X are
propositional variables and constants. For any such formula ¢, [N,| < 2, so we
have a 2-transformation.

Suppose the lemma holds for d. Let ~ be a set of formulae of depth d + 1,
closed under subformulae such that || < 27, where 0 < § < €1, Let A
be the set of formulae in = of depth at most d. Since 0 < § < €%t < €9,
by the induction hypothesis, there exists a p’ € M* of size n — n<" such that
there is a 2n’-transformation 7' mapping mapping formulae ¢ € A, to cov-
ering partial functions (N, f7) over S[,. Let ¢ be any formula in ¥ of depth
d + 1 that is a disjunction and let \/ jeg9j be its merged form. We then apply
the Switching Lemma with S — S| ,.n — 'l — " r — 2n8. s — nd.
For sufficiently large n, the conditions for the Switching Lemma are satisfied.
Hence, with probability at least 1 — (11n4€d+1n‘6d2n5)”6, there exists a cover-
ing partial function (N,, f,) over (S[,)[,, = S|, such that (N,, f,) satisfies
Disj ;e ANy, 1o fy;1,04] and |N,| < 2n° over random choices of p” € M5!

d+1

such that |p”| = n¢ — n¢""". Since § < € < €4/5, for sufficiently large n,
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d+1

1104 n=<'2n% < 11n-<"/52n% < 1/2 the quantity (11" n=<‘2n%)"" is bounded
above by 2" . Hence, the above probability is bounded below by 1 — 27" Since
there exist no more than 2" disjunctions of depth d + 1 in %, there exists a
single p” € MS'» such that |p”| = n< — n<"" and, for all disjunctions ¢ of depth
d+1in X, there exists a covering partial function (N, f,) over S|, such that

(N,, f,) satisfies Disj [ ;c JA(N,; [ > fy; 1,011 and [N, | < 2n°.

Let p = p'Up”. Note |p| = n—n"". We can now define the 2n’-transformation
T that maps ¢ € ¥ to covering partial functions over S|, as follows: if ¢ is a
disjunction of depth d + 1, map ¢ to (N,, f,) as given above. If ¢ € A, then map
it to (N, [, f,1,) if T" maps ¢ to (N,, f,). Finally, if ¢ is a negation of depth
d + 1, then map ¢ to (IVy, — fy) where ¢ = —y. Clearly, this transformation T
is a 2n’-transformation mapping formulae ¢ € X, to covering partial functions
(Ny, f,) over S|, where p € M?S such that |p| =n — . o

5. LOWER BOUND FOR PHPy

In this section, we use the k-transformations to demonstrate a strategy for
Sam as indicated in Section 3. From this, we obtain a lower bound on the size
of bounded depth Frege proofs of PHP,,.

LemMma 5.1.  Let T be a game-tree of height r for PHP,. Let ¥ be the set of all
formulae that occur in T and their subformulae. Let T be a k-transformation
mapping formulae ¢ € X to covering partial functions (N,, f,) over S|, for some
matching p € M® of size n — m. If kr < m, then there exists a branch
(g1, b1), ..., (@s, bs)) in the game tree T such that

(\(fo) ' (Bi) # 0.
i=1
Proor. LetT, I, p, and T be as stated in the lemma. Consider the following
procedure WALK(T) that outputs one of the branches of 7.

WarLk(7)

(1) Setw < Yandi « 1.

(2) Walk along the game tree 7 starting from the root node (labeled PHP,)
until a leaf is reached as follows:

(a) Set ¢; < label of current node.
(b) Choose a 7 € N, such that 7Ur; € MS°.
(c) Set b; < f,(m;) and w < wUm;.
(d) Walk along edge labeled b; leading out of current node.
(e) Incrementi.
(3) Output ((¢1, b1), ..., (s, bs)).

Since 7 is a game tree for PHP,, we have ¢; = PHP, and b; = 0 for any
branch in 7. By Lemma 4.6, fpup,(r) = 0 for all = € Cover(PHPF,). Hence,
the WALk algorithm can choose any matching w € Npgp, at step (2(b)) in the
first execution of the loop at step 2. For latter executions of the loop, as long
as || + & < m, Proposition 4.2 guarantees that a matching n; € N,, satisfying
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wUm; € MS” can be chosen in step (2(b)). As || is extended at most r times,
each time at most by %, and rk < m, the condition ||+ % < mis true before each
execution of step (2(b)).

Let 7 be the matching at the final step of the WALk algorithm. The branch
((¢1,b1), ..., (s, b)) output by WALK satisfies b; = f, (7). Hence,

e (\(fo) ).

i=1
Thus, (;_1(f,) 1B #9 O
We are now ready to prove our main theorem.

THEOREM 5.2 (Prrasst ET AL. [1993]; KRaJICEK ET AL. [1995]). Let F be a Frege
system and let c be the constant that occurs in Theorem 2.2 corresponding to F.
Then for sufficiently large n, every depth d proofin F of PHP, must have size at
least 2™, for p < 3(2)¥e.

Proor. Let 0 < ¢ < % and 0 < u < €%+¢/2. Suppose PHP, has a depth d
proof in F of size 2”'. By Theorem 2.2, we have that there exists a Pudldk-Buss
game tree 7 of height n* consisting of formulae of size at most 2" and depth at
most d + ¢ convicting Sam on PHP,,. Let T be the set of all formulae and their
subformulae that occur in this game tree 7. Clearly, |X| < 27 . 2% = 22,
Choose 8§ such that © < § < €%/2. Then, for sufficiently large n, we have
|Z| < 27”. By Lemma 4.8, there exists a partial matching p of size n — n<’
such that ¥ has a 2n’-transformation 7 mapping formulae, ¢ € X, to covering
partial functions, (N, f,) over S|,. By Lemma 4.6, we have that condition (1)
(i.e., Vx € Dom(fpmp,), frup,(x) = 0) is satisfied since 2n’ < n’ — 1 for suffi-
ciently large n. Also as 2n’ - n** < n<’ for sufficiently large n, the hypothesis for
Lemma 5.1 is satisfied. Hence, the 2n’-transformation satisfies condition (2).
By Lemma 4.5, we have that condition (3) is also satisfied. Thus, T satisfies
all the three conditions of Theorem 3.1. Hence, 7 does not convict Sam contra-
dicting our assumption. Thus, there exists no depth d proof of PHP, in F of
size 2. O
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