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SUPER-POLYLOGARITHMIC HYPERGRAPH COLORING
HARDNESS VIA LOW-DEGREE LONG CODES∗
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Abstract. We prove improved inapproximability results for hypergraph coloring using the
low-degree polynomial code (aka the “short code” of Barak et al. [SIAM J. Comput., 44 (2015),
pp. 1287–1324]) and the techniques proposed by Dinur and Guruswami [Israel J. Math., 209 (2015),
pp. 611–649] to incorporate this code for inapproximability results. In particular, we prove quasi
NP-hardness of the following problems on n-vertex hypergraphs: coloring a 2-colorable 8-uniform

hypergraph with 22Ω(
√

log logn)
colors; coloring a 4-colorable 4-uniform hypergraph with 22Ω(

√
log logn)

colors; and coloring a 3-colorable 3-uniform hypergraph with (logn)Ω(1/ log log log n) colors. For the
first two cases, the hardness results obtained are superpolynomial in what was previously known,
and in the last case it is an exponential improvement. In fact, prior to this result, (logn)O(1) colors
was the strongest quantitative bound on the number of colors ruled out by inapproximability results
for O(1)-colorable hypergraphs, and (log logn)O(1) for O(1)-colorable, 3-uniform hypergraphs.
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1. Introduction. A k-uniform hypergraph G is a pair (V,E), where V is a set
of vertices and E is a collection of k-element subsets of V (i.e., E ⊆

(
V
k

)
). These

k-element subsets are called the hyperedges of the hypergraph G. An independent
set in a hypergraph G = (V,E) is a subset I of vertices such that no hyperedge is
completely contained inside I. A q-coloring of a hypergraph is a map from V to the
set {1, . . . , q} such that no hyperedge is monochromatic (i.e., every hyperedge has at
least two distinct colors among its vertices). A hypergraph is said to be q-colorable
if such a q-coloring exists or equivalently if the set of vertices can be partitioned into
q independent sets. The hypergraph coloring problem is that of finding, given G, the
smallest q such that G is q-colorable. When k = 2, the hypergraph is just a graph
and the hypergraph coloring problem is the standard graph coloring problem.

Graph and hypergraph coloring problems have been studied extensively. The first
nontrivial case of this problem is when k = q = 2, i.e., checking whether a graph is
2-colorable or, equivalently, whether the graph is a bipartite graph, and this turns
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out to be easy. Every other case (for larger values of k or q) happens to be NP-hard;
determining whether a graph is 3-colorable is a classical NP-hard problem, while for
k ≥ 3, even determining whether a given k-uniform hypergraph is 2-colorable is known
to be NP-hard. This latter property (2-colorability of hypergraphs for k ≥ 3), also
referred to as Property B, has received a lot of attention in the extremal combinatorics
literature.

Given that even checking whether a graph is 3-colorable is NP-hard, it is natural
to ask whether there are approximately optimal coloring algorithms in the following
sense: For a parameter M > 3, is there an algorithm that on input a 3-colorable graph
colors it with at most M colors? It is of course trivial to color any graph with n colors
where n is the number of vertices in the graph: Assign each vertex a different color.
A long sequence of works [Wig83, Blu94, KMS98, BK97, AC06, Chl07, KT12, KT14],
using both combinatorial and semidefinite programming techniques, give efficient
polynomial-time algorithms to color 3-colorable graphs with nδ colors, where the cur-
rent best value of δ is approximately 0.199 . . . . On the other hand, the best-known
NP-hardness results for approximately coloring 3-colorable graphs are only able to
prove that it is NP-hard to 4-color a 3-colorable graph! (See [KLS00, GK04, BG16].)
Under variants of the Unique Games Conjecture, one can show hardness of O(1)-
coloring 3-colorable graphs [DMR09]. Better hardness results are known for larger
values of q: Huang [Hua13] showed that it is NP-hard to color a q-colorable graph with

2Ω(q1/3) colors, improving on the previous bound of 2Ω(log2 q) due to Khot [Kho01].
Observe the huge disparity between the known upper and lower bounds.

The situation for hypergraph coloring (k ≥ 3) is slightly better. Moving from
graphs (k = 2) to hypergraphs (k ≥ 3) makes the algorithmic problem even harder,
and thus the best-known algorithms still require nΩ(1) colors to color a 2-colorable
hypergraph [KNS01, CF96, AKMR96, KT14]. From the inapproximability perspec-
tive, Guruswami, H̊astad, and Sudan [GHS02] proved the first superconstant lower
bounds, showing the quasi NP-hardness of coloring 2-colorable 4-uniform hypergraphs
with Ω( log logn

log log logn ) colors. Since that work, there have been many others showing
quasi NP-hardness for different values of k and q. A significant result in this line of
work is that of Khot [Kho02a], wherein he obtained the first polylogarithmic lower
bound, showing quasi NP-hardness of coloring q-colorable 4-uniform hypergraphs with
(log n)Ω(q) colors for q ≥ 7. More recently, Dinur and Guruswami [DG15, Appendix B]
obtained a similar (but incomparable) polylogarithmic hardness result for 2-colorable
8-uniform hypergraphs. Our first results yield a “superpolynomial” improvement over
these results.

Theorem 1.1 (2-colorable 8-uniform hypergraphs). Under the assumption that

NP 6⊆ DTIME(n2O(
√

log logn)

), there is no polynomial-time algorithm that, when given as
input an 8-uniform hypergraph H on N vertices, can distinguish between the following:

• H is 2-colorable.
• H has no independent set of size N/22O(

√
log logN)

.

Theorem 1.2 (4-colorable 4-uniform hypergraphs). Under the assumption that

NP 6⊆ DTIME(n2O(
√

log logn)

), there is no polynomial-time algorithm that, when given as
input a 4-uniform hypergraph H on N vertices, can distinguish between the following:

• H is 4-colorable.
• H has no independent set of size N/22O(

√
log logN)

.

We remark that all of the above-mentioned hardness results (including ours) prove
stronger lower bounds than stated in the discussion: They show hardness of finding an
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independent size of N/M(N), which in turn implies hardness of coloring with M(N)
colors. Thus, our two results imply that there do not exist polynomial-time algorithms
that color 2-colorable 8-uniform (similarly, 4-colorable 4-uniform) hypergraphs with

22O(
√

log logN)

colors unless NP ⊆ DTIME(n2O(
√

log logn)

).
We then ask whether we can prove coloring inapproximability for even smaller

uniformity, i.e., k = 3, the case of 3-uniform hypergraphs. The best known inap-
proximability results in this context are as follows. Khot [Kho02b] showed that it is
quasi-NP-hard to find an independent set of size N/(log logN)1/9 in a given N -vertex
3-colorable 3-uniform hypergraph. Dinur, Regev, and Smyth [DRS05] showed that
it is quasi-NP-hard to color a 2-colorable 3-uniform hypergraph with (log logN)1/3

colors. Our third result yields an “exponential” improvement.

Theorem 1.3 (3-colorable 3-uniform hypergraphs). Under the assumption that

NP 6⊆ DTIME(n2O(log logn/ log log logn)

), there is no polynomial-time algorithm that, when
given as input a 3-uniform hypergraph H on N vertices, can distinguish between the
following:

• H is 3-colorable.
• H has no independent set of size N/2O(log logN/ log log logN).

As with the previous two results, Theorem 1.3 implies a result on the hardness

of approximate coloring. More precisely, unless NP ⊆ DTIME(n2O(log logn/ log log logn)

),
there does not exist a polynomial-time algorithm that colors 3-colorable 3-uniform
hypergraphs with 2log logN/ log log logN colors.

1.1. Proof approach. All known hypergraph coloring inapproximability results
are obtained using the machinery of probabilistically checkable proofs (PCPs). A PCP
construction in which the verifier queries k locations of the proof and accepts if the
symbols in these locations are not all equal (this is referred to as the not-all-equal
(NAE) predicate) naturally yields a hardness result for approximate coloring of k-
uniform hypergraphs via the following correspondence. The vertices of the hypergraph
correspond to the locations in the PCPs, while the hyperedges correspond to the k-
sized queries of the verifier.

Before we proceed to explain the ideas in our proofs, let us first try to understand
why all previous hypergraph coloring inapproximability techniques got stuck at the
poly log n color barrier. Constructions of PCPs with a specific predicate (NAE in
our case) typically proceed along the following lines. An outer PCP verifier is first
constructed using the hardness of the so-called label cover problem. This is then com-
posed with an inner verifier that makes tests restricted to the predicate corresponding
to the desired hardness result (NAE in the case of coloring). One of the quintessential
ingredients in the inner verifier construction (in almost all known inapproximability
results) is the long code, first introduced by Bellare, Goldreich, and Sudan [BGS98].
The long code, as the name suggests, is a highly redundant encoding of its input (in
fact, it is the most redundant encoding that doesn’t repeat symbols). Under the long
code, an n-bit Boolean string x is encoded by a 22n -bit string that consists of the eval-
uation of all Boolean functions on n bits at the point x. It is this doubly exponential
blowup of the long code that prevents the coloring inapproximability from going past
the poly log n barrier.

Recently, Barak et al. [BGH+15], while trying to understand the tightness of
the Arora–Barak–Steurer algorithm for unique games, introduced the short code, also
called the low-degree long code [DG15]. The low-degree long code is a puncturing of
the long code that contains only the evaluations of low-degree functions (as opposed to
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all functions). Because this is a “shortening” of the long code, one might hope to use
the low-degree long code as a more size-efficient surrogate for the long code in inap-
proximability results. In fact, Barak et al. [BGH+15] used it to obtain a more efficient
version of the MAXCUT inapproximability result of Khot et al. [KKMO07], assum-
ing the Unique Games Conjecture, as well as integrality gap instances for Unique
Games against exponentially more rounds of the Sherali–Adams + SDP hierarchy
than known previously. The short code was also used by Kane and Meka [KM13] to
construct instances of Uniform Sparsest Cut with an exponentially larger integrality
gap (exp(Ω(

√
log log n)) compared to earlier Ω(log log n)) against powerful semidefi-

nite programs.
One of the challenges in PCP constructions that imply hardness for coloring

problems is the requirement of perfect completeness, i.e., for Yes instances, there must
exist a proof that is accepted by the verifier with probability 1 (this corresponds to
the graph or hypergraph obtained by the reduction being properly colorable with
every (hyper)-edge legally colored). In contrast, reductions based on the Unique
Games Conjecture inherently lack perfect completeness; this offers flexibility to add
noise to the queries made by the inner verifier, which in turns aids in the soundness
analysis of the PCP. In the context of PCPs with perfect completeness, Dinur and
Guruswami [DG15] introduced some elegant techniques to adapt the long-code-based
inapproximability results to low-degree long codes. Barak et al. [BGH+15] obtained
their results by discovering an intimate connection between Reed–Muller testing of
Bhattacharyya et al. [BKS+10] and analysis of the low-degree long code. Exploring
this connection further, Dinur and Guruswami [DG15] proved a new result for testing
Reed–Muller codes over F2 (i.e., testing whether a given function is close to a low-
degree polynomial over F2), which we describe below.

Let Pnd be the set of degree d polynomials on n variables over F2, and let χf (g) =

χg(f) := (−1)
∑
x∈Fn2

f(x)g(x)
denote the correlation between two functions f, g : Fn2 →

F2. Thus, χf (g) = χg(f) = 1 if f and g are orthogonal over F2 (i.e.,
∑
x∈Fn2

f(x)g(x) =

0) and −1 otherwise. It is well known that Pnn−d−1 is exactly the set of functions
that are orthogonal to all functions in Pnd . In particular, χβ(gh) = 1 if β ∈ Pnn−d−1,
g ∈ Pnd/4, and h ∈ Pn3d/4. On the other hand, if β /∈ Pnn−d−1, we have Ef∈Pnd [χβ(f)] = 0.
The Dinur–Guruswami testing result states that if β : Fn2 → F2 is far from any degree
n−d−1 polynomial, then for most degree d/4 polynomials, g, β will only be orthogonal
to roughly half of the polynomials gh as h varies over degree 3d/4 polynomials. More
precisely, if β : Fn2 → F2 is 2d/2-far1 from Pnn−d−1, then Eg∈Pn

d/4
|Eh∈Pn

3d/4
[χβ(gh)]|

is doubly exponentially small in d (see Theorem 2.12 for the exact statement). This
Reed–Muller testing result let them analyze the low-degree long code and construct
inner verifiers with perfect completeness. Our first two hypergraph coloring results
are obtained by constructing an appropriate NAE-predicate inner verifier using these
techniques of Dinur and Guruswami.

For the case of 3-uniform 3-colorable hypergraphs, we adapt Khot’s hardness
result [Kho02b] to the low-degree long code setting. To analyze the low-degree long
code in this setting, we prove the following testing result for Reed–Muller codes over
F3 (i.e., moving to a ternary alphabet instead of the binary alphabet F2). Let Pnd
now denote the set of degree d polynomials on n variables over F3, and let χf (g) =

χg(f) := ω
∑
x∈Fn3

f(x)g(x)
denote the correlation between two functions f, g : Fn3 → F3,

1We say that g is ∆-far from a class of functions F if for all f ∈ F , we have |{x ∈ Fn
2 |f(x) 6=

g(x)}| ≥ ∆ (note that we are using the nonnormalized Hamming distance).
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where ω = e2πi/3. Thus, χf (g) = χg(f) = 1 iff f and g are orthogonal over F3 (i.e.,∑
x∈Fn3

f(x)g(x) = 0). It is known that Pn2n−`−1 is exactly the set of functions that

are orthogonal to all functions in Pn` . In particular, χβ(p2) = 1 if β ∈ Pn2n−2d−1

and p ∈ Pnd . Similar in spirit to the Dinur–Guruswami testing result, we prove the
following result: If β : Fn3 → F3 is far from any degree 2n−2d−1 polynomial, then the
correlation of β with the square of a random degree d polynomial is very small. More
precisely, if β : Fn3 → F3 is 3d/2-far from Pn2n−2d−1, then |Ep∈Pnd [χβ(p2)]| is doubly
exponentially small in d. This is proved by considering the associated quadratic form
Qβ defined as

Q(β) :=
∑
x∈Fn3

β(x) · eval(x) eval(x)T ,

where eval(x) is the column-vector of evaluation of all degree d monomials at the point
x. Observe that this quadratic form Q(β) satisfies pTQ(β)p =

∑
x∈Fn3

β(x)p2(x). It

is well known that the distance of the random variable pTAp (for random p and fixed
symmetric A) is inverse exponential in the rank of the quadratic form A. The testing
result is thus proved by showing the following result on the rank of the quadratic form
Q(β): If the distance of β from polynomials of degree 2n−2d−1 is at least 3d/2, then
the rank of the matrix Q(β) is 3Ω(d). This rank bound is proved along the lines of
Dinur and Guruswami’s result [DG15] using the Reed–Muller tester analysis of Hara-
maty, Shpilka, and Sudan [HSS13] over general fields instead of the Bhattacharyya
et al. [BKS+10] analysis over F2.

1.2. Subsequent work. Saket [Sak14] recently obtained the following improved
inapproximability result for 2-colorable 4-uniform hypergraphs: It is quasi-NP-hard
to color a 2-colorable 4-uniform hypergraph with (log n)c colors for some constant c.
He obtained this improvement by giving an improved analysis using reverse hyper-
contractivity of the long-code-based test of Guruswami, H̊astad, and Sudan [GHS02].

Subsequent to our result, Khot and Saket [KS14], in a significant improvement,
showed that it is quasi-NP-hard to color a 2-colorable 12-uniform hypergraph with
2(logn)c colors for some constant c ∈ (0, 1). This result is obtained by constructing a
powerful outer verifier with a strong soundness property, referred to as the superposi-
tion complexity, which is then composed with an inner verifier based on the quadratic
code (equivalently, the low-degree long code of degree two). Huang [Hua15] then gave
a slightly simpler construction of PCPs with superposition complexity. Surprisingly,
while previous results (including the results in the current paper) employed the Reed–
Muller testing results in the analysis of the inner verifier, Khot and Saket (and then
Huang) used these testing results in the analysis of their outer verifier. Varma [Var15]
then showed how to improve the uniformity of the Khot–Saket 12-query verifier to an
8-query inner verifier based on the reductions in the current paper to yield the follow-
ing result: It is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph (similarly,
a 4-colorable 4-uniform hypergraph) with 2(logn)c colors for some constant c ∈ (0, 1).

Organization. We start with some preliminaries in section 2. Theorems 1.1,
1.2, and 1.3 are proved in sections 4, 5, and 6, respectively. The proof of the latter
theorem requires a technical claim about low-degree polynomials over F3, which we
prove in section 3.

2. Preliminaries.

2.1. Label cover. All of our reductions start from an appropriate instance of
the label cover problem, bipartite or multipartite. A bipartite label cover instance
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consists of a bipartite graph G = (U, V,E), label sets ΣU ,ΣV , and a set of projection
constraints Π = {πuv : ΣU → ΣV |(u, v) ∈ E}. We consider label cover instances
obtained from 3SAT instances in the following natural manner.

Definition 2.1 (r-repeated label cover). Let ϕ be a 3SAT instance with X as
the set of variables and C the set of clauses. The r-repeated bipartite label cover
instance I(ϕ) is specified by the following:

• A graph G := (U, V,E), where U := Cr, V := Xr.
• ΣU := {0, 1}3r,ΣV := {0, 1}r.
• There is an edge (u, v) ∈ E if the tuple of variables v can be obtained from

the tuple of clauses u by replacing each clause by a variable in it.
• The constraint πuv : {0, 1}3r → {0, 1}r is simply the projection of the as-

signments on 3r variables in all the clauses in u to the assignments on the r
variables in v.

• For each u there is a set of r functions {fui : {0, 1}3r → {0, 1}}ri=1 such that
fui (a) = 0 iff the assignment a satisfies the ith clause in u. Note that fui
depends only on the 3 variables in the ith clause.

A labeling LU : U → ΣU , LV : V → ΣV satisfies an edge (u, v) iff πuv(LU (u)) = LV (v)
and LU (u) satisfies all the clauses in u. Let OPT(I(ϕ)) be the maximal fraction of
constraints that can be satisfied by any labeling.

The following theorem is obtained by applying Raz’s parallel repetition theo-
rem [Raz98] with r repetitions on hard instances of MAX-3SAT where each variable
occurs the same number of times [Fei98].

Theorem 2.2. There is an algorithm that on input a 3SAT instance ϕ and r ∈
N outputs an r-repeated label cover instance I(ϕ) in time nO(r) with the following
properties:

• If ϕ ∈ 3SAT, then OPT(I(ϕ)) = 1.
• If ϕ /∈ 3SAT, then OPT(I(ϕ)) ≤ 2−ε0r for some universal constant ε0 ∈ (0, 1).

Moreover, the underlying graph G is both left and right regular.

2.2. Multilayered smooth label cover. For our hardness results for 3-uniform
3-colorable hypergraphs, we need a multipartite version of label cover, satisfying a
smoothness condition, which was introduced by Khot [Kho02b].

Definition 2.3 (smoothness). Let I be a bipartite label cover instance specified
by ((U, V,E),ΣU ,ΣV ,Π). Then I is η-smooth iff for every u ∈ U and two distinct
labels a, b ∈ ΣU ,

Pr
v

[πuv(a) = πuv(b)] ≤ η,

where v is a random neighbor of u.

Definition 2.4 (r-repeated `-layered η-smooth label cover). Let T := d`/ηe and
let ϕ be a 3SAT instance with X as the set of variables and C the set of clauses. The
r-repeated `-layered η-smooth label cover instance I(ϕ) is specified by the following:

• An `-partite graph with vertex sets V0, . . . , V`−1. Elements of Vi are tuples of
the form (C ′, X ′), where C ′ is a set of (T + `− i)r clauses and X ′ is a set of
ir variables.
• ΣVi := {0, 1}mi , where mi := 3(T + `− i)r + ir, which corresponds to all

Boolean assignments to the clauses and variables corresponding to a vertex in
layer Vi.
• For 0 ≤ i < j < `, Eij ⊆ Vi × Vj denotes the set of edges between layers
Vi and Vj. For vi ∈ Vi, vj ∈ Vj, there is an edge (vi, vj) ∈ Eij iff vj can
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be obtained from vi by replacing some (j − i)r clauses in vi with variables
occurring in the clauses, respectively.

• The constraint πvivj is the projection of assignments for clauses and variables
in vi to those of vj.

• For each i < `, vi ∈ Vi, there are (T+`−i)r functions fvij : {0, 1}3(T+`−i)r+ir →
{0, 1}, one for each clause j in vi such that fvij (a) = 0 iff a satisfies the clause
j. This function depends only on the 3 coordinates in j.

Given a labeling Li : Vi → ΣVi for all the vertices, an edge (vi, vj) ∈ Eij is satisfied
iff Li(vi) satisfies all the clauses in vi, Lj(vj) satisfies all the clauses in vj, and
πvivj (Li(vi)) = Lj(vj). Let OPTij(I(ϕ)) be the maximum fraction of edges in Eij
that can be satisfied by any labeling.

The following theorem was proved by Dinur et al. [DGKR05] in the context of
hypergraph vertex cover inapproximability (also see [DRS05]).

Theorem 2.5. There is an algorithm that on input a 3SAT instance ϕ and `, r ∈
N, η ∈ [0, 1) outputs an r-repeated `-layered η-smooth label cover instance I(ϕ) in time
nO((1+1/η)`r) with the following properties:

1. For all 0 ≤ i < j < `, the bipartite label cover instance on Iij = ((Vi, Vj , Eij),
ΣVi ,ΣVj ,Πij) is η-smooth.

2. For 1 < m < `, any m layers 0 ≤ i1 < · · · < im ≤ ` − 1, and any Sij ⊆ Vij
such that |Sij | ≥ 2

m |Vij |, there exist distinct ij and ij′ such that the fraction
of edges between Sij and Sij′ relative to Eijij′ is at least 1/m2.

3. If ϕ ∈ 3SAT, then there is a labeling for I(ϕ) that satisfies all the constraints.
4. If ϕ /∈ 3SAT, then

OPTi,j(I(ϕ)) ≤ 2−Ω(r) ∀0 ≤ i < j ≤ `.

2.3. Low-degree long code. Let Fp be the finite field of size p where p is a
prime. The results in this section apply when p = 2, 3. The choice of p will be clear
from the context, and hence the dependence of p on the quantities defined will be
omitted. Let Pnd be the set of polynomials of degree at most d on n variables over
Fp. Let Fn := Pn(p−1)n. Note that Fn is the set of all functions from Fnp to Fp. Fn is

an Fp-vector space of dimension pn, and Pnd is its subspace of dimension nO(d). The
Hamming distance between f and g ∈ Fn, denoted by ∆(f, g), is the number of inputs
on which f and g differ. When S ⊆ Fn, ∆(f, S) := ming∈S ∆(f, g). We say f is ∆-far
from S if ∆(f, S) ≥ ∆ and f is ∆-close to S otherwise. Given f, g,∈ Fn, the dot
product between them is defined as

〈f, g〉 :=
∑
x∈Fnp

f(x)g(x).

For a subspace S ⊆ Fn, the dual subspace is defined as

S⊥ := {g ∈ Fn : ∀f ∈ S, 〈g, f〉 = 0}.

The following theorem relating dual spaces is well known and is used to index the
characters of Pnd (see Lemma 2.10).

Lemma 2.6. (Pnd )⊥ = Pn(p−1)n−d−1.

Proof. First note that the dimensions of the two subspaces are equal by a counting
argument. Next we show that (Pnd )⊥ ⊇ Pn(p−1)n−d−1. We just need to show that for



SUPER-POLYLOGARITHMIC HYPERGRAPH COLORING HARDNESS 139

any monomial of degree (p− 1)n− d− 1 with individual degrees < p, the dot product
with any monomial of degree d with individual degrees < p is 0. The product of any
such pair of monomials is a monomial with total degree at most (p − 1)n − 1, and
hence has a variable with degree < p− 1. Without loss of generality, let this variable
be x1 with degree t < p− 1. Notice that

∑
x1∈Fp x

t
1 = 0, and hence the dot product

is 0.

We need the following Schwartz–Zippel-like lemma for degree d polynomials. It
is used in the soundness analysis of the low-degree long code tests, to lower bound
the rejection probabilities.

Lemma 2.7 (Schwartz–Zippel lemma [HSS13, Lemma 3.2]). Let f ∈ Fp[x1, . . . , xn]
be a nonzero polynomial of degree at most d with individual degrees at most p − 1.
Then Pra∈Fnp [f(a) 6= 0] ≥ p−d/(p−1).

We now define the low-degree long code (introduced as the short code by Barak et al.
[BGH+15] in the F2 case).

Definition 2.8 (low-degree long code). For a ∈ Fnp , the degree d long code for a
is a function LCd(a) : Pnd → Fp defined as

LCd(a)(f) := f(a).

Note that for d = (p − 1)n, this matches with the definition of the original long
code over the alphabet Fp.

Definition 2.9 (characters). A character of Pnd is a function χ : Pnd → C such
that

χ(0) = 1 and ∀f, g ∈ Pnd , χ(f + g) = χ(f)χ(g).

The following lemma lists the basic properties of characters. They are used in the
soundness analysis of the low-degree long code tests, analogous to Fourier analysis for
long code tests.

Lemma 2.10. Let {1, ω, . . . , ωp−1} be the pth roots of unity, and for β ∈ Fn, f ∈
Pnd , let χβ(f) := ω〈β,f〉.

• The characters of Pnd are {χβ : β ∈ Fn}.
• For any β, β′ ∈ Fn, χβ = χ′β iff β − β′ ∈ (Pnd )⊥.

• For β ∈ (Pnd )⊥, χβ is the constant 1 function.
• For all β, there exists β′ such that β − β′ ∈ (Pnd )⊥ and | support(β′)| =

∆(β, (Pnd )⊥) (i.e., the constant 0 function is (one of) the closest function to
β′ in (Pnd )⊥). We call such a β′ a minimum support function for the coset
β + (Pnd )⊥.

• Characters form an orthonormal basis for the vector space of functions from
Pnd to C, under the inner product 〈A,B〉 := Ef∈Pnd [A(f)B(f)].

• Any function A : Pnd → C can be uniquely decomposed as

A(f) =
∑
β∈Λnd

Â(β)χβ(f),

where Â(β) := Eg∈Pnd [A(g)χβ(g)] and Λnd is the set of minimum support func-

tions, one for each of the cosets in Fn/(P
n
d )⊥, with ties broken arbitrarily.

• Parseval’s identity: For any A : Pnd → C,
∑
β∈Λnd

|Â(β)|2 = Ef∈Pnd [|A(f)|2].

In particular, if A : Pnd → {1, ω, . . . , ωp−1},
∑
β∈Λnd

|Â(β)|2 = 1.
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The following lemma relates characters over different domains related by co-
ordinate projections.

Lemma 2.11. Let m ≤ n and π : Fnp → Fmp be a (coordinate) projection; i.e.,
there exist indices 1 ≤ ii < · · · < im ≤ n such that π(x1, . . . , xn) = (xi1 , . . . , xim).
Then for f ∈ Pmd , β ∈ Pnd ,

χβ(f ◦ π) = χπp(β)(f),

where πp(β)(y) :=
∑
x∈π−1(y) β(x).

Proof.

χβ(f ◦ π) = ω
∑
x∈Fn3

f(π(x))β(x)
= ω

∑
y∈Fm3

f(y)(
∑
x∈π−1(y) β(x))

= ω
∑
y∈Fm3

f(y)πp(β)(y)
= χπp(β)(f).

Dinur and Guruswami [DG15] proved the following theorem about Reed–Muller
codes over F2 using the testing result of Bhattacharyya et al. [BKS+10].

Theorem 2.12 (see [DG15, Theorem 1]). Let d be a multiple of 4 and p = 2. If
γ ∈ Fn is 2d/2-far from (Pnd )⊥ = Pnn−d−1, then

(2.1) E
g∈Pn

d/4

[∣∣∣∣∣ E
h∈Pn

3d/4

[χγ(gh)]

∣∣∣∣∣
]
≤ 2−2(d/4−2)

.

(Theorem 1 in [DG15] states an upper bound of 2−4·2d/4 on the expectation in

(2.1); however, the proof in fact shows the bound 2−2(d/4−2)

. This small change is
inconsequential, and the key is the doubly exponential decay in d.)

2.4. Folding over satisfying assignments.

Lemma 2.13. Let d > 1, let X be a set of pd−1 points in Fnp , and let f : X → Fp
be an arbitrary function. Then there exists a polynomial q of degree at most (p− 1)d
such that q agrees with f on all points in X.

Proof. By Lemmas 2.6 and 2.7, any nonzero polynomial in (Pn(p−1)d)
⊥ has support

size at least pd. In other words, the evaluations of (Pn(p−1)d)
⊥ at Fnp form a code of

distance at least pd. Therefore its dual code, namely the evaluations of Pn(p−1)d at Fnp ,

induces a (pd − 1)-wise independent distribution. Hence, it is possible to interpolate
a degree (p − 1)d polynomial to take on any desired values at an arbitrary subset of
pd − 1 points in Fnp .

For any set S, a function A : Pn(p−1)d → S is said to be folded over a subspace
J ⊆ Pn(p−1)d if A is constant over cosets of J in Pn(p−1)d.

Fact 2.14. Given a function A : Pn(p−1)d/J → S, there is a unique function

A′ : Pn(p−1)d → S that is folded over J such that for g ∈ Pn(p−1)d, A
′(g) = A(g + J).

We call A′ the lift of A.

Given q1, . . . , qk ∈ Pn3(p−1), let

J(q1, . . . , qk) :=

{∑
i

riqi : ri ∈ Pn(p−1)(d−3)

}
.

The following lemma shows that if a function is folded over J = J(q1, . . . , qk), then
it cannot have weight on small support characters that are nonzero on J (this is a
generalization of the corresponding lemma in [DG15] to other fields).
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Lemma 2.15. Let β ∈ Fn be such that | support(β)| < pd−3, and there exists
x ∈ support(β) with qi(x) 6= 0 for some i. Then if A : Pnd → C is folded over

J = J(q1, . . . , qk), then Â(β) = 0.

Proof. Construct a polynomial r that is zero at all points in support of β except
at x. From Lemma 2.13, its possible to construct such a polynomial of degree at most
(p− 1)(d− 3). Then we have that rqi ∈ J and 〈β, rqi〉 6= 0. Now

E
h

[A(h)χβ(h)] =
1

p
E
h

[A(h)χβ(h) +A(h+ rqi)χβ(h+ rqi) + · · ·

+A(h+ (p− 1)rqi)χβ(h+ (p− 1)rqi)]

=
1

p
E
h

[A(h)χβ(h) +A(h)χβ(h+ rqi) + · · ·+A(h)χβ(h+ (p− 1)rqi)]

=
1

p
E
h

[A(h)χβ(h)(1 + χβ(rqi) + · · ·+ χβ((p− 1)rqi))]

= 0 (since χβ(rqi) 6= 1).

3. Correlation with a random square. In this section, we analyze the quan-
tity 〈β, p2〉, where p ∈ Pnd is chosen uniformly at random and β : Fn3 → F3 is a fixed
function having distance exactly ∆ from (Pn2d)

⊥ = Pn2n−2d−1.
Throughout this section, we work over the field F3. For a ∈ Nn, let |a| :=

∑
i ai

and let xa denote the monomial
∏
i x

ai
i . Over F3, the individual degrees are at most

2 (since x3 ≡ x). Hence, we assume without loss of generality that the coefficient
vector a ∈ {0, 1, 2}n. In this notation, p(x) =

∑
|a|≤d pax

a, where pa are chosen
independently and uniformly at random from F3. For x ∈ Fn3 , let ex be the column
vector of evaluation of all degree d monomials at x, i.e., ex := (xa)|a|≤d. Then
p(x) = pT ex, where p is now thought of as the column vector (pa)|a|≤d and hence,
p2(x) = (pT ex)2 = pT (exe

T
x )p. Thus we have

〈β, p2〉 =
∑
x

β(x)
(
pT exe

T
x p
)

= pT

(∑
x

β(x)exe
T
x

)
p.

We are thus interested in the quadratic form represented by the matrix Qβ :=∑
x β(x)eTx ex. Observe that all β belonging to the same coset in Pn2n/P

n
2n−2d−1 have

the same value for 〈β, p2〉 and the matrix Qβ . Hence, by Lemma 2.10, we might with-
out loss of generality assume that β satisfies | support(β)| = ∆. The following lemma
(an easy consequence of [LN97, Theorem 6.21]) shows that it suffices to understand
the rank of Qβ .

Lemma 3.1. Let A be an n × n, symmetric matrix with entries from F3. The
statistical distance of the random variable pTAp from uniform is exp(−Ω(rank(A))).

In the next sequence of lemmas, we relate rank(Qβ) to ∆. In particular, we show
that rank(Qβ) is equal to ∆ if ∆ ≤ 3d/2, and is exponential in d otherwise. Recall

that over F3, Pn2n is the set of all functions from Fn3 to F3 and (Pn2d)
⊥

= Pn2n−2d−1.

Lemma 3.2. rank(Qβ) ≤ ∆.

Proof. By assumption, β satisfies ∆ = | support(β)|. The lemma follows from the
fact that exe

T
x are rank one matrices and Qβ =

∑
x β(x)exe

T
x .

Lemma 3.3. If ∆ < 3d/2, then rank(Qβ) = ∆.
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Proof. By assumption, β satisfies ∆ = | support(β)| and Qβ =
∑
x β(x)exe

T
x .

Since (Pnd )⊥ = Pn2n−d−1 and any nonzero polynomial with degree 2n − d − 1 has

support at least 3d/2 (Lemma 2.7), arguing as in Lemma 2.13, any d3d/2e − 1 vectors
ex are linearly independent. In particular, the ∆ vectors ex for x in support(β) are
linearly independent. Consider any nonzero v in the kernel of the matrix Qβ . The
linear independence of ex gives that eTx v = 0 for all x ∈ support(β). Hence, the kernel
of Qβ resides in a ∆-codimensional space, which implies that rank(Qβ) = ∆.

We conjecture that Lemma 3.3 holds for larger values of ∆, but for our purposes
we only need a lower bound on the rank when ∆ ≥ 3d/2.

Lemma 3.4. There exists a constant d0 such that if d > d0 and ∆ > 3d/2, then
rank(Qβ) ≥ 3d/9.

Proof. The proof of this theorem is similar to the proof of [DG15, Theorem 17]
for the F2 case, and we follow it step by step. Define Bnd,k(β) := {q ∈ Pnk : qβ ∈
Pn2n−2d−1+k}.

Claim 3.5. ker(Qβ) = Bnd,d(β).

Proof. The matrix Qβ satisfies that Qβ(a, b) = 〈β, xaxb〉 for all a, b ∈ {0, 1, 2}n,
|a|, |b| ≤ d. Using this description of Qβ , we obtain the following description of
ker(Qβ):

(ha)|a|≤d ∈ ker(Qβ)⇔ ∀a : |a| ≤ d,
∑
b:|b|≤d

〈
β, xaxb

〉
hb = 0

⇔ ∀a : |a| ≤ d,

〈
β, xa

∑
b:|b|≤d

hbx
b

〉
= 0

⇔ ∀a : |a| ≤ d, 〈βxa, h〉 = 0

⇔ ∀q ∈ Pnd , 〈βq, h〉 = 0

⇔ ∀q ∈ Pnd , 〈βh, q〉 = 0

⇔ βh ∈ Pn2n−d−1.

Thus to prove Lemma 3.4, it suffices to show that rank(Qβ) = dim(Pnd/B
n
d,d(β)) ≥

3d/9. Towards this end, we define

(3.1) Φd,k(D) := min
n>d/2,β∈Pn2n:∆(β,Pn2n−2d−1)>D

dim(Pnk/B
n
d,k(β)).

In terms of Φd,k, Lemma 3.4 now reduces to showing that Φd,d(3
d/2) ≥ 3d/9. We

obtain this lower bound by recursively bounding this quantity. The following serves
as the base case of the recursion.

Claim 3.6. For k > 2d, for all D, Φd,k(D) = 0, and for k ≤ 2d, Φd,k(1) ≥ 1.

Proof. Let β be the polynomial that attains the minimum in (3.1). The first part
of the claim follows from the fact that if k > 2d, then Bnd,k(β) = Pnk .

Now for the second part. Since β /∈ Pn2n−2d−1, there is a monomial xa with |a| ≤ 2d
such that

〈β, xa〉 6= 0⇐⇒ 〈βxa, 1〉 6= 0⇐⇒ βxa /∈ Pn2n−1.

If |a| ≤ k, then xa /∈ Bnd,k(β) and we are done. Otherwise, consider b such that

b ≤ a coordinatewise and |b| = k. Suppose xbβ ∈ Pn2n−2d−1+k; then xaβ ∈ Pn2n−1,
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which is a contradiction. Hence, xbβ /∈ Pn2n−2d−1+k, and the second part of the claim
follows.

For the induction step, we need the following claim.

Claim 3.7. There exists a constant d0 such that if 35 < ∆ < 3d, d > d0 where β is
∆-far from Pn2n−2d−1, then there exists nonzero ` ∈ Pn1 such that for all c ∈ F3, β|`=c
are ∆/27 far from the restriction of Pn2n−2d−1 to affine hyperplanes.

See Appendix A for a proof of Claim 3.7 from Theorems 4.16 and 1.7 of [HSS13].

Claim 3.8. If 35 ≤ D ≤ 3d and d > d0, then

Φd,k(D) ≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

Proof. From Lemma 3.7, we get that there exists nonzero ` ∈ Pn1 such that for
all c ∈ F3, β|`=c is D/27 far from Pn−1

2n−2d−1. By applying a change of basis, we can
assume that ` = xn.

Let β = (x2
n− 1)γ+xnη+ θ and q = (x2

n− 1)r+ (xn− 1)s+ t, where γ, η, θ, r, s, t
do not depend on xn. Note that θ − γ, θ + η, θ − η are D/27 far from Pn−1

2n−2d−1.
Expanding the product βq, we have

βq = (x2
n − 1) ((θ − γ)r + γt+ ηs− γs) + (xn − 1) ((θ − η)s+ ηt) + (θ + η)t.

Comparing terms, we observe that βq ∈ Pn2n−2d−1+k iff the following three items
are true:

1. (θ − γ)r + γt+ ηs− γs ∈ Pn−1
2n−2d−1+k−2,

2. (θ − η)s+ ηt ∈ Pn−1
2n−2d−1+k−1,

3. (θ + η)t ∈ Pn−1
2n−2d−1+k.

Since r ∈ Pnk−2, s ∈ Pnk−1, t ∈ Pnk , this is equivalent to the following (written in reverse
order):

1. t ∈ Bn−1
d−1,k(θ + η),

2. s ∈ −ηt+Bn−1
d−1,k−1(θ − η),

3. r ∈ γs− ηs− γt+Bn−1
d−1,k−2(θ − γ).

Since t, s, r belong to sets with the same size as Bn−1
d−1,k(θ + η), Bn−1

d−1,k−1(θ − η),

Bn−1
d−1,k−2(θ− γ), respectively, and each choice gives a distinct element of Bnd,k(β), we

get the following equality:

dim(Bnd,k(β)) = dim(Bn−1
d−1,k(θ + η)) + dim(Bn−1

d−1,k−1(θ − η)) + dim(Bn−1
d−1,k−2(θ − γ)).

Combining this with dim(Pnk ) = dim(Pn−1
k ) + dim(Pn−1

k−1) + dim(Pn−1
k−2), we obtain

dim(Pnk/B
n
d,k(β)) = dim(Pn−1

k /Bn−1
d−1,k(θ + η)) + dim(Pn−1

k−1/B
n−1
d−1,k−1(θ − η))

+ dim(Pn−1
k−2/B

n−1
d−1,k−2(θ − γ))

≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

The last inequality follows from the fact that θ−γ, θ+ η, θ− η are D/27 far from
Pn−1

2n−2d−1 = Pn−1
2(n−1)−2(d−1)−1. Thus, the claim is proved.

To prove Lemma 3.4, we start with Φd,d(3
d/2) and apply Claim 3.8 recursively

d/6− 2 times and finally use the base case from Claim 3.6 (this can be done as long
as d/6− 2 ≤ d/2). This gives rank(Qβ) ≥ Φd,d(3

d/2) ≥ 3d/6−2 ≥ 3d/9 as long as d0 is
large enough.
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4. Hardness of coloring 2-colorable 8-uniform hypergraphs. We prove
the theorem by a reduction from 3SAT via the instances of the repeated label cover
problem obtained in Theorem 2.2. Let r ∈ N be a parameter, which we will fix later,
and let I(ϕ) be an instance of the r-repeated label cover obtained in Theorem 2.2
starting from a 3SAT instance ϕ.

We denote by G = (U, V,E) the underlying left and right regular bipartite graph.
For u ∈ U and i ∈ [3r], fix functions fui : {0, 1}3r → {0, 1} as in Definition 2.1.
Throughout this section, we work over F2. For a degree parameter d, which we will
determine later, and a vertex u ∈ U , we define the subspace Ju := {

∑3r
i=1 rif

u
i :

ri ∈ P3r
(d−3)}. Note that since each fui depends only on 3 variables, it is a polynomial

of degree at most 3 and hence, Ju is indeed a subspace of P3r
d . Let Nu denote the

cardinality of the quotient space P3r
d /Ju.

We now define the hypergraph H produced by the reduction. The vertices of H—
denoted V (H)—are obtained by replacing each u ∈ U by a block Bu of Nu vertices,
which we identify with elements of P3r

d /Ju. Let N denote |V (H)| =
∑
u∈U Nu.

We think of a 2-coloring of V (H) as a map from V (H) to F2. Given a coloring
A : V (H)→ F2, we denote by Au : P3r

d /Ju → F2 the restriction of A to the block Bu
(under our identification of Bu with P3r

d /Ju). Let A′u : P3r
d → F2 denote the lift of Au

as defined in Fact 2.14.
The (weighted) edge set E(H) of H is specified implicitly by the following PCP

verifier for the label cover instance I(ϕ), which expects as its input a 2-coloring
A : V (H)→ F2.

2-Color 8-Uniform Test(d).
1. Choose a uniformly random v ∈ V and then choose u,w ∈ U uniformly

random neighbors of v (by the right regularity of G, both (u, v) and (u,w)
are uniform random edges in E). Let π denote πuv : F3r

2 → Fr2 and similarly,
let π′ be πwv.

2. Choose f ∈ Prd, e1, e2, e3, e4 ∈ P3r
d , g1, g2 ∈ P3r

d/4, and h1, h2, h3, h4 ∈ P3r
3d/4

independently and uniformly at random. Define functions η1, η2, η3, η4 ∈ P3r
d

as follows:

η1 := 1 + f ◦ π + g1h1, η3 := f ◦ π′ + g2h3,

η2 := 1 + f ◦ π + (1 + g1)h2, η4 := f ◦ π′ + (1 + g2)h4.

3. Accept iffA′u(e1), A′u(e1+η1), A′u(e2), A′u(e2+η2), A′w(e3), A′w(e3+η3), A′w(e4),
A′w(e4 + η4) are not all equal.

We now analyze the above test.

Lemma 4.1 (completeness). If ϕ is satisfiable, then there exists a 2-coloring A :
V (H) → F2 such that the verifier accepts with probability 1. In other words, the
hypergraph H is 2-colorable.

Proof. Since ϕ is satisfiable, Theorem 2.2 tells us that there are labelings LU :
U → F3r

2 and LV : V → Fr2 such that for all u ∈ U , LU (u) satisfies all the clauses in
U and moreover, for every edge (u, v) ∈ E, we have πuv(LU (u)) = LV (v). Fix such
LU , LV . Let au denote LU (u) for any u ∈ U and let bv denote LV (v) for any v ∈ V .

Now, the coloring A : V (H) → F2 is defined to ensure that for each u ∈ U , its
restriction Au is such that its lift A′u = LCd(au). Note that this makes sense since
LCd(au) is folded over Ju: Indeed, given any g ∈ P3r

d and h =
∑
i rif

u
i ∈ Ju, we have

LCd(au)(g + h) = g(au) + h(au) = g(au) as h(au) =
∑
i ri(au)fui (au) = 0 for any

satisfying assignment au of the clauses corresponding to u.
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We now show that the verifier accepts A with probability 1. Fix any choices of
v ∈ V , u,w ∈ U , f , ei, hi (i ∈ [4]), and gi (i ∈ [2]) as in the test. By the definitions
of LU and LV , we must have π(au) = π′(aw) = bv. This implies that the 8 positions
in A viewed by the verifier, respectively, contain the following values:

e1(au), e1(au) + 1 + f(bv) + g1(au)h1(au),

e2(au), e2(au) + 1 + f(bv) + (1 + g1(au))h2(au),

e3(aw), e3(aw) + f(bv) + g2(aw)h3(aw),

e4(aw), e4(aw) + f(bv) + (1 + g2(aw))h4(aw).

If f(bv) = 0, then

e1(au) 6= e1(au) + 1 + f(bv) + g1(au)h1(au) or(4.1)

e2(au) 6= e2(au) + 1 + f(bv) + (1 + g1(au))h2(au).

Else if f(bv) = 1, then

e3(aw) 6= e3(aw) + f(bv) + g2(aw)h3(aw) or(4.2)

e4(aw) 6= e4(aw) + f(bv) + (1 + g2(aw))h4(aw).

Thus, the verifier always accepts.

Remark 4.2. Lemma 4.1 actually yields a stronger statement. Let us group the
probes of the verifier as (ei, ei + ηi) for i ∈ [4]. Then, for the given coloring A in
Lemma 4.1 and any random choices of the verifier, there is some i ∈ [4] such that A is
not constant on inputs in the ith group. We use this in section 5 to devise a 4-query
verifier over an alphabet of size 4.

Lemma 4.3 (soundness). Let d ≥ 16 be a multiple of 4, let δ > 0, and let ε0 be
the constant from Theorem 2.2. If ϕ is unsatisfiable and H contains an independent

set of size δN , then δ8 ≤ 2d/2+1 · 2−ε0r + 2−2d/8 .

Proof. Fix any independent set I ⊆ V (H) of size δN . Let A : V (H)→ {0, 1} be
the indicator function of I. For u ∈ U , let Au : P3r

d /Ju → {0, 1} denote the restriction
of A to the block of vertices corresponding to u, and let A′u : P3r

d → {0, 1} be the lift
of Au. Note that we have E(g+Ju)∈P3r

d /Ju
[Au(g)] = Eg∈P3r

d
[A′u(g)] for any u ∈ U . In

particular,

(4.3) E
u∈U

E
g∈P3r

d

[A′u(g)] = E
u∈U

E
(g+Ju)∈P3r

d /Ju
[Au(g)] ≥ δ.

Since I is an independent set, in particular it must be the case that the probability
that a random edge (chosen according to the probability distribution defined on E(H)
by the PCP verifier) completely lies inside I is 0. We note that another expression
for this probability is given by the quantity Ev∈V,u,w∈U [Q(v, u, w)], where v ∈ V and
u,w ∈ U are as chosen by the PCP verifier described above and Q(v, u, w) is defined
as follows:

Q(v, u, w) := E
η1,η2
η3,η4

 E
e1,e2
e3,e4

∏
i∈[2]

A′u(ei)A
′
u(ei + ηi)A

′
w(ei+2)A′w(ei+2 + ηi+2)

 .
We analyze the right-hand side of the above using its Fourier expansion (see

Lemma 2.10). As defined in section 2.3, let Λ3r
d be a set of minimum weight coset
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representatives of the cosets of (P3r
d )⊥ in F3r. Standard computations yield the fol-

lowing:

Q(v, u, w) =
∑
α1,α2

β1,β2∈Λ3r
d

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)


︸ ︷︷ ︸

ξv,u,w(α1,α2,β1,β2)

.(4.4)

When v, u, w are clear from context, we use ξ(α1, α2, β1, β2) instead of ξv,u,w(α1,
α2, β1, β2).

We analyze the above expression by breaking it up as follows. Let

far := {(α1, α2, β1, β2) ∈ (Λ3r
d )4 : max{∆(αi,P

3r
d ),∆(βi,P

3r
d )} ≥ 2d/2},

near := (Λ3r
d )4 \ far.

We now make the following claim for every v, u, w, the proof of which is deferred
to the end of the section.

Claim 4.4. For d ≥ 16, we have
∑

(α1,α2,β1,β2)∈far |ξ(α1, α2, β1, β2)| ≤ 2−2d/8 .

Substituting in (4.4), we have, for any v ∈ V and u,w ∈ U ,

Q(v, u, w) ≥
∑

(α1,α2,β1,β2)∈near

ξ(α1, α2, β1, β2)−
∑

(α1,α2,β1,β2)∈far

|ξ(α1, α2, β1, β2)|

≥
∑

(α1,α2,β1,β2)∈near

ξ(α1, α2, β1, β2)− 2−2−d/8 .(4.5)

Now fix any (α1, α2, β1, β2) ∈ near. We analyze the expectation term in ξ(α1, α2,
β1, β2) further as follows:

E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)


(4.6)

= E
g1,g2,f
h1,...,h4

[χα1
(1 + f ◦ π + g1h1)χα2

(1 + f ◦ π + (1 + g1)h2)χβ1
(f ◦ π′ + g2h3)

· χβ2
(f ◦ π′ + (1 + g2)h4)]

= E
gi,hj

∏
i∈[2]

χαi(1 + (1 + i+ g1)hi)χβi((1 + i+ g2)hi+2) · E
f

[
χπ2(α1+α2)+π′2(β1+β2)(f)

]  ,
where π2 and π′2 are as defined in Lemma 2.11. The innermost expectation is 0 unless
χπ2(α1+α2)+π′2(β1+β2) is the trivial character on Prd or, equivalently, γ := π2(α1 +α2)+

π′2(β1 + β2) ∈ (Prd)
⊥.

We claim that this implies that γ = 0. To see this, we observe from the definition
of π2 and π′2 that | support(γ)| ≤

∑
i∈[2] | support(αi)|+ | support(βi)| ≤ 4 ·2d/2, since

(α1, α2, β1, β2) ∈ near and | support(α)| = ∆(α, (P3r
d )⊥) for α ∈ Λ3r

d . However, if
γ 6= 0 and γ ∈ (Prd)

⊥, by Lemma 2.7, we must have | support(γ)| ≥ 2d > 4 · 2d/4 since
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d ≥ 8. This implies that γ = 0. Substituting in (4.6), we get

E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)

(4.7)

=

{
0 if π2(α1 + α2) + π′2(β1 + β2) 6= 0,

Egj ,hi
[∏

i∈[2] χαi(1 + (1 + i+ g1)hi)χβi((1 + i+ g2)hi+2)
]

otherwise.

Substituting back in (4.5), we have

Q(v, u, w) =
∑

(α1,α2,β1,β2)∈near:
π2(α1+α2)+π′2(β1+β2)=0

ξ(α1, α2, β1, β2)− 2−2d/8 .(4.8)

We partition the terms in the above sum further into

near0 := {(α1, α2, β1, β2) ∈ near : π2(α1 + α2) = π′2(β1 + β2) = 0},
near1 := {(α1, α2, β1, β2) ∈ near : π2(α1 + α2) = π′2(β1 + β2) 6= 0}

and make the following claims about the contributions of these subsets.

Claim 4.5. Ev,u,w
[∑

(α1,α2,β1,β2)∈near1
|ξv,u,w(α1, α2, β1, β2)|

]
≤ 2d/2+1 · 2−ε0r.

Claim 4.6. Let δ be the fractional size of the independent set.

E
v,u,w

 ∑
(α1,α2,β1,β2)∈near0

ξv,u,w(α1, α2, β1, β2)

 ≥ δ8.

Assuming these claims for now, we can finish the proof of Lemma 4.3 as follows.
By (4.8),

0 = E
v,u,w

[Q(v, u, w)]

≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈near0

ξv,u,w(α1, α2, β1, β2)


− E
v,u,w

 ∑
(α1,α2,β1,β2)∈near1

|ξv,u,w(α1, α2, β1, β2)|

− 2−2d/8

≥ δ8 − 2d/2+1 · 2−ε0r − 2−2d/8

.

We now turn to the proofs of Claims 4.4–4.6.

Proof of Claim 4.4. Fix any (α1, α2, β1, β2) ∈ far. Conditioned on any choice of
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f , the expectation term in |ξ(α1, α2, β1, β2)| may be bounded as follows:

∣∣∣∣∣∣ E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)

∣∣∣∣∣∣
(4.9)

=

∣∣∣∣∣ E
g1,g2

h1,...,h4

[χα1
(1 + f ◦ π + g1h1)χα2

(1 + f ◦ π + (1 + g1)h2)χβ1
(f ◦ π′ + g2h3)

· χβ2(f ◦ π′ + (1 + g2)h4)]

∣∣∣∣∣
≤ E
g1,g2

∏
i∈[2]

∣∣∣∣E
hi

[χαi(1 + f ◦ π + (1 + i+ g1)hi)]

∣∣∣∣ · ∣∣∣∣ E
hi+2

[χβi(f ◦ π′ + (1 + i+ g2)hi+2)]

∣∣∣∣


= E
g1,g2

∏
i∈[2]

∣∣∣∣E
hi

[χαi((1 + i+ g1)hi)]

∣∣∣∣ · ∣∣∣∣ E
hi+2

[χβi((1 + i+ g2)hi+2)]

∣∣∣∣


≤ E
g1,g2

[
min

{∣∣∣∣E
hi

[χαi((1 + i+ g1)hi)]

∣∣∣∣ , ∣∣∣∣ E
hi+2

[χβi((1 + i+ g2)hi+2)]

∣∣∣∣ : i ∈ [2]

}]
≤ min

{
E
g1

[∣∣∣∣E
hi

[χαi((1 + i+ g1)hi)]

∣∣∣∣] , Eg2

[∣∣∣∣ E
hi+2

[χβi((1 + i+ g2)hi+2)]

∣∣∣∣] : i ∈ [2]

}
.

Note that for any i ∈ [2], (1+i+g1) and (1+i+g2) are uniformly random elements
of P3r

d/4 that are independent of h1, . . . , h4. Moreover, since (α1, α2, β1, β2) ∈ far, we

know that there is a γ ∈ {α1, α2, β1, β2} such that ∆(γ, (P3r
d )⊥) ≥ 2d/2. Therefore,

by Theorem 2.12, we have

E
g∈P3r

d/4

[∣∣∣∣∣ E
h∈P3r

3d/4

[χγ(gh)]

∣∣∣∣∣
]
≤ 2−2(d/4−2)

≤ 2−2d/8

,

where the second inequality follows because d ≥ 16. Substituting the above in (4.9),
we obtain ∣∣∣∣∣∣ E

η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)

∣∣∣∣∣∣ ≤ 2−2d/8

.

Thus, we obtain∑
(α1,α2,β1,β2)∈far

|ξ(α1, α2, β1, β2)|

≤ 2−2d/8

·
∑

α1,α2,β1,β2∈Λ3r
d

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 ≤ 2−2d/8

,

where the last inequality follows from Parseval’s identity and the fact that |A(x)| ≤ 1
for all x ∈ V (H).

Proof of Claim 4.5. We use a Fourier decoding argument. Formally, we sample
random labelings LU : U → F3r

2 and LV : V → Fr3 such that LU (u) satisfies all clauses
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in u and such that

Pr
(u,v)∈E,LU ,LV

[πuv(LU (u)) = LV (v)](4.10)

≥ 1

2d+2 E
v,u,w

 ∑
(α1,α2,β1,β2)∈near1

|ξv,u,w(α1, α2, β1, β2)|

 .
Since OPT (I(ϕ)) ≤ 2−ε0r, the left-hand side of the above inequality is at most 2−ε0r.
This implies the claim.

Define LU : U → F3r
2 as follows: Given u ∈ U , we sample a random pair α1, α2 ∈

Λ3r
d such that |α1|, |α2| < 2d/2 with probability proportional to Â′u(α1)2Â′u(α2)2, and

set LU (u) to be au for a uniformly random au chosen from support(α1)∪support(α2).
Since |α1|, |α2| < 2d/2 < 2d−4, by Lemma 2.15, any α1, α2 sampled as above is
supported only on satisfying assignments of all the clauses in u.

We also define LV : V → Fr2 similarly: Given v ∈ V , we sample a random neighbor
w ∈ U of v and choose at random a pair β1, β2 ∈ Λ3r

d such that |β1|, |β2| < 2d/2

with probability proportional to Â′w(β1)2Â′w(β2)2, and set LV (v) to be πwv(aw) for a
uniformly random aw chosen from support(β1) ∪ support(β2).

Let (u, v) ∈ E be a uniformly random edge of G and consider the probability that
πuv(LU (u)) = LV (v). This probability can clearly be lower bounded as follows:

Pr
(u,v)∈E,LU ,LV

[π(LU (u)) = LV (v)]

≥ E
v,u,w


∑

(α1,α2,β1,β2)∈near:
π(support(α1)∪support(α2))∩
π′(support(β1)∪support(β2)) 6=∅

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 ·
1

2d+2
,

where π denotes πuv and π′ denotes πwv. Observe that if (α1, α2, β1, β2) ∈ near1,
then π2(α1 + α2) = π′2(β1 + β2) 6= 0 and, in particular,

π(support(α1) ∪ support(α2)) ∩ π′(support(β1) ∪ support(β2)) 6= ∅.

Therefore, we get the following, which implies (4.10) and hence proves the claim:

Pr
(u,v)∈E,LU ,LV

[π(LU (u)) = LV (v)]

≥ 1

2d+2 E
v,u,w

 ∑
(α1,α2,β1,β2)∈near1

∏
i∈[2]

Â′u(αi)
2Â′w(βi)

2

 .
Proof of Claim 4.6. We argue below that for any v ∈ V and its neighbors u,w ∈

U and any (α1, α2, β1, β2) ∈ near0,

ξ(α1, α2, β1, β2) ≥ 0.(4.11)

Given (4.11), we have

E
v,u,w

 ∑
(α1,α2,β1,β2)∈near0

ξv,u,w(α1, α2, β1, β2)

 ≥ E
v,u,w

[ξv,u,w(0, 0, 0, 0)]

= E
v,u,w

[
Â′u(0)4Â′w(0)4

]
.
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Conditioned on v ∈ V , u and w are independent and randomly chosen neighbors of v.
Thus, the above may be further lower bounded as follows:

E
v,u,w

[
Â′u(0)4Â′w(0)4

]
= E

v

[(
E

u:(u,v)∈E

[
Â′u(0)4

])2
]

≥
(

E
(u,v)∈E

[
Â′u(0)

])8

=

(
E

u∈U,g∈P3r
d

[A′u(g)]

)8

≥ δ8,

where the first inequality follows from repeated applications of the Cauchy–Schwarz
inequality and the last from (4.3).

For any v, u, w, and (α1, α2, β1, β2) ∈ near0, it remains to prove (4.11) (i.e., non-
negativity of ξv,u,w(α1, α2, β1, β2)). From (4.4), it suffices to argue the nonnegativity
of

E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)


(4.12)

= E
g1,g2

∏
i∈[2]

E
hi

[χαi(1 + (1 + i+ g1)hi)] E
hi+2

[χβi((1 + i+ g2)hi+2)]


= E
g1,g2

(−1)
∑
x α1(x)+α2(x) ·

∏
i∈[2]

E
hi

[
χαi(1+i+g1)(hi)

]
E
hi+2

[
χβi(1+i+g2)(hi+2)

] ,
where we have used (4.7) for the first equality and the fact that χα(gh) = χαg(h) for
the second. We claim that all the terms inside the final expectation are nonnegative.

First, since (α1, α2, β1, β2) ∈ near0, we have that π2(α1 + α2) = 0 and hence

(−1)
∑
x α1(x)+α2(x) = (−1)

∑
y π2(α1+α2)(y) = 1. Second, the orthonormality of charac-

ters implies that for any α ∈ F3r, we have that Eh∈Pr
3d/4

[χα(h)] ∈ {0, 1} and hence

nonnegative.
This shows that the right-hand side of (4.12) is nonnegative and hence proves

(4.11).

Proof of Theorem 1.1. Given the completeness (see Lemma 4.1) and soundness
(see Lemma 4.3), we only need to fix parameters. Let d = C log r for a large enough
constant C ≥ 16 to be determined shortly. By Lemma 4.3, if H has an independent

set of size δN , then δ8 ≤ 2d/2 · 2−ε0r + 2−2d/8 < 2−ε0r/2 for large enough C > 0 and
r ∈ N. Hence, H has no independent sets of δ′N , where δ′ = 2−ε0r/16.

The hypergraph H can be produced in time polynomial in N = nO(r)2r
O(d)

=

nO(r)2r
O(log r)

. Setting r = 2Θ(
√

log logn), we get N = n2O(
√

log logn)

and δ′ = 2−Ω(r) =

2−2Θ(
√

log logn)

= 2−2Θ(
√

log logN)

, proving Theorem 1.1.

5. Hardness of coloring 4-colorable 4-uniform hypergraphs. This con-
struction is motivated by Remark 4.2 above. We observe that the 8-query PCP test
used in the above inapproximability result has a stronger completeness guarantee than
required to prove the above result: The 8 queries of the not-all-equal (NAE) PCP test,
say {ei, e′i}4i=1 in the completeness case, satisfy

4∨
i=1

NAE(A(ei), A(e′i)),
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which is stronger than the required

NAE(A(e1), A(e′1), A(e2), A(e′2), A(e3), A(e′3), A(e4), A(e′4)).

Furthermore, for each i ∈ {1, 4}, the queries ei, e
′
i, ei+1, e

′
i+1 appear in the same table.

This lets us perform the following “doubling of queries”: Each location is now indexed
by a pair of queries, e.g., (e1, e2), and is expected to return 2 bits that are the answers
to the two queries, respectively. The stronger completeness property yields a 4-query
NAE PCP test over an alphabet of size 4 with the completeness property,

NAE(B(e1, e2), B(e′1, e
′
2)) ∨ NAE(B(e3, e4), B(e′3, e

′
4)),

which suffices for the completeness for proving inapproximability results for 4-colorable
4-uniform hypergraphs. We show that the soundness analysis also carries over to yield
the following hardness for 4-colorable 4-uniform hypergraphs.

We remark that the doubling method, mentioned above, when used in the vanilla
long code setting (as opposed to low-degree long code setting) already yields the fol-
lowing inapproximability: It is quasi-NP-hard to color a 4-colorable 4-uniform hyper-
graph with (logN)Ω(1) colors. This result already improves upon the above mentioned
result of Khot [Kho02a] for 7-colorable 4-uniform hypergraphs. Another feature of the
doubling method is that although the underlying alphabet is of size 4, namely {0, 1}2,
it suffices for the soundness analysis to perform standard Fourier analysis over F2.

In the language of covering complexity,2 (the proof of) Theorem 1.2 demonstrates
a Boolean 4CSP for which it is quasi-NP-hard to distinguish between a covering
number of 2 versus exp(

√
log logN). The previous best result for a Boolean 4CSP

was 2 versus log logN , due to Dinur and Kol [DK13].
We now turn to the formal construction of the verifier each of whose queries

correspond to 2 queries of the verifier described above. Let I(ϕ), G = (U, V,E), and
Ju (u ∈ U) be defined as in section 4.

Now the vertices of the hypergraph H produced by the reduction denoted by
V (H) are obtained by replacing each u ∈ U by a block Bu of N2

u vertices, which we
identify with elements of P3r

d /Ju × P3r
d /Ju. Let N denote |V (H)| =

∑
u∈U N

2
u .

We think of a 4-coloring of V (H) as a map from V (H) to the 4-element set F2×F2.
Given a coloring A : V (H)→ F2×F2, we denote by Au : P3r

d /Ju×P3r
d /Ju → F2×F2

the restriction of A to the block Bu. Let A′u : P3r
d × P3r

d → F2 × F2 denote the lift of
Au, as defined by A′u(g1, g2) := Au(g1 + Ju, g2 + Ju).

The verifier is defined as follows. The verifier is identical to the verifier in section 4
but for the doubling of queries.

4-Color 4-Uniform Test(d).
1. Choose a uniformly random v ∈ V and then choose u,w ∈ U uniformly

random neighbors of v. Let π denote πuv : F3r
2 → Fr2 and similarly, let π′ be

πwv.
2. Choose f ∈ Prd, e1, e2, e3, e4 ∈ P3r

d , g1, g2 ∈ P3r
d/4, and h1, h2, h3, h4 ∈ P3r

3d/4

independently and uniformly at random. Define functions η1, η2, η3, η4 ∈ P3r
d

as follows:

η1 := 1 + f ◦ π + g1h1, η3 := f ◦ π′ + g2h3,

η2 := 1 + f ◦ π + (1 + g1)h2, η4 := f ◦ π′ + (1 + g2)h4.

2The covering number of a CSP is the minimal number of assignments to the vertices so that
each hyperedge is covered by at least one assignment.
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3. Accept iff A′u(e1, e2), A′u(e1 +η1, e2 +η2), A′w(e3, e4), A′w(e3 +η3, e4 +η4) are
not all equal.

The analysis of the above test closely follows that of the 2-color 8-uniform test.

Lemma 5.1 (completeness). If ϕ is satisfiable, then there exists a 4-coloring A :
V (H)→ F2 × F2 such that the verifier accepts with probability 1. In other words, the
hypergraph H is 4-colorable.

Proof. The proof follows directly from Remark 4.2.

The soundness lemma requires us to perform Fourier analysis on functions A :
P3r
d × P3r

d → {0, 1}, for which we need the following easily verifiable facts.

Fact 5.2. Let A : P3r
d × P3r

d → C be any function. A nonzero function χ :
P3r
d × P3r

d → C is a character if χ(g1 + h1, g2 + h2) = χ(g1, g2)χ(h1, h2).
• χ : P3r

d ×P3r
d → C is a character iff there exist (α1, α2) ∈ F3r ×F3r such that

χ(g1, g2) = χα1(g1)χα2(g2) for any g1, g2 ∈ P3r
d ×P3r

d , where χα1 and χα2 are
characters of P3r

d .
• (α1, α2) and (β1, β2) yield the same character iff (α1−β1), (α2−β2) ∈ (P3r

d )⊥.
• Folding: Let A : P3r

d × P3r
d → C be any function folded over the subgroup

J × J , where J := {
∑k
i=1 riqi : ri ∈ P3r

d−3} and q1, . . . , qk ∈ P3r
3 . Then, for

any (α1, α2) ∈ F3r×F3r such that |αj | := ∆(αj , (P
3r
d )⊥) < 2d−3 for j ∈ {1, 2}

and Â(α1, α2) 6= 0, it must be the case that support(α1) ∪ support(α2) only
contains x such that qi(x) = 0 for each i ∈ [k].

Lemma 5.3 (soundness). Let d ≥ 8 be a multiple of 4, let δ > 0, and let ε0 be the
constant from Theorem 2.2. If ϕ is unsatisfiable and H contains an independent set

of size δN , then δ4 ≤ 2d/2+1 · 2−ε0r + 2−4·2−d/4

.

The proof of Lemma 5.3 is similar to the proof of Lemma 4.3. The parameters
are set exactly as in Theorem 1.1 to yield Theorem 1.2.

Proof of Lemma 5.3. As the proof is similar to that of Lemma 4.3, we only give
a proof sketch, highlighting the salient differences.

As before, fix any independent set I ⊆ V (H) of size δN . Let A : V (H)→ {0, 1}
be the indicator function of I. We have Eu∈U Eg1,g2∈P3r

d
[A′u(g1, g2)] ≥ δ.

Again, we analyze Ev∈V,u,w∈U [Q(v, u, w)], which gives the probability that a ran-
dom edge (chosen according to the probability distribution defined on E(H) by the
PCP verifier) completely lies inside the independent set I and is hence 0. Here,
Q(v, u, w) is defined as follows:

Q(v, u, w) := E
η1,η2
η3,η4

[
E

e1,e2
e3,e4

[A′u(e1, e2)A′u(e1 + η1, e2 + η2)A′w(e3, e4)A′w(e3 + η3, e4 + η4)]

]
.

The Fourier expansion of this expression (see Fact 5.2) yields the following. From
Fact 5.2, we have that C′d := Λ3r

d ×Λ3r
d gives us all the distinct characters of P3r

d ×P3r
d .

Standard computations give us

Q(v, u, w) =
∑
α1,α2

β1,β2∈Λ3r
d

Â′u(α1, α2)2Â′w(β1, β2)2 E
η1,η2
η3,η4

∏
i∈[2]

χαi(ηi)χβi(ηi+2)


︸ ︷︷ ︸

ξ′v,u,w(α1,α2,β1,β2)

.

As in Lemma 4.3, let far := {(α1, α2, β1, β2) ∈ (Λ3r
d )4 : max{∆(αi,P

3r
d ),∆(βi,P

3r
d )} ≥

2d/2}, near := (Λ3r
d )4 \ far, near0 := {(α1, α2, β1, β2) ∈ near : π2(α1 + α2) =
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π′2(β1+β2) = 0}, and near1 := {(α1, α2, β1, β2) ∈ near : π2(α1+α2) = π′2(β1+β2) 6=
0}.

Note that the expectation term in ξ′v,u,w(α1, α2, β1, β2) is exactly the same as that
in ξv,u,w(α1, α2, β1, β2) in Lemma 4.3. This means that the remaining computations
can be carried out almost exactly as in Lemma 4.3.

The following can be proved in the same way as Claims 4.4–4.6.

Claim 5.4. For any fixed v, u, w, we have
∑

(α1,α2,β1,β2)∈far |ξ′v,u,w(α1, α2, β1, β2)|
≤ 2−4·2−d/4

.

Claim 5.5. Ev,u,w
[∑

(α1,α2,β1,β2)∈near1
|ξ′v,u,w(α1, α2, β1, β2)|

]
≤ 2d/2+1 · 2−ε0r.

(There is a small difference here from the proof of Claim 4.5 owing to the fact that
the Fourier coefficients appearing in ξ′v,u,w(α1, α2, β1, β2) have a slightly different form.
The only change that needs to be made is to sample α1, α2 ∈ Λ3r

d and β1, β2 ∈ Λ3r
d

with probability proportional to Â′u(α1, α2)2 and Â′w(β1, β2)2, respectively.)

Claim 5.6. Ev,u,w
[∑

(α1,α2,β1,β2)∈near0
ξ′v,u,w(α1, α2, β1, β2)

]
≥ δ4.

As in Lemma 4.3, the above can be used to show

0 ≥ E
v,u,w

[ ∑
(α1,α2,β1,β2)∈near0

ξ′v,u,w(α1, α2, β1, β2)

+
∑

(α1,α2,β1,β2)∈near1

ξ′v,u,w(α1, α2, β1, β2)

]
− 2−4·2−d/4

≥ E
v,u,w

 ∑
(α1,α2,β1,β2)∈near0

ξ′v,u,w(α1, α2, β1, β2)


− E
v,u,w

 ∑
(α1,α2,β1,β2)∈near1

|ξ′v,u,w(α1, α2, β1, β2)|

− 2−4·2−d/4

≥ δ4 − 2d/2+1 · 2−ε0r − 2−4·2−d/4 .

This completes the proof of Lemma 5.3.

6. Hardness of coloring 3-colorable 3-uniform hypergraphs. This con-
struction is an adaptation of Khot’s construction [Kho02b] to the low-degree long
code setting. We prove the theorem by a reduction from 3SAT via the instances of the
multilayered label cover problem obtained in Theorem 2.5. Let r, `, η be parameters,
which will be determined later, and let I(ϕ) be an instance of the r-repeated `-layered
η-smooth label cover instance with constraint graph G = (V0, . . . , V`−1, {Eij}0≤i<j<`)
obtained from the 3SAT instance ϕ. We use the results from the preliminaries with
the field set to F3 = {0, 1, 2}. For every layer i and every vertex v ∈ Vi, let
{c1, . . . , c(T+`−i)r} be the clauses corresponding to v, where T = dl/ηe as in Defi-
nition 2.4. We construct polynomials {p1, . . . , p(T+`−i)r} of degree at most 6 over
F3 such that pj depends only on variables in cj with the following properties. Let
a ∈ F3

3. If a /∈ {0, 1}3, then pj(a) 6= 0. Otherwise pj(a) = 0 iff cj(a) = 1. For a degree
parameter d, which we will determine later, for each vertex v define the subspace
Jv :=

{∑
i qipi : qi ∈ Pmv2d−6

}
, where mv := mi = 3(T + `− i)r + ir.
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We now define the hypergraph H produced by the reduction. The vertices of H—
denoted V (H)—are obtained by replacing each v ∈ G by a block Bv of Nv := |Pmv2d /Jv|
vertices, which we identify with elements of Pmv2d /Jv. Let N denote |V (H)| =

∑
v Nv.

We think of a 3-coloring of V (H) as a map from V (H) to F3. Given a coloring
A : V (H) → F3, we denote by Av : Pmv2d /Jv → F3 the restriction of A to the block
Bv. Let A′v : Pmv2d → F3 denote the lift of Av as defined in Fact 2.14.

The (weighted) edge set E(H) of H is specified implicitly by the following PCP
verifier.

3-Color 3-Uniform Test(d).
1. Choose two layers 0 ≤ i < j < ` uniformly at random and then choose a

uniformly random edge (u, v) ∈ Eij . Let π denote πuv : Fmu3 → Fmv3 .
2. Choose p ∈ Pmud , g ∈ Pmu2d , and f ∈ Pmv2d independently and uniformly at

random and let g′ := p2 + 1− g − f ◦ π.
3. Accept iff A′v(f), A′u(g), A′u(g′) are not all equal.

The above hypergraph construction explains the reasons (as in [DRS05, Kho02b])
for using the multilayered label cover. Unlike the constructions in the previous two
sections, the hyperedges in the 3-uniform case straddle both sides of the correspond-
ing edge (u, v) in the label cover instance. Hence, if constructed from the bipartite
label cover, the corresponding 3-uniform hypergraph will also be bipartite and hence
always 2-colorable irrespective of the label cover instance. Using the multilayered
construction gets around this problem.

Lemma 6.1 (completeness). If ϕ ∈ 3SAT, then there is proof A : V (H)→ F3 that
the verifier accepts with probability 1. In other words, the hypergraph H is 3-colorable.

Proof. Since ϕ ∈ 3SAT, Theorem 2.5 tells us that there are labelings Li : Vi →
{0, 1}mi for 0 ≤ i < ` that satisfy all the constraints in I(ϕ). For all i, v ∈ Vi, we set
Av : Pmv2d /Jv → F3 such that its lift A′v = LC2d(Li(v)). This is possible since A′v is
folded over Jv. For any edge (u, v) between layers i, j, with labels Li(u) = a, Lj(v) = b
such that π(a) = b, (A′v(f), A′u(g), A′u(g′)) = (f(b), g(a), g′(a)). The lemma follows
by observing that g′(a) + g(a) + f(b) 6= 0 always (since p2(a) + 1 6= 0).

Lemma 6.2 (soundness). Let ` = 32/δ2. If ϕ /∈ 3SAT and H contains an inde-
pendent set of size δ|V (H)|, then

δ5/29 ≤ 2−Ω(r) · 3d + η · 3d + exp(−3Ω(d)).

Proof. Let A : V (H) → {0, 1} be the characteristic function of the indepen-
dent set of fractional size exactly δ. We have that for all v, Eg∈Pmv2d /Jv [Av(g)] =

Eg∈Pmv2d
[A′v(g)], where A′v is the lift of Av. Define

Q(u, v) := E
f,g,p

[
A′v(f)A′u(g)A′u(p2 + 1− f ◦ π − g)

]
.

Observe that Ei,j,u,v [Q(u, v)] = 0, as A corresponds to an independent set. Using
Lemma 2.10, we have the following Fourier expansion of Q:

(6.1) Q(u, v) =
∑
α,β,γ

Â′v(α)Â′u(β)Â′u(γ) E
f,g,p

[χα(f)χβ(g)χγ(g′)] ,

where the summation is over α ∈ Λmv2d , β, γ ∈ Λmu2d and Λ is as defined in Lemma 2.10.
From the orthonormality of characters, the nonzero terms satisfy β = γ and α =
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π3(β). Substituting in (6.1), we get

(6.2) Q(u, v) =
∑
β

Â′u(β)2Â′v(π3(β))E
p

[
χβ(p2 + 1)

]
︸ ︷︷ ︸

ξu,v(β)

.

Claim 6.3. If we set ` = 32/δ2, then there exist layers 0 ≤ i < j < ` such that
E(u,v)∈Eij [ξu,v(0)] ≥ δ5/29.

Proof. Since A′ has fractional size δ, there exists a set S of vertices of fractional
size δ/2 such that for all v ∈ S, Â′v(0) = Ef [A′v(f)] ≥ δ/2. Furthermore, there exist
δ`/4 layers, in which the fractional size of Si := S ∩ Vi in layer Vi is at least δ/4.
Since ` = 32/δ2, we obtain from Theorem 2.5 that there exist layers i, j such that the
fraction of edges in Eij between Si and Sj is at least δ′ = δ2/64. From above, we
have that

E
(u,v)∈Eij

[ξu,v(0)] ≥ δ′ · (δ/2)3 ≥ δ5/29.

For the rest of the proof, layers i, j will be fixed as given by Claim 6.3. To
analyze the expression in (6.2), we consider the following breakup of Λmi2d \ {0} for
every (u, v) ∈ Eij :

far := {β ∈ Λmi2d : ∆(β, (Pmi2d )⊥) ≥ 3d/2} ,
near1 := {β ∈ Λmi2d \ far : β 6= 0 and π3(β) /∈ (Pmi2d )⊥},
near0 := {β ∈ Λmi2d \ far : β 6= 0 and π3(β) ∈ (Pmi2d )⊥} .

In Claims 6.4, 6.5, and 6.6, we bound the absolute values of the sum of Eu,v [ξu,v(β)]
for β in far,near0, and near1, respectively.

Claim 6.4. |E(u,v)∈Eij [
∑
β∈far ξu,v(β)]| ≤ exp(−3Ω(d)).

Claim 6.5. |E(u,v)∈Eij [
∑
β∈near1

ξu,v(β)]| ≤ 2−Ω(r) · 3d.

Claim 6.6. |E(u,v)∈Eij [
∑
β∈near0

ξu,v(β)]| ≤ η · 3d.

Combined with Claim 6.3, this exhausts all of the terms in the expansion (6.2).
Lemma 6.2 now follows from Claims 6.3–6.6.

We now proceed to the proofs of Claims 6.4–6.6.

Proof of Claim 6.4.∣∣∣∣∣∣ E
(u,v)∈Eij

 ∑
β∈far

ξu,v(β)

∣∣∣∣∣∣ ≤ E
(u,v)∈Eij

 ∑
β∈far

|Â′u(β)|2 · |Â′v(π3(β))| ·
∣∣∣∣Ep [ω〈β,p2+1〉

]∣∣∣∣
 .

The quantity 〈β, p2〉 is analyzed in section 3. Let z be a uniformly random F3

element. By Lemmas 3.1 and 3.4, we get that the statistical distance between the
distributions of 〈β, p2 + 1〉 and z is exp(−3Ω(d)). Since the Ez [ωz] = 0, we have that

|Ep[ω〈β,p
2+1〉]| ≤ exp(−3Ω(d)). The claim follows since |Â′v(α)| ≤ 1 for any α and∑

β |Â′u(β)|2 ≤ 1.
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Proof of Claim 6.5. It suffices to bound the following for proving the claim:

E
(u,v)∈Eij

 ∑
β∈near1

|Â′u(β)|2 · |Â′v(π3(β))|


≤ E

(u,v)∈Eij

√ ∑
β∈near1

|Â′u(β)|2 · |Â′v(π3(β))|2
√ ∑
β∈near1

|Â′u(β)|2

 (Cauchy–Schwarz)

≤

√√√√√ E
(u,v)∈Eij

 ∑
β∈near1

|Â′u(β)|2 · |Â′v(π3(β))|2

 (Jensen’s inequality).

We bound the above using a Fourier decoding argument as in the proof of Claim 4.5.
For every vertex v ∈ Vi∪Vj , pick a random β according to |Â′v(β)|2 (note

∑
β |Â′v(β)|2 ≤

1) and assign a random labeling to v from the support of β. By an argument identical
to the proof of Claim 4.5, we get (using the soundness of the multilayered label cover
from Theorem 2.5)

1

3d
E

(u,v)∈Eij

 ∑
β∈near1

|Â′v(π3(β))|2|Â′u(β)|2
 ≤ 2−Ω(r).

Proof of Claim 6.6. We bound this sum using the smoothness property of the
label cover instance:

E
(u,v)∈Eij

 ∑
β∈near0

|Â′u(β)|2 · |Â′v(π3(β))|


≤ E
u∈Vi

 ∑
β/∈far∪{0}

Pr
v:(u,v)∈Eij

[
π3(β) ∈ (Pmv2d )⊥

]
· |Â′u(β)|2

 .
We now argue that for every u and β /∈ far ∪ {0},

Pr
(u,v)∈Eij

[
π3(β) /∈ (Pmv2d )⊥

]
≤ 3d · η.

This combined with the fact that
∑
β |Â′u(β)|2 ≤ 1 yields the claim. For every u ∈ Vi

and β such that 0 6= | support(β)| = ∆(β, (Pmu2d )⊥) ≤ 3d/2, by the smoothness property
(Theorem 2.5), we have that with probability at least 1− 3dη, we have

(6.3) ∀a 6= a′ ∈ support(β), π(a) 6= π(a′).

When (6.3) holds, we have π3(β) 6= 0. Now since

| support(π3(β))| ≤ | support(β)| ≤ 3d/2

and nonzero polynomials in (Pmv2d )⊥ have support at least 3d, we can further conclude
that π3(β) /∈ (Pmv2d )⊥ whenever (6.3) holds.
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Proof of Theorem 1.3. Given the completeness (see Lemma 6.1) and soundness
(see Lemma 6.2), we only need to fix parameters. Let n be the size of the 3SAT
instance and N the size of the hypergraph produced by the reduction.

Let d = C1 log log(1/δ′), η = (δ′)5/C2, and r = C3 log(1/δ′) for large enough con-
stants C1, C2, C3 and parameter δ′ ∈ (0, 1) to be determined shortly. By Lemma 6.2,
if H has an independent set of size δN , then δ5/29 ≤ 3d ·2−Ω(r)+3d ·η+exp(−3Ω(d)) <
(δ′)5/29 for large enough C1, C2, C3. Hence, H has no independent sets of δ′N .

The hypergraph H is of size N = `n(1+1/η)`r3((1+1/η)`r)O(d)

. Setting ` = C4/(δ
′)2

gives log(1/δ′) = Θ(log log n/ log log log n), and since log log n = Θ(log logN), we get
that

N = n2O(log logn/ log log logn)

and 1/δ′ = 2Θ(log logN/ log log logN).

This completes the proof of Theorem 1.3.

Appendix A. Proof of Claim 3.7. We need the following theorem due to
Haramaty, Shpilka, and Sudan [HSS13].

Theorem A.1 ([HSS13, Theorems 4.16 and 1.7] specialized to F3 and using ab-
solute distances instead of fractional distances). There exists a constant λ3 such that
the following holds. For β : Fn3 → F3, let A1, . . . , AK be hyperplanes such that β|Ai is

∆1-close to some degree r polynomial on Ai. If K > 3d
r+1

2 e+λ3 and ∆1 < 3n−r/2−2/2,
then ∆(β,Pnr ) ≤ 6∆1 + 8 · 3n/K.

Setting the degree r = 2n − 2d − 1 in the above theorem implies that if there
are K > 3n−d+λ3 hyperplanes A1, . . . , AK such that β|Ai is ∆1-close to a degree
(2n− 2d− 1) polynomial on Ai, then ∆(β,Pn2n−2d−1) ≤ 6∆1 + 8 · 3n/K.

Suppose Claim 3.7 were false. Then, for every nonzero l ∈ Pn1 , at least one of
β|`=0 or β|`=1 or β|`=2 is ∆/27-close to a degree (2n− 2d− 1) polynomial. We thus
get K = (3n − 1)/2 hyperplanes such that the restriction of β to these hyperplanes
is ∆/27-close to a degree (2n − 2d − 1) polynomial. Observe that K ≥ 3n−d+λ3 if
d ≥ d0 ≥ λ3 + 2 and ∆/27 < 3n−(2n−2d−1)/2−2/2 = 3d−1.5/2 if ∆ < 3d. Hence, by
Theorem A.1 we have ∆(β,Pn2n−2d−1) ≤ 6∆/27+2 ·8 ·3n/(3n−1) < 6∆/27+32 < ∆
(since ∆ ≥ 34). This contradicts the hypothesis that β is ∆-far from Pn2n−2d−1.
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[BK97] A. Blum and D. R. Karger, An Õ(n3/14)-coloring algorithm for 3-colorable
graphs, Inform. Process. Lett., 61 (1997), pp. 49–53, https://doi.org/10.1016/
S0020-0190(96)00190-1.

https://doi.org/10.1145/1132516.1132548
https://www.cs.helsinki.fi/njc/References/alonkmr1996:425.html
https://www.cs.helsinki.fi/njc/References/alonkmr1996:425.html
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.1137/130929394
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1016/S0020-0190(96)00190-1
https://doi.org/10.1016/S0020-0190(96)00190-1
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