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Transmitting Correlated Variables

(X, Y) – pair of correlated random variables

x −→

Alice

——-z −→

Bob

−→ y

Input (to Alice): x←R X

Output (from Bob): y←R Y|X=x (ie., conditional distribution)

Question: What is the minimum "expected" number of bits
(i.e, |Z|) Alice needs to send Bob? (say, T(X : Y))

Easy to check: T(X : Y) ≥ I[X : Y] (mutual information)
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Correlated variables – an example

I W = (i, b) — random variable uniformly distributed over
[n]× {0, 1}.

I X and Y – two n bit strings such that
I X[i] = Y[i] = b
I remaining 2n− 1 bits independently and uniformly chosen.

Exercise: I[X : Y] = o(1) but T(X : Y) = Θ(log n)
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Information Theory – Preliminaries
(X, Y) - pair of random variables

1. Entropy:

H[X] +
∑

x

p(x) log
1

p(x)
,

where p(x) = Pr[X = x].
≈ minimum expected number of bits to encode X (upto ±1)

2. Conditional Entropy:

H[Y|X] +
∑

x

Pr[X = x] · H[Y|X=x]

3. Joint Entropy: H[XY] = H[X] + H[Y|X]

4. Mutual Information:

I[X : Y] + H[X] + H[Y]− H[XY]

= H[Y]− H[Y|X]



Information Theory – Preliminaries (Contd)

1. Independence: X and Y are independent if

Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y], for all x, y

Equivalently, I[X : Y] = 0.
2. Markov Chain: X—-Z—-Y is called a Markov chain if X and

Y are conditionally independent given Z (ie., I[X : Y|Z] = 0)
3. Data Processing Inequality:

X—-Z—-Y =⇒ I[X : Z] ≥ I[X : Y]



Transmitting Correlated Variables

x −→ Alice ——-z −→ Bob −→ y

Input (to Alice): x←R X

Output (from Bob): y←R Y|X=x (ie., conditional distribution)

Question: What is the minimum "expected" number of bits
(i.e, |z|) Alice needs to send Bob? (say, T(X : Y))

T(X : Y) = min
Z

H[Z]

where the minimum is over all Markov chains X—-Z—-Y (i.e., Z
such that X and Y are independent given Z)
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Asymptotic Version (with error)

x1
x2
...

xm

 −→ Alice ——-z −→ Bob −→


ỹ1
ỹ2
...

ỹm

Input: x1, x2, . . . , xm —- i.i.d. samples from X

Output: ỹ1, ỹ2, . . . , ỹm such that∥∥∥((X1, Y1), . . . , (Xm, Ym))−
(
(X1, Ỹ1), . . . , (Xm, Ỹm)

)∥∥∥
1
≤ λ

I Tλ(Xm, Ym) = min E[|Z|]
I Common Information:

C(X : Y) + lim inf
λ→0

[
lim

m→∞

Tλ(Xm : Ym)

m

]
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Asymptotic Version (with error)

Theorem (Wyner 1975)

C(X : Y) = min
Z

I[XY : Z],

where the minimum is taken over all Z such that X—-Z—-Y.

For instance in the example, C(X : Y) = 2− o(1)
i.e., Can send significantly less in the asymptotic case (2 bits
on average) compared to the one-shot case (Θ(log n) bits).
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Asymptotic Version

with Shared Randomness

—————————–Random String R —————————–

x1
x2
...

xm

 −→ Alice ——-z −→ Bob −→


ỹ1
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1
≤ λ

I T

R

λ(Xm, Ym) = min E[|Z|]

Theorem (Winter 2002)

lim inf
λ→0

[
lim

m→∞

TR
λ(Xm : Ym)

m

]
= I[X : Y]
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I ỹ1, ỹ2, . . . , ỹm such that∥∥∥((X1, Y1), . . . , (Xm, Ym))−
(
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Main Result: One-shot Version

—————— R ——————
x −→ Alice ——-z −→ Bob −→ y

Input (to Alice): x←R X

Output (from Bob): y←R Y|X=x (ie., conditional distribution)
Communication: TR(X : Y) = E[|Z|]

Theorem (Main Result)

I[X : Y] ≤ TR(X : Y) ≤ I[X : Y] + 2 log I[X : Y] + O(1)

Characterization of Mutual Information (upto lower order
logarithmic terms)
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One-shot vs. Asymptotic

Typical Sets
I For large n, n i.i.d samples of X fall in "typical

sets"
I Typical sets – all elements equally probable

and number of elements ≈ 2nH[X].
I Asymptotic statements – arguably properties

of typical sets as opposed to the underlying
distributions.

Applications
I Asymptotic versions not strong enough for

applications.
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Generating one distribution from another

P, Q — two distributions such that Supp(P) ⊆ Supp(Q).
Rejection Sampling Procedure:

q1 q2 q3 q4 q5 . . . . . . . . . qi . . . . . . . . .

⇓

Proc −→ i∗

Input: An infinite stream of independently drawn samples
from Q

Output: Index i∗ such that qi∗ is a sample from P

Question: What is the minimum expected length of the index
(i.e., E[l(i∗)] over all such procedures?
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Naive procedure

I Sample according to P to obtain item x
I Wait till item x appears in the stream and output

corresponding index

E[l(i∗)] ≈
∑

x

p(x) log
1

q(x)
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Relative Entropy

P, Q — two distributions

S(P‖Q) =
∑

x

p(x) log
p(x)
q(x)

Properties:
I Asymmetric

I S(P‖Q) <∞⇔ Supp(P) ⊆ Supp(Q)

I S(P‖Q) = 0⇔ P ≡ Q
I S(P‖Q) ≥ 0
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Rejection Sampling Lemma

Lemma (Rejection Sampling Lemma)
There exists a rejection sampling procedure that generates P
from Q such that

E[l(i∗)] ≤ S(P‖Q) + 2 log S(P‖Q) + O(1).



Proof of Main Result

Fact: I[X : Y] = Ex←X
[
S (Y|X=x‖Y)

]

Proof.
I Common random string: sequence of samples from

marginal Y
I On input x, Alice performs rejection sampling procedure to

generate Y|X=x from Y

E[|Z|] = Ex←X
[
S(Y|X=x‖Y) + 2 log S(Y|X=x‖Y) + O(1)

]
≤ I[X : Y] + 2 log I[X : Y] + O(1)



Proof of Main Result

Fact: I[X : Y] = Ex←X
[
S (Y|X=x‖Y)

]
Proof.

I Common random string: sequence of samples from
marginal Y

I On input x, Alice performs rejection sampling procedure to
generate Y|X=x from Y

E[|Z|] = Ex←X
[
S(Y|X=x‖Y) + 2 log S(Y|X=x‖Y) + O(1)

]
≤ I[X : Y] + 2 log I[X : Y] + O(1)



Greedy Approach to Rejection Sampling

q1 q2 q3 q4 q5 . . . . . . . . . qi . . . . . . . . .

⇓

Proc −→ i∗

Input: An infinite stream of independently drawn samples
from Q

Output: Index i∗ such that qi∗ is a sample from P

Greedy Approach: At each iteration, fill distribution P with
best possible sub-distribution of Q, while maintaining that
sum is always less then P
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Greedy Approach

1. Set p1(x)← p(x)
[pi(x) = Probability for item x that still needs to be

satisfied]
2. Set s0 ← 0

[si = Pr[Greedy stops before examining (i + 1)th sample]]
3. For i← 1 to∞

3.1 Examine sample qi
3.2 If qi = x,

I With probability min
n

pi(x)
(1−si−1)·q(x) , 1

o
output i

3.3 Updates:
I For all x, set pi+1(x)←

pi(x)− (1− si−1)q(x) ·min
n

pi(x)
(1−si−1)q(x) , 1

o
= pi(x)− αi,x

I Set si ← si−1 +
P

x αi,x

Clearly, distribution generated is P.
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Expected Index Length

si = Pr[ Greedy stops before examining sample qi+1]

αi,x = Pr[ Greedy outputs x in iteration i].

Note p(x) =
∑

i

αi,x

Suppose αi+1,x > 0,
i.e., previous iterations not sufficient to provide the required
probability p(x) to item x. Hence,

i∑
j=1

(1− sj−1) · q(x) < p(x)

i(1− si)q(x) < p(x)

i <
1

1− si
· p(x)

q(x)

.
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Expected Index Length

E[l(i)] ≈ E[log i] =
∑

x

∑
i

αi,x · log i

≤
∑

x

∑
i

αi,x · log
(

1
1− si−1

· p(x)
q(x)

)
=

∑
x

∑
i

αi,x

(
log

1
1− si−1

+ log
p(x)
q(x)

)

=
∑

x

p(x) log
p(x)
q(x)

+
∑

i

(∑
x

αi,x

)
log

1
1− si−1

= S(P‖Q) +
∑

i

αi log
1

1− si−1
≤ S(P‖Q) +

∫ 1

0
log

1
1− s

ds

= S(P‖Q) + O(1)

Actually, l(i) = log i + 2 log log i, hence extra log term in final
result



Expected Index Length

E[l(i)] ≈ E[log i] =
∑

x

∑
i

αi,x · log i

≤
∑

x

∑
i

αi,x · log
(

1
1− si−1

· p(x)
q(x)

)
=

∑
x

∑
i

αi,x

(
log

1
1− si−1

+ log
p(x)
q(x)

)

=
∑

x

p(x) log
p(x)
q(x)

+
∑

i

(∑
x

αi,x

)
log

1
1− si−1

= S(P‖Q) +
∑

i

αi log
1

1− si−1
≤ S(P‖Q) +

∫ 1

0
log

1
1− s

ds

= S(P‖Q) + O(1)

Actually, l(i) = log i + 2 log log i, hence extra log term in final
result



Greedy Approach (Contd)

I Clearly, the greedy approach generates the target
distribution P

I Furthermore, it can be shown that the expected index
length is at most

E[l(i)] ≤ S(P‖Q) + 2 log S(P‖Q) + O(1).
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Two Party Communication Complexity Model [Yao]

f : X × Y → Z

x
⇓

Alice

m1←−−−−−−−−−−−−−−−−
m2−−−−−−−−−−−−−−−−→
m3←−−−−−−−−−−−−−−−−
m4−−−−−−−−−−−−−−−−→
...
...

mk←−−−−−−−−−−−−−−−−
f (x, y)

y
⇓

Bob

k-round protocol computing f

Question: How many bits must Alice and Bob exchange to
compute f ?
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Direct Sum Question

(x1, x2, . . . , xt)
⇓

Alice

m1←−−−−−−−−−−−−−−−−
m2−−−−−−−−−−−−−−−−→
m3←−−−−−−−−−−−−−−−−
m4−−−−−−−−−−−−−−−−→
...
...

mk←−−−−−−−−−−−−−−−−

(f (x1, y1), f (x2, y2), . . . , f (xt, yt))

(y1, y2, . . . , yt)
⇓

Bob

Direct Sum Question: Does the number of bits communicated
increase t fold?

Direct Product Question: Keeping number of bits
communicated fixed, does success probability fall
exponentially in t?
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Communication Complexity Measures
I randomized communication complexity:

Rk
ε(f ) = min

Π
max
(x,y)

(number of bits communicated)

Π —- k-round public-coins randomized protocol, that
computes f correctly with probability at least 1− ε on each
input (x, y).

I distributional communication complexity: For a distribution
µ on the inputs X × Y,

Dµ,k
ε (f ) = min

Π
max
(x,y)

(number of bits communicated)

where Π —- "deterministic" k-round protocol for f with
average error at most ε under µ.

Theorem (Yao’s minmax principle)

Rk
ε(f ) = max

µ
Dµ,k

ε (f )
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Direct Sum Results

Rk
ε(f ) vs. Rk

ε(f
⊕t) and Dµ,k

ε (f ) vs. Dµt,k
ε (f⊕t)

1. [Chakrabarti, Shi, Wirth and Yao 2001]
Direct Sum result for "Equality function" in Simultaneous
message passing model.

2. [Jain, Radhakrishnan and Sen 2005]
Extended above result to all functions in simultaneous
message passing model and one-way communication
model.

3. [Jain, Radhakrishnan and Sen 2003]
For bounded round communication models, for any f and
any product distribution µ,

Dµt,k
ε (f⊕t) ≥ t

(
δ2

2k
· Dµ,k

ε+2δ(f )− 2
)
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Improved Direct Sum Result

Theorem
For any function f and any product distribution µ,
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Information Cost

X
⇓

Alice

Private Coins Protocol Π
←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

M
←−−−−−−−−−−−−−−

M— transcript

Y
⇓

Bob

Information Cost of Π wrt µ:

ICµ(Π) = I[XY : M]

For a function f , let

ICµ,k
ε (f ) = min

Π
ICµ(Π),

where Π — k-round private-coins protocols for f with error at
most ε under µ.
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Three Lemmata

Lemma (Direct Sum for Information Cost)
For µ – product distribution,

ICµt,k
ε (f⊕t) ≥ t · ICµ,k

ε (f ).

Lemma (IC upper bounds distributional complexity)

ICµ,k
ε (f ) ≤ Dµ,k

ε (f ).

Lemma ((Improved) Message Compression)

Dµ,k
ε+δ(f ) ≤

1
δ

[
2 · ICµ,k

ε (f ) + O(k)
]
.

Three Lemmata imply improved direct sum result.
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Direct Sum for Information Cost

For µ – product distribution, ICµt,k
ε (f⊕t) ≥ t · ICµ,k

ε (f ).

Private Coins Protocol Π achieves I = ICµ,k
ε (f⊕t)

X1, X2, . . . , Xt

⇓
Alice

←−−−−−−−−−−−−−−
−−−−−−−−−−−−−−→

M
←−−−−−−−−−−−−−−

M— transcript

Y1, Y2, . . . , Yt

⇓
Bob

Chain rule: I[XY : M] ≥
∑t

i=1 I[XiYi : M]

Claim: For each i, I[XiYi : M] ≥ ICµ,k
ε (f )

Proof: On input Xi and Yi, Alice and Bob fill in other components
(based on product distribution µ) and perform above protocol
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Message Compression
To prove: Dµ,k

ε+δ(f ) ≤
1
δ

[
2 · ICµ,k

ε (f ) + O(k)
]

Private Coins Protocol Π

Public Coins Protocol Π′

m1−−−−−−−−−−−−−−−−→
m2←−−−−−−−−−−−−−−−−
m3−−−−−−−−−−−−−−−−→
m4←−−−−−−−−−−−−−−−−
...

mk−−−−−−−−−−−−−−−−→

−−−→

z1−−−−−−−−→ m1

m2
z2←−−−−−−−−
z3−−−−−−−−→ m3

m4
z4←−−−−−−−−
...

zk−−−−−−−−→ mk

Information Cost I

∑k
i=1 E [Zi] ≤ 2I + O (k)

I = I[XY : M] = I[XY : M1M2 . . . Mk] =
k∑

i=1

I[XY : Mi|M1M2 . . . Mi−1]

Sufficient to prove,

For all i, E[Zi] ≤ 2I[XY : Mi|M1M2 . . . Mi−1] + O(1)
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I = I[XY : M] = I[XY : M1M2 . . . Mk] =
k∑

i=1

I[XY : Mi|M1M2 . . . Mi−1]
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Summarizing Results

I A characterization of mutual information and relative
entropy in terms of communication complexity (modulo
lower order log terms)

I An improved direct sum result for communication
complexity

—————————————————–
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