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Transmitting Correlated Variables

(X, Y) — pair of correlated random variables
x— —z—[Bob | —y

Input (to Alice): x «—r X
Output (from Bob): y <& Y|x—, (ie., conditional distribution)

Question: What is the minimum "expected" number of bits
(i.e, |Z|) Alice needs to send Bob? (say, T(X : Y))

Easy to check: T(X : Y) > I[X : Y] (mutual information)
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» W = (i, b) — random variable uniformly distributed over
[n] x {0, 1}.
» X and Y —two n bit strings such that
» X[[]=Y[i]=0b
» remaining 2n — 1 bits independently and uniformly chosen.



Correlated variables — an example

» W = (i, b) — random variable uniformly distributed over
[n] x {0, 1}.
» X and Y —two n bit strings such that
» X[[]=Y[i]=0b
» remaining 2n — 1 bits independently and uniformly chosen.

Exercise: I[X : Y] = o(1) but T(X : Y) = ©(logn)



Information Theory — Preliminaries
(X,Y) - pair of random variables
1. Entropy:

H[X] = Zp Jlog

where p(x) = Pr[X = x].
~ minimum expected number of bits to encode X (upto +1)
2. Conditional Entropy:

HIY|X] = ZPr[X = x] - H[Y|x=]
3. Joint Entropy: H[XY] = H[X] + H[Y|X]
4. Mutual Information:

I[X:Y] = H[X]+H[Y]—H[XY]
— H[Y] - H[Y|X]



Information Theory — Preliminaries (Contd)

1. Independence: X and Y are independent if
Pr[X =x,Y =y] =Pr[X = x| - Pr[Y = y],forall x,y

Equivalently, 7[X : Y] = 0.
2. Markov Chain: X—Z—-Y is called a Markov chain if X and
Y are conditionally independent given Z (ie., I[X : Y|Z] = 0)
3. Data Processing Inequality:

X—Z—Y = I[X:Z] > I[X : Y]
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Transmitting Correlated Variables

x— [Alice | —-z —[Bob | —y

Input (to Alice): x «—r X
Output (from Bob): y «x Y|x—, (ie., conditional distribution)

Question: What is the minimum "expected" number of bits
(i.e, |z|]) Alice needs to send Bob? (say, 7(X : Y))
T(X:Y)= mZinH[Z]

where the minimum is over all Markov chains X—Z—-Y (i.e., Z
such that X and Y are independent given Z)
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Asymptotic Version (with error)

X1
X2 ;
— | Alice | —z — —
Xm
Input: x1,x2,...,x, —- i.i.d. samples from X

Output: y1,y2,...,ym such that

H((Xl,Yl),...,(Xm,Ym)) - ((xl,?l),...

> T (X", Y™) = min E[|Z]]
» Common Information:

Th(X™ : Y™
C(X:Y) =liminf | lim ™ )

m—oo m

Y1
»
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Asymptotic Version (with error)

Theorem (Wyner 1975)

C(X 1Y) = min/[XY : Z],
where the minimum is taken over all Z such that Xx—Z—-Y.
For instance in the example, C(X : Y) =2 — o(1)

i.e., Can send significantly less in the asymptotic case (2 bits
on average) compared to the one-shot case (©(logn) bits).



Asymptotic Version
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Xm ym

> 5)\17)’5’--- ,}7,:1 such that

H((xl,yl),...,(xm,ym)) _ ((xl,?l),...,(xm,?m))Hl <A

> T, (X", Y™) = min E[|Z]]
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Asymptotic Version with Shared Randomness

Random String R

Y Y1
2 i Y2

- 3 —|Alice |—z — Y I
Xm ym

> ¥1,¥2, ...,y Such that
e G ) = (06,720, (6 T

> TR(X™, Y™) = min E[|Z|]
Theorem (Winter 2002)

M] :I[X: Y]

lim inf [ lim
A—0 [m—oo
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Main Result: One-shot Version

R

x— [Alice | —-z —[Bob | —y

Input (to Alice): x «—r X
Output (from Bob): y < Y|x=, (ie., conditional distribution)
Communication: T*(X : Y) = E[|Z]]

Theorem (Main Result)
IX:Y]<TRX:Y)<I[X:Y]+2logl[X: Y]+ O(1)

Characterization of Mutual Information (upto lower order
logarithmic terms)
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Typical Sets

» For large n, ni.i.d samples of X fall in "typical
sets"

» Typical sets — all elements equally probable
and number of elements ~ 2#[X],

» Asymptotic statements — arguably properties
of typical sets as opposed to the underlying
distributions.



One-shot vs. Asymptotic

Typical Sets

Applications

» For large n, ni.i.d samples of X fall in "typical
sets"

» Typical sets — all elements equally probable
and number of elements ~ 2#[X],

» Asymptotic statements — arguably properties
of typical sets as opposed to the underlying
distributions.

» Asymptotic versions not strong enough for
applications.
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Generating one distribution from another

P, Q — two distributions such that Supp(P) C Supp(Q).
Rejection Sampling Procedure:

Proc i,

Input: An infinite stream of independently drawn samples
from Q

Output: Index i, such that ¢;, is a sample from P

Question: What is the minimum expected length of the index
(i.e., E[I(is)] over all such procedures?



Naive procedure

» Sample according to P to obtain item x

» Wait till item x appears in the stream and output
corresponding index



Naive procedure

» Sample according to P to obtain item x

» Wait till item x appears in the stream and output
corresponding index

BT~ Y plolos
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Relative Entropy

P, O — two distributions

S(P||Q) = Zp X)log

Properties:
» Asymmetric
> S(P||Q) < oo < Supp(P) < Supp(Q)
» S(P|Q)=0<P=Q
> S(P||lQ) >0



Rejection Sampling Lemma

Lemma (Rejection Sampling Lemma)

There exists a refection sampling procedure that generates P
from Q such that

E[l(ix)] < S(P||Q) + 21og S(P||Q) + O(1).
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Proof of Main Result

Fact: I[X : Y] = Exx [S (Y|x=«|Y)]
Proof.

» Common random string: sequence of samples from
marginal Y

» On input x, Alice performs rejection sampling procedure to
generate Y|x—, from Y

E[Z]] = Exx[S(Y|x=Y) +2log S(¥|x=|¥) + O(1)]
< I[X:Y]+2logl[X : Y]+ O(1)



Greedy Approach to Rejection Sampling

Proc i,

Input: An infinite stream of independently drawn samples
from Q

Output: Index i, such that ¢;, is a sample from P



Greedy Approach to Rejection Sampling

Proc i,

Input: An infinite stream of independently drawn samples
from Q

Output: Index i, such that ¢;, is a sample from P

Greedy Approach: At each iteration, fill distribution P with
best possible sub-distribution of @, while maintaining that
sum is always less then P



Greedy Approach

1. Setpi(x) < p(x)
[pi(x) = Probability for item x that still needs to be
satisfied]

2. Set so < 0

[s; = Pr[Greedy stops before examining (i + 1)th sample]]
3. Fori— 1to oo

3.1 Examine sample g;
3.2 If qi = X,

» With probability min {m, 1} output i
3.3 Updates:

» For all x, set pi1(x) —

pi(x) = (1 = 5i-1)g(x) - min { =205 1] = piCx) —
> Sets; —si1+ Y s




Greedy Approach

1. Setpi(x) < p(x)
[pi(x) = Probability for item x that still needs to be
satisfied]

2. Set so < 0

[s; = Pr[Greedy stops before examining (i + 1)th sample]]
3. Fori— 110

3.1 Examine sample g;
3.2 If qi = X,

> With probability min { T, 1} output i
3.3 Updates:

» For all x, set pi1(x) —

pi) = (1= sim)g(e) - min { 29051 = pi(x) = @i
> Sets; —si1+ Y s

Clearly, distribution generated is P.
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Expected Index Length

s; = Pr[ Greedy stops before examining sample ¢;1]
a;x = Pr[ Greedy outputs x in iteration i].

Note p(x) = D aix

Suppose a1 > 0,
i.e., previous iterations not sufficient to provide the required
probability p(x) to item x. Hence,
Y (t=s1)-q(x) < p(x)
j=1
i(1—si)q(x) < plx)

i



Expected Index Length

E[i(i)]

Q

IN

= 3 p()10g 2

E[logi] = Z Z aiy - logi
X i
5% o tog (1
x i =

Z Z Qi x <log

q(x)

X

S(PIQ) + > ailog

S(P(lQ) + O(1)

1
1 —si

i

1 —si

p(x)

+ log —/

q(x)

)

+ Z (Z a;y | log I




Expected Index Length

Q

E[I(i)] Eflogi]l =Y Z ai - logi

ggam -log (1 —ls,-_1 Zgg)
= z;E;a”<bgl—L;L+bgﬁ3>

= > ) logzg +)° (Z aix | log 5

X i

IN

1 —si

= S(P||Q) + Z a;log
= S(P|lQ) +O(1)

Actually, /(i) = logi + 2loglogi, hence extra log term in final
result




Greedy Approach (Contd)

» Clearly, the greedy approach generates the target
distribution P

» Furthermore, it can be shown that the expected index
length is at most

E[I(i)] < S(P||Q) + 21og S(P[|Q) + O(1).
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Applications of Main Result
Communication Complexity: Direct Sum Result
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Two Party Communication Complexity Model [Yao]

f:AXY—-2Z
X 4 y
4 : I
; Bob
f(x,y)

k-round protocol computing f

Question: How many bits must Alice and Bob exchange to
compute f?
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Direct Sum Question

(-xlaxZ?"'a-xl) m4 (y]7y27"'7yl)
U

f Bob

(f(xlayl)vf(XZayZ)a s 7f(xt7yt))

Direct Sum Question: Does the number of bits communicated
increase ¢ fold?

Direct Product Question: Keeping number of bits
communicated fixed, does success probability fall

exponentially in ¢?
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Communication Complexity Measures

» randomized communication complexity:

RE(f) = min ma (number of bits communicated)
Xy

N —- k-round public-coins randomized protocol, that
computes f correctly with probability at least 1 — € on each

input (x,y).
» distributional communication complexity: For a distribution

1 on the inputs X x Y,

DHK(F) = min max (number of bits communicated)
7y

where 1 —- "deterministic" k-round protocol for f with
average error at most e under u.

Theorem (Yao’s minmax principle)

RE(f) = max DL (f)
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Direct Sum Results

RE(f) vs. RE(F®)  and  DHK(f) vs. DHK(r91)

1. [Chakrabarti, Shi, Wirth and Yao 2001]
Direct Sum result for "Equality function" in Simultaneous
message passing model.

2. [Jain, Radhakrishnan and Sen 2005]
Extended above result to all functions in simultaneous
message passing model and one-way communication
model.

3. [Jain, Radhakrishnan and Sen 2003]
For bounded round communication models, for any f and
any product distribution p,

DIk > (52 Dby -2)



Improved Direct Sum Result

Theorem
For any function f and any product distribution ,

pHk(pery > L <5ng6(f) . 0(k)> .



Improved Direct Sum Result

Theorem
For any function f and any product distribution ,

pHk(pery > L <5ng6(f) - O(k)> .

Applying Yao’s minmax principle,

RE(FP') > max ( (5Dgf5(f) ())).

product p
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Information Cost

Private Coins Protocol I

X
Y

y Bob

M— transcript

=~

Information Cost of M wrt u:
ICH(M) = I[XY : M]
For a function f, let
IC(F) = min IC#(10),

where N — k-round private-coins protocols for f with error at
most e under .



Three Lemmata

Lemma (Direct Sum for Information Cost)
For . — product distribution,

ICE 4 (F®1) > 1 - 1ICH(f).



Three Lemmata

Lemma (Direct Sum for Information Cost)
For . — product distribution,

ICE 4 (F®1) > 1 - 1ICH(f).

Lemma (IC upper bounds distributional complexity)

IGLA(r) < DEX(P).



Three Lemmata

Lemma (Direct Sum for Information Cost)
For . — product distribution,

ICE 4 (F®1) > 1 - 1ICH(f).

Lemma (IC upper bounds distributional complexity)

ICE4(r) < DEX ().
Lemma ((Improved) Message Compression)

D) < 1 [2-168) + o)



Three Lemmata

Lemma (Direct Sum for Information Cost)
For . — product distribution,

ICE 4 (F®1) > 1 - 1ICH(f).

Lemma (IC upper bounds distributional complexity)

ICE4(r) < DEX ().
Lemma ((Improved) Message Compression)
Dt

“0) < 5 [2 108 G) + 0w

Three Lemmata imply improved direct sum result.
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Direct Sum for Information Cost

For 1 — product distribution, IC¥ *(£®1) > ¢ - IC#(f).

Private Coins Protocol I achieves I = ICH*(f®")

X17X27"'7XI Y17Y27"'7Yl
U M I

Bob

M— transcript

Chain rule: I[XY : M] > Y"I_ | I[X;Y: : M]
Claim: For each i, I[X;Y; : M] > IC* (f)
Proof: On input X; and Y;, Alice and Bob fill in other components

(based on product distribution 1) and perform above protocol
L]
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IC upper bounds distributional complexity

Proof.

ICLA(f) < DEX(P).

Let M be a protocol that achieves D¥*(f) and M be its

transcript. Then,

DIA(f)

(AR AVAR VARV,

E[|M]]
H[M]
XY : M)
IC(r)
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Message Compression
To prove: D5(f) < L 2 1CH¥(F) + O(k)

Private Coins Protocol I Public Coins Protocol I’
mj 21 m
ny 22
my «————
ms3 23
my — 24

my «———m—

my 2k
my

Information Cost 1 Zf:l E[Z] <21+ O(k)

k
I=1I[XY : M| =I[XY : MM, ... M] = > I[XY : M;|M\M, ... M;_j]
i=1
Sufficient to prove,
For all i,E[Z,'] < ZI[XY : M,’|M1M2 .. .M,'_l] + 0(1)
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Message Compression (Contd)

To prove: For all i, E[Z;] < 2I[XY : M;j|M\M, ... M;_1] + O(1)

21

mi
22

my
X

: Y
Y ; ¥

my

Conditioned on all earlier messages, message M; is
independent of Bob’s Input Y.
Hence, I, = I[XY : Mi]ml .. .m,',l] = I[X : M,'|m1 .. .mi,l]
Main Result implies M; can be generated on Bob’s side sending
onIy I; + 210g[,‘ + 0(1) <2+ 0(1) bits

L]



Summarizing Results

» A characterization of mutual information and relative
entropy in terms of communication complexity (modulo
lower order log terms)

» An improved direct sum result for communication
complexity

Thank You
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